ML62Q1543C [ROHM]

标准型 ML62Q1500组 ROM容量:32KB to 256KB;
ML62Q1543C
型号: ML62Q1543C
厂家: ROHM    ROHM
描述:

标准型 ML62Q1500组 ROM容量:32KB to 256KB

文件: 总57页 (文件大小:2331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEDL62Q1500C-03  
Issue Date: May19, 2022  
ML62Q1500C Group  
16-bit micro controller  
GENERAL DESCRIPTION  
ML62Q1500C Group is a high performance CMOS 16-bit microcontroller equipped with an 16-bit CPU nX-U16/100 and  
integrated with program memory (Flash memory), data memory (RAM), data Flash and rich peripheral functions such as the  
multiplier/divider, CRC generator, DMA controller, Clock generator, Simplified RTC, Timer, General Purpose Ports, UART,  
Synchronous serial port, I2C bus interface unit (Master, Slave), Buzzer, Voltage Level Supervisor (VLS), Successive  
approximation type A/D converter, D/A converter, Analog comparator, Safety function (IEC60730/60335 Class B), and so on.  
The CPU nX-U16/100 is capable of efficient instruction execution in 1-intruction 1-clock mode by pipeline architecture parallel  
processing.  
The built-in on-chip debug function enables debugging and programming the software. Also, ISP (In-System Programming)  
function supports the Flash programming in production line.  
The ML62Q1500C Group has five packages (52pin - 80pin) and ten kinds of memory sizes (96Kbyte - 128Kbyte).  
Table 1 ML62Q1500C Group Product List  
52pin  
TQFP52  
64pin  
QFP64  
TQFP64  
80pin  
QFP80  
Program  
memory  
Data memory  
(RAM)  
Data Flash  
4KByte  
128Kbyte  
96Kbyte  
ML62Q1544C ML62Q1554C ML62Q1564C  
ML62Q1543C ML62Q1553C ML62Q1563C  
8Kbyte  
Please see the page 58 “Notes for product usage” and the page 59 “Notes” in this document on use with this ML62Q1500C group.  
FEATURES  
CPU  
16-bit RISC CPU: nX-U16/100(A35 core)  
Instruction system: 16-bit length instructions  
Instruction set: Transfer, arithmetic operations, comparison, logic operations, multiplication/division, bit manipulations,  
bit logic operations, jump, conditional jump, call return stack manipulations, arithmetic shift, and so on  
Built-in On-chip debug function  
Built-in ISP (In-System Programming) function  
Minimum instruction execution time  
Approximately 30.5 μs (at 32.768 kHz system clock)  
Approximately 62.5ns/41.6ns (at 16 MHz/24MHz system clock)  
1/57  
FEDL62Q1500C-03  
Coprocessor for multiplication and divisioSmin  
Multiplication  
: 16bit × 16bit (operation time: 4 cycles)  
: 32bit ÷ 16bit (operation time: 8 cycles)  
: 32bit ÷ 32bit (operation time: 16 cycles)  
Division  
Division  
Multiply-accumulate (non-saturating): 16bit × 16bit + 32bit (operation time: 4 cycles)  
Multiply-accumulate (saturating): 16bit × 16bit + 32bit (operation time: 4 cycles)  
Signed or Unsigned is selectable  
Operating voltage and temperature  
Operating voltage: VDD = 1.6 to 5.5 V (VDD should be 1.8V or over at Power-on)  
Operating temperature: -40 °C to +105 °C  
Internal memory  
Program memory area  
Rewrite count: 100 cycles  
Write unit: 32bit(4byte)  
Erase unit: 16Kbyte/1Kbyte  
Erase/Write temperature: 0 °C to +40 °C  
Data Flash memory area  
Rewrite count 10,000 cycles  
Write unit: 8bit(1byte)  
Erase unit: all area/128byte  
Erase/Write temperature: -40 °C to +85 °C  
Back Ground Operation (CPU can work while erasing and rewriting)  
This product uses Super Flash® technology licensed from Silicon Storage Technology, Inc.  
Super Flash® is a registered trademark of Silicon Storage Technology, Inc.  
Data RAM area  
Rewrite unit: 8bit/16bit (1byte/2byte)  
Parity check function is available (interrupt / reset are generatable at Parity error)  
Clock generation circuit  
Low-speed clock (LSCLK)  
Internal low-speed RC oscillation: Approximately 32.768 kHz  
External low-speed clock input: Approximately 32.768 kHz  
External low-speed crystal oscillation: 32.768 kHz crystal resonator is connectable  
3 selectable crystal oscillation mode (Tough, Normal, and Low current consumption)  
Tough mode: Largest oscillation allowance to make highest resistance against leakage between the pins  
Normal mode: Normal oscillation allowance and current consumption  
Low current consumption mode: Smallest oscillation allowance to make lower current consumption  
High-speed clock (HSCLK)  
PLL oscillation: 2 selectable oscillation frequency (24MHz and 16MHz) by code option  
Watch Dog Timer (WDT): built-in independent clock for WDT (RC1K: Approximately 1kHz)  
Reset  
Reset by reset input pin  
Reset by Power-On Reset  
Reset by WDT overflow  
Reset by WDT invalid clear  
Reset by RAM parity error  
Reset by unused ROM area access (instruction access)  
Reset by voltage level supervisor (VLS)  
Software reset by BRK instruction (reset CPU only)  
Reset the peripherals individually  
Collective reset to the all control pins and peripheral circuits  
2/57  
FEDL62Q1500C-03  
Power management  
HALT mode: CPU stops executing instruction, peripheral circuits continue working  
HALT-H mode: CPU stops executing instruction, high-speed clock oscillation stops and peripheral circuits continue  
working with low-speed clock  
HALT-C mode: CPU stops executing instruction, high-speed clock oscillation stops and peripheral circuits working with  
low-speed clock remain previous states. Peripheral circuits can work only watchdog timer, external interrupt, low-speed  
time base counter, 16-bit timers, and crystal oscillation circuit.  
STOP mode: CPU and peripheral circuits stops executing instruction, both high-speed oscillation and low-speed  
oscillation stop.  
STOP-D mode: CPU and peripheral circuits stops executing instruction, both high-speed oscillation and low-speed  
oscillation stop. The internal logic voltage (VDDL) goes down to reduce the current consumption (RAM data is retained).  
