ML9479E [ROHM]

ML9479E由80位移位寄存器、640位数据锁存器、160组LCD驱动器、以及公共信号生成电路组成。静态显示时可直接驱动多达160段、1/2Duty显示时可直接驱动多达320段、1/3Duty显示时可直接驱动多达480段、1/4Duty显示时可直接驱动多达640段的LCD。三线串行接口和I2C接口可选。;
ML9479E
型号: ML9479E
厂家: ROHM    ROHM
描述:

ML9479E由80位移位寄存器、640位数据锁存器、160组LCD驱动器、以及公共信号生成电路组成。静态显示时可直接驱动多达160段、1/2Duty显示时可直接驱动多达320段、1/3Duty显示时可直接驱动多达480段、1/4Duty显示时可直接驱动多达640段的LCD。三线串行接口和I2C接口可选。

驱动 CD 锁存器 驱动器 移位寄存器
文件: 总33页 (文件大小:325K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dear customer  
LAPIS Semiconductor Co., Ltd. ("LAPIS Semiconductor"), on the 1st day of October,  
2020, implemented the incorporation-type company split (shinsetsu-bunkatsu) in which  
LAPIS established a new company, LAPIS Technology Co., Ltd. (“LAPIS  
Technology”) and LAPIS Technology succeeded LAPIS Semiconductor’s LSI business.  
Therefore, all references to "LAPIS Semiconductor Co., Ltd.", "LAPIS Semiconductor"  
and/or "LAPIS" in this document shall be replaced with "LAPIS Technology Co., Ltd."  
Furthermore, there are no changes to the documents relating to our products other than  
the company name, the company trademark, logo, etc.  
Thank you for your understanding.  
LAPIS Technology Co., Ltd.  
October 1, 2020  
FEDL9479E-02  
Issue Date: Apr. 3, 2013  
ML9479E  
Static, 1/2 Duty, 1/3 Duty, 1/4 Duty 160 Outputs LCD Driver  
GENERAL DESCRIPTION  
The ML9479E is an LCD driver LSI, consists of a 160-bit shift register, a 640-bit data latch, 160 sets of LCD  
drivers, and a common signal generation circuit.  
It can directly drive an LCD up to 160 segments for static display, 320 segments for 1/2-duty display, 480  
segments for 1/3-duty display, and 640 segments for 1/4-duty display.  
The three-wire serial interface and I2C interface are selectable.  
FEATURES  
Logic power supply voltage  
LCD drive power supply voltage : 4.5 to 5.5 V  
Maximum number of segments  
Static display  
1/2-duty display  
: 2.7 to 5.5 V  
: 160 segments  
: 320 segments  
: 480 segments  
: 640 segments  
1/3-duty display  
1/4-duty display  
Interface with microcomputer :  
Serial interface : DATA, CLOCK, LOAD  
CLOCK transfer speed up to 1 MHz  
I2C interface  
: SDA, SCL, SDAACK  
SCL transfer speed up to 400 kHz  
Built-in CR oscillator circuit using the internal resistor or External resistor  
Cascade connectable (up to eight chips)  
Built-in common signal generation circuit  
Built-in common output intermediate-value voltage generation circuit  
Built-in POC (Power On Clear) circuit  
Gold bump chip (ML9479EDVWA)  
1/32  
FEDL9479E-02  
ML9479E  
BLOCK DIAGRAM  
SEG1  
SEG160  
VLCD  
160-Dot Segment Driver  
160-Ch Data Selector  
Bias  
Resi.  
BIAS  
Duty0  
Duty1  
160  
160  
160  
160  
160-Bit  
Latch3  
160-Bit  
Latch2  
160-Bit  
Latch1  
160-Bit  
Latch4  
M/S  
Latch  
Selector  
160  
I2C  
LOAD  
DATA (SDA)  
CLOCK (SCL)  
SDAACK  
SA0  
Command  
Decoder  
160-bit Shift Register  
A1  
A0  
OSC I/E  
COMON  
Driver  
COM1  
OSC1  
OSCR  
OSC2  
COM2  
COM3  
COM4  
Timing  
Generator  
OSC  
CKO  
SYNCB  
POCEB  
POC  
RESETB  
TEST1  
TEST2  
VDD  
GND  
2/32  
FEDL9479E-02  
ML9479E  
ABSOLUTE MAXIMUM RATINGS  
Item  
Symbol  
Condition  
Ta = 25°C  
Ta = 25°C  
Ta = 25°C  
Ta = 25°C  
Rating  
-0.3 to 6.0  
-0.3 to 6.0  
– 0.3 to VDD + 0.3  
-2.0 to +2.0  
125  
Unit  
V
Logic power supply voltage  
LCD drive power supply voltage  
Input voltage  
VDD  
VLCD  
VI  
V
V
Output short-circuit current  
Chip temperature  
Is  
mA  
°C  
°C  
Tc  
Storage temperature  
TSTG  
-55 to +150  
Note: Do not use the ML9479E by short-circuiting one output pin to another output pin as well as to other pin  
(input pin, input/output pin, or power supply pin).  
RECOMMENDED OPERATION CONDITIONS  
Item  
Symbol  
VDD  
Condition  
Range  
Unit  
Logic power supply voltage  
LCD drive power supply voltage  
OSC IN clock frequency  
Data clock frequency  
*
2.7 to 5.5  
4.5 to 5.5  
up to 10  
V
V
VLCD  
fCP1  
fCP2  
fSCL  
Ta  
*
kHz  
MHz  
kHz  
°C  
up to 1.0  
up to 400  
-40 to +105  
SCL clock frequency  
Operating temperature  
Note(*): Use at VDD VLCD  
.
The relation between OSC IN clock frequency and frame frequency is as the equation below.  
fFRM = fOSC /24  
Recommended setting range for external component (oscillator circuit)  
(VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta= –40 to +105°C)  
Item  
Symbol  
Rf  
Condition  
Min  
423  
47  
TYP  
470  
75  
Max  
517  
114  
Unit  
k  
Oscillation resistor  
Frame frequency  
fFRM  
(F1,F0)=(0,1)  
Hz  
The relation between oscillation resistor and frame frequency is as the equation below.  
fFRM = fOSC /(16 x 24)  
fosc = 1 / (Device coefficient x External resistor Rf)  
Device coefficient = 73.8 x 10-12 ± 25%  
3/32  
FEDL9479E-02  
ML9479E  
ELECTRICAL CHARACTERISTICS  
DC Characteristics  
(VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta= -40 to +105°C)  
Item  
Symbol  
VIH  
Condition  
Min.  
0.8VDD  
GND  
-1.0  
Typ.  
Max.  
VDD  
Unit  
V
Applicable pin  
(*1)  
(*1)  
"H" input voltage  
"L" input voltage  
Input leakage current 1  
VIL  
0.2VDD  
1.0  
V
IL1  
VI = VDD or 0 V  
VI = VDD or 0V  
POCEB="H"  
VDD = 5.0V,VI = 0 V  
POCEB = "L"  
IO = -600μA  
IO = 600μA  
IO = 600μA  
μA (*1)  
Input leakage current 2  
Pull-up current  
IL2  
Ipu  
-1.0  
30  
1.0  
μA RESETB  
140  
μA RESETB  
"H" output voltage  
"L" output voltage 1  
"L" output voltage 2  
VOH  
VOL1  
VOL2  
0.9VDD  
VCKO, SYNCB  
V
V
0.1VDD  
0.1VDD  
CKO, SYNCB  
SDAACK  
Segment  
Driver  
VOHS  
VLCD = 5V  
5
15  
kSEG1 to SEG160  
ON resistor  
Common  
VOHC  
VLCD = 5V  
5
12  
kCOM 1 to COM4  
(*1): DATA(SDA), CLOCK(SCL), LOAD, M/S, SYNCB, Duty1, Duty0, BIAS, SA0, A1, A0, OSC1, OSC I/E,  
I2C, POCEB  
(VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta= -40 to +105°C)  
Applicable  
Item  
Symbol  
IDDS  
Condition  
VDD=VLCD=5.5 V  
Min.  
Typ.  
Max.  
Unit  
pin  
8
15  
μA  
VDD  
Static supply  
current  
Input pin fixed to "H" or "L"  
Oscillation stopped, output no-load  
