ML9480 [ROHM]

ML9480由40位移位寄存器、160位数据锁存器、40组LCD驱动器、以及公共信号生成电路组成。静态显示时可直接驱动多达40段、1/2Duty显示时可直接驱动多达80段、1/3Duty显示时可直接驱动多达120段、1/4Duty显示时可直接驱动多达160段的LCD。三线串行接口和I2C接口可选。;
ML9480
型号: ML9480
厂家: ROHM    ROHM
描述:

ML9480由40位移位寄存器、160位数据锁存器、40组LCD驱动器、以及公共信号生成电路组成。静态显示时可直接驱动多达40段、1/2Duty显示时可直接驱动多达80段、1/3Duty显示时可直接驱动多达120段、1/4Duty显示时可直接驱动多达160段的LCD。三线串行接口和I2C接口可选。

驱动 CD 锁存器 驱动器 移位寄存器
文件: 总38页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dear customer  
LAPIS Semiconductor Co., Ltd. ("LAPIS Semiconductor"), on the 1st day of October,  
2020, implemented the incorporation-type company split (shinsetsu-bunkatsu) in which  
LAPIS established a new company, LAPIS Technology Co., Ltd. (“LAPIS  
Technology”) and LAPIS Technology succeeded LAPIS Semiconductor’s LSI business.  
Therefore, all references to "LAPIS Semiconductor Co., Ltd.", "LAPIS Semiconductor"  
and/or "LAPIS" in this document shall be replaced with "LAPIS Technology Co., Ltd."  
Furthermore, there are no changes to the documents relating to our products other than  
the company name, the company trademark, logo, etc.  
Thank you for your understanding.  
LAPIS Technology Co., Ltd.  
October 1, 2020  
FEDL9480-01  
Issue Date: Oct. 1, 2012  
ML9480  
Static, 1/2 Duty, 1/3 Duty, 1/4 Duty 40 Outputs LCD Driver  
GENERAL DESCRIPTION  
The ML9480 is an LCD driver LSI, consists of a 40-bit shift register, a 160-bit data latch, 40 sets of LCD drivers,  
and a common signal generation circuit.  
It can directly drive an LCD up to 40 segments for static display, 80 segments for 1/2-duty display, 120  
segments for 1/3-duty display, and 160 segments for 1/4-duty display.  
The three-wire serial interface and I2C interface are selectable.  
FEATURES  
Logic power supply voltage  
LCD drive power supply voltage : 4.5 to 5.5 V  
Maximum number of segments  
Static display  
1/2-duty display  
: 2.7 to 5.5 V  
: 40 segments  
: 80 segments  
: 120 segments  
: 160 segments  
1/3-duty display  
1/4-duty display  
Interface with microcomputer :  
Serial interface : DATA, CLOCK, LOAD  
CLOCK transfer speed up to 1 MHz  
I2C interface  
: SDA, SCL, SDAACK  
SCL transfer speed up to 400 kHz  
Built-in CR oscillator circuit using the internal resistor or External resistor  
Cascade connectable (up to sixteen chips)  
Built-in common signal generation circuit  
Built-in common output intermediate-value voltage generation circuit  
Built-in POC (Power On Clear) circuit  
Gold bump chip (ML9480DVWA)  
1/37  
FEDL9480-01  
ML9480  
BLOCK DIAGRAM  
SEG1  
SEG40  
VLCD  
40-Dot Segment Driver  
40-Ch Data Selector  
Bias  
Resi.  
BIAS  
Duty0  
Duty1  
40  
40  
40  
40  
40-Bit  
Latch4  
40-Bit  
Latch3  
40-Bit  
Latch2  
40-Bit  
Latch1  
M/S  
LATCH  
SELECTOR  
40  
MODE  
I2C  
LOAD  
DATASDA)  
CLOCKSCL)  
Command  
Decoder  
40-bit Shift Register  
SDAACK  
SA1  
SA0  
A1  
A0  
OSC I/E  
COM1  
COM2  
COM3  
COM4  
OSC1  
OSCR  
OSC2  
COMMON  
Driver  
TIMING  
GENERATOR  
OSC  
CKO  
SYNCB  
POC  
Circuit  
POCEB  
RESETB  
TEST1  
VDD  
GND  
2/37  
FEDL9480-01  
ML9480  
ABSOLUTE MAXIMUM RATINGS  
Item  
Symbol  
Condition  
Ta = 25°C  
Ta = 25°C  
Ta = 25°C  
Ta = 25°C  
Rating  
-0.3 to 6.0  
-0.3 to 6.0  
– 0.3 to VDD + 0.3  
-2.0 to +2.0  
125  
Unit  
V
Logic power supply voltage  
LCD drive power supply voltage  
Input voltage  
VDD  
VLCD  
VI  
V
V
Output short-circuit current  
Chip temperature  
Is  
mA  
°C  
°C  
Tc  
Storage temperature  
TSTG  
-55 to +150  
Note: Do not use the ML9480 by short-circuiting one output pin to another output pin as well as to other pin  
(input pin, input/output pin, or power supply pin).  
RECOMMENDED OPERATION CONDITIONS  
Item  
Symbol  
VDD  
Condition  
Range  
Unit  
Logic power supply voltage  
LCD drive power supply voltage  
OSC IN clock frequency  
Data clock frequency  
*
2.7 to 5.5  
4.5 to 5.5  
up to 10  
V
V
VLCD  
fCP1  
fCP2  
fSCL  
Ta  
*
kHz  
MHz  
kHz  
°C  
up to 1.0  
up to 400  
-40 to +105  
SCL clock frequency  
Operating temperature  
Note(*): Use at VDD VLCD  
.
The relation between OSC IN clock frequency and frame frequency is as the equation below.  
fFRM = fOSC /24  
Recommended setting range for external component (oscillator circuit)  
(VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta= –40 to +105°C)  
Item  
Symbol  
Rf  
Condition  
Min  
423  
47  
TYP  
470  
75  
Max  
517  
114  
Unit  
k  
Oscillation resistor  
Frame frequency  
fFRM  
(F1,F0)=(0,1)  
Hz  
The relation between oscillation resistor and frame frequency is as the equation below.  
fFRM = fOSC /(16 x 24)  
fosc = 1 / (Device coefficient x External resistor Rf)  
Device coefficient = 73.8 x 10-12 ± 25%  
3/37  
FEDL9480-01  
ML9480  
ELECTRICAL CHARACTERISTICS  
DC Characteristics  
(VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta= -40 to +105°C)  
Item  
Symbol  
VIH  
Condition  
Min.  
0.8VDD  
GND  
-1.0  
Typ.  
Max.  
VDD  
Unit  
V
Applicable pin  
(*1)  
(*1)  
"H" input voltage  
"L" input voltage  
Input leakage current 1  
VIL  
0.2VDD  
1.0  
V
IL1  
VI = VDD or 0 V  
VI = VDD or 0V  
POCEB="H"  
VDD = 5.0V,VI = 0 V  
POCEB = "L"  
IO = -600uA  
IO = 600uA  
VDD=5V,  
A (*1)  
Input leakage current 2  
Pull-up current  
IL2  
Ipu  
-1.0  
30  
1.0  
A RESETB  
140  
A RESETB  
"H" output voltage  
"L" output voltage 1  
VOH  
0.9VDD  
VCKO, SYNCB  
V
VOL1  
0.1VDD  
CKO, SYNCB  
"L" output voltage 2  
VOL2  
3
mA SDAACK  
VOL = 0.4V  
Segment  
Driver  
VOHS  
VOHC  
VLCD = 5V  
5
5
15  
12  
kSEG1 to SEG40  
kCOM 1 to COM4  
