K7D161874B-HC330 [SAMSUNG]

DDR SRAM, 1MX18, 0.2ns, CMOS, PBGA153, 14 X 22 MM, 1.27 MM PITCH, BGA-153;
K7D161874B-HC330
型号: K7D161874B-HC330
厂家: SAMSUNG    SAMSUNG
描述:

DDR SRAM, 1MX18, 0.2ns, CMOS, PBGA153, 14 X 22 MM, 1.27 MM PITCH, BGA-153

双倍数据速率 静态存储器 内存集成电路
文件: 总16页 (文件大小:440K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
Document Title  
16M DDR SYNCHRONOUS SRAM  
Revision History  
RevNo.  
Rev. 0.0  
Rev. 0.1  
History  
DraftData  
Oct. 2003  
Nov. 2003  
Remark  
Advance  
Preliminary  
Initial document.  
Change JTAG DC OPERATING CONDITONS/AC TEST CONDITIONS  
-to support 1.8~2.5V VDD, change some items.  
Rev. 0.2  
Rev. 0.3  
Rev. 1.0  
Rev. 1.1  
Change DC CHARACTERISTICS (Stop Clock Standby Current)  
-ISB1 : 100 -> 150  
Feb. 2004  
Feb. 2004  
Mar. 2004  
Jan. 2004  
Preliminary  
Preliminary  
Final  
Change JTAG Instruction Cording  
- For Reserved  
Change DC CHARACTERISTICS (Increase Operating Current)  
- x36 : add 40mA, x18 : add 60mA  
Add DC CHARACTERISTICS  
- VIN-CLK, VDIF-CLK, VCM-CLK  
Final  
Add AC INPUT CHARACTERISTICS  
Add INPUT DEFINITION  
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the  
right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters  
of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or cortact Headquarters.  
Rev 1.1  
Jan. 2005  
- 1 -  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
FEATURES  
• Registered Addresses, Burst Control and Data Inputs.  
• Registered Outputs.  
• 512Kx36 or 1Mx18 Organizations.  
• 1.8~2.5V VDD/1.5V VDDQ.(1.9V max VDDQ)  
• HSTL Input and Outputs.  
• Double and Single Data Rate Burst Read and Write.  
• Burst Count Controllable With Max Burst Length of 4  
• Interleved and Linear Burst mode support  
• Bypass Operation Support  
• Single Differential HSTL Clock.  
• Synchronous Pipeline Mode of Operation with Self-Timed  
Late Write.  
• Programmable Impedance Output Drivers.  
• JTAG Boundary Scan (subset of IEEE std. 1149.1)  
• 153(9x17) Pin Ball Grid Array Package(14mmx22mm)  
• Free Running Active High and Active Low Echo Clock Output  
Pin.  
• Asynchronous Output Enable.  
GENERAL DESCRIPTION  
The K7D163674B and K7D161874B are 18,874,368 bit Synchronous Pipeline Burst Mode SRAM devices. They are organized as  
524,288 words by 36 bits for K7D163674B and 1,048,576 words by 18 bits for K7D161874B, fabricated using Samsung's advanced  
CMOS technology.  
Single differential HSTL level clock, K and K are used to initiate the read/write operation and all internal operations are self-timed. At  
the rising edge of K clock, all addresses and burst control inputs are registered internally. Data inputs are registered one cycle after  
write addresses are asserted(Late Write), at the rising edge of K clock for single data rate (SDR) write operations and at rising and  
falling edge of K clock for a double data rate (DDR) write operations.  
Data outputs are updated from output registers off the rising edges of K clock for SDR read operations and off the rising and falling  
edges of K clock for DDR read operations. Free running echo clocks are supported which are representive of data output access  
time for all SDR and DDR operations.  
The chip is operated with a single +2.5V power supply and is compatible with Extended HSTL input and output. The package is  
9x17(153) Ball Grid Array balls on a 1.27mm pitch.  
ORDERING INFORMATION  
Maximum  
Part Number  
Organization  
Frequency  
K7D163674B-HC37  
K7D163674B-HC33  
K7D163674B-HC30  
K7D163674B-HC27  
K7D161874B-HC37  
K7D161874B-HC33  
K7D161874B-HC30  
K7D161874B-HC27  
375MHz  
333MHz  
300MHz  
275MHz  
375MHz  
333MHz  
300MHz  
275MHz  
512Kx36  
1Mx18  
Rev 1.1  
Jan. 2005  
- 2 -  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
FUNCTIONAL BLOCK DIAGRAM  
SA[0:18]( or SA[0:19])  
Address  
Memory Array  
512Kx36  
or  
19(or 20)  
Register  
17(or 18)  
2:1  
Dec.  
MUX  
(Burst Address)  
CE  
(1Mx18)  
Clock  
Data Out  
36(or 18)x2  
K,K  
Data In  
Buffer  
Burst  
36(or18)x2  
Counter  