Clock gear: High-speed system clock frequency can be changed (1/1, 1/2, 1/4, 1/8, 1/16 or 1/32 of HSCLK)  
Block Control Function: Powers down the unused function blocks (reset the block or stop supplying the clock)  
Interrupt controller  
External interrupt ports: max. 12  
Non-maskable interrupt source: 1 (Internal sources: WDT)  
Maskable interrupt sources: max. 43  
Four step interrupt levels  
Watchdog timer (WDT)  
Selectable Operating clock: select RC1K or LSCLK by code option  
Overflow period: 8selectable (7.8ms, 15.6ms, 31.3ms, 62.5ms, 125ms, 500ms, 2s and 8s)  
Selectable window function (enable or disable): configurable clear enable period (50% or 75% of overflow period)  
Selectable WDT operation: select Enable or Disable by code option  
Readable WDT counter: WDT counter monitor function  
DMA (Direct Memory Access) controller  
Channel: 2channel  
Transfer unit: 8bit/16bit  
Transfer count: 1 to 1024  
Transfer cycle: 2 cycle transfer  
Transfer address: Fixed addressing mode, inclement addressing mode, and decrement addressing mode  
Transfer target: Special Function Register (SFR)/RAM SFR/RAM (Transfer from/to Flash is not supported)  
Transfer request: External pins, Serial communication unit, Successive approximation type A/D converter, 16bit timer,  
and Functional timer  
Low-speed Time base counter  
Generate 8 frequency (128Hz to1Hz) internal pulse signals by dividing the Low-speed clock (LSCLK)  
Selectable 3 interrupts from eight frequency internal pulse signals  
1Hz or 2Hz output from general purpose port  
Built-in Frequency adjust function: Adjust range: Approximately -488ppm to +488ppm, adjust resolution:  
Approximately 0.119ppm  
Simplified RTC  
Channel: 1channel  
Count by a unit for one second from "00 min. 00 sec" to "59 min. 59 sec"  
Selectable Periodical interrupt request from four periods (0.5s, 1s, 30s or 60s)  
Built-in minute and second writing error protraction function  
3/57  
FEDL62Q1500C-03  
Functional timer  
Channel: 6channel  
Built-in timer, capture, and PWM function by 16 bit counter  
One shot mode is available  
Two types of PWM output with the same period and different duties, and complementary PWM output with the dead time  
Monitor input signal duty and the period by capture function  
Generate periodical interrupts, duty interrupts, and interrupts coincided with set value  
Counter Start, Stop, Counter clear triggered by an external inputs or Timer  
Generate Emergency stop and emergency stop interrupt triggered by an external input  
Same start/stop among different channels of the functional timer  
Selectable counter clock (external clock or divided by 1 to 128 of LSCLK or HSCLK) for each channels  
16-bit General timers  
Channel: 6channel  
8 bits timer mode and 16-bit timer mode  
Same start/stop among different channels of 16bit (8bit) timer  
Timer output (toggled by overflow)  
Selectable counter clock (external clock or divided by 1 to 128 of LSCLK or HSCLK) for each channels  
Serial communication unit  
Synchronous Serial Port (SSIO) mode or UART mode is selectable  
Channel: Max. 4channel  
< Synchronous Serial Port mode>  
Selectable from Master and Slave  
Selectable from LSB first or MSB first  
Selectable 8-bit length or 16-bit length  
< UART mode>  
Full-duplex communication mode and half-duplex communication mode  
5 to 8 bit length, parity or no parity, odd parity or even parity, 1 stop bit or 2 stop bits  
Selectable from Positive logic or Negative logic  
Selectable from LSB first or MSB first  
Configurable wide range communication speed  
32.768kHz operation clock: 1 bit/s to 4,800 bit/s  
24MHz operation clock: 600 bit/s to 3M bit/s  
16MHz operation clock: 300 bit/s to 2M bit/s  
Built-in baud rate generator  
I2C bus unit (Master / Slave)  
Selectable from Master mode or Slave mode  
Channel: 1channel  
< Master function >  
Standard mode (100 kbit/s), fast mode (400 kbit/s) and 1Mbps mode(1Mbit/s)  
Handshake (Clock synchronization)  
7bit address format (10bit address format is supported)  
< Slave function >  
Standard mode (100 kbit/s), fast mode (400 kbit/s) and 1Mbps mode(1Mbit/s)  
Clock stretch function  
7bit address format  
I2C bus Master  
Channel: 2channel  
Standard mode (100 kbit/s), fast mode (400 kbit/s) and 1Mbps mode(1Mbit/s)  
Handshake (Clock synchronization)  
7bit address format (10bit address format is supported)  
4/57  
FEDL62Q1500C-03  
General-purpose ports (GPIO)  
I/O port: Max. 74 (Including one pin for on-chip debug and pins for other shared functions)  
Input port: Max. 2 (Including a shared function)  
External interrupt port: Max. 12  
LED driver port: Max. 73  
Carrier frequency output function (for IR communication)  
Successive approximation type A/D converter (SA-ADC)  
Channel: Max.12channel  
Resolution: 10bit  
Conversion time: Min. 2.25μs / channel (When the conversion clock is 8MHz)  
Reference voltages are selectable  
(VDD pin / Internal reference voltage (VREFI = Approximately 1.55V) / External reference voltage (VREF pin))  
Selected channel repeat conversion  
dedicated result register for each channel  
Interrupt determining by upper limit or lower limit threshold of conversion result  
Voltage Level Supervisor (VLS)  
Accuracy: ±4%  
Threshold voltage: 12 selectable (from 1.85V to 4.00V)  
Functional Voltage level detection reset (VLS reset)  
Functional Voltage level detection interrupt (VLS0 interrupt)  
Analog comparator  
Channel: 2channel  
Selectable interrupt from the comparator output (rising edge or falling edge)  
Selectable from sampling or without sampling  
Comparable with external 2 inputs  
Comparable with external input and internal reference voltage (0.8V)  
D/A converter  
Channel: 1channel  
Resolution: 8bit  
Output impedance: 6k ohm (Typ.)  