ON resistor  
Common  
VLCD = 5V  
(*1): DATA(SDA), CLOCK(SCL), LOAD, M/S, SYNCB, Duty1, Duty0, BIAS, SA1,SA0, A1, A0, OSC1,  
OSC I/E, I2C, POCEB, MODE  
(VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta= -40 to +105°C)  
Applicable  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
pin  
VDD=VLCD=5.5 V  
IDDS  
8
15  
A  
VDD  
Static supply  
current  
Input pin fixed to "H" or "L"  
Oscillation stopped, output no-load  
POCEB="L"  
ILCDS  
9
15  
18  
A  
A  
VLCD  
VDD  
V
DD=VLCD= 5.5 V (*2)(*3)  
Clock OSC1 external input  
CP1=1.8kHz  
IDD1  
ILCD1  
IDD2  
ILCD2  
IDD3  
ILCD3  
IDD4  
(*6)  
10  
Dynamic supply  
current 1  
(*7)  
(*6)  
(*7)  
9
59  
9
13  
90  
A  
A  
A  
A  
VLCD  
VDD  
f
Dynamic supply  
current 2  
VDD=VLCD= 5.5 V (*2)(*3)  
Internal oscillation  
15  
VLCD  
VDD  
VDD=VLCD= 5.5 V (*2)(*4)(*6)  
Internal oscillation  
100  
200  
Dynamic supply  
current 3  
9
188  
9
15  
310  
15  
A  
A  
A  
VLCD  
VDD  
At three-wire serial IF data input  
VDD=VLCD= 5.5 V (*2)(*5)(*6)  
Internal oscillation  
Dynamic supply  
current 4  
At I2C IF data input  
ILCD4  
VLCD  
(*2): M/S = "H", 1/4-duty, 1/3-bias, (F1,F0,FSEL) = (1,1,0) 95 Hz, POCEB = "L", output pin no-load.  
(*3): Three-wire serial or I2C interface. Input pin fixed to "H" or "L".  
(*4): Serial interface, data input frequency = 1 MHz.  
(*5): I2C interface, data input frequency = 400 kHz.  
(*6): Alternately inputs "0" and "1" for LCD display data (checkered display).  
(*7): Inputs all "1s" for LCD display data (all illuminated).  
4/37  
FEDL9480-01  
ML9480  
Switching Characteristics  
OSC timing  
Item  
(VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta = -40 to +105°C)  
Symbol  
fCP1  
Condition  
Min.  
Typ. Max.  
Unit  
Applicable pin  
OSC IN clock frequency  
(external input)  
1.8  
10  
kHz OSC1  
Clock input from OSC1.  
OSC2 and OSCR open.  
OSC I/E = "L"  
Clock pulse width  
(External input)  
tWCP1  
tOSC  
40  
s  
s  
OSC1  
OSC1  
Clock rise and fall time  
(external input)  
(*1)  
Between OSC1 and OSC2  
Rf = 470kΩ  
(F1,F0)=(0,1)  
External Rf clock  
frequency  
fOSC1  
18  
18  
28.8  
28.8  
44  
44  
kHz OSC1, OSC2  
(Internal oscillation)  
OSCR open.  
OSC I/E = "H"  
OSC1 open.  
(F1,F0)=(0,1)  
OSC2 and OSCR short-circuited.  
OSC I/E = "H"  
Internal clock frequency  
(Internal oscillation)  
OSC1, OSCR,  
fOSC2  
kHz  
OSC2  
The relation between OSC IN clock frequency and frame frequency is as the equation below.  
fFRM = fOSC /24  
(*1) tOSC is a reference value.  
The longer the clock rise and fall time, the more susceptible to extraneous noises around the threshold value.  
Make the rise as steep as possible. Reference value: max=2s.  
Serial interface timing  
(VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta = -40 to +105°C)  
Condition Min. Typ. Max. Unit Applicable pin  
MHz CLOCK  
Item  
Symbol  
Data clock frequency  
Data clock pulse width  
Data setup time  
fCP2  
tWCP2  
tSU  
100  
50  
1
ns CLOCK  
ns DATA  
ns CLOCK  
ns CLOCK  
ns LOAD  
ns LOAD  
Data hold time  
tHD  
50  
CLOCK-LOAD timing  
LOAD-CLOCK timing  
LOAD pulse width  
tCL  
100  
100  
100  
tLC  
tWLD  
CLOCK,DATA,  
LOAD  
Signal rise and fall time  
tsr,tsf  
(*2)  
ns  
(*2) tsr and tsf shall be reference values.  
The longer the clock rise and fall time, the more susceptible to extraneous noises around the threshold value.  
Make the rise as steep as possible. Reference value: max=10ns.  
5/37  
FEDL9480-01  
ML9480  
I2C interface timing  
Item Symbol  
(VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta = -40 to +105°C)  
Condition  
Min. Typ. Max. Unit  
Applicable pin  
SCL clock frequency  
Hold time (repeat)  
"STATRT" condition  
SCL "L" pulse width  
SCL "H" pulse width  
Setup time for repeat  
"START" condition  
Data hold time  
fSCL  
400 kHz SCL  
tHD,STA  
0.6  
s SCL,SDA  
tLOW  
tHIGH  
1.3  
0.6  
s SCL  
s SCL  
tSU,STA  
0.6  
s SCL,SDA  
tHD,DAT  
tSU,DAT  
0
ns SCL,SDA  
ns SCL,SDA  
Data setup time  
100  
Setup time for "STOP"  
condition  
tSU,STO  
0.6  
s SCL,SDA  
Bus free time between  
"STOP" condition and  
"START" condition  
Data valid acknowledge  
time  
tBUF  
1.3  
s SCL  
tVD,ACK  
tir,tif  
Cb  
1.2  
(*3)  
400  
s SCL,SDAAACK  
sSCL,SDA  
Signal rise and fall time  
Data bus load  
capacitance  
pF SDA,SDAACK  
Noise pulse width  
tolerance  
twf  
50  
ns SCL,SDA  
(*3) tir and tif shall be reference values.  
The longer the clock rise and fall time, the more susceptible to extraneous noises around the threshold value.  
Make the rise as steep as possible. Reference value: max=0.1s.  
6/37  
FEDL9480-01  
ML9480  
Timing chart (OSC1)  
1/fCP1  
tWCP1  
VIH  
tWCP1  
VIH  
VIH  
OSC1  
(External clock)  
VIL  
VIL  
tOSC  
Timing chart (Serial interface)  
VIH  
VIH  
VIL  
tHD  
VIH  
VIH  
DATA  
VIL  
VIL  
VIL  
tSU  
tsf  
tsr  
tWCP2  
tWCP2  
VIH  
VIL  
VIH  
VIH  
VIH  
CLOCK  
VIL  
VIL  
VIL  
VIL  
1/fCP2  
tsr  
tCL  
tWLD  
tLC  
tsf  
V
IH VIH  
LOAD  
VIL  
VIL  
tsr  
tsf  
Timing chart (I2C interface)  
tVD;ACK  
VIH  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
SDA  
tf  
tBUF  
tLOW  
VIH  
VIH  
VIL VIL  
VIH  
VIH  
VIL  
VIH  
VIL  
SCL  
VIL  
tHD;STA  
tHiGH  
tHD;DAT  
tr  
tSU;DAT  
VIH  
SDA  
VIL  
tSU;STA  
tSU;STO  
7/37  
FEDL9480-01  
ML9480  
REFERENCE DATA  
Frame frequency Characteristics  
VDD=5.5V/2.7V Rf=470  
Frame frequency fFRM = fOSC /(16 x 24)  
fosc = 1 / (Device coefficient x External resistor Rf)  