Comparator  
S/A Array  
W/D  
Advance  
Array  
(Burst Write  
Address)  
B
1
3
Control  
SD/DD  
Write  
Address  
Register  
B
36(or 18)x2  
36(or18)x2  
Write Buffer  
19(or 20)  
17(or 18)  
(2 stage)  
CE  
2 : 1 MUX  
Synchronous  
Select  
CE  
Strobe_out  
&
B
2
Echo Clock  
Output  
Output  
Buffer  
Data In  
Register  
(2 stage)  
R/W  
R/W control  
Data Output Strobe  
Data Output Enable  
State Machine  
LD  
Internal  
Clock  
36(or 18)  
DQ  
Generator  
XDIN  
CQ,CQ  
G
PIN DESCRIPTION  
Pin Name  
Pin Description  
Differential Clocks  
Synchronous Address Input  
Pin Name  
ZQ  
Pin Description  
K, K  
SA  
Output Driver Impedance Control Input  
JTAG Test Clock  
TCK  
TMS  
TDI  
SA0, SA1  
DQ  
Synchronous Burst Address Input (SA0 = LSB)  
Synchronous Data I/O  
JTAG Test Mode Select  
JTAG Test Data Input  
JTAG Test Data Output  
HSTL Input Reference Voltage  
Power Supply  
CQ, CQ  
B1  
Differential Output Echo Clocks  
Load External Address  
TDO  
VREF  
VDD  
B2  
Burst R/W Enable  
B3  
Single/Double Data Selection  
Asynchronous Output Enable  
Linear Burst Order  
VDDQ  
VSS  
Output Power Supply  
GND  
G
LBO  
NC  
No Connection  
Rev 1.1  
Jan. 2005  
- 3 -  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
PACKAGE PIN CONFIGURATIONS(TOP VIEW)  
K7D163674B(512Kx36)  
1
2
3
4
5
ZQ  
B1  
6
SA  
7
8
9
A
B
C
D
E
F
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
VDDQ  
DQ  
SA  
SA  
SA  
VDDQ  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
SA  
VSS  
SA  
VSS  
SA  
SA  
VDDQ  
DQ  
SA  
G
SA  
VDDQ  
DQ  
SA  
VSS  
VDD  
VDD  
VSS  
VDD  
VDD  
VSS  
LBO  
VDD  
VDD  
VSS  
SA  
VDD  
VREF  
VDD  
K
VSS  
VDD  
VDD  
VSS  
VDD  
VDD  
VSS  
MODE  
VDD  
VDD  
VSS  
SA  
SA  
VDDQ  
CQ1  
VDDQ  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
NC  
VDD  
SA  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
DQ  
VSS  
SA  
VDDQ  
CQ2  
VDDQ  
DQ  
G
H
J
K
VDDQ  
DQ  
VDD  
B2  
VDDQ  
DQ  
K
L
VDDQ  
CQ1  
VDDQ  
DQ  
B3  
VDDQ  
CQ2  
VDDQ  
DQ  
M
N
P
R
T
VDD  
VREF  
VDD  
SA1  
SA0  
TCK  
VDDQ  
DQ  
VDD  
SA  
VDDQ  
DQ  
VSS  
TDI  
VSS  
TDO  
U
VDDQ  
TMS  
NC  
VDDQ  
* Mode Pin(6L) is a internally NC.  
K7D161874B(1Mx18)  
1
2
3
4
5
ZQ  
B1  
6
SA  
7
8
9
A
B
C
D
E
F
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
VDDQ  
DQ  
SA  
SA  
SA  
VDDQ  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
SA  
VSS  
SA  
VSS  
SA  
SA  
VDDQ  
NC  
SA  
G
SA  
VDDQ  
DQ  
SA  
VSS  
VDD  
VDD  
VSS  
VDD  
VDD  
VSS  
LBO  
VDD  
VDD  
VSS  
SA  
VDD  
VREF  
VDD  
K
VSS  
VDD  
VDD  
VSS  
VDD  
VDD  
VSS  
MODE  
VDD  
VDD  
VSS  
SA  
SA  
VDDQ  
CQ1  
VDDQ  
NC  
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
SA  
VSS  
DQ  
VSS  
NC  
VSS  
DQ  
VSS  
NC  
VSS  
SA  
VDDQ  
NC  
G
H
J
VDDQ  
DQ  
K
VDDQ  
DQ  
VDD  
B2  
VDDQ  
NC  
K
L
VDDQ  
NC  
B3  
VDDQ  
CQ1  
VDDQ  
NC  
M
N
P
R
T
VDD  
VREF  
VDD  
SA1  
SA0  
TCK  
VDDQ  
DQ  
VDDQ  
NC  
VDD  
SA  
VDD  
SA  
VDDQ  
DQ  
VSS  
TDI  
VSS  
TDO  
U
VDDQ  
TMS  
NC  
VDDQ  
* Mode Pin(6L)is a internally NC.  
Rev 1.1  
Jan. 2005  
- 4 -  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
Read Operation(Single and Double)  
During SDR read operations, addresses and controls are registered at the first rising edge of K clock and then the internal array is  
read between first and second rising edges of K clock. Data outputs are updated from output registers off the second rising edge of  
K clock. During DDR read operations, addresses and controls are registered at the first rising edge of K clock, and then the internal  
array is read twice between first and second rising edges of K clock. Data outputs are updated from output registers sequentially by  
burst order off the second rising and falling edge of K clock.  
Interleave and linear burst operation is controlled by LBO pin and the burst count is controllable with the maximum burst length of 4.  
To avoid data contention,at least one NOP operations are required between the last read and the first write operation.  