R-2R ladder type  
Buzzer  
4 buzzer mode (Continuous sound, Single sound, Intermittent sound 1 and Intermittent sound 2)  
8frequencies (4.096kHz to 293Hz)  
15 step duty (1/16 to 15/16)  
Selectable from positive logic buzzer output or negative logic buzzer output  
CRC (Cyclic Redundancy Check) generator  
Generation equation: X16+X12+X5+1  
Selectable from LSB first or MSB first  
Built-in Automatic program memory CRC calculation mode in HALT mode  
5/57  
FEDL62Q1500C-03  
Safety Function (IEC60730/60335 Class B)  
Automatic switching to the internal low-speed RC oscillation in case the low-speed crystal oscillation stopped  
RAM/SFR guard  
Automatic program memory CRC calculation  
RAM parity error detection  
ROM unused area access reset (instruction access)  
Clock mutual monitoring  
WDT counter monitoring  
SA-ADC test  
UART test  
Synchronous serial I/O test  
I2C bus test  
GPIO test  
Shipping package  
52-pin plastic TQFP  
ML62Q1543C/1544C - xxxTB Blank part: ML62Q1543C/1544C - NNNTB)  
64-pin plastic TQFP  
ML62Q1553C/1554C - xxxTB Blank part: ML62Q1553C/1554C - NNNTB)  
64-pin plastic QFP  
ML62Q1553C/1554C - xxxGA Blank part: ML62Q1553C/1554C - NNNGA)  
80-pin plastic QFP  
ML62Q1563C/1564C - xxxGA Blank part: ML62Q1563C/1564C - NNNGA)  
xxx: ROM code number  
6/57  
FEDL62Q1500C-03  
ML62Q1500C Group how to read the part number  
ML 62 Q 15 6 4C – xxx TB  
Package Type  
GA  
TB  
: QFP  
: TQFP  
ROM Code Number  
NNN : Blank  
xxx  
: Custom Code Number  
Program Memory Size  
3
4
: 96Kbyte  
: 128Kbyte  
Pin Count  
4
5
6
: 52pin  
: 64pin  
: 80pin  
Group Name  
15xxC : 1500C Group  
Program Memory Type  
Q
: Flash Memory  
CPU Type  
62  
: 16-bit CPU nX-U16/100  
LAPIS Technology Logic Product  
Figure 1 ML62Q1500C Group Part Number  
7/57  
FEDL62Q1500C-03  
ML62Q1500C Group Main Function List  
Table 2 ML62Q1500C Group Main Function List  
Pin Interrupt Timer Serial  
Analog  
Part number  
ML62Q1543C  
ML62Q1544C  
ML62Q1553C  
ML62Q1554C  
ML62Q1563C  
ML62Q1564C  
52  
64  
80  
46 45 33  
3
4
10  
12  
3
1
2
58 57  
74 73  
6
6
1
1
2
12  
2
4
1
35  
*1: One 16-bit timer is configurable as two 8bit timers  
*2: Full-duplex UART and Synchronous Serial Port cannot be used simultaneously in the same channel.  
One Full-duplex UART is configurable as two half-duplex UARTs.  
*3: Shared with pins for crystal oscillation  
8/57  
FEDL62Q1500C-03  
BLOCK DIAGRAM  
CPU (nX-U16/100)  
ECSR13  
DSR/CSR  
PC  
EPSW13  
ELR13  
LR  
Multiplier/Divider  
(Coprocessor)  
GREG  
0 15  
PSW  
EA  
Timing  
Controller  
ALU  
SP  
Program  
Memory  
(FLASH)  
BUS  
Controller  
Instruction  
Decoder  
Instruction  
Register  
On-Chip  
ICE  
VDD  
VSS  
INT  
SU0~3_SCLK*  
SU0~3_SIN*  
Power  
Circuit  
VDDL  
VREFO  
RAM  
SU0~3_SOUT0*  
*
Serial  
Communication  
Unit *1  
SU0~3_RXD0*  
SU0~3_TXD0*  
SU0~3_RXD1*  
SU0~3_TXD1*  
Data FLASH  
RESET_N  
TEST0*2  
SYSTEM  
INT  
FLASH  
Controller  
Clock  
Generation  
Circuit  
INT  
OUTLSCLK*  
OUTHSCLK*  
I2C Bus  
Unit  
I2CU0_SDA*  
I2CU0_SCL*  
Low-speed  
RC  
Oscillation  
Interrupt  
INT  
INT  
I2C Bus  
Master  
I2CM0~1_SDA*  
I2CM0~1_SCL*  
INT  
High-speed  
PLL  
Oscillation  
WDT  
VLS  
16-Bit  
Timer  
TMH0~5OUT*  
INT  
INT  
RC  
Oscillation  
(for WDT)  
INT  
INT  
EXTRIG07  
FTM0~5P*  
FTM0~5N*  
Low-speed  
Crystal  
Oscillation  
Functional  
Timer  
XT0*3  
XT1*3  
DMA  
Controller  
INT  
INT  
VDD  
VSS  
CRC  
Generator  
A/D  
Converter  
VREF  
AIN0 to AIN11*  
Low Speed  
Time Base  
Counter  
TBCOUT0*  
TBCOUT1*  
INT  
INT  
Analog  
Comparator  
CMP0~1P*  
CMP0~1M*  
Simplified  
RTC  
BZ0P*  
BZ0N*  
Buzzer  
D/A  
Converter  
DACOUT0*  
Safety  
Function  
INT  
PX0~PX7  
(X= 0~9,A,B)  
PI00,PI01  
GPIO  
(External  
Interrupt)  
Reset  
Function  
EXI0~11  
*
: Indicates the shared function of general ports.  
*1 : Shared UART and Synchronous Serial Port.  
*2 : Not available as the input port when connecting to the on-chip debug emulator.  
*3 : Not available as the input port when connecting to the crystal resonator.  
Figure 2 ML62Q1500C Group Block Diagram  
9/57  
FEDL62Q1500C-03  
PIN CONFIGURATION  
The port names in the pin-layout indicate 1st-function. Refer to Table-3 or Table-4 about other functions.  