POCEB="L"  
ILCDS  
9
15  
18  
μA  
μA  
VLCD  
VDD  
V
DD=VLCD= 5.5 V (*2)(*3)  
Clock OSC1 external input  
CP1=1.8kHz  
IDD1  
ILCD1  
IDD2  
ILCD2  
IDD3  
ILCD3  
IDD4  
(*6)  
10  
Dynamic supply  
current 1  
(*7)  
(*6)  
(*7)  
9
65  
9
15  
90  
μA  
μA  
μA  
μA  
VLCD  
VDD  
f
Dynamic supply  
current 2  
VDD=VLCD= 5.5 V (*2)(*3)  
Internal oscillation  
15  
VLCD  
VDD  
VDD=VLCD= 5.5 V (*2)(*4)(*6)  
Internal oscillation  
At three-wire serial IF data input  
VDD=VLCD= 5.5 V (*2)(*5)(*6)  
Internal oscillation  
200  
300  
Dynamic supply  
current 3  
9
230  
9
15  
350  
15  
μA  
μA  
μA  
VLCD  
VDD  
Dynamic supply  
current 4  
At I2C IF data input  
ILCD4  
VLCD  
(*2): M/S = "H", 1/4-duty, 1/3-bias, (F1,F0) = (1,1) 95 Hz, POCEB = "L", output pin no-load.  
(*3): Three-wire serial or I2C interface. Input pin fixed to "H" or "L".  
(*4): Serial interface, data input frequency = 1 MHz.  
(*5): I2C interface, data input frequency = 400 kHz.  
(*6): Alternately inputs "0" and "1" for LCD display data (checkered display).  
(*7): Inputs all "1s" for LCD display data (all illuminated).  
4/32  
FEDL9479E-02  
ML9479E  
Switching Characteristics  
OSC timing  
Item  
(VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta = -40 to +105°C)  
Symbol  
fCP1  
Condition  
Min.  
Typ. Max.  
Unit  
Applicable pin  
OSC IN clock frequency  
(external input)  
1.8  
10  
kHz OSC1  
Clock input from OSC1.  
OSC2 and OSCR open.  
OSC I/E = "L"  
Clock pulse width  
(External input)  
tWCP1  
tOSC  
40  
μs  
μs  
OSC1  
OSC1  
Clock rise and fall time  
(external input)  
(*1)  
Between OSC1 and OSC2  
Rf = 470kΩ  
(F1,F0)=(0,1)  
External Rf clock  
frequency  
fOSC1  
18  
18  
28.8  
28.8  
44  
44  
kHz OSC1, OSC2  
(Internal oscillation)  
OSCR open.  
OSC I/E = "H"  
OSC1 open.  
(F1,F0)=(0,1)  
OSC2 and OSCR short-circuited.  
OSC I/E = "H"  
Internal clock frequency  
(Internal oscillation)  
OSC1, OSCR,  
fOSC2  
kHz  
OSC2  
The relation between OSC IN clock frequency and frame frequency is as the equation below.  
fFRM = fOSC /24  
(*1) tOSC is a reference value.  
The longer the clock rise and fall time, the more susceptible to extraneous noises around the threshold value.  
Make the rise as steep as possible. Reference value: max=2μs.  
Serial interface timing  
(VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta = -40 to +105°C)  
Condition Min. Typ. Max. Unit Applicable pin  
MHz CLOCK  
Item  
Symbol  
Data clock frequency  
Data clock pulse width  
Data setup time  
fCP2  
tWCP2  
tSU  
100  
50  
1
ns CLOCK  
ns DATA  
ns CLOCK  
ns CLOCK  
ns LOAD  
ns LOAD  
Data hold time  
tHD  
50  
CLOCK-LOAD timing  
LOAD-CLOCK timing  
LOAD pulse width  
tCL  
100  
100  
100  
tLC  
tWLD  
CLOCK,DATA,  
LOAD  
Signal rise and fall time  
tsr,tsf  
(*2)  
ns  
(*2) tsr and tsf shall be reference values.  
The longer the clock rise and fall time, the more susceptible to extraneous noises around the threshold value.  
Make the rise as steep as possible. Reference value: max=10ns.  
5/32  
FEDL9479E-02  
ML9479E  
I2C interface timing  
Item Symbol  
(VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta = -40 to +105°C)  
Condition  
Min. Typ. Max. Unit  
Applicable pin  
SCL clock frequency  
Hold time (repeat)  
"STATRT" condition  
SCL "L" pulse width  
SCL "H" pulse width  
Setup time for repeat  
"START" condition  
Data hold time  
fSCL  
400 kHz SCL  
tHD,STA  
0.6  
μs SCL,SDA  
tLOW  
tHIGH  
1.3  
0.6  
μs SCL  
μs SCL  
tSU,STA  
0.6  
μs SCL,SDA  
tHD,DAT  
tSU,DAT  
0
ns SCL,SDA  
ns SCL,SDA  
Data setup time  
200  
Setup time for "STOP"  
condition  
tSU,STO  
0.6  
μs SCL,SDA  
Bus free time between  
"STOP" condition and  
"START" condition  
Data valid acknowledge  
time  
tBUF  
1.3  
μs SCL  
tVD,ACK  
tir,tif  
Cb  
1.2  
(*3)  
400  
μs SCL,SDAAACK  
μsSCL,SDA  
Signal rise and fall time  
Data bus load  
capacitance  
pF SDA,SDAACK  
Noise pulse width  
tolerance  
twf  
50  
ns SCL,SDA  
(*3) tir and tif shall be reference values.  
The longer the clock rise and fall time, the more susceptible to extraneous noises around the threshold value.  
Make the rise as steep as possible. Reference value: max=0.1μs.  
6/32  
FEDL9479E-02  
ML9479E  
Timing chart (OSC1)  
1/fCP1  
tWCP1  
VIH  
tWCP1  
VIH  
VIH  
OSC1  
(External clock)  
VIL  
VIL  
tOSC  
Timing chart (Serial interface)  
VIH  
VIH  
VIL  
tHD  
VIH  
VIH  
DATA  
VIL  
VIL  
VIL  
tSU  
tsf  
tsr  
tWCP2  
tWCP2  
VIH  
VIL  
VIH  
VIH  
VIH  
CLOCK  
VIL  
VIL  
VIL  
VIL  
1/fCP2  
tsr  
tCL  
tWLD  
tLC  
tsf  
V
IH VIH  
LOAD  
VIL  
VIL  
tsr  
tsf  
Timing chart (I2C interface)  
tVD;ACK  
VIH  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
SDA  
tf  
tBUF  
tLOW  
VIH  
VIH  
VIL VIL  
VIH  
VIH  
VIH  
VIL  
SCL  
VIL  
VIL  
tHD;STA  
tHiGH  
tHD;DAT  
tr  
tSU;DAT  
VIH  
SDA  
VIL  
tSU;STA  
tSU;STO  
7/32  
FEDL9479E-02  
ML9479E  
REFERENCE DATA  
Frame frequency Characteristics  
VDD=5.5V/2.7V Rf=470Ω  
Frame frequency fFRM = fOSC /(16 x 24)  
fosc = 1 / (Device coefficient x External resistor Rf)  
Device coefficient = 73.8 x 10-12 ± 25%  
Frame frequency Characteristics Rf=470k,VDD=5.5V  
120  
110  
100  
90  
(F1,F0)=(1,1)  
(F1,F0)=(1,0)  
(F1,F0)=(0,1)  
(F1,F0)=(0,0)  
80  
70  
60  
50  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temp Ta[℃]  
Frame frequency Characteristics Rf=470k,VDD=2.7V  
130  
120  
110  
100  
90  
(F1,F0)=(1,1)  
(F1,F0)=(1,0)  
(F1,F0)=(0,1)  
(F1,F0)=(0,0)  
80  
70  
60  
50  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TempꢀTa[℃]  
8/32  
FEDL9479E-02  
ML9479E  
POWER ON/OFF TIMING  
To turn on the power supply, raise the logic power supply first, then LCD drive power supply in order to prevent  
the IC from malfunctioning.  
To fall the power supply, fall the LCD drive power supply first, then the logic power supply.  
For a VDD pin ranging from 0 V to VDDmin, set VDD VLCD and t1 0 [ns].  