Write Operation(Late Write)  
During SDR write operations, addresses and controls are registered at the first rising edge of K clock and data inputs are registered  
at the following rising edge of K clock. During DDR write operations, addresses and controls are registered at the first rising edge of  
K clock and data inputs are registered twice at the following rising and falling edge of K clock. Write addresses and data inputs are  
stored in the data in registers until the next write operation, and only at the next write opeation are data inputs fully written into SRAM  
array.  
Echo clock operation  
Free running type of Echo clocks are generated from K clock regardless of read, write and NOP operations. They will stop operation  
only when K clock is in the stop mode.  
Echo clocks are designed to represent data output access time and this allows the echo clocks to be used as reference to capture  
data outputs outputs.  
Bypass Read Operation  
Bypass read operation occurs when the last write operation is followed by a read operation where write and read addresses are  
identical. For this case, data outputs are from the data in registers instead of SRAM array.  
Programmable Impedance Output Driver  
The data output and echo clock driver impedance are adjusted by an external resistor, RQ, connected between ZQ pin and VSS, and  
are equal to RQ/5. For example, 250resistor will give an output impedance of 50. Output driver impedance tolerance is 15% by  
test(10% by design) and is periodically readjusted to reflect the changes in supply voltage and temperature. Impedance updates  
occur early in cycles that do not activate the outputs, such as deselect cycles. They may also occur in cycles initiated with G high. In  
all cases impedance updates are transparent to the user and do not produce access time "push-outs" or other anomalous behavior  
in the SRAM. Impedance updates occur no more often than every 32 clock cycles. Clock cycles are counted whether the SRAM is  
selected or not and proceed regardless of the type of cycle being executed. Therefore, the user can be assured that after 33 contin-  
uous read cycles have occurred, an impedance update will occur the next time G are high at a rising edge of the K clock. There are  
no power up requirements for the SRAM. However, to guarantee optimum output driver impedance after power up, the SRAM needs  
1024 non-read cycles.  
Power-Up/Power-Down Supply Voltage Sequencing  
The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ can be applied  
simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-up. The following power-down supply voltage  
removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ can be removed simultaneously, as long as VDDQ  
does not exceed VDD by more than 0.5V during power-down.  
Rev 1.1  
Jan. 2005  
- 5 -  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
TRUTH TABLE  
K
L
G
X
X
L
B1  
X
H
L
B2  
X
L
B3  
X
X
H
L
DQ  
Hi-Z  
Hi-Z  
DOUT  
DOUT  
DIN  
Operation  
Clock Stop  
No Operation, Pipeline High-Z  
Load Address, Single Read  
Load Address, Double Read  
Load Address, Single Write  
Load Address, Double Write  
Increment Address, Continue  
H
H
L
L
L
X
X
X
L
H
L
L
L
DIN  
H
H
X
B
NOTE : - B(Both) is DIN in write cycle and DOUT in read cycle. Byte write function is not supported. X means "Don't Care".  
- K & K are complementary.  
BURST SEQUENCE TABLE  
4 Burst Operation for Interleaved Burst (LBO = VDDQ)  
Interleaved Burst  
Case 1  
Case 2  
Case 3  
Case 4  
A1  
A0  
A1  
A0  
A1  
A0  
A1  
A0  
First Address  
0
0
1
1
0
1
0
1
0
0
1
1
1
0
1
0
1
1
0
0
0
1
0
1
1
1
0
0
1
0
1
0
Fourth Address  
NOTE : - For Interleave Burst LBO = VDDQ is recommended. If LBO = VDD, it must not exceed 2.63V.  
4 Burst Operation for Linear Burst (LBO = VSS)  
Case 1  
Case 2  
Case 3  
Case 4  
Linear Burst Mode  
A1  
A0  
A1  
A0  
A1  
A0  
A1  
A0  
First Address  
0
0
1
1
0
1
0
1
0
1
1
0
1
0
1
0
1
1
0
0
0
1
0
1
1
0
0
1
1
0
1
0
Fourth Address  
Rev 1.1  