Pin Layout of 52pin TQFP Package  
39  
27  
P51  
P41  
P30  
P50/EXI8  
P13  
P31  
P12  
P32  
P11  
P33  
P10  
P60  
TOP VIEW  
TQFP52  
P07  
P61  
P06  
P62  
P05  
P63  
P64/EXI9  
P65  
P04/EXI2/EXTRG2  
P71  
P72  
P73  
P66  
P43  
1
13  
Figure 3 Pin Layout of 52pin TQFP52 Package  
10/57  
FEDL62Q1500C-03  
Pin Layout of 64pin TQFP/QFP Package  
48  
33  
P40  
P41  
P53  
P52  
P51  
P30  
P31  
P50/EXI8  
P32  
P13  
P33  
P12  
P60  
P11  
TOP VIEW  
TQFP64/QFP64  
P61  
P10  
P62  
P07  
P63  
P06  
P64/EXI9  
P65  
P05  
P04/EXI2/EXTRG2  
P66  
P70  
P71  
P72  
P73  
P67  
P42  
P43  
1
16  
Figure 4 Pin Layout of 64pin TQFP/QFP Package  
11/57  
FEDL62Q1500C-03  
Pin Layout of 80pin QFP Package  
60  
41  
PB2  
PB3  
P96  
P95  
PB4  
P94  
PB5  
P93  
P40  
P53  
P41  
P52  
P30  
P51  
P31  
P50  
P32  
P13  
P33  
P12  
TOP VIEW  
QFP80  
P60  
P11  
P61  
P10  
P62  
P07  
P63  
P06  
P64/EXI9  
P65  
P05  
P04/EXI2/EXTRG2  
P66  
P70  
P71  
P72  
P73  
P67  
P42  
P43  
1
20  
Figure 5 Pin Layout of 80pin QFP Package  
12/57  
FEDL62Q1500C-03  
PIN LIST  
Table 3 Pin List (1/3)  
Pin No.  
Pin name  
(1st func)  
1st func.  
others  
2nd func.  
SIU  
3rd func.  
SIU  
4th func.  
I2C  
5th func.  
Timer  
6th func.  
others  
7th func.  
others  
8th func.  
ADC  
3
4
5
1
2
6
7
8
3
4
5
1
2
6
7
8
3
4
5
1
2
6
7
8
VDD  
VSS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VDDL  
-
-
-
-
XT0  
PI00  
-
-
-
XT1  
PI01  
-
-
-
RESET_N  
P00  
RESET_N  
TEST0  
DACOUT0  
-
-
-
-
-
-
P01  
FTM3P  
TBCOUT0  
TBCOUT1  
EXI0  
EXTRG0  
SU0_RXD0  
SU0_SIN  
9
11 14  
P02  
P03  
P04  
-
I2CU0_SCL  
FTM0P  
FTM0N  
OUTLSCLK  
OUTHSCLK  
-
CMP0M  
CMP0P  
-
-
AIN11  
-
EXI1  
EXTRG1  
SU0_TXD0  
SU0_SOUT  
10 12 15  
17 21 25  
SU0_TXD1 I2CU0_SDA  
EXI2  
EXTRG2  
SU0_SCLK  
-
I2CU0_SCL  
TMH0OUT  
18 22 26  
19 23 27  
20 24 28  
21 25 29  
22 26 30  
P05  
P06  
P07  
P10  
P11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2CM0_SDA  
SU0_RXD1 SU0_RXD0 I2CM0_SCL  
SU0_TXD1  
SU0_SCLK  
-
-
SU0_RXD0  
SU0_SIN  
23 27 31  
24 28 32  
P12  
P13  
-
-
-
-
TMH4OUT  
-
-
-
-
-
SU0_TXD0  
SU0_SOUT  
SU0_TXD1  
TMH1OUT  
-
TMH3OUT  
27 35 45  
28 36 46  
29 37 47  
P14  
P15  
P16  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2CU0_SDA  
I2CU0_SCL  
SU1_SCLK  
TMH5OUT  
FTM1P  
EXI3  
EXTRG3  
30 38 48  
31 39 49  
32 40 50  
P17  
P20  
P21  
SU0_RXD1 SU0_RXD0  
-
-
-
TBCOUT0  
TBCOUT1  
OUTLSCLK  
BZ0P  
BZ0N  
-
AIN0  
AIN1  
AIN2  
-
SU0_TXD1  
-
-
FTM1N  
EXI4  
EXTRG4  
SU1_RXD0  
SU1_SIN  
FTM2P  
SU1_TXD0  
SU1_SOUT  
33 41 51  
34 42 52  
P22  
P23  
-
SU1_TXD1 I2CM0_SDA  
FTM2N  
OUTHSCLK  
-
-
-
AIN3  
VREFO  
EXI5  
EXTRG5  
VREF  
SU1_SCLK  
-
I2CM0_SCL TMH2OUT  
SU1_RXD0  
SU1_SIN  
35 43 53  
36 44 54  
37 45 55  
38 46 56  
P24  
P25  
P26  
P27  
-
-
-
-
-
-
-
-
AIN4  
AIN5  
AIN6  
AIN7  
SU1_TXD0  
SU1_SOUT  
SU1_TXD1  
-
-
-
EXI6  
EXTRG6  
SU1_RXD1 SU1_RXD0 I2CU0_SDA  
SU2_SCLK  
FTM3P  
FTM3N  
TBCOUT0  
TBCOUT1  
BZ0P  
BZ0N  
EXI7  
EXTRG7  
SU1_TXD1  
I2CU0_SCL  
*1  
*1: No assignment to products of 52 PIN-and 80 PIN package.  
13/57  
FEDL62Q1500C-03  
Table 3 Pin List (2/3)  
Pin No.  
Pin name  
(1st func)  
1st func.  
others  
2nd func.  
SIU  
3rd func.  
SIU  
4th func.  
I2C  
5th func.  
Timer  
6th func.  
others  
7th func.  
others  
8th func.  
ADC  
41 51 67  
42 52 68  
43 53 69  
44 54 70  
P30  
P31  
P32  
P33  
P40  
P41  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TBCOUT0  
TBCOUT1  
SU1_RXD1 SU1_RXD0  
-
-
-
-
-
-
-
-
-
SU1_TXD1  
-
-
-
TMH3OUT  
-
49 65  
-
-
-
-
40 50 66  
SU3_TXD1  
*1  
-
63 79  
P42  
-
-
-
-
-
-
-
52 64 80  
P43  
P44  
P45  
P46  
-
-
-
-
-
-
-
-
-
-
-
-
TBCOUT0  
TBCOUT1  
AIN10  
-
-
-
9
12  
-
FTM3N  
-
-
-
-
-
-
-
-
-
-
10 13  
13 16  
-
-
-
I2CU0_SDA  
FTM1N  
I2CU0_SCL  
*1  
11 14 17  
P47  
-
SU0_SCLK  
FTM1P  
-
-
-
25 29 33  
26 30 34  
P50  
P51  
P52  
P53  
EXI8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
31 35  
32 36  
SU2_RXD1 SU2_RXD0  
-
-
33 43  
34 44  
P54  
P55  
-
-
-
-
-
-
-
-
-
-
-
-
*1  
*1  
SU2_TXD1  
*1  
-
SU2_RXD0  
SU2_SIN  
*1  
39 47 57  
P56  
P57  
-
-
-
-
-
-
-
-
-
-
-
-
-
SU2_TXD0  
SU2_SOUT  
*1  
SU2_TXD1  
*1  
-
48 58  
45 55 71  
46 56 72  
47 57 73  
48 58 74  
P60  
P61  
P62  
P63  
-
-
-
-
-
-
-
-
-
-
-
-
I2CM1_SCL  
-
-
-
-
-
-
-
-
-
-
I2CM1_SDA  
-
-
-
-
FTM4N  
FTM4P  
CMP1P  
CMP1M  
SU3_RXD0  
SU3_SIN  
49 59 75  
P64  
EXI9  
-
-
FTM5P  
-
-
-
SU3_TXD0  
SU3_SOUT  
50 60 76  
51 61 77  
P65  
P66  
P67  
-
-
-
SU3_TXD1  
-
-
-
-
FTM5N  
-
-
-
-
-
-
AIN8  
AIN9  
-
SU3_SCLK  
-
-
SU3_RXD1 SU3_RXD0  
-
62 78  
*1  
*1  
-
20 24  
P70  
P71  
P72  
P73  
P74  
P75  
P76  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
16 19 23  
15 18 22  
14 17 21  
13 16 20  
12 15 19  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
18  
EXI10  
-
-
*1: No assignment to products of 52 PIN-package.  