To enable the Internal POC circuit, the VDD power supply rise time t2 range needs to be 100 [µs] t2 500 [ms].  
For the VDD power supply to turn OFF then turn ON again, it is necessary to secure the POC discharge time t3  
100 [ms].  
Voltage  
VLCD  
VDD  
VDD  
0.9VDD  
t3  
t1  
t2  
t1  
Time  
INITIALIZATION SIGNAL TIMING  
When RESETB signal is externally input  
The RESETB pin input is valid both for POCEB = "L" and "H". Usable in combination with the POC.  
Keep the RESETB pin at "L" level until the VDD reaches VDDmin. (t4 200[ns])  
VDD  
VDDmin  
RESETB  
VIL  
t4  
When Internal POC circuit is used  
When using the Internal POC circuit in the initialization, set the POCEB pin to "L".  
At this time, the power ON/OFF timing conditions are t1 to t3 above mentioned.  
When RESETB pin POC circuit is used  
If the power ON/OFF timing conditions t1 to t3 cannot be kept, the RESETB pin needs to have a capacitance  
to configure the POC circuit. For this case, connect a capacitance value according to the power supply rise  
time.  
For the power supply rise time t2 and external capacitance value, use the following formula as a guide:  
CRST [F] > t2 [sec](30×103)  
9/32  
FEDL9479E-02  
ML9479E  
PIN DESCRIPTIONS  
Pad  
Symbol  
number  
I/O  
I
Description  
This is the input to switch between the master and slave modes. It has a  
schmitt circuit. When this pin is "H", the mode is master. When this pin is "L",  
the mode is slave.  
109-112  
M/S  
Display duty switch pins. These have schmitt circuits.  
9-12  
13-16  
Duty0  
Duty1  
*1  
Duty0="L", Duty1="L"  
Duty0="H", Duty1="L"  
Duty0="L", Duty1="H"  
Duty0="H", Duty1="H"  
:
:
:
Static  
(COM1=COM2=COM3=COM4)  
(COM1=COM3, COM2=COM4)  
(COM2=COM4)  
I
I
1/2Duty  
1/3Duty  
1/4Duty  
:
This pin sets the LCD bias. It has a schmitt circuit.  
BIAS="L": 1/3bias  
BIAS="H": 1/2bias  
121-124  
25-28  
BIAS  
SA0  
I
I
Slave address input pin. It has a schmitt circuit.  
17-20  
21-24  
A1  
A0  
Sub address input pins. These have schmitt circuits.  
This input selects whether to use the external clock input mode or to use the  
Internal oscillation mode or external oscillation mode. It has a schmitt circuit.  
When this pin is "H", the mode is the Internal or external Rf oscillation mode.  
When this pin is "L", the mode is the external clock input mode.  
Use the slave chip as it is connected to GND.  
117-120  
OSC I/E  
I
These pins are for the oscillator circuit to generate common signals.  
The OSC1 and OSCR pins are input pins and have a schmitt circuit.  
OSC2 is an output pin. It becomes an output when the OSC I/E pin = "H" and  
a high impedance when the OSC I/E pin = "L".  
In the master mode (M/S pin ="H") 】  
Three types are selectable: Internal oscillation mode, external oscillation  
mode, and external clock input mode.  
•Internal oscillation mode: Set the OSC I/E pin to "H", short the OSCR and  
OSC2 pins, and open the OSC1 pin.  
•External Rf oscillation mode: Set the OSC I/E pin to "H", connect an  
oscillation resistor Rf between the OSC1 and OSC2 pins, and open the  
OSCR pin.  
78-82  
83-87  
88-82  
OSC1,  
OSCR,  
OSC2  
*2  
I
I
O
•External clock input mode: Set the OSC I/E pin to "L", open the OSCR and  
OSC2 pins, and input the external clock to the OSC1 pin.  
In the slave mode (M/S pin ="L") 】  
Open the OSCR and OSC2 pins and connect the OSC1 pin to the  
ML9479E's CKO pin that has been set to the master mode.  
Clock output pin.  
In the master mode (M/S pin = "H"), the 1/16 division signal of the oscillation  
frequency is output.  
In the slave mode (M/S pin = "L"), the output is fixed to "L".  
For a cascade connection, connect this pin to the OSC1 pin of the chip that  
has been set to the slave mode.  
93-97  
CKO  
O
10/32  
FEDL9479E-02  
ML9479E  
Input/output pin for common synchronization. It has a schmitt circuit.  
It becomes the synchronization signal output pin in the master mode (M/S  
pin = "H").  
It becomes the synchronization signal input pin in the slave mode (M/S pin = "L").  
For cascade connection, connect all of the involved ML9479Es' SYNC pins  
by the common line.  
98-102  
SYNCB  
I2C  
I/O  
Interface switching pin. It has a schmitt circuit.  
When this pin is "H", the interface is I2C.  
105-108  
I
When this pin is "L", the interface is three-wire serial.  
Display data input pin. It has a schmitt circuit.  
I2C="L": Serial interface; DATA  
Input the display data in the order of SEG160, SEG159, ... , SEG2, and  
SEG1. The display data turns on at "H" and turns off at "L".  
I2C="H": I2C interface; SDA  
Input the display data in units of 8 bits. The display data turns on at "H" and  
turns off at "L".  
36-40  
DATA  
(SDA)  
I
This pin has a built-in noise filter through which noises in widths up to 50 ns  
are removed. This noise filter is valid only when I2C = "H".  
Shift clock input pin for display data. It has a schmitt circuit.  
I2C="L": Serial interface; CLOCK  
The display data input to the DATA pin is serially input to the shift register at  
the CLOCK signal rise.  
41-45  
CLOCK  
(SCL)  
I
I2C="H": I2C interface; SCL  
The display data input to the SDA pin is serially input to the shift register at  
the SCL signal rise.  
This pin has a built-in noise filter through which noises in widths up to 50 ns  
are removed. This noise filter is valid only when I2C = "H".  
Input pin for the load signal of display data. It has a schmitt circuit.  
I2C="L": Serial interface; LOAD  
The display data in the shift register is transmitted as is to the segment driver  
for the "H" duration. When this pin is brought into "L", the shift register is  
disconnected from the segment driver. The display data in the shift register  
immediately before it become "L" is held in the data latch and transmitted to  
the segment driver.  
46-50  
LOAD  
I
I2C="H": I2C interface  
Use this pin as it is connected to GND.  
I2C="L": Serial interface  
Use this pin as it is opened.  
I2C="H": I2C interface  