Jan. 2005  
- 6 -  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
BUS CYCLE STATE DIAGRAM  
LOAD  
NEW ADDRESS  
READ  
SDR  
WRITE  
SDR  
READ  
DDR  
WRITE  
DDR  
INCREMENT  
ADDRESS  
INCREMENT  
ADDRESS  
INCREMENT  
ADDRESS  
INCREMENT  
ADDRESS  
POWER  
UP  
NO OP  
NOTE :  
1. State transitions ; B1 =(Load Address), B1=(Increment Address, Continue)  
B2 =(Read), B2 =(Write)  
B3 =(Single Data Rate), B3 =(Double Data Rate)  
Rev 1.1  
Jan. 2005  
- 7 -  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Core Supply Voltage Relative to VSS  
Output Supply Voltage Relative to VSS  
Voltage on any pin Relative to VSS  
Output Short-Circuit Current(per I/O)  
Storage Temperature  
Symbol  
VDD  
Value  
-0.5 to 3.13  
Unit  
V
VDDQ  
VIN  
-0.5 to 2.3  
V
-0.5 to VDDQ+0.5 (2.3V MAX)  
25  
V
IOUT  
mA  
°C  
TSTR  
-55 to 125  
NOTE : Power Dissipation Capability will be dependent upon package characteristics and use environment. See enclosed thermal impedance data.  
Stresses greater than those listed under " Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
RECOMMENDED DC OPERATING CONDITIONS  
Parameter  
Core Power Supply Voltage  
Output Power Supply Voltage  
Input High Level Voltage  
Symbol  
VDD  
Min  
1.7  
Typ  
2.5  
1.5  
-
Max  
2.63  
Unit  
V
Note  
VDDQ  
VIH  
1.4  
1.9  
V
VREF+0.1  
-0.3  
VDDQ+0.3  
VREF-0.1  
0.95  
V
1, 2  
1, 3  
Input Low Level Voltage  
VIL  
-
V
Input Reference Voltage  
VREF  
0.68  
-0.3  
0.75  
-
V
Clock Input Signal Voltage  
Clock Input Differential Voltage  
Clock Input Common Mode Voltage  
VIN-CLK  
VDIF-CLK  
VCM-CLK  
VDDQ+0.3  
VDDQ+0.6  
0.9  
V
1, 4  
1, 5  
1, 6  
0.1  
-
V
0.68  
0.75  
V
NOTE :1. These are DC test criteria. DC design criteria is VREF±50mV. The AC VIH/VIL levels are defined separately for measuring  
timing parameters.  
2. VIH (Max)DC=VDDQ+0.3, VIH (Max)AC=2.6V (2.1V for DQs) (pulse width 20% of cycle time).  
3. VIL (Min)DC=-0.3V, VIL (Min)AC=-1.0V (-0.5V for DQs) (pulse width 20% of cycle time).  
4. VIN-CLK specifies the maximum allowable DC level for the differential clock. i.e VIL-CLK and VIH-CLK.  
5. VDIF-CLK specifies the minimum Clock differential voltage required for switching. i.e DC voltage difference between VIL-CLK and VIH-CLK.  
6. VCM-CLK specifies the Clock crossing point for the differential clock or the allowable common clock level for a single ended clock.  
DC CHARACTERISTICS  
Min  
Max  
Parameter  
Symbol  
Unit  
Note  
IDD37  
IDD33  
IDD30  
IDD27  
540  
490  
440  
420  
Average Power Supply Operating Current(x36)  
(Cycle time = tKHKH min)  
-
mA  
1,2  
IDD37  
IDD33  
IDD30  
IDD27  
510  
460  
410  
390  
Average Power Supply Operating Current(x18)  
(Cycle time = tKHKH min)  
-
mA  
1,2  
1
Stop Clock Standby Current  
(VIN=VDD-0.2V or 0.2V fixed, K=Low, K=High)  
Input Leakage Current  
(VIN=VSS or VDDQ)  
Output Leakage Current  
(VOUT=VSS or VDDQ)  
ISB1  
ILI  
-
150  
1
mA  
µA  
µA  
-1  
-1  
ILO  
1
Output High Voltage(Programmable Impedance Mode)  
Output Low Voltage(Programmable Impedance Mode)  
Output High Voltage(IOH=-0.1mA)  
VOH1  
VOL1  
VOH2  
VOL2  
VDDQ/2  
VSS  
VDDQ-0.2  
VSS  
VDDQ  
VDDQ/2  
VDDQ  
0.2  
V
V
V
V
3
4
5
5
Output Low Voltage(IOL=0.1mA)  
NOTE :1. Minimum cycle. IOUT=0mA.  
2. 50% read cycles.  
3. |IOH|=(VDDQ/2)/(RQ/5)±15% @VOH=VDDQ/2 for 175Ω ≤ RQ 350.  
4. |IOL|=(VDDQ/2)/(RQ/5)±15% @VOL=VDDQ/2 for 175Ω ≤ RQ 350.  
5. Minimum Impedance Mode when ZQ pin is connected to VSS.  
Rev 1.1  
Jan. 2005  
- 8 -  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
PIN CAPACITANCE  
Parameter  
Input Capacitance  
Symbol  
CIN  
COUT  
Test Condition  
VIN=0V  
TYP  
-
-
Max  
4
5
Unit  
pF  
pF  
Data Output Capacitance  
VOUT=0V  
NOTE : Periodically sampled and not 100% tested.(TA=25°C, f=1MHz)  
AC INPUT CHARACTERISTICS  
Parameter  
AC Input Logic High  
AC Input Logic Low  
Clock Input Differential Voltage  
VREF Peak-to-Peak AC Voltage  
Symbol  
VIH (AC)  
VIL (AC)  
VDIF (AC)  
VREF (AC)  
Min  
VREF + 0.4  
Max  