14/57  
FEDL62Q1500C-03  
Table 3 Pin List (3/3)  
Pin No.  
Pin name  
(1st func)  
1st func.  
others  
2nd func.  
SIU  
3rd func.  
SIU  
4th func.  
I2C  
5th func.  
Timer  
6th func.  
others  
7th func.  
others  
8th func.  
ADC  
-
-
-
-
-
-
-
-
-
-
9
P80  
P81  
P82  
P93  
P94  
P95  
P96  
PA1  
PA2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10  
11  
37  
38  
39  
40  
41  
42  
SU2_SCLK  
*1  
-
-
59  
PA3  
EXI11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
60  
61  
62  
63  
64  
PA4  
PB2  
PB3  
PB4  
PB5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
*1: No assignment to products of 52 PIN and 64 PIN-packages.  
15/57  
FEDL62Q1500C-03  
PIN DESCRIPTION  
Table 4 Pin Description (1/5)  
Function  
Power  
Signal name  
Pin name  
I/O  
-
Description  
Negative power supply pin (-)  
Positive power supply pin (+). Connect a capacitor CV  
between this pin and VSS  
Logic  
-
-
VSS  
-
VDD  
-
-
.
Power supply pin for internal logic (internal regulator’s  
output). Connect a capacitor CV (1μF) between this pin  
and VSS.  
-
VDDL  
-
-
Input pin for testing. Also, used for on-chip debug  
interface or ISP function.  
P00 is initialized as pull-up input mode by the system  
reset.  
Test  
TEST0  
VREFO  
P00  
P23  
I/O  
-
-
-
Reference voltage output.  
Reset input.  
Applying “L” level shifts the MCU in system reset mode.  
Applying “H” level shifts the CPU in program running  
mode.  
RESET_N  
RESET_N  
I
Negative  
Used for on-chip debug interface and ISP function.  
No pull-up resistor is installed.  
System  
Low-speed crystal oscillation pins  
Connect 32.768kHz crystal resonator and have  
capacitors between the pin and VSS.  
XT0  
XT1  
XT0  
XT1  
I
-
-
O
P02  
P21  
P03  
P22  
OUTLSCLK  
OUTHSCLK  
O
O
Low-speed clock output.  
High-speed clock output.  
-
-
General purpose input.  
Not available as general inputs when using the crystal  
resonator.  
General input port  
(GPI)  
PI00, PI01  
XT0, XT1  
I
Positive  
General purpose I/O port  
- High-impedance  
- Input with Pull-UP (initial value)  
- Input without Pull-UP  
- CMOS output  
P00  
P00  
I/O  
Positive  
- N-channel open drain output  
Not available to use as I/O pin when using for on-chip  
debug interface or ISP function.  
P01 – P07  
P10 – P17  
P20 – P27  
P30 – P33  
P40 – P47  
P50 – P57  
P60 – P67  
P70 – P76  
P80 – P82  
P93 – P96  
PA1 – PA4  
PB2 – PB5  
P01 – P07  
P10 – P17  
P20 – P27  
P30 – P33  
P40 – P47  
P50 – P57  
P60 – P67  
P70 – P76  
P80 – P82  
P93 – P96  
PA1 – PA4  
PB2 – PB5  
General port  
(GPIO)  
General I/O port  
- High-impedance (initial value)  
- Input with Pull-UP  
- Input without Pull-UP  
- CMOS output  
- N-channel open drain output  
I/O  
Positive  
16/57  
FEDL62Q1500C-03  
Logic  
Table 4 Pin Description (2/5)  
Function  
Signal name  
SU0_TXD0  
Pin name  
I/O  
Description  
P03  
P13  
P02  
P07  
P12  
P17  
P03  
P10  
P13  
P20  
P07  
P17  
P22  
P25  
P21  
P24  
P26  
P32  
P22  
P25  
P27  
P33  
P26  
P32  
P57  
P54  
P56  
P55  
P57  
P54  
P65  
P64  
P67  
P42  
P65  
P67  
O
Serial communication unit0 UART0 data output  
Positive  
Serial communication unit0 Full-duplex data input  
Serial communication unit0 UART0 data input  
SU0_RXD0  
SU0_TXD1  
I
Positive  
Serial communication unit0 Full-duplex data output  
Serial communication unit0 UART1 data output  
O
Positive  
SU0_RXD1  
SU1_TXD0  
I
Serial communication unit0 UART1 data input  
Serial communication unit1 UART0 data output  
Positive  
Positive  
O
Serial communication unit1 Full-duplex data input  
Serial communication unit1 UART0 data input  
SU1_RXD0  
SU1_TXD1  
I
Positive  
Positive  
UART  
Serial communication unit1 Full-duplex data output  
Serial communication unit1 UART1 data output  
O
SU1_RXD1  
SU2_TXD0  
SU2_RXD0  
I
O
I
Serial communication unit1 UART1 data input  
Serial communication unit2 UART0 data output  
Positive  
Positive  
Positive  
Serial communication unit2 Full-duplex data input  
Serial communication unit2 UART0 data input  
Serial communication unit2 Full-duplex data output  
Serial communication unit2 UART1 data output  
SU2_TXD1  
O
Positive  
SU2_RXD1  
SU3_TXD0  
I
Serial communication unit2 UART1 data input  
Serial communication unit3 UART0 data output  
Positive  
Positive  
O
Serial communication unit3 Full-duplex data input  
Serial communication unit3 UART0 data input  
SU3_RXD0  
I
Positive  
Serial communication unit3 Full-duplex data output  
Serial communication unit3 UART1 data output  
SU3_TXD1  
SU3_RXD1  
O
I
Positive  
Positive  
Serial communication unit3 UART1 data input  
17/57  
FEDL62Q1500C-03  
Logic  