31-35  
SDAACK  
POCEB  
O
The I2C bus acknowledge output signal. Normally, use it as it is connected  
with the SDA pin.  
Connect an external pull-up resistor whenever  
necessary, as it is an open drain pin. The pull-up connection destination  
supply voltage shall be the VDD supply voltage or less.  
Internal POC circuit enable pin. It has a schmitt circuit.  
When this pin is "H", the POC circuit becomes OFF and the constant current  
(8µA) is cut. The RESETB pin pull-up resistor is cut as well.  
When this pin is "L", the POC circuit becomes ON.  
113-116  
73-77  
I
I
The RESETB pin is connected to a pull-up resistor.  
Reset signal input pin for initializing inside the IC. It has a schmitt circuit.  
The "L" level enables the reset.  
This pin has an Internal pull-up resistor. Open when POCEB = "H".  
Pull-up when POCEB = "L". The power-on reset operation is available by  
connecting an external capacitor.  
RESETB  
*3  
11/32  
FEDL9479E-02  
ML9479E  
125-128  
129-132  
155-234  
239-318  
TEST1  
TEST2  
Pin for testing the IC. These have Internal pull-down resistors.  
Use it as it is connected to GND.  
I
SEG1  
SEG160  
Outputs for LCD display. Connected to the segment pins on the LCD panel.  
In the display off mode, all the outputs are fixed to GND.  
O
Outputs for LCD display. Connected to the common pin on the LCD panel.  
The output pins are located at three positions: both ends of the chip and  
between SEG80 and SEG81. Each is connected inside the chip. Use the  
COM pins in accordance with the panel to be used.  
In the display off mode, all the outputs are fixed to GND.  
When the slave is set (M/S=”L”), connecting SYNCB signals enables the  
master chip to synchronize with common outputs.  
143-146  
235-238  
326-329  
COM1  
COM4  
O
59-65  
66-72  
VDD  
VLCD  
GND  
-
-
-
Power supply pin for logic circuit.  
Power supply pin for LCD driver.  
51-58  
29-30  
103-104  
7-8  
133-134  
1-6  
Ground pin.  
VDD output pin.  
VDDO  
GNDO  
-
-
Use this pin when fixing the mode setting input pin to "H" on the COG.  
Ground output pin.  
Use this pin when fixing the mode setting input pin to "L" on the COG.  
135-142  
147-154  
319-325  
330-331  
Floating pin.  
DUMMY  
-
At this time, avoid this pin from shorting with pins other than DUMMY in the  
wiring on the COG.  
*1: For details of the COM and SEG waveform when a duty is selected, refer to "Common waveform" on page  
18 and "Common Segment waveform" on page 19 to 23.  
*2: Oscillator circuit configuration  
• When M/S = "H", OSC I/E = "H"  
[Internal Rf oscillation mode]  
[External Rf oscillation mode]  
OSC1  
OPEN  
OSC1  
Rf  
OSC2  
OSC2  
OSCR  
OPEN  
OSCR  
12/32  
FEDL9479E-02  
ML9479E  
• External clock input mode when M/S = "H" and OSC I/E = "L"  
External  
clock  
OSC1  
OPEN  
OPEN  
OSC2  
OSCR  
• M/S = "L", slave mode, external clock input mode  
OSC1  
Master CKO  
OPEN  
OPEN  
OSC2  
OSCR  
*3: Reset circuit configuration  
• External input to RESTB when POCEB = "H"  
VDD  
External  
input  
RESETB  
• POC circuit configuration when POCEB = "L"  
VDD  
RESETB  
Crst  
13/32  
FEDL9479E-02  
ML9479E  
DESCRIPTION  
Operation description (Serial interface)  
• Display data input  
As described in the Data configuration section, the display data consists of the data field that corresponds to  
each segment on/off and the command field that indicates the display data input.  
When inputting the display data, the "F3" command is set in the command field. When the "F1" or "F2"  
command is set in the command field, the display data in the data field becomes invalid.  
The data input to the DATA pin is loaded to the shift register at the CLOCK pulse rise, transferred to the  
display data latch during the LOAD pulse at the "H" level, then output via the segment driver.  
CLOCK  
D160  
DATA  
D1 D2 D3 D4  
Data field  
C0 C1 C2 C3 C4 C5 C6 C7  
Command field  
LOAD  
Display output  
New data  
Old data  
• Display on, Display off  
The display becomes off at power-on reset. To display, write the display on command.  
The display off is the command that makes all segments off. Writing the display off command, turns off the  
lights regardless of the display data.  
The display on is the command to release the display off. Writing the display on command returns the display  
to the original state.  
CLOCK  
DATA  
D1 D2  
C6 C7  
C4 C5 C6 C7  
C4 C5 C6 C7  
LOAD  
Display ON/OFF  
RESET  
Display data input  
Display off  
command write  
Display on  
command write  
14/32  
FEDL9479E-02  
ML9479E  
List of Commands  
Command  
name  
C7 C6  
C5  
0
C4  
0
C3 C2  
C1  
x
C0 Operation  
Disabled  
F0  
0
0
x
x
x
Frame frequency setting  
(F1,F0)=(0, 0): 65Hz  
(F1,F0)=(0, 1): 75Hz  
(F1,F0)=(1, 0): 85Hz  
(F1,F0)=(1, 1): 95Hz  
(valid for Internal CR oscillation)  
Display on/off  
"0" : Off COM=SEG=GND)  
"1" : On  
F1  
(*2)  
F0  
(*2)  
F1  
F2  
0
1
x
x
x
x
x
D
(*2)  
1
1
0
1
1
x
x
x
Data write address setting  
(Co1,Co0)=(0, 0): Corresponding to  
common 1  
(Co1,Co0)=(0, 1): Corresponding to  
common 2  
F3(*1)  
SA1 SA0 A1 A0 Co1 Co0  
(Co1,Co0)=(1, 0): Corresponding to  
common 3  
(Co1,Co0)=(1, 1): Corresponding to  
common 4  
SA1, SA0, A1, A0: Chip address  
x: Don't care  
(*1): For the I2C interface, SA0 is set at a slave address.  
These bits become "Don't care".  
In the ML9479E, set the SA1 address to "1".  
(*2): The register is set to the following value by the RESETB = "L" input or by the power-on POC.  
F1="0", F0="0", D="0"  
Data configuration  
• Data configuration (Serial interface)  
First bit  
Corresponding to SEG160  
Corresponding to SEG1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
D160 D159 D158  
D3  
D2  
D1  
LCD display data  
Command  
Note 1: The commands F1 and F2 settings become valid when the least four bits of C4 to C7 are input.  
(The bits from D1 to D160 and from C0 to C3 are not necessary.)  