Device coefficient = 73.8 x 10-12 ± 25%  
Frame frequency Characteristics Rf=470k,VDD=5.5V  
120  
110  
100  
90  
(F1,F0)=(1,1)  
(F1,F0)=(1,0)  
(F1,F0)=(0,1)  
(F1,F0)=(0,0)  
80  
70  
60  
50  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temp Ta[℃]  
Frame frequency Characteristics Rf=470k,VDD=2.7V  
130  
120  
110  
100  
90  
(F1,F0)=(1,1)  
(F1,F0)=(1,0)  
(F1,F0)=(0,1)  
(F1,F0)=(0,0)  
80  
70  
60  
50  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TempꢀTa[℃]  
8/37  
FEDL9480-01  
ML9480  
POWER ON/OFF TIMING  
To turn on the power supply, raise the logic power supply first, then LCD drive power supply in order to prevent  
the IC from malfunctioning.  
To fall the power supply, fall the LCD drive power supply first, then the logic power supply.  
For a VDD pin ranging from 0 V to VDDmin, set VDD VLCD and t1 0 [ns].  
To enable the Internal POC circuit, the VDD power supply rise time t2 range needs to be 100 [µs] t2 500 [ms].  
For the VDD power supply to turn OFF then turn ON again, it is necessary to secure the POC discharge time t3  
100 [ms].  
Voltage  
VLCD  
VDD  
VDD  
0.9VDD  
t3  
t1  
t2  
t1  
Time  
INITIALIZATION SIGNAL TIMING  
When RESETB signal is externally input  
The RESETB pin input is valid both for POCEB = "L" and "H". Usable in combination with the POC.  
Keep the RESETB pin at "L" level until the VDD reaches VDDmin. (t4 200[ns])  
VDD  
VDDmin  
RESETB  
VIL  
t4  
When Internal POC circuit is used  
When using the Internal POC circuit in the initialization, set the POCEB pin to "L".  
At this time, the power ON/OFF timing conditions are t1 to t3 above mentioned.  
When RESETB pin POC circuit is used  
If the power ON/OFF timing conditions t1 to t3 cannot be kept, the RESETB pin needs to have a capacitance  
to configure the POC circuit. For this case, connect a capacitance value according to the power supply rise  
time.  
For the power supply rise time t2 and external capacitance value, use the following formula as a guide:  
CRST [F] > t2 [sec](30×103)  
9/37  
FEDL9480-01  
ML9480  
PIN DESCRIPTIONS  
Pad  
Symbol  
number  
I/O  
I
Description  
This is the input to switch between the master and slave modes. It has a  
schmitt circuit. When this pin is "H", the mode is master. When this pin is "L",  
the mode is slave.  
32  
M/S  
Display duty switch pins. These have schmitt circuits.  
Duty0  
Duty1  
*1  
Duty0="L", Duty1="L"  
Duty0="H", Duty1="L"  
Duty0="L", Duty1="H"  
Duty0="H", Duty1="H"  
:
:
:
Static  
(COM1=COM2=COM3=COM4)  
(COM1=COM3, COM2=COM4)  
(COM2=COM4)  
3,4  
I
I
1/2Duty  
1/3Duty  
1/4Duty  
:
This pin sets the LCD bias. It has a schmitt circuit.  
BIAS="L": 1/3bias  
BIAS="H": 1/2bias  
35  
BIAS  
When the static mode selection, fix this pin at “H” or “L” level.  
SA1  
SA0  
A1  
7,8  
5,6  
I
I
Slave address input pins. These have schmitt circuits.  
Sub address input pins. These have schmitt circuits.  
A0  
This input selects whether to use the external clock input mode or to use the  
Internal oscillation mode or external oscillation mode. It has a schmitt circuit.  
When this pin is "H", the mode is the Internal or external Rf oscillation mode.  
When this pin is "L", the mode is the external clock input mode.  
Use the slave chip as it is connected to GND.  
34  
OSC I/E  
I
These pins are for the oscillator circuit to generate common signals.  
The OSC1 and OSCR pins are input pins and have a schmitt circuit.  
OSC2 is an output pin. It becomes an output when the OSC I/E pin = "H" and  
a high impedance when the OSC I/E pin = "L".  
In the master mode (M/S pin ="H") 】  
Three types are selectable: Internal oscillation mode, external oscillation  
mode, and external clock input mode.  
•Internal oscillation mode: Set the OSC I/E pin to "H", short the OSCR and  
OSC2 pins, and open the OSC1 pin.  
•External Rf oscillation mode: Set the OSC I/E pin to "H", connect an  
oscillation resistor Rf between the OSC1 and OSC2 pins, and open the  
OSCR pin.  
OSC1,  
OSCR,  
OSC2  
*2  
I
I
O
24 to 26  
•External clock input mode: Set the OSC I/E pin to "L", open the OSCR and  
OSC2 pins, and input the external clock to the OSC1 pin.  
In the slave mode (M/S pin ="L") 】  
Open the OSCR and OSC2 pins and connect the OSC1 pin to the  
ML9480's CKO pin that has been set to the master mode.  
Clock output pin.  
In the master mode (M/S pin = "H", FSEL=”0”), the 1/16 division signal of the  
oscillation frequency is output. In the master mode (M/S pin = "H",  
FSEL=”1”), the 1/8 division signal of the oscillation frequency is output.  
In the slave mode (M/S pin = "L"), the output is fixed to "L".  
For a cascade connection, connect this pin to the OSC1 pin of the chip that  
has been set to the slave mode.  
27  
CKO  
O
10/37  
FEDL9480-01  
ML9480  
Input/output pin for common synchronization. It has a schmitt circuit.  
It becomes the synchronization signal output pin in the master mode (M/S  
pin = "H").  
It becomes the synchronization signal input pin in the slave mode (M/S pin = "L").  
For cascade connection, connect all of the involved ML9480s' SYNC pins by  
the common line.  
28  
30  
SYNCB  
I2C  
I/O  
Interface switching pin. It has a schmitt circuit.  
When this pin is "H", the interface is I2C.  
I
When this pin is "L", the interface is three-wire serial.  
Display data input pin. It has a schmitt circuit.  
I2C="L": Serial interface; DATA  
Input the display data in the order of SEG40, SEG39, ... , SEG2, and SEG1.  