Unit  
Note  
V
V
V
V
-
-
-
-
VREF - 0.4  
0.8  
5% VREF (DC)  
AC INPUT DEFINITION  
CK  
V
(AC)  
DIF  
CK  
VIH(AC)  
VREF  
Setup  
Time  
Hold  
Time  
VIL(AC)  
AC TEST CONDITIONS(TA=0 to 70°C, VDD=1.7 -2.63V, VDDQ=1.5V)  
Parameter  
Input High/Low Level  
Input Reference Level  
Input Rise/Fall Time  
Symbol  
VIH/VIL  
VREF  
Value  
1.25/0.25  
0.75  
0.5/0.5  
0.75  
Unit  
V
V
ns  
V
V
Note  
-
-
-
-
-
-
TR/TF  
Output Timing Reference Level  
Clock Input Timing Reference Level  
Output Load  
Cross Point  
See Below  
Rev 1.1  
Jan. 2005  
- 9 -  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
AC TEST OUTPUT LOAD  
50Ω  
0.75V  
50Ω  
50Ω  
5pF  
0.75V  
25Ω  
DQ  
50Ω  
0.75V  
5pF  
AC TIMING CHARACTERISTICS  
-33  
-30  
-27  
-37  
PARAMETER  
SYMBOL  
UNITS NOTES  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Clock  
Clock Cycle Time  
tKHKH  
tKHKL  
tKLKH  
2.66  
1.3  
-
-
-
3.0  
1.3  
1.3  
-
-
-
3.3  
1.5  
1.5  
-
-
-
3.63  
1.7  
-
-
-
ns  
ns  
ns  
1
Clock High Pulse Width  
Clock Low Pulse Width  
Setup Times  
1.3  
1.7  
Address Setup Time  
tAVKH  
tBVKH  
tDVKX  
0.4  
0.4  
-
-
-
0.4  
0.4  
0.3  
-
-
-
0.4  
0.4  
0.3  
-
-
-
0.5  
0.5  
0.4  
-
-
-
ns  
ns  
ns  
Control(B1,B2,B3) Setup Time  
Data Setup Time  
0.25  
2
2
Hold Times  
Address Hold Time  
tKHAX  
tKHBX  
tKXDX  
0.4  
0.4  
-
-
-
0.4  
0.4  
0.3  
-
-
-
0.4  
0.4  
0.3  
-
-
-
0.5  
0.5  
0.4  
-
-
-
ns  
ns  
ns  
Control(B1,B2,B3) Hold Time  
Data Hold Time  
0.25  
Output Times  
tKHKL-0.1 tKHKL+0.1 tKHKL-0.1 tKHKL+0.1 tKHKL-0.1 tKHKL+0.1 tKHKL-0.1 tKHKL+0.1  
tKLKH-0.1 tKLKH+0.1 tKLKH-0.1 tKLKH+0.1 tKLKH-0.1 tKLKH+0.1 tKLKH-0.1 tKLKH+0.1  
2
2
3
3
Echo Clock High Pulse Width  
Echo Clock Low Pulse Width  
Clock Crossing to Echo Clock  
Clock Crossing to Echo Clock  
Echo Clock High to Output Vaild  
Echo Clock Low to Output Valid  
Echo Clock High to Output Hold  
Echo Clock Low to Output Hold  
tCHCL  
tCLCH  
tCXCH  
tCXCL  
tCHQV  
tCLQV  
tCHQX  
tCLQX  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5  
2.3  
2.3  
0.5  
2.3  
2.3  
0.5  
2.3  
2.3  
0.5  
2.3  
2.3  
0.5  
0.5  
0.5  
0.5  
-0.20  
-0.20  
-0.20  
-0.20  
0.20  
0.20  
-0.20  
-0.20  
-0.20  
-0.20  
0.20  
0.20  
-0.20  
-0.20  
-0.20  
-0.20  
0.20  
0.20  
-0.20  
-0.20  
-0.20  
-0.20  
0.20  
0.20  
Echo Clock High to Output High-Z tCHQZ  
0.20  
1.7  
0.20  
1.7  
0.20  
1.9  
0.20  
2.0  
Echo Clock High to Output Low-Z  
G Low to Output Valid  
tCHLZ  
tGLQV  
tGHQX  
tGHQZ  
-0.20  
-0.20  
-0.20  
-0.20  
-
0.5  
-
-
0.5  
-
-
0.5  
-
-
0.5  
-
4
4
4
G High to Output Low-Z  
G High to Output High-Z  
1.7  
1.7  
1.9  
2.0  
Notes: 1. The maximum cycle time must be limited to guarantee AC timing specification.  
2. This parameter is guaranteed by design, and may not be tested at values shown in the table.  
3. This parameter refers to CQ and CQ rising and falling edges.  
4. This parameter is only for 16Mb density  
5. K and K Clocks must be used differencitally to meet AC timing specifications.  
Rev 1.1  
Jan. 2005  
- 10  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
TIMING WAVEFORMS FOR DOUBLE DATA RATE CYCLES  
(Burst Length=4, 2)  
READ  
READ  
CONTINUE READ  
(burst of 2)  
WRITE  
READ  
NOP  
READ  
CONTINUE READ  
CONTINUE  
CONTINUE  
NOP  
NOP  
WRITE  
READ  
(burst of 4)  
(burst of 4)  
(burst of 4)  
(burst of 4)  
9
5
1
2
4
7
6
8
10  
12  
11  
3
K
K
tKHKH  
tKHKL  
tKLKH  
B1  
B2  
tBVKH  
tKHBX  
B3  
SA  
G
A
2
A5  
A1  
A3  
A0  
tAVKH  
t
KHAX  
t
KHDX  
DVKH  
t
GHQZ  
t
tGGLLQQVX  
tGHQX  
t
DQ  
Q01  
Q02  
Q03  
Q04  
Q51  
Q52  
Q53  
Q54  
Q11  
Q12  
D
21  
D22  
D23  
D24  
Q31  
QX2  
t
CHQV  
tCHQX  
tCLQV  
tKXCV  
tKXCL  
tCHCL tCLCH  
tCHQZ  
tCHLZ  
CQ  
CQ  
DON’T CARE  
UNDEFINED  
NOTE  
1. Q01 refers to output from address A. Q02 refers to output from the next internal burst address following A, etc.  
2. Outputs are disabled(High-Z) one clock cycle after NOP detected or after no pending data requests are present.  