Note 2: If the dummy bit is needed for the reason of number of transfer bits, put it on the first bit side.  
Note 3: The command execution follows the contents of the C7 to C0 registers immediately before the LOAD  
becomes "H".  
15/32  
FEDL9479E-02  
ML9479E  
• Data configuration (I2C interface)  
Slave address  
Control byte  
DATA/Command  
R/W  
0
SA0  
LSB  
S
0
1
1
0
0
1
A
A
MSB  
P
CO RS  
Salve address: 0 1 1 0 0 1  
CO: Consecutive control byte setting bit  
0: Last control byte, 1: Consecutive control byte  
RS: Command/data setting bit  
0: Command data, 1: Display data  
For the I2C interface, each IC is assigned with a 7-bit slave address. The first one byte in the transfer consists of  
this 7-bit slave address and the R/W bit that indicates the data transfer direction. Always input "0" to the eighth  
R/W bit because the ML9479E is a write-only LSI.  
The eight bits next to the slave address is a control byte. The first one bit is CO: consecutive command setting bit  
and the next one bit is RS: command/data setting bit (the remaining six bits are the Don't care bits).  
When CO = "0": Means the last control byte.  
When CO = "1": Means the control bytes are successively input.  
When RS = "0": Means the data to be input next is the command data.  
When RS = "1": Means the data to be input next is the display data.  
The display data can be successively input.  
Example of Data Setting  
When inputting two commands  
When inputting two commands  
SA0  
COMMAND  
S
0
0
1
0
1
0
0
1
0
A
A
1
0
A
A
A
COMMAND  
P
When inputting the command and display data  
SA0  
COMMAND  
Display data  
Display data  
S
0
0
1
1
1
0
0
1
0
A
A
A
1
0
A
A
A
A
A
A
Display data  
Display data  
P
16/32  
FEDL9479E-02  
ML9479E  
Data write method  
• Serial interface  
The data is written to the address set by the data write setting command (F3).  
For the Serial interface, the data is written in units of 160 bits.  
Written from D160 to SEG1, D159 to SEG2, ... , D2 to SEG159, and D1 to SEG160.  
MSB  
1
Segment output  
72 73 74  
D89 D88 D87 D86 D85 D84 D83 D82 D81  
D89 D88 D87 D86 D85 D84 D83 D82 D81  
D89 D88 D87 D86 D85 D84 D83 D82 D81  
D89 D88 D87 D86 D85 D84 D83 D82 D81  
LSB  
80  
2
3
4
75  
76  
77  
78  
79  
D160 D159 D158 D157  
D160 D159 D158 D157  
D160 D159 D158 D157  
D160 D159 D158 D157  
COM1  
COM2  
COM3  
COM4  
MSB  
Segment output  
LSB  
81  
82  
83  
84  
152 153 154 155 156 157 158 159 160  
D80 D79 D78 D77  
D80 D79 D78 D77  
D80 D79 D78 D77  
D80 D79 D78 D77  
D9  
D9  
D9  
D9  
D8  
D8  
D8  
D8  
D7  
D7  
D7  
D7  
D6  
D6  
D6  
D6  
D5  
D5  
D5  
D5  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D2  
D2  
D2  
D2  
D1  
D1  
D1  
D1  
COM1  
COM2  
COM3  
COM4  
• I2C interface  
The data is written to the address set by the slave address.  
For the I2C interface, the data is written to the specified address starting with the LSB side in units of 8 bits.  
(The data is written in the order from SEG153-160, SEG145-SEG152, ... , SEG9-16, and SEG1-SEG8.)  
LSB  
1
D1  
Segment output  
MSB  
80  
D8  
2
3
4
72  
D8  
D8  
D8  
D8  
73  
D1  
D1  
D1  
D1  
74  
D2  
D2  
D2  
D2  
75  
D3  
D3  
D3  
D3  
76  
D4  
D4  
D4  
D4  
77  
D5  
D5  
D5  
D5  
78  
D6  
D6  
D6  
D6  
79  
D7  
D7  
D7  
D7  
D2  
D2  
D2  
D2  
D3  
D3  
D3  
D3  
D4  
D4  
D4  
D4  
COM1  
COM2  
COM3  
COM4  
D1  
D1  
D1  
D8  
D8  
D8  
LSB  
Segment output  
MSB  
81  
82  
83  
84  
152 153 154 155 156 157 158 159 160  
D1  
D1  
D1  
D1  
D2  
D2  
D2  
D2  
D3  
D3  
D3  
D3  
D4  
D4  
D4  
D4  
D8  
D8  
D8  
D8  
D1  
D1  
D1  
D1  
D2  
D2  
D2  
D2  
D3  
D3  
D3  
D3  
D4  
D4  
D4  
D4  
D5  
D5  
D5  
D5  
D6  
D6  
D6  
D6  
D7  
D7  
D7  
D7  
D8  
D8  
D8  
D8  
COM1  
COM2  
COM3  
COM4  
17/32  
FEDL9479E-02  
ML9479E  
Common waveforms  
(1) At static  
VLCD  
COM14  
GND  
(2) At 1/2-duty  
At 1/2-bias  
VLCD  
COM1  
COM3  
VLCD/2  
GND  
VLCD  
COM2  
COM4  
VLCD/2  
GND  
At 1/3-bias  
VLCD  
COM1  
COM3  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM2  
COM4  
(3) At 1/3-duty  
COM1  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM2  
COM4  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM3  
(4) At 1/4-duty  
COM1  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM2  
COM3  
COM4  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
18/32  
FEDL9479E-02  
ML9479E  
Common segment output waveform  
・At Static  
S
E
G
1
S
E
G
2
S
E
G
3
Display example  
COM1  
On  
Off  
VLCD  
COM1  
COM2  
COM3  
COM4  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
SEG1  
SEG2  
SEG3  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
19/32  
FEDL9479E-02  
ML9479E  
Common and segment output waveforms  
At 1/2Duty, 1/2bias  
S
E
G
1
S
E
G
2
S
E
G
3
Display example  
COM1  
COM2  
On  
Off  
VLCD  
COM1  
COM3  
VLCD/2  
GND  
VLCD  
COM2  
COM4  
VLCD/2  
GND  
VLCD  
SEG1  
SEG2  
SEG3  
VLCD/2  
GND  
VLCD  
VLCD/2  
GND  
VLCD  
VLCD/2  
GND  
20/32  
FEDL9479E-02  
ML9479E  
Common segment output waveform  
・At 1/2 Duty、1/3bias  
S
E
G
1
S
E
G
2
S
E
G
3
Display example  
COM1  
COM2  
On  
Off  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM1  
COM3  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM2  
COM4  
VLCD  
2VLCD/3  
VLCD/3  
GND  
SEG1  
SEG2  
SEG3  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
21/32  
FEDL9479E-02  
ML9479E  
Common and segment output waveforms  
At 1/3Duty, 1/3bias  
S
E
G
1
S
E
G
2
S
E
G
3
Display example  
COM1  
COM2  
COM3  
On  
Off  
VLCD  
2VLCD/3  
VLCD/3  
COM1  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM2  
COM4  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM3  
VLCD  
2VLCD/3  
VLCD/3  
GND  
SEG1  
SEG2  
SEG3  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
22/32  
FEDL9479E-02  
ML9479E  
Common and segment output waveforms  
At 1/4Duty, 1/3bias  
S
E
G
1
S
E
G
2
S
E
G
3
Display example  
COM1  
COM2  
COM3  
COM4  
On  
Off  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM1  
COM2  