The display data turns on at "H" and turns off at "L".  
I2C="H": I2C interface; SDA  
Input the display data in units of 8 bits. The display data turns on at "H" and  
turns off at "L".  
DATA  
(SDA)  
I
11  
This pin has a built-in noise filter through which noises in widths up to 50 ns  
are removed. This noise filter is valid only when I2C = "H".  
Shift clock input pin for display data. It has a schmitt circuit.  
I2C="L": Serial interface; CLOCK  
The display data input to the DATA pin is serially input to the shift register at  
the CLOCK signal rise.  
CLOCK  
(SCL)  
I
12  
I2C="H": I2C interface; SCL  
The display data input to the SDA pin is serially input to the shift register at  
the SCL signal rise.  
This pin has a built-in noise filter through which noises in widths up to 50 ns  
are removed. This noise filter is valid only when I2C = "H".  
Input pin for the load signal of display data. It has a schmitt circuit.  
I2C="L": Serial interface; LOAD  
The display data in the shift register is transmitted as is to the segment driver  
for the "H" duration. When this pin is brought into "L", the shift register is  
disconnected from the segment driver. The display data in the shift register  
immediately before it become "L" is held in the data latch and transmitted to  
the segment driver.  
13  
LOAD  
I
I2C="H": I2C interface  
Use this pin as it is connected to GND.  
I2C="L": Serial interface  
Use this pin as it is opened.  
I2C="H": I2C interface  
10  
SDAACK  
POCEB  
O
The I2C bus acknowledge output signal. Normally, use it as it is connected  
with the SDA pin.  
Connect an external pull-up resistor whenever  
necessary, as it is an open drain pin. The pull-up connection destination  
supply voltage shall be the VDD supply voltage or less.  
Internal POC circuit enable pin. It has a schmitt circuit.  
When this pin is "H", the POC circuit becomes OFF and the constant current  
(8µA) is cut. The RESETB pin pull-up resistor is cut as well.  
When this pin is "L", the POC circuit becomes ON.  
33  
23  
I
I
The RESETB pin is connected to a pull-up resistor.  
Reset signal input pin for initializing inside the IC. It has a schmitt circuit.  
The "L" level enables the reset.  
This pin has an Internal pull-up resistor. Open when POCEB = "H".  
Pull-up when POCEB = "L". The power-on reset operation is available by  
connecting an external capacitor.  
RESETB  
*3  
11/37  
FEDL9480-01  
ML9480  
I2C interface command table switching pin. It has a schmitt circuit.  
This pin is valid only when I2C = "H".  
When this pin is "L", the command table is table A.  
When this pin is "H", the command table is table B.  
When the three-wire serial interface mode selection, fix this pin at “H” or “L”  
level.  
31  
36  
MODE  
TEST1  
I
Pin for testing the IC. It has a Internal pull-down resistor.  
Use it as it is connected to GND.  
I
45 to 64,  
69 to 88  
SEG1  
SEG40  
Outputs for LCD display. Connected to the segment pins on the LCD panel.  
In the display off mode, all the outputs are fixed to GND.  
Outputs for LCD display. Connected to the common pins on the LCD panel.  
The output pins are located at three positions: center and both ends of the  
chip. Each is connected inside the chip. Use the COM pins in accordance  
with the panel to be used.  
In the display off mode, all the outputs are fixed to GND.  
When the slave is set (M/S=”L”), COM1 to COM4 outputs are GND level  
fixed.  
O
40 to 43,  
65 to 68,  
90 to 93  
COM1  
COM4  
O
14 to 16  
20 to 22  
17 to 19  
VDD  
VLCD  
GND  
-
-
-
Power supply pin for logic circuit.  
Power supply pin for LCD driver.  
Ground pin.  
VDD output pin.  
9,29  
2,37  
VDDO  
GNDO  
-
-
Use this pin when fixing the mode setting input pin to "H" on the COG.  
Ground output pin.  
Use this pin when fixing the mode setting input pin to "L" on the COG.  
Floating pin.  
At this time, avoid this pin from shorting with pins other than DUMMY in the  
wiring on the COG.  
1,38,  
39,44,  
89,94  
DUMMY  
-
*1: For details of the COM /SEG waveform when a duty is selected, refer to "Common waveform" on page 24  
and "Common Segment waveform" on page 25 to 29.  
*2: Oscillator circuit configuration  
• When M/S = "H", OSC I/E = "H"  
[Internal Rf oscillation mode]  
[External Rf oscillation mode]  
OSC1  
OPEN  
OSC1  
Rf  
OSC2  
OSC2  
OSCR  
OPEN  
OSCR  
12/37  
FEDL9480-01  
ML9480  
• External clock input mode when M/S = "H" and OSC I/E = "L"  
External  
clock  
OSC1  
OPEN  
OPEN  
OSC2  
OSCR  
• M/S = "L", slave mode, external clock input mode  
OSC1  
Master CKO  
OPEN  
OPEN  
OSC2  
OSCR  
*3: Reset circuit configuration  
• External input to RESTB when POCEB = "H"  
VDD  
External  
input  
RESETB  
• POC circuit configuration when POCEB = "L"  
VDD  
RESETB  
Crst  
13/37  
FEDL9480-01  
ML9480  
DESCRIPTION  
Operation description (Serial interface)  
• Display data input  
As described in the Data configuration section, the display data consists of the data field that corresponds to  
each segment on/off and the command field that indicates the display data input.  
When inputting the display data, the "F3" command is set in the command field. When the "F1" or "F2"  
command is set in the command field, the display data in the data field becomes invalid.  
The data input to the DATA pin is loaded to the shift register at the CLOCK pulse rise, transferred to the  
display data latch during the LOAD pulse at the "H" level, then output via the segment driver.  
CLOCK  
DATA  
D1 D2 D3 D4  
Data field  