3. Doing more than one Read Continue or Write Continue will cause the address to wrap around.  
Rev 1.1  
Jan. 2005  
- 11  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
TIMING WAVEFORMS FOR SINGLE DATA RATE CYCLES  
(Burst Length=4, 2, 1)  
READ  
READ  
READ  
WRITE  
READ  
NOP  
READ  
CONTINUE CONTINUE CONTINUE READ  
CONTINUE  
CONTINUE  
NOP  
NOP  
WRITE  
READ  
(burst of 4)  
(burst of 1)  
(burst of 2)  
(burst of 2)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
K
tKHKL  
tKLKH  
tKHKH  
K
B1  
B2  
B3  
tBVKH  
tKHBX  
A2  
A1  
A3  
A0  
SA  
G
tDVKH  
tAVKH  
tKHAX  
tKHDX  
t
t
tGGHHQQXZ  
tGGLLQQVX  
DQ  
Q01  
Q02  
Q03  
Q04  
Q11  
QX1  
D21  
D22  
Q31  
tKXCV  
tCHQX  
tCHQV  
tKXCL  
tCHCL tCLCH  
tCHLZ  
tCHQZ  
CQ  
CQ  
DON’T CARE  
UNDEFINED  
NOTE :  
1. Q01 refers to output from address A0. Q02 refers to output from the next internal burst address following A0, etc.  
2. Outputs are disabled(High-Z) one clock cycle after NOP detected or after no pending data requests are present.  
3. This devices supports cycle lengths of 1, 2, 4. Continue(B1=HIGH, B2=HIGH, B3=X) up to three times following a B1 operation. Any further  
Continue assertions constitute invalid operations.  
4. This device will have an address wraparound if further Continues are applied.  
Rev 1.1  
Jan. 2005  
- 12  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG  
The SRAM provides a limited set of IEEE standard 1149.1 JTAG functions. This is to test the connectivity during manufacturing  
between SRAM, printed circuit board and other components. Internal data is not driven out of SRAM under JTAG control. In conform-  
ance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP control-  
ler has a standard 16-state machine that resets internally upon power-up, therefore, TRST signal is not required. It is possible to use  
this device without utilizing the TAP. To disable the TAP controller without interfacing with normal operation of the SRAM, TCK must  
be tied to VSS to preclude mid level input. TMS and TDI are designed so an undriven input will produce a response identical to the  
application of a logic 1, and therefore can be left unconnected. But they may also be tied to VDD through a resistor. TDO should be left  
unconnected.  
JTAG Block Diagram  
JTAG Instruction Coding  
IR2 IR1 IR0 Instruction  
TDO Output  
Notes  
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
EXTEST  
IDCODE  
SAMPLE-Z  
Boundary Scan Register  
Identification Register  
Boundary Scan Register  
1
3
2
6
5
6
6
4
0
0
0
RESERVED Do Not Use  
1
SAMPLE  
Boundary Scan Register  
SRAM  
1
RESERVED Do Not Use  
RESERVED Do Not Use  
CORE  
1
1
SA  
SA  
BYPASS  
Bypass Register  
NOTE :  
1. Places DQs in Hi-Z in order to sample all input data regardless of other  
SRAM inputs. This instruction is not IEEE 1149.1 compliant.  
TDI  
BYPASS Reg.  
Identification Reg.  
Instruction Reg.  
TDO  
2. Places DQs in Hi-Z in order to sample all input data regardless of other  
SRAM inputs.  
3. TDI is sampled as an input to the first ID register to allow for the serial shift  
of the external TDI data.  
4. Bypass register is initiated to VSS when BYPASS instruction is invoked. The  
Bypass Register also holds serially loaded TDI when exiting the Shift DR  
states.  
5. SAMPLE instruction dose not places DQs in Hi-Z.  
6. This instruction is reserved for future use.  
Control Signals  
TAP Controller  
TMS  
TCK  
TAP Controller State Diagram  
Test Logic Reset  
0
Run Test Idle  
1
0
1
1
0
1
Select DR  
0
Select IR  
0
1
1
1
1
Capture IR  
Capture DR  
0
0
0
Shift IR  
Shift DR  
1
1
Exit1 IR  
Exit1 DR  
0
0
Pause DR  
Pause IR  
0
0
0
0
1
1
Exit2 DR  
Exit2 IR  
1
1
Update IR  
1
1
0
Update DR  
0
Rev 1.1  
Jan. 2005  
- 13  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
SCAN REGISTER DEFINITION  
Part  
Instruction Register  
Bypass Register  
1 bits  
ID Register  
32 bits  
Boundary Scan  
68 bits  
512Kx36  
1M x 18  
3 bits  
3 bits  
1 bits  
32 bits  
49 bits  
ID REGISTER DEFINITION  