COM3  
COM4  
SEG1  
SEG2  
SEG3  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
23/32  
FEDL9479E-02  
ML9479E  
EXAMPLE OF APPLICATION CIRCUIT  
Cascade configuration 1  
Serial interface  
Internal CR oscillator circuit used  
1/4Duty  
RESETB pin + external capacitance connection to configure POC circuit  
The common waveform of master and slave chip is active.  
[External component]  
Cp = 0.1 [µF] (bypass capacitor between power supplies)  
Crst = 4.7 [µF] (capacitance for external POC circuit)  
LCD panelꢀ1/4Duty × 160 Segment  
LCD Panelꢀ1/4Duty × 160 Segemnet  
COM1  
COM1  
COM2  
COM3  
COM4  
COM2  
COM3  
COM4  
5V  
5V  
5V  
5V  
VLCD  
VDD  
VLCD  
VDD  
ML9479E  
(Mater)  
ML9479E  
(Slave)  
Cp Cp  
Cp Cp  
M/S  
BIAS  
OSCI/E  
POCEB  
Duty0  
Duty1  
I2C  
M/S  
BIAS  
OSCI/E  
POCEB  
Duty0  
Duty1  
I2C  
OSC1  
OSC2  
OSCR  
CKO  
OPEN  
OSC1  
OSC2  
OSCR  
CKO  
OPEN  
OPEN  
OPEN  
SA0  
SA0  
A1  
A1  
A0  
A0  
RESETB  
RESETB  
Crst  
Crst  
TEST1  
TEST2  
GND  
TEST1  
TEST2  
GND  
OPEN  
OPEN  
CPU  
24/32  
FEDL9479E-02  
ML9479E  
Cascade configuration 2  
II2C interface  
External Rf-based CR oscillator circuit used  
1/4Duty  
External RESETB signal input  
The common waveform of slave chip is open.  
[External component]  
Cp = 0.1 [µF] (bypass capacitor between power supplies),  
Rf = 470 [k] (external R, resistor for CR oscillator circuit),  
Rup = Resistor for SDA data bus pull-up  
LCD Panelꢀ1/4Duty × 160 × n Segment  
COM1  
COM2  
COM3  
COM4  
COM1  
COM2  
COM3  
COM4  
OPEN  
5V  
5V  
5V  
5V  
VLCD  
VDD  
VLCD  
VDD  
ML9479E  
ML9479E  
(Master)  
(Slave)  
Cp Cp  
Cp Cp  
M/S  
BIAS  
OSCI/E  
POCEB  
Duty0  
Duty1  
I2C  
M/S  
BIAS  
OSCI/E  
POCEB  
Duty0  
Duty1  
I2C  
Rf  
OSC1  
OSC2  
OSCR  
CKO  
OSC1  
OSC2  
OSCR  
CKO  
OPEN  
OPEN  
OPEN  
SA0  
SA0  
OPEN  
A1  
A1  
A0  
A0  
RESETB  
RESETB  
TEST1  
TEST2  
GND  
TEST1  
TEST2  
GND  
5V  
Rup  
CPU  
25/32  
FEDL9479E-02  
ML9479E  
PAD CONFIGURATION  
Pad layout (pattern face)  
Chip size  
: 8.84 mm x 0.90 mm  
: 400 m ± 20 m  
: 50 m  
Chip thickness  
Minimum bump pitch  
Bump height  
: 15 m ±3 m  
321  
152  
B
Y
151  
141  
322  
X
(0,0)  
331  
A
1
140  
Bump and alignment mark dimensions (pattern face)  
PAD No.1140  
PAD No.141331  
Alignment marks A and B : See below  
: 35 m x 72 m  
: 30 m x 84 m  
[Mark A]  
[Mark B]  
Coordinate position  
Coordinate position  
30μm  
47μm  
55μm  
30μm  
30μm  
30μm  
30μm  
30μm  
47μm  
55μm  
Aluminum (top metal) Passivation  
Passivation  
Aluminum (top metal)  
X-coordinate (m)  
4308.9  
Y-coordinate (m)  
-312.1  
Alignment mark  
Mark A  
-4305.9  
305.9  
Mark B  
26/32  
FEDL9479E-02  
ML9479E  
Pad center coordinates  
Pad  
X-coordinate Y-coordinate  
Pad  
number  
X-coordinate Y-coordinate  
Pad name  
number  
Pad name  
(m)  
(m)  
(m)  
-1863  
-1767.8  
-1711.8  
-1655.8  
-1599.8  
-1543.8  
-1448.6  
-1392.6  
-1336.6  
-1280.6  
-1224.6  
-1154.4  
-1084.2  
-1028.2  
-972.2  
-916.2  
-860.2  
-804.2  
-748.2  
-653  
(m)  
1
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
GNDO  
GNDO  
Duty1  
-4236.2  
-4176.2  
-4116.2  
-4056.2  
-3996.2  
-3936.2  
-3871  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
DATA(SDA)  
CLOCK(SCL)  
CLOCK(SCL)  
CLOCK(SCL)  
CLOCK(SCL)  
CLOCK(SCL)  
LOAD  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
2
3
4
5
6
7
8
-3815  
LOAD  
9
-3749  
LOAD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
Duty1  
-3693  
LOAD  
Duty1  
-3637  
LOAD  
Duty1  
-3581  
GND  
Duty0  
-3510.4  
-3454.4  
-3398.4  
-3342.4  
-3272  
GND  
Duty0  
GND  
Duty0  
GND  
Duty0  
GND  
A0  
GND  
A0  
-3216  
GND  
A0  
-3160  
GND  
A0  
-3104  
VDD  
A1  
-3033.8  
-2977.8  
-2921.8  
-2865.8  
-2795.6  
-2739.6  
-2683.6  
-2627.6  
-2557.4  
-2501.4  
-2406.2  
-2350.2  
-2294.2  
-2238.2  
-2182.2  
-2087  
VDD  
-597  
A1  
VDD  
-541  
A1  
VDD  
-485  
A1  
VDD  
-429  
SA0  
VDD  
-373  
SA0  
VDD  
-317  
SA0  
VLCD  
-221.8  
-165.8  
-109.8  
-53.8  
SA0  
VLCD  
VDDO  
VDDO  
SDAACK  
SDAACK  
SDAACK  
SDAACK  
SDAACK  
DATA(SDA)  
DATA(SDA)  
DATA(SDA)  
DATA(SDA)  
VLCD  
VLCD  
VLCD  
2.2  
VLCD  
58.2  
VLCD  
114.2  
209.6  
265.6  
321.6  
377.6  
433.6  
503.8  
RESETB  
RESETB  
RESETB  
RESETB  
RESETB  
OSC1  
-2031  
-1975  
-1919  
27/32  
FEDL9479E-02  
ML9479E  
Pad  
number  
79  
X-coordinate Y-coordinate  
X-coordinate Y-coordinate  
Pad name  
Pad number Pad name  
(m)  
559.8  
(m)  
(m)  
3251.4  
3321.6  
3377.6  
3433.6  
3489.6  
3559.8  
3615.8  
3671.8  
3727.8  
3798  
(m)  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-232.2  
-182.2  
-132.2  
-82.2  
OSC1  
OSC1  
OSC1  
OSC1  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
OSCR  
OSCR  
OSCR  
OSCR  
OSCR  
CKO  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
-312.1  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
BIAS  
TEST2  
TEST2  
TEST2  
TEST2  
TEST1  
TEST1  
TEST1  
TEST1  
GNDO  
GNDO  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
COM1  
80  
81  
615.8  
671.8  
82  
727.8  
83  
790.4  
84  
846.4  
85  
902.4  
86  
958.4  
87  
1014.4  
1090.4  
1146.4  
1202.4  
1258.4  
1314.4  
1389.8  
1445.8  
1501.8  
1557.8  
1613.8  
1694  
88  
89  
3854  
90  
3924.2  
3984.2  
4044.2  
4104.2  
4164.2  
4224.2  
4308.9  
4308.9  
4308.9  
4308.9  
4308.9  
4308.9  
4308.9  
4308.9  
4308.9  
4308.9  
4308.9  
4225  
91  
92  
93  
94  
CKO  
95  
CKO  
96  
CKO  
97  
CKO  
98  
SYNCB  
SYNCB  
SYNCB  
SYNCB  
SYNCB  
VDDO  
VDDO  
I2C  
99  
1750  
COM2  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
1806  
COM3  
-32.2  
1862  
COM4  
17.8  
1918  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
SEG1  
67.8  
2004.4  
2060.4  
2130.6  
2186.6  
2242.6  
2298.6  
2368.8  
2424.8  
2480.8  
2536.8  
2607  
117.8  
167.8  
217.8  
267.8  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
I2C  
I2C  
I2C  
4175  
M/S  