D40 C0 C1 C2 C3 C4 C5 C6 C7  
Command field  
LOAD  
Display output  
New data  
Old data  
• Display on, Display off  
The display becomes off at power-on reset. To display, write the display on command.  
The display off is the command that makes all segments off. Writing the display off commandturns off the  
lights regardless of the display data.  
The display on is the command to release the display off. Writing the display on command returns the display  
to the original state.  
CLOCK  
DATA  
D1 D2  
C6 C7  
C4 C5 C6 C7  
C4 C5 C6 C7  
LOAD  
Display ON/OFF  
RESET  
Display data input  
Display off  
command write  
Display on  
command write  
14/37  
FEDL9480-01  
ML9480  
List of Commands  
The ML9480 have two type command table. Command table can be selected by I2C and MODE input pins.  
I2C Pin  
MODE Pin  
I/F  
Serial  
I2C  
COMMAND  
L
H
H
*
L
H
Command table A  
Command table A  
Command table B  
I2C  
List of Command table A  
Serial interface and I2C interface (When MODE pin is "L")  
Command  
C7 C6  
name  
C5  
x
C4  
x
C3  
x
C2  
x
C1  
x
C0 Operation  
F0  
0
0
x
x
Disabled  
Frame frequency setting  
(valid for Internal CR oscillation)  
When FSEL =”0”  
(F1,F0)=(0, 0): 65Hz  
(F1,F0)=(0, 1): 75Hz  
(F1,F0)=(1, 0): 85Hz  
(F1,F0)=(1, 1): 95Hz  
When FSEL = ”1”  
0
1
F1  
(*2)  
F0  
(*2)  
FSEL  
(*2)  
x
x
F1  
(F1,F0)=(0, 0): 130Hz  
(F1,F0)=(0, 1): 150Hz  
(F1,F0)=(1, 0): 170Hz  
(F1,F0)=(1, 1): 190Hz  
Display on/off  
"0" : Off COM=SEG=GND)  
"1" : On  
1
1
0
1
1
D
(*2)  
x
x
x
x
F2  
Data write address setting  
(Co1,Co0)=(0, 0): Corresponding to common 1  
(Co1,Co0)=(0, 1): Corresponding to common 2  
(Co1,Co0)=(1, 0): Corresponding to common 3  
(Co1,Co0)=(1, 1): Corresponding to common 4  
SA1, SA0, A1, A0: Chip address  
F3(*1)  
SA1 SA0  
A1  
A0 Co1 Co0  
x: Don't care  
(*1): For the I2C interface, SA1 and SA0 are set at a slave address.  
These bits become "Don't care".  
(*2): The register is set to the following value by the RESETB = "L" input or by the power-on POC.  
F1="0", F0="0", FSEL="0", D="0"  
15/37  
FEDL9480-01  
ML9480  
List of Command table B I2C interface(When MODE pin is "H")  
Operation code  
Command name  
Initialize  
C7  
C
C6  
1
C5  
0
C4  
C3  
C2  
C1  
C0  
x
D
B
M1  
M0  
Mode Set  
D=B=M1=M2=”0”  
Display RAM Address  
C
C
C
C
C
0
1
1
1
1
P5  
1
P4  
0
P3  
0
P2  
A2  
F1  
0
P1  
A1  
F0  
I
P0  
A0  
Chip Address  
Frame Frequency  
Select  
F1=FSEL=”0”  
F0=”1”  
1
0
1
FSEL  
O
1
1
1
Bank Select  
Blink select  
I=O=”0”  
1
1
0
AB  
BF1  
BF0  
AB=BF1=BF0=”0”  
x: Don't care  
C: Continue bit  
0:last control byte in the transfer  
1:control byte continue  
MODE SET  
C7  
C
C6  
1
C5  
0
C4  
x
C3  
D
C2  
B
C1  
M1 M0  
C0  
MODE SET  
D: Display ON/OFF  
“0”: OFF (COM=SEG=GND)  
“1”: ON  
B: LCD Bias Setting  
“0”: 1/3 Bias  
“1”: 1/2 Bias  
This command becomes effective at I2C pin =”H” and MODE pin=”H”.  
M[1:0]: Duty setting  
M[1:0]=(0, 1) : Static  
M[1:0]=(1, 0) : 1/2Duty  
M[1:0]=(1, 1) : 1/3Duty  
M[1:0]=(0, 0) : 1/4Duty  
This command becomes effective at I2C pin =”H” and MODE pin=”H”.  
Display RAM Address  
C7  
C
C6  
0
C5  
P5  
C4  
P4  
C3  
P3  
C2  
P2  
C1  
P1  
C0  
P0  
Display RAM  
address  
P[5:0]=00_0000 to 10_0111  
The increment of the display RAM address is carried out automatically.  
Static +8, 1/2duty +4, 1/3duty +3, 1/4duty +2  
16/37  
FEDL9480-01  
ML9480  
Chip Address  
C7  
C
C6  
1
C5  
1
C4  
0
C3  
0
C2  
A2  
C1  
A1  
C0  
A0  
Display RAM  
address  
A[2:0] = 111 to 000  
The terminal corresponding to A2 is SA1 pin.  
The terminal corresponding to A1 is A1 pin.  
The terminal corresponding to A0 is A0 pin.  
Frame frequency select  
C7  
C
C6  
1
C5  
1
C4  
0
C3  
1
C2  
F1  
C1  
F0  
C0  
FSEL  
Frame Frequency  
Frame frequency setting.  
This command becomes effective at I2C pin =”H”, MODE pin=”H”, BIAS pin =”L” and  
internal CR oscillation.  
When BIAS pin =”H” and internal CR oscillation, frame frequency is set to 75Hz (initialize).  
When FSEL =”0”  
(F1,F0)=(0, 0): 65Hz  
(F1,F0)=(0, 1): 75Hz  
(F1,F0)=(1, 0): 85Hz  
(F1,F0)=(1, 1): 95Hz  
When FSEL = ”1”  
(F1,F0)=(0, 0): 130Hz  
(F1,F0)=(0, 1): 150Hz  
(F1,F0)=(1, 0): 170Hz  
(F1,F0)=(1, 1): 190Hz  
Bank Select  
C7  
C
C6  
1
C5  
1
C4  
1
C3  
1
C2  
0
C1  
I
C0  
O
Bank Select  
I: Input bank selection  
I
Static  
COM1  
COM3  
1/2Duty  
0
1
COM1 & COM2  
COM3 & COM4  
This command has no effect in 1/3Duty and 1/4Duty mode.  
O: Output bank selection  
O
0
1
Static  
COM1  
COM3  
1/2Duty  
COM1 & COM2  
COM3 & COM4  
This command has no effect in 1/3Duty and 1/4Duty mode.  
17/37  
FEDL9480-01  
ML9480  
Blink Select  
C7  
C
C6  
1
C5  
1
C4  
1
C3  
0
C2  
C1  
C0  
Blink Select  
AB BF1 BF0  
AB: Blink mode selection  
“0”: Normal Blinking  
“1”: Alternate RAM blinking does not apply in 1/3Duty and 1/4Duty.  
BF[1:0]: Blink frequency selection  
BF1  
0
BF0  
0
Blink Frequency  
Blink OFF  
65Hz/130Hz  
2.03Hz  
75Hz/150Hz  
85Hz/170Hz  
2.66Hz  
95Hz/190Hz  
2.97Hz  
0
1
1
1
0
1
2.34Hz  
1.17Hz  
0.59Hz  
1.01Hz  
1.33Hz  
1.48Hz  
0.51Hz  
0.66Hz  
0.74Hz  
Display data RAM  
This is the RAM storing the data of display and has an organization of 40 x 4.  
Display RAM data RAM address map  
Display RAM data “1” ... Dot is displayed  
Display RAM data “0” ... Dot is not displayed  
Display data RAM address map  
SEG SEG SEG SEG SEG  
SEG SEG SEG SEG  
37 38 39 40  
1
2
3
4
5
COM1  
COM2  
COM3  
COM4  
・・・  
・・・  
・・・  
・・・  
Static drive ... COM1  