Table 4 Pin Description (3/5)  
Function  
Signal name  
SU0_SIN  
Pin name  
I/O  
Description  
P02  
P12  
P04  
P11  
P47  
P03  
P13  
P21  
P24  
P16  
P23  
P22  
P25  
P56  
P27  
PA3  
Serial communication unit0 Synchronous serial data  
input  
I
Positive  
Serial communication unit0 Synchronous serial clock  
I/O  
SU0_SCK  
I/O  
Positive  
Serial communication unit0 Synchronous serial data  
output  
SU0_SOUT  
SU1_SIN  
O
I
Positive  
Positive  
Positive  
Serial communication unit1 Synchronous serial data  
input  
Serial communication unit1 Synchronous serial clock  
I/O  
SU1_SCK  
I/O  
Synchronous Serial  
Port  
Serial communication unit1 Synchronous serial data  
output  
SU1_SOUT  
SU2_SIN  
O
I
Positive  
Positive  
Positive  
Serial communication unit2 Synchronous serial data  
Serial communication unit2 Synchronous serial clock  
I/O  
SU2_SCLK  
I/O  
Serial communication unit2 Synchronous serial data  
output  
SU2_SOUT  
SU3_SIN  
P57  
P64  
P66  
P65  
O
I
Positive  
Positive  
Positive  
Positive  
Serial communication unit3 Synchronous serial data  
input  
Serial communication unit3 Synchronous serial clock  
I/O  
SU3_SCLK  
SU3_SOUT  
I/O  
O
Serial communication unit3 Synchronous serial data  
output  
P03  
P15  
P26  
P46  
P02  
P04  
P16  
P27  
P47  
P06  
I2C Unit0 (Master and Salve) Data I/O  
I/O N-channel open drain  
I2CU0_SDA  
I2CU0_SCL  
Positive  
Positive  
Connect a pull-up resistor externally  
I2C Unit0 (Master and Salve) Clock I/O  
I/O N-channel open drain output  
Connect a pull-up resistor externally  
I2C Master0 Data I/O pin  
I/O N-channel open drain output  
Connect a pull-up resistor externally  
I2C Master0 Clock I/O  
I/O N-channel open drain output  
Connect a pull-up resistor externally  
I2C Master1 Data I/O  
I/O N-channel open drain output  
Connect a pull-up resistor externally  
I2C Master1 Clock I/O  
I/O N-channel open drain output  
Connect a pull-up resistor externally  
I2C Bus  
I2CM0_SDA  
I2CM0_SCL  
I2CM1_SDA  
I2CM1_SCL  
Positive  
Positive  
Positive  
Positive  
P22  
P07  
P23  
P61  
P60  
18/57  
FEDL62Q1500C-03  
Table 4 Pin Description (4/5)  
Function  
Signal name  
FTM0P  
Pin name  
I/O  
O
Description  
Functional Timer0 P output  
Logic  
P02  
P03  
P17  
P47  
P20  
P46  
P21  
P22  
P01  
P26  
P27  
P44  
P63  
P62  
P64  
P65  
P02  
P03  
P04  
P17  
P21  
P23  
P26  
P27  
P04  
P13  
P23  
P13  
P33  
P12  
P16  
P02  
P03  
P01  
P17  
P26  
P31  
P43  
P01  
P20  
P27  
P31  
P43  
P17  
P26  
P20  
P27  
Positive  
Negative  
FTM0N  
O
Functional Timer0 N output  
FTM1P  
FTM1N  
O
O
Functional Timer1 P output  
Positive  
Functional Timer1 N output  
Negative  
FTM2P  
FTM2N  
O
O
Functional Timer2 P output  
Functional Timer2 N output  
Positive  
Negative  
FTM3P  
FTM3N  
O
O
Functional Timer3 P output  
Functional Timer3 N output  
Positive  
Negative  
Functional Timer  
(FTM)  
FTM4P  
FTM4N  
O
O
O
O
I
Functional Timer4 P output  
Positive  
Functional Timer4 N output  
Negative  
FTM5P  
Functional Timer5 P output  
Positive  
FTM5N  
Functional Timer5 N output  
Negative  
EXTRG0  
EXTRG1  
EXTRG2  
EXTRG3  
EXTRG4  
EXTRG5  
EXTRG6  
EXTRG7  
TMH0OUT  
TMH1OUT  
TMH2OUT  
Functional Timer event trigger input  
Functional Timer event trigger input  
Functional Timer event trigger input  
Functional Timer event trigger input  
Functional Timer event trigger input  
Functional Timer event trigger input  
Functional Timer event trigger input  
Functional Timer event trigger input  
16bit General Timer 0 output  
-
I
-
I
-
I
-
I
-
I
-
I
-
I
-
O
O
O
Positive  
Positive  
Positive  
16bit General Timer 1 output  
16bit General Timer 2 output  
TMH3OUT  
O
16bit General Timer 3 output  
Positive  
16-bit Timer  
TMH4OUT  
TMH5OUT  
EXTRG0  
O
O
I
16bit General Timer 4 output  
16bit General Timer 5 output  
16bit Timer trigger input  
Positive  
Positive  
-
-
EXTRG1  
I
16bit Timer trigger input  
The virtual frequency adjustment signal output or The  
low speed time base counter output signal  
TBCOUT0  
TBCOUT1  
O
O
Positive  
Positive  
Low-speed  
Time Base Counter  
(LTBC)  
1Hz/2Hz clock output for the Simplified RTC  
BZ0P  
BZ0N  
O
O
Buzzer output (positive phase)  
Buzzer output (negative phase)  
Positive  
Buzzer  
Negative  
19/57  
FEDL62Q1500C-03  
Table 4 Pin Description (5/5)  
Function  
Signal name  
EXI0  
Pin name  
I/O  
I
Description  
External Interrupt 0 Input  
Logic  
P02  
P03  
P04  
P17  
P21  
P23  
P26  
P27  
P50  
P64  
P76  
PA3  
P23  
P17  
P20  
P21  
P22  
P24  
P25  
P26  
P27  
P65  
P66  
P43  
P03  
P03  
P02  
P62  
P63  
P01  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EXI1  