4125  
M/S  
4075  
M/S  
SEG2  
4025  
M/S  
SEG3  
3975  
POCEB  
POCEB  
POCEB  
POCEB  
OSCI/E  
OSCI/E  
OSCI/E  
OSCI/E  
BIAS  
SEG4  
3925  
2663  
SEG5  
3875  
2719  
SEG6  
3825  
2775  
SEG7  
3775  
2845.2  
2901.2  
2957.2  
3013.2  
3083.4  
3139.4  
3195.4  
SEG8  
3725  
SEG9  
3675  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
3625  
3575  
3525  
BIAS  
3475  
BIAS  
3425  
28/32  
FEDL9479E-02  
ML9479E  
Pad  
number  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
259  
260  
261  
262  
X-coordinate Y-coordinate  
Pad  
number  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
304  
305  
306  
307  
X-coordinate Y-coordinate  
Pad name  
Pad name  
(m)  
3375  
3325  
3275  
3225  
3175  
3125  
3075  
3025  
2975  
2925  
2875  
2825  
2775  
2725  
2675  
2625  
2575  
2525  
2475  
2425  
2375  
2325  
2275  
2225  
2175  
2125  
2075  
2025  
1975  
1925  
1875  
1825  
1775  
1725  
1675  
1625  
1575  
1525  
1475  
1425  
1375  
1325  
1275  
1225  
1175  
-1125  
-1175  
-1225  
-1275  
(m)  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
(m)  
1125  
1075  
1025  
975  
(m)  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG101  
SEG102  
SEG103  
SEG104  
SEG60  
SEG61  
SEG62  
SEG63  
SEG64  
SEG65  
SEG66  
SEG67  
SEG68  
SEG69  
SEG70  
SEG71  
SEG72  
SEG73  
SEG74  
SEG75  
SEG76  
SEG77  
SEG78  
SEG79  
SEG80  
COM1  
925  
875  
825  
775  
725  
675  
625  
575  
525  
475  
425  
375  
325  
275  
225  
175  
125  
75  
COM2  
25  
COM3  
-25  
COM4  
-75  
SEG81  
SEG82  
SEG83  
SEG84  
SEG85  
SEG86  
SEG87  
SEG88  
SEG89  
SEG90  
SEG91  
SEG92  
SEG93  
SEG94  
SEG95  
SEG96  
SEG97  
SEG98  
SEG99  
SEG100  
SEG146  
SEG147  
SEG148  
SEG149  
-125  
-175  
-225  
-275  
-325  
-375  
-425  
-475  
-525  
-575  
-625  
-675  
-725  
-775  
-825  
-875  
-925  
-975  
-1025  
-1075  
-3375  
-3425  
-3475  
-3525  
29/32  
FEDL9479E-02  
ML9479E  
Pad  
number  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
X-coordinate Y-coordinate  
Pad  
number  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
X-coordinate Y-coordinate  
Pad name  
Pad name  
(m)  
(m)  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
(m)  
-3575  
(m)  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
308.9  
203.2  
153.2  
103.2  
53.2  
SEG105  
SEG106  
SEG107  
SEG108  
SEG109  
SEG110  
SEG111  
SEG112  
SEG113  
SEG114  
SEG115  
SEG116  
SEG117  
SEG118  
SEG119  
SEG120  
SEG121  
SEG122  
SEG123  
SEG124  
SEG125  
SEG126  
SEG127  
SEG128  
SEG129  
SEG130  
SEG131  
SEG132  
SEG133  
SEG134  
SEG135  
SEG136  
SEG137  
SEG138  
SEG139  
SEG140  
SEG141  
SEG142  
SEG143  
SEG144  
SEG145  
-1325  
-1375  
-1425  
-1475  
-1525  
-1575  
-1625  
-1675  
-1725  
-1775  
-1825  
-1875  
-1925  
-1975  
-2025  
-2075  
-2125  
-2175  
-2225  
-2275  
-2325  
-2375  
-2425  
-2475  
-2525  
-2575  
-2625  
-2675  
-2725  
-2775  
-2825  
-2875  
-2925  
-2975  
-3025  
-3075  
-3125  
-3175  
-3225  
-3275  
-3325  
SEG150  
SEG151  
SEG152  
SEG153  
SEG154  
SEG155  
SEG156  
SEG157  
SEG158  
SEG159  
SEG160  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
COM4  
-3625  
-3675  
-3725  
-3775  
-3825  
-3875  
-3925  
-3975  
-4025  
-4075  
-4125  
-4175  
-4225  
-4308.9  
-4308.9  
-4308.9  
-4308.9  
-4308.9  
-4308.9  
-4308.9  
-4308.9  
-4308.9  
-4308.9  
3.2  
COM3  
-46.8  
-96.8  
-146.8  
-196.8  
-246.8  
COM2  
COM1  
DUMMY  
DUMMY  
30/32  
FEDL9479E-02  
ML9479E  
REVISION HISTORY  
Page  
Previous  
Document No.  
Issue Date  
Description  
New  
Edition  
Edition  
FEDL9479E-01  
FEDL9479E-02  
May. 28,2012  
Apr. 3,2013  
Final edition 1 issued  
BIAS="L": 1/2bias BIAS="H": 1/2bias  
10  
10  
31/32  
FEDL9479E-02  
ML9479E  
NOTICE  
No copying or reproduction of this document, in part or in whole, is permitted without the consent of  
LAPIS Semiconductor Co., Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing LAPIS Semiconductor's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be  
obtained from LAPIS Semiconductor upon request.  
Examples of application circuits, circuit constants and any other information contained herein illustrate the  
standard usage and operations of the Products. The peripheral conditions must be taken into account when  
designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document. However,  
should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS  
Semiconductor shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and examples  
of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly,  
any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other  
parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use  
of such technical information.  
The Products specified in this document are intended to be used with general-use electronic equipment or  
devices (such as audio visual equipment, office-automation equipment, communication devices, electronic  
appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard against the  
possibility of physical injury, fire or any other damage caused in the event of the failure of any Product,  
such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no  
responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance  
with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or system which  
requires an extremely high level of reliability the failure or malfunction of which may result in a direct  
threat to human life or create a risk of human injury (such as a medical instrument, transportation  
equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS  
Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special  
purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales  
representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may be controlled  
under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit  
under the Law.  
Copyright 2013 LAPIS Semiconductor Co., Ltd.  
32/32  