1/2duty drive ... COM1, COM2  
1/3duty drive ... COM1, COM2, COM3  
1/4duty drive ... COM1, COM2, COM3, COM4  
Cascade connection  
When command table B is chosen (I2C pin =”H”, MODE pin =”H”), ML9480 cannot used  
cascade connection.  
18/37  
FEDL9480-01  
ML9480  
Data configuration  
• Data configuration (Serial interface)  
First bit  
Corresponding to SEG40  
Corresponding to SEG1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
D40  
D39  
D38  
D3  
D2  
D1  
LCD display data  
Command  
Note 1: The commands F1 and F2 settings become valid when the least four bits of C4 to C7 are input.  
(The bits from D1 to D40 and from C0 to C3 are not necessary.)  
Note 2: If the dummy bit is needed for the reason of number of transfer bits, put it on the first bit side.  
Note 3: The command execution follows the contents of the C7 to C0 registers immediately before the LOAD  
becomes "H".  
19/37  
FEDL9480-01  
ML9480  
• Data configuration (I2C interface, When MODE pin is "L")  
Slave address  
Control byte  
R/W  
0
DATA/Command  
SA1 SA0  
LSB  
P
S
0
1
1
0
0
A
A
MSB  
CO RS  
Salve address: 0 1 1 0 0 1  
CO: Consecutive control byte setting bit  
0: Last control byte, 1: Consecutive control byte  
RS: Command/data setting bit  
0: Command data, 1: Display data  
For the I2C interface, each IC is assigned with a 7-bit slave address. The first one byte in the transfer consists of  
this 7-bit slave address and the R/W bit that indicates the data transfer direction. Always input "0" to the eighth  
R/W bit because the ML9480 is a write-only LSI.  
The eight bits next to the slave address is a control byte. The first one bit is CO: consecutive command setting bit  
and the next one bit is RS: command/data setting bit (the remaining six bits are the Don't care bits).  
When CO = "0": Means the last control byte.  
When CO = "1": Means the control bytes are successively input.  
When RS = "0": Means the data to be input next is the command data.  
When RS = "1": Means the data to be input next is the display data.  
The display data can be successively input.  
Example of Data Setting  
When inputting two commands  
When inputting two commands  
SA1 SA0  
COMMAND  
S
0
0
1
0
1
0
0
0
A
A
1
0
A
A
A
COMMAND  
P
When inputting the command and display data  
SA1 SA0  
COMMAND  
Display data  
Display data  
S
0
0
1
1
1
0
0
0
A
A
A
1
0
A
A
A
A
A
A
Display data  
Display data  
P
20/37  
FEDL9480-01  
ML9480  
• Data configuration (I2C interface, When MODE pin is "H")  
Slave address  
1
COMMAND  
DISPLAY DATA  
R/W  
0
MSB  
SA0  
LSB  
A
S
0
1
1
0
0
A
C
A
P
Salve address: 0 1 1 1 0 0  
C:Consecutive control byte setting bit  
0:Last control byte, 1:Consecutive control byte  
For the I2C interface, each IC is assigned with a 7-bit slave address. The first one byte in the transfer consists of  
this 7-bit slave address and the R/W bit that indicates the data transfer direction. Always input "0" to the eighth  
R/W bit because the ML9480 is a write-only LSI.  
The eight bits next to the slave address is a control byte. The first one bit is CO: consecutive command setting  
bit.  
When CO = "0": Means the last control byte.  
When CO = "1": Means the control bytes are successively input.  
Data write method  
• Serial interface  
The data is written to the address set by the data write setting command (F3).  
For the Serial interface, the data is written in units of 40 bits.  
Written from D40 to SEG1, D39 to SEG2, ... , D2 to SEG39, and D1 to SEG40.  
MSB  
1
Segment Output  
32 33 34  
LSB  
40  
2
3
4
35  
36  
37  
38  
39  
COM1  
COM2  
COM3  
COM4  
D40 D39 D38 D37  
D40 D39 D38 D37  
D40 D39 D38 D37  
D40 D39 D38 D37  
D9 D8 D7 D6 D5 D4 D3 D2 D1  
D9 D8 D7 D6 D5 D4 D3 D2 D1  
D9 D8 D7 D6 D5 D4 D3 D2 D1  
D9 D8 D7 D6 D5 D4 D3 D2 D1  
• I2C interface (When MODE pin is "L")  
The data is written to the address set by the slave address.  
For the I2C interface (When MODE pin is "L"), the data is written to the specified address starting with the  
LSB side in units of 8 bits.  
(The data is written in the order from SEG33-40, SEG25-SEG32, SEG17-SEG24, SEG9-SEG16, and  
SEG1-SEG8.)  
LSB  
1
Segment Output  
32 33 34  
MSB  
40  
2
3
4
35  
36  
37  
38  
39  
COM1  
COM2  
COM3  
COM4  
D1 D2 D3 D4  
D1 D2 D3 D4  
D1 D2 D3 D4  
D1 D2 D3 D4  
D8 D1 D2 D3 D4 D5 D6 D7 D8  
D8 D1 D2 D3 D4 D5 D6 D7 D8  
D8 D1 D2 D3 D4 D5 D6 D7 D8  
D8 D1 D2 D3 D4 D5 D6 D7 D8  
21/37  
FEDL9480-01  
ML9480  
• I2C interface (When MODE pin is "H")  
The data is written to the address set by the display RAM address.  
For the I2C interface (When MODE pin is "H"), the data is written to the specified address starting with the  
LSB side in units of 8 bits.  
■ Static  
LSB  
1
Segment Output  
MSB  
40  
2
3
4
5
6
7
8
9
37  
38  
39  
COM1  
COM2  
COM3  
COM4  
D8 D7 D6 D5 D4 D3 D2 D1 D8  
D4 D3 D2 D1  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
■ 1/2Duty  
LSB  
1
Segment Output  
MSB  
40  
2
3
4
5
6
7
8
9
37  
38  
39  
COM1  
COM2  
COM3  
COM4  
D8 D6 D4 D2 D8 D6 D4 D2 D8  
D7 D5 D3 D1 D7 D5 D3 D1 D7  
D8 D6 D4 D2  
D7 D5 D3 D1  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
■ 1/3Duty  
LSB  
1
Segment Output  
MSB  
40  
2
3
4
5
6
7
8
9
37  
38  
39  
COM1  
COM2  
COM3  
COM4  
D8 D5 D2 D8 D5 D2 D8 D5 D2  
D7 D4 D1 D7 D4 D1 D7 D4 D1  
D2 D8 D5 D2  
D1 D7 D4 D1  
D6 D3  
x
x
D6 D3  
x
x
D6 D3  
x
x
x
x
D6 D3  
x
x
x
x
x
x
x
x
x
x
■ 1/4Duty  
LSB  
1
Segment Output  
MSB  
40  
2
3
4
5
6
7
8
9
37  
38  
39  
COM1  
COM2  
COM3  
COM4  