I
External Interrupt 1 Input  
External Interrupt 2 Input  
External Interrupt 3 Input  
External Interrupt 4 Input  
External Interrupt 5 Input  
External Interrupt 6 Input  
External Interrupt 7 Input  
External Interrupt 8 Input  
External Interrupt 9 Input  
External Interrupt 10 Input  
External Interrupt 11 Input  
SA-ADC external reference voltage input  
SA-ADC channel 0 input  
EXI2  
I
EXI3  
I
EXI4  
I
EXI5  
I
External Interrupt  
EXI6  
I
EXI7  
I
EXI8  
I
EXI9  
I
EXI10  
EXI11  
VREF  
I
I
-
I
AIN0  
AIN1  
I
SA-ADC channel 1 input  
AIN2  
I
SA-ADC channel 2 input  
AIN3  
I
SA-ADC channel 3 input  
AIN4  
I
SA-ADC channel 4 input  
Successive  
approximation type  
A/D converter  
AIN5  
I
SA-ADC channel 5 input  
AIN6  
I
SA-ADC channel 6 input  
AIN7  
I
SA-ADC channel 7 input  
AIN8  
I
SA-ADC channel 8 input  
AIN9  
I
SA-ADC channel 9 input  
AIN10  
AIN11  
CMP0P  
CMP0M  
CMP1P  
CMP1M  
DACOUT  
I
SA-ADC channel 10 input  
SA-ADC channel 11 input  
Comparator input 0 (noninverting input)  
Comparator input 0 (inverting input)  
Comparator input 1 (noninverting input)  
Comparator input 1 (inverting input)  
D/A converter 0 output  
I
I
I
Analog comparator  
D/A converter  
I
I
O
20/57  
FEDL62Q1500C-03  
TERMINATION OF UNUSED PINS  
Table 5 Termination of unused pins  
Recommended pin termination  
Connect to VDD  
Connect to VDD with initial state (pulled-up input mode)  
Pin  
RESET_N  
.
P00/TEST0  
XT0/PI00, XT1/PI01  
P01 to P07  
P10 to P17  
P20 to P27  
P30 to P33  
P40 to P47  
P50 to P57  
P60 to P67  
P70 to P76  
P80 to P82  
P93 to P96  
PA1 to PA4  
PB2 to PB5  
Open with initial state(Hi-impedance)  
[Note]  
Terminate unused input pins according to the table 5 in order to avoid unexpected through-current in the  
pins.  
21/57  
FEDL62Q1500C-03  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings  
(VSS = 0V)  
Unit  
Parameter  
Power supply voltage 1  
Power supply voltage 2  
Input voltage  
Symbol  
Condition  
Ta = +25°C  
Ta = +25°C  
Ta = +25°C  
Ta = +25°C  
Rating  
VDD  
VDDL  
VIN  
-0.3 to +6.5  
-0.3 to +2.0  
-0.3 to VDD+0.3*1  
-0.3 to VDD+0.3*1  
-40*2  
V
V
V
V
Output voltage  
VOUT  
1pin  
Total  
1pin  
“H” level output current  
“L” level output current  
IOUTH  
IOUTL  
mA  
mA  
Ta = +25°C  
Ta = +25°C  
Ta = +25°C  
-180*2  
+40  
Total  
+180  
Power dissipation  
PD  
1
W
Storage temperature  
TSTG  
-
-55 to +150  
°C  
*1 6.5V or lower  
*2 The current flowing out the LSI through the pin is described in the negative number.  
The applicable maximum current is the absolute value.  
For example, -1mA means the maximum current 1mA flows out the LSI through the pin.  
[Note]  
Use the product within absolute maximum ratings. The absolute maximum ratings are conditions which  
may physically deteriorate the quality of product.  
Recommended Operating Conditions  
(VSS = 0V)  
Parameter  
Symbol  
Ta  
Condition  
Range  
Unit  
°C  
°C  
V
Operating temperature (Ambient)  
Operating temperature (Chip-Junction)  
Operating voltage 1  
-
-40 to +105  
-40 to +115  
1.6 to 5.5  
30k to 4M  
30k to 25M  
1.0 ±30%  
Tj  
-
VDD  
-
VDD = 1.6 to 5.5V  
VDD = 1.8 to 5.5V  
-
Operating frequency (CPU)  
VDDL pin external capacitance  
fOP  
CL  
Hz  
μF  
22/57  
FEDL62Q1500C-03  
Thermal characteristics  
The maximum chip-junction temperature, Tjmax, may be calculated using the following equation.  
ꢀ 푚ꢀꢁ  
= 푇  
+ 퐷 푚ꢀꢁ × 휃  
푗 푚ꢀꢁ  
ꢀ 푚ꢀꢁ 푗ꢀ  
: maximum ambient temperature  
퐷 푚ꢀꢁ LSI maximum power dissipation  
: Package junction to ambient thermal resistance  
푗ꢀ  
Design a Mounting board by considering heat radiation such as power dissipation and ambient temperature to satisfy the  
recommended conditions.  
The following table shows each package’s thermal resistance for thermal design reference estimated by simulation based on the  
PCB (printed circuit board) conditions define as a below.  
Value  
Parameter  
Symbol  
Package type  
Unit  
L1  
L2  
TQFP52  
TQFP64  
QFP64  
QFP80  
61.7  
63.2  
47.2  
55.5  
56.7  
58.2  
43.3  
51.6  
Thermal  
resistance  
θja  
oC/W  
PCB conditions:  
PCB name  
L1  
L2  
Unit  
mm  
PCB size L / W / T)  
Number of layers  
Wiring density  
114.3 / 76.2 / 1.6  
1
114.3 / 76.2 / 1.6  
2
layer  
60% (top layer)  
60% (top and bottom layer)  
Wind condition  
No wind (0m/s)  
23/57  
FEDL62Q1500C-03  
Current Consumption  
(VDD=1.6 to 5.5V, VSS =0V, Ta=-40 to +105oC, unless otherwise specified)  
Measurin  
Parameter  
Symbol  
IDD0  
Condition  
Min.  
Typ.*3  
Max.  
34  
68  
38  
74  
42  
80  
42  
80  
40  
76  
Unit  
g circuit  
Ta = -40 to  
+85 oC  
-
-
-
-
-
-
-
-
-
-
CPU is in STOP-D state.  