Revision Number  
Part Configuration  
Vendor Definition  
(17:12)  
Samsung JEDEC Code  
(11: 1)  
Start Bit  
(0)  
Part  
(31:28)  
(27:18)  
512Kx36  
1M x 18  
0000  
0000  
00111 00100  
01000 00011  
XXXXXX  
XXXXXX  
00001001110  
00001001110  
1
1
BOUNDARY SCAN EXIT ORDER(x36)  
BOUNDARY SCAN EXIT ORDER(x18)  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
4A  
4C  
3A  
3B  
3C  
3D  
2B  
1B  
2D  
3F  
1D  
2F  
1F  
3H  
2H  
1H  
5A  
5B  
5K  
5L  
SA  
SA  
SA  
SA  
SA  
SA  
DQ  
DQ  
DQ  
DQ  
DQ  
CQ  
DQ  
DQ  
DQ  
DQ  
ZQ  
B1  
SA  
SA  
SA  
SA  
SA  
SA  
DQ  
DQ  
DQ  
DQ  
DQ  
CQ  
DQ  
DQ  
DQ  
DQ  
G
6A  
6C  
7A  
7B  
7C  
7D  
8B  
9B  
8D  
7F  
9D  
8F  
9F  
7H  
8H  
9H  
5C  
5G  
5H  
6L  
9K  
8K  
7K  
9M  
8M  
9P  
7M  
8P  
9T  
8T  
7P  
7T  
6R  
5T  
5R  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
26  
27  
28  
29  
30  
31  
32  
4A  
4C  
3A  
3B  
3C  
3D  
2B  
SA  
SA  
SA  
SA  
SA  
SA  
DQ  
SA  
SA  
SA  
SA  
SA  
SA  
6A  
6C  
7A  
7B  
7C  
7D  
25  
24  
23  
22  
21  
20  
DQ  
DQ  
DQ  
9B  
8D  
7F  
19  
18  
17  
33  
34  
1D  
2F  
DQ  
CQ  
DQ  
DQ  
9F  
8H  
16  
15  
35  
3H  
DQ  
36  
37  
38  
39  
40  
41  
1H  
5A  
5B  
5K  
5L  
4L  
DQ  
ZQ  
B1  
B2  
B3  
G
K
K
MODE  
DQ  
5C  
5G  
5H  
6L  
14  
13  
12  
11  
10  
K
K
B2  
B3  
MODE  
DQ  
DQ  
DQ  
DQ  
CQ  
DQ  
DQ  
DQ  
DQ  
DQ  
SA  
SA  
SA  
SA  
SA  
4L  
LBO  
DQ  
DQ  
DQ  
DQ  
CQ  
DQ  
DQ  
DQ  
DQ  
DQ  
SA  
SA  
LBO  
9K  
1K  
2K  
3K  
1M  
2M  
1P  
3M  
2P  
1T  
42  
43  
2K  
DQ  
DQ  
DQ  
7K  
9
1M  
CQ  
DQ  
8M  
9P  
8
7
8
7
6
5
4
3
2
1
44  
45  
46  
3M  
2P  
1T  
DQ  
DQ  
DQ  
DQ  
SA  
SA  
SA  
SA  
SA  
8T  
7P  
7T  
6R  
5T  
5R  
6
5
4
3
2
1
2T  
3T  
4R  
47  
48  
49  
3P  
3T  
4R  
SA  
SA  
SA  
* Reserved for Mode Pin  
* Reserved for Mode Pin  
Rev 1.1  
Jan. 2005  
- 14  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
JTAG DC OPERATING CONDITIONS  
Parameter  
Symbol  
Min  
1.7  
Typ  
Max  
2.6  
Unit  
V
Note  
Power Supply Voltage  
VDD  
VIH  
2.5  
Input High Level  
0.7*VDD  
-0.3  
-
-
-
-
VDD+0.3  
0.3*VDD  
VDD  
V
Input Low Level  
VIL  
V
Output High Voltage(IOH=-2mA)  
Output Low Voltage(IOL=2mA)  
VOH  
VOL  
0.75*VDD  
VSS  
V
0.25*VDD  
V
NOTE : 1. The input level of SRAM pin is to follow the SRAM DC specification.  
JTAG AC TEST CONDITIONS  
Parameter  
Symbol  
VIH/VIL  
TR/TF  
Min  
Unit  
V
Note  
Input High/Low Level  
VDD/0.0  
1.0/1.0  
VDD/2  
Input Rise/Fall Time  
ns  
V
Input and Output Timing Reference Level  
NOTE : 1. See SRAM AC test output load on page 5.  
1
JTAG AC Characteristics  
Parameter  
Symbol  
Min  
50  
20  
20  
5
Max  
Unit  
Note  
TCK Cycle Time  
tCHCH  
tCHCL  
tCLCH  
tMVCH  
tCHMX  
tDVCH  
tCHDX  
tCLQV  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK High Pulse Width  
TCK Low Pulse Width  
TMS Input Setup Time  
TMS Input Hold Time  
TDI Input Setup Time  
TDI Input Hold Time  
-
-
5
-
5
-
5
-
Clock Low to Output Valid  
0
10  
JTAG TIMING DIAGRAM  
TCK  
tCHCH  
tCHCL  
tCLCH  
tMVCH  
tCHMX  
tCHDX  
TMS  
TDI  
tDVCH  
tCLQV  
TDO  
Rev 1.1  
Jan. 2005  
- 15  
K7D163674B  
K7D161874B  
512Kx36 & 1Mx18 SRAM  
153 BGA PACKAGE DIMENSIONS  
1.27  
0.60 ±0.10  
0.050  
0.024 ±0.004  
9 8 7 6 5 4 3 2 1  
0.56 ±0.04  
0.022 ±0.002  
12.50 ±0.10  
0.492 ±0.004  
14.00 ±0.10  
0.551 ±0.004  
0.75 ±0.15  
0.90 ±0.10  
153-∅  
0.3/0.012MAX  
0.030 ±0.006  
0.035 ±0.004  
2.21  
MAX  
0.087  
0.15  
MAX  
0.006  
BOTTOM VIEW  
TOP VIEW  
NOTE :  
1. All Dimensions are in Millimeters.  
2. Solder Ball to PCS Offset : 0.10 MAX.  
3. PCB to Cavity Offset : 0.10 MAX.  
153 BGA PACKAGE THERMAL CHARACTERISTICS  
Parameter  
Junction to Ambient(at still air)  
Junction to Case  
Symbol  
Theta_JA  
Theta_JC  
Theta_JB  
Thermal Resistance  
Unit  
°C/W  
°C/W  
°C/W  
Note  
TBD  
TBD  
TBD  
Junction to Board  
NOTE : 1. Junction temperature can be calculated by : TJ = TA + PD x Theta_JA.  
Rev 1.1  
Jan. 2005  
- 16  