D8 D4 D8 D4 D8 D4 D8 D4 D8  
D7 D3 D7 D3 D7 D3 D7 D3 D7  
D6 D2 D6 D2 D6 D2 D6 D2 D6  
D5 D1 D5 D1 D5 D1 D5 D1 D5  
D8 D4 D8 D4  
D7 D3 D7 D3  
D6 D2 D6 D2  
D5 D1 D5 D1  
22/37  
FEDL9480-01  
ML9480  
• RAM writing in 1/3 duty drive mode (When I2C pin is "H" and MODE pin is "H")  
■ 1/3Duty(Standard RAM filling)  
LSB  
1
a8  
a7  
a6  
x
Segment Output  
MSB  
・・・  
・・・  
・・・  
・・・  
・・・  
2
3
a2  
a1  
x
4
5
6
b2  
b1  
x
7
8
9
c2  
c1  
x
COM1  
COM2  
COM3  
COM4  
a5  
a4  
a3  
x
b8  
b7  
b6  
x
b5  
b4  
b3  
x
c8  
c7  
c6  
x
c5  
c4  
c3  
x
x
x
x
■ 1/3Duty(Entire RAM filling by rewriting)  
LSB  
Segment Output  
7
MSB  
1
2
3
4
5
6
8
9
COM1  
COM2  
COM3  
COM4  
a8  
a7  
a6  
x
a5 a2/b8 b5 b2/c8 c5 c2/d8 d5 d2/e8  
a4 a1/b7 b4 b1/c7 c4 c1/d7 d4 d1/e7  
a3  
x
b6  
x
b3  
x
c6  
x
c3  
x
d6  
x
d3  
x
e6  
x
23/37  
FEDL9480-01  
ML9480  
Common waveforms  
(1) At static  
VLCD  
COM14  
GND  
(2) At 1/2-duty  
At 1/2-bias  
VLCD  
COM1  
COM3  
VLCD/2  
GND  
VLCD  
COM2  
COM4  
VLCD/2  
GND  
At 1/3-bias  
VLCD  
COM1  
COM3  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM2  
COM4  
(3) At 1/3-duty  
COM1  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM2  
COM4  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM3  
(4) At 1/4-duty  
COM1  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM2  
COM3  
COM4  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
24/37  
FEDL9480-01  
ML9480  
Common and segment output waveforms  
At Static  
S
E
G
1
S
E
G
2
S
E
G
3
Display example  
COM1  
ON  
OFF  
VLCD  
COM1  
COM2  
COM3  
COM4  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
SEG1  
SEG2  
SEG3  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
25/37  
FEDL9480-01  
ML9480  
-
Common and segment output waveforms  
At 1/2 Duty1/2bias  
S
E
G
1
S
S
E
G
3
E
G
2
Display example  
COM1  
COM2  
On  
Off  
VLCD  
COM1  
COM3  
VLCD/2  
GND  
VLCD  
COM2  
COM4  
VLCD/2  
GND  
VLCD  
SEG1  
SEG2  
SEG3  
VLCD/2  
GND  
VLCD  
VLCD/2  
GND  
VLCD  
VLCD/2  
GND  
26/37  
FEDL9480-01  
ML9480  
Common and segment output waveforms  
・At 1/2 Duty、1/3bias  
S
S
E
G
2
S
E
G
3
E
G
Display example  
1
COM1  
COM2  
On  
Off  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM1  
COM3  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM2  
COM4  
VLCD  
2VLCD/3  
VLCD/3  
GND  
SEG1  
SEG2  
SEG3  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
27/37  
FEDL9480-01  
ML9480  
Common and segment output waveforms  
At 1/3-duty  
S
E
G
1
S
E
G
2
S
E
G
3
Display example  
COM1  
COM2  
COM3  
On  
Off  
VLCD  
2VLCD/3  
VLCD/3  
COM1  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM2  
COM4  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM3  
VLCD  
2VLCD/3  
VLCD/3  
GND  
SEG1  
SEG2  
SEG3  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
28/37  
FEDL9480-01  
ML9480  
Common and segment output waveforms  
At 1/4-duty  
S
E
G
1
S
E
G
2
S
E
G
3
Display example  
COM1  
COM2  
COM3  
COM4  
On  
Off  
VLCD  
2VLCD/3  
VLCD/3  
GND  
COM1  
COM2  
COM3  
COM4  
SEG1  
SEG2  
SEG3  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
VLCD  
2VLCD/3  
VLCD/3  
GND  
29/37  
FEDL9480-01  
ML9480  
POWER ON SEQUENCE  
Start  
VDD Power ON  
or  
VDD, VLCD Power ON at one time  
VLCD Power ON  
Clock Input  
when an external clock input mode)  
Any Command  
POWER OFF SEQUENCE  
Any State  
Display OFF  
Wait 30ms  
VLCD Power OFF  
or  
VDD, VLCD Power OFF at one time  
VDD Power OFF  
30/37  
FEDL9480-01  
ML9480  
EXAMPLE OF APPLICATION CIRCUIT  
Cascade configuration 1  
Serial interface  
Internal CR oscillator circuit used  
1/4Duty  
RESETB pin + external capacitance connection to configure POC circuit  
The common outputs of the slave chip output GND-level. So Com1 to Com4 set to open.  
[External component]  
Cp = 0.1 [µF] (bypass capacitor between power supplies)  
Crst = 4.7 [µF] (capacitance for external POC circuit)  
Liquid crystal panel 1/4Duty × 40 × n Segments  
COM1  
COM2  
COM3  
COM4  
COM1  
COM2  
COM3  
COM4  
OPEN  
5V  
5V  
5V  
5V  
VLCD  
VDD  
VLCD  
VDD  
ML9480  
(Master)  
ML9480  
(Slave)  
Cp Cp  
Cp Cp  
M/S  
M/S  
BIAS  
OSCI/E  
POCEB  
Duty0  
Duty1  
I2C  
SA1  
SA0  
A1  
A0  
BIAS  
OSCI/E  
POCEB  
Duty0  
Duty1  
I2C  
SA1  
SA0  
A1  
A0  
OSC1  
OSC2  
OSCR  
CKO  
OPEN  
OSC1  
OSC2  
OSCR  
CKO  
OPEN  
OPEN  
OPEN  
RESETB  
RESETB  
MODE  
MODE  
TEST1  
Crst  
Crst  
TEST1  
GND  
GND  
OPEN  
OPEN  
CPU  
31/37  
FEDL9480-01  
ML9480  
Cascade configuration 2  
II2C interface  
External Rf-based CR oscillator circuit used  
1/4Duty  
External RESETB signal input  
The common outputs of the slave chip output GND-level. So Com1 to Com4 set to open.  
[External component]  
Cp = 0.1 [µF] (bypass capacitor between power supplies),  
Rf = 470 [k] (external R, resistor for CR oscillator circuit),  
Rup = Resistor for SDA data bus pull-up  
Liquid crystal panelꢀ1/4Duty × 40 × n  
COM1  
COM2  
COM3  
COM4  
COM1  
COM2  
COM3  
COM4  
OPEN  
5V  
5V  
5V  
5V  
VLCD  
VDD  
VLCD  
VDD  
ML9480  
(Master)  
ML9480  
(Slave)  
Cp Cp  
Cp Cp  
M/S  
M/S  
BIAS  
OSCI/E  
POCEB  
Duty0  
Duty1  
I2C  
SA1  
SA0  
A1  
A0  
BIAS  
OSCI/E  
POCEB  
Duty0  
Duty1  
I2C  
SA1  
SA0  
A1  
A0  
Rf  
OSC1  
OSC2  
OSCR  
CKO  
OSC1  
OSC2  
OSCR  
CKO  
OPEN  
OPEN  
OPEN  
OPEN  
RESETB  
RESETB  
MODE  
MODE  
TEST1  
TEST1  
GND  
5V  
Rup  
GND  
CPU  
32/37  
FEDL9480-01  
ML9480  
PAD CONFIGURATION  
Pad layout (pattern face)  
Chip size  