相关型号:

ML9480

ML9480由40位移位寄存器、160位数据锁存器、40组LCD驱动器、以及公共信号生成电路组成。静态显示时可直接驱动多达40段、1/2Duty显示时可直接驱动多达80段、1/3Duty显示时可直接驱动多达120段、1/4Duty显示时可直接驱动多达160段的LCD。三线串行接口和I2C接口可选。
ROHM

ML9484

ML9484由50位移位寄存器、200位数据锁存器、50组LCD驱动器、以及公共信号生成电路组成。静态显示时可直接驱动多达50段、1/2Duty显示时可直接驱动多达100段、1/3Duty显示时可直接驱动多达150段、1/4Duty显示时可直接驱动多达200段的LCD。
ROHM

ML961B8S

Laser Diode, 1480nm
MITSUBISHI

ML9620

CAN Controller IC
OKI

ML9701A

Laser Diode, 1580nm
MITSUBISHI

ML974A1F

Laser Diode, 1550nm
MITSUBISHI

ML974A2F

Laser Diode, 1550nm
MITSUBISHI

ML974F11F

Laser Diode, 1550nm
MITSUBISHI

ML976H10

InGaAsP-MQW HIGH POWER LASER DIODES
MITSUBISHI

ML976H11F

InGaAsP-MQW-DFB LASER DIODES
MITSUBISHI

ML976H6F

InGaAsP-MQW-FP LASER DIODES
MITSUBISHI

ML9781A

Laser Diode, 1550nm
MITSUBISHI