相关型号:

K7D161874B-HC37

512Kx36 & 1Mx18 SRAM
SAMSUNG

K7D161874B-HC370

DDR SRAM, 1MX18, 0.2ns, CMOS, PBGA153, 14 X 22 MM, 1.27 MM PITCH, BGA-153
SAMSUNG

K7D161888B-HC25

Standard SRAM, 1MX18, 2.1ns, CMOS, PBGA153, 14 X 22 MM, 1.27 MM PITCH, BGA-153
SAMSUNG

K7D161888B-HC30

Standard SRAM, 1MX18, 1.9ns, CMOS, PBGA153, 14 X 22 MM, 1.27 MM PITCH, BGA-153
SAMSUNG

K7D161888B-HC33

Standard SRAM, 1MX18, 1.8ns, CMOS, PBGA153, 14 X 22 MM, 1.27 MM PITCH, BGA-153
SAMSUNG

K7D161888B-HC37

Standard SRAM, 1MX18, 1.7ns, CMOS, PBGA153, 14 X 22 MM, 1.27 MM PITCH, BGA-153
SAMSUNG

K7D161888M-HC25

DDR SRAM, 1MX18, 0.1ns, CMOS, PBGA153, 14 X 22 MM, FCBGA-153
SAMSUNG

K7D161888M-HC250

DDR SRAM, 1MX18, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG

K7D161888M-HC300

DDR SRAM, 1MX18, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG

K7D161888M-HC330

DDR SRAM, 1MX18, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG

K7D161888M-HC370

DDR SRAM, 1MX18, CMOS, PBGA153, 14 X 22 MM, BGA-153
SAMSUNG

K7D163671B-HC30

Standard SRAM, 512KX36, 1.9ns, CMOS, PBGA153, 14 X 22 MM, 1.27 MM PITCH, BGA-153
SAMSUNG