: 3.30 mm × 0.90mm  
: 400 m ± 20 m  
: 50 m  
Chip thickness  
Minimum bump pitch  
Bump height  
: 15 m ±3 m  
39  
94  
B
Y
X
(0,0)  
A
1
38  
Bump and alignment mark dimensions (pattern face)  
PAD No.138  
PAD No.3994  
: 32 m x 80 m  
: 30 m x 84 m  
Alignment marks A and B : See below  
[Mark A]  
[Mark B]  
Coordinate position  
Coordinate position  
30m  
47m  
30m  
30m  
55m  
30m  
30m  
30m  
47m  
55m  
Aluminum (top metal) Passivation  
Passivation  
Aluminum (top metal)  
Alignment Mark  
Mark A  
X-coordinate (m)  
Y-coordinate (m)  
1506  
-190  
-1539  
309  
Mark B  
33/37  
FEDL9480-01  
ML9480  
Pad center coordinates  
Pad  
X-coordinate Y-coordinate  
Pad  
number  
X-coordinate Y-coordinate  
Pad name  
number  
Pad name  
(m)  
(m)  
(m)  
(m)  
DUMMY  
GNDO  
Duty1  
Duty0  
A0  
-1430  
-308  
COM2  
COM3  
COM4  
DUMMY  
SEG1  
1325  
309  
1
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
-1350  
-1270  
-1190  
-1110  
-1030  
-950  
-870  
-790  
-710  
-630  
-550  
-470  
-390  
-310  
-230  
-150  
-70  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
-308  
309  
1275  
1225  
1175  
1125  
1075  
1025  
975  
925  
875  
825  
775  
725  
675  
625  
575  
525  
475  
425  
375  
325  
275  
225  
175  
125  
75  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
2
3
4
5
A1  
SEG2  
6
SA0  
SEG3  
7
SA1  
SEG4  
8
VDDO  
SDAACK  
DATA(SDA)  
CLOCK(SCL)  
LOAD  
VDD  
SEG5  
9
SEG6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
COM1  
COM2  
COM3  
COM4  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
VDD  
VDD  
GND  
GND  
GND  
10  
VLCD  
VLCD  
VLCD  
RESETB  
OSC1  
OSC2  
OSCR  
CKO  
90  
170  
250  
330  
410  
490  
570  
650  
25  
SYNCB  
VDDO  
I2C  
730  
-25  
810  
-75  
890  
-125  
-175  
-225  
-275  
-325  
-375  
-425  
-475  
-525  
-575  
-625  
MODE  
M/S  
970  
1050  
1130  
1210  
1290  
1370  
1450  
1530  
1425  
1375  
POCEB  
OSCI/E  
BIAS  
TEST1  
GNDO  
DUMMY  
DUMMY  
COM1  
309  
34/37  
FEDL9480-01  
ML9480  
Pad  
number  
81  
X-coordinate Y-coordinate  
X-coordinate Y-coordinate  
Pad name  
Pad number Pad name  
(m)  
-675  
(m)  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
309  
(m)  
(m)  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
DUMMY  
COM4  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
-725  
-775  
-825  
-875  
-925  
-975  
-1025  
-1075  
-1125  
-1175  
-1225  
-1275  
-1325  
COM3  
COM2  
COM1  
DUMMY  
35/37  
FEDL9480-01  
ML9480  
REVISION HISTORY  
Page  
Previous  
Document No.  
FEDL9480-01  
Issue Date  
Description  
New  
Edition  
Edition  
Oct .1,2012  
Final edition 1 issued  
36/37  
FEDL9480-01  
ML9480  
NOTICE  
No copying or reproduction of this document, in part or in whole, is permitted without the consent of  
LAPIS Semiconductor Co., Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing LAPIS Semiconductor's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be  
obtained from LAPIS Semiconductor upon request.  
Examples of application circuits, circuit constants and any other information contained herein illustrate the  
standard usage and operations of the Products. The peripheral conditions must be taken into account when  
designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document. However,  
should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS  
Semiconductor shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and examples  
of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly,  
any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other  
parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use  
of such technical information.  
The Products specified in this document are intended to be used with general-use electronic equipment or  
devices (such as audio visual equipment, office-automation equipment, communication devices, electronic  
appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard against the  
possibility of physical injury, fire or any other damage caused in the event of the failure of any Product,  
such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no  
responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance  
with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or system which  
requires an extremely high level of reliability the failure or malfunction of which may result in a direct  
threat to human life or create a risk of human injury (such as a medical instrument, transportation  
equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS  
Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special  
purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales  
representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may be controlled  
under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit  
under the Law.  
Copyright 2012 LAPIS Semiconductor Co., Ltd.  
37/37  

相关型号:

ML9484

ML9484由50位移位寄存器、200位数据锁存器、50组LCD驱动器、以及公共信号生成电路组成。静态显示时可直接驱动多达50段、1/2Duty显示时可直接驱动多达100段、1/3Duty显示时可直接驱动多达150段、1/4Duty显示时可直接驱动多达200段的LCD。
ROHM

ML961B8S

Laser Diode, 1480nm
MITSUBISHI

ML9620

CAN Controller IC
OKI

ML9701A

Laser Diode, 1580nm
MITSUBISHI

ML974A1F

Laser Diode, 1550nm
MITSUBISHI

ML974A2F

Laser Diode, 1550nm
MITSUBISHI

ML974F11F

Laser Diode, 1550nm
MITSUBISHI

ML976H10

InGaAsP-MQW HIGH POWER LASER DIODES
MITSUBISHI

ML976H11F

InGaAsP-MQW-DFB LASER DIODES
MITSUBISHI

ML976H6F

InGaAsP-MQW-FP LASER DIODES
MITSUBISHI

ML9781A

Laser Diode, 1550nm
MITSUBISHI

ML9783F

Laser Diode, 1550nm
MITSUBISHI