All oscillations are stopped.  
Supply current 0  
Supply current 1  
Supply current 2-1  
Supply current 2-2  
Supply current 2-3  
0.8  
µA  
Ta = -40 to  
+105 oC  
Ta = -40 to  
+85 oC  
CPU is in STOP state.  
All oscillations are stopped.  
IDD1  
1.2  
4.0  
3.0  
2.2  
µA  
µA  
µA  
Ta = -40 to  
+105 oC  
Ta = -40 to  
+85 oC  
Low-speed RC32K Oscillating.*1  
CPU is in HALT state.  
IDD2-1  
IDD2-2  
IDD2-3  
Ta = -40 to  
+105 oC  
PLL oscillation is stopped.  
Ta = -40 to  
+85 oC  
Low-speed Crystal Oscillating.*1*4  
CPU is in HALT state.  
Ta = -40 to  
+105 oC  
PLL oscillation is stopped.  
1
Ta = -40 to  
+85 oC  
Low-speed Crystal Oscillating.*1*4  
CPU is in HALT-C state.  
µA  
µA  
Ta = -40 to  
+105 oC  
PLL oscillation is stopped.  
CPU: Running with low-speed  
RC32K oscillation clock*1*2  
PLL oscillation is stopped.  
Ta = -40 to  
+105 oC  
Supply current 3  
Supply current 4  
IDD3  
IDD4  
-
-
17  
104  
4.0  
CPU: Running with 16MHz PLL  
oscillating clock*1*2  
Ta = -40 to  
+105 oC  
3.2  
PLL 16MHz is oscillating.  
VDD=1.8~5.5V  
mA  
CPU: Running with 24MHz PLL  
oscillating clock*1*2  
Ta = -40 to  
+105 oC  
Supply current 5  
IDD5  
-
4.5  
5.2  
PLL 24MHz is oscillating.  
VDD=1.8~5.5V  
*1 LTBC and WDT is operating, Significant bits of BCKCON0-3 and BRECON0-3 registers are all “1”  
*2 CPU running in wait mode  
*3 On the condition of VDD=3.0V, Ta=+25 oC  
*4 When the noise filter is not used in the low power consumption mode  
24/57  
FEDL62Q1500C-03  
Low-speed Crystal Oscillation  
(VDD=1.6 to 5.5V, VSS =0V, Ta=-40 to +105oC, unless otherwise specified)  
Range  
Typ.  
Parameter  
Symbol  
Condition  
Unit  
Min.  
-
Max.  
-
Crystal oscillation  
frequency *1 *2  
fXTL  
-
-
32.768  
kHz  
s
Crystal oscillation start  
time  
TXTL  
-
-
2
*1: The oscillation frequency is determined by the oscillation circuit, crystal resonator and the external capacitance  
(CGL/CDL). As those parameters changes depending the crystal resonator, it requires evaluation on the actual PCB  
circuit for matching. Ask crystal resonator makers for matching and confirm the oscillation characteristics.  
*2: The quality of oscillation characteristics might be lost, depending on material of PCB, condition of wiring  
capacitance or parasitic capacitance on the external circuits. Note for designing the external circuit.  
- Make the wires on the external circuit as short as possible.  
- Place the crystal resonator and oscillation circuit as close to the MCU as possible and make the wires between  
the external capacitance and crystal resonator as short as possible.  
- Ensure no signal line flowing big current runs near the oscillation circuit.  
- Ensure no signal line runs under and near the oscillation circuit.  
- Make ground of external capacitance the same as MCU ground VSS pin and connect them to the ground that has  
low variation of current and voltage.  
- The quality of oscillation characteristics might be lost depending on operating environment due to moisture  
absorption of PCB and condensation of PCB surface, recommended to have measures such as covering the  
oscillation circuit with resin.  
Low-speed Crystal Oscillation external circuit example  
XT0  
XT1  
VSS  
Crystal resonator  
(32.768kHz  
CDL  
CGL  
External Clock Input  
(VDD=1.6 to 5.5V, VSS =0V, Ta=-40 to +105oC, unless otherwise specified)  
Range  
Parameter  
Symbol  
Condition  
Unit  
Min.  
Typ.  
Max.  
Typ.  
-1.0%  
Typ.  
+1.0%  
Input Frequency  
Input pulse width  
fEXCK  
-
-
32.768  
kHz  
s
1/fEXCK  
x 0.4  
1/fEXCK  
x 0.6  
tEXCKW  
-
25/57  
FEDL62Q1500C-03  
On-chip Oscillator  
(VDD=1.6 to 5.5V, VSS =0V, Ta=40 to +105οC, unless otherwise specified)  
Measuri  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
ng  
circuit  
Typ.  
-1.0%  
Typ.  
+1.0%  
Ta= +25°C  
32.768  
32.768  
32.768  
32.768  
32.768  
32.768  
16/24  
VDD = 1.8 to 5.5V  
Typ.  
-2.5%  
Typ.  
+2.5%  
Ta= -40 to +85°C  
VDD = 1.8 to 5.5V  
Low-speed RC oscillator  
frequency accuracy 1  
fRCL1  
Typ.  
-3.0%  
Typ.  
+3.0%  
Ta= -40 to +105°C  
VDD = 1.8 to 5.5V  
Without software adjustment  
kHz  
Typ.  
-3.5%  
Typ.  
+3.5%  
VDD = 1.6 to 1.8V  
Typ.  
-1.0%  
Typ.  
+1.0%  
Ta= -40 to +85°C  
VDD = 1.8 to 5.5V  
Low-speed RC oscillator  
frequency accuracy 2  
With software adjustment  
fRCL2  
fPLL1  
fPLL2  
Typ.  
-1.5%  
Typ.  
+1.5%  
Ta= -40 to +105°C  
VDD = 1.8 to 5.5V  
1
Typ.  
-2.5%  
Typ.  
+2.5%  
Ta= -40 to +85°C  
VDD = 1.8 to 5.5V  
PLL oscillation frequency  
accuracy 1  
Without software adjustment  
Typ.  
-3.0%  
Typ.  
+3.0%  
Ta= -40 to +105°C  
VDD = 1.8 to 5.5V  
16/24  
Typ.  
-3.5%  
Typ.  
+3.5%  
VDD = 1.6 to 5.5V  
16/24  
MHz  
Typ.  
-1.0%  
Typ.  
+1.0%  
Ta= -40 to +85°C  
VDD = 1.8 to 5.5V  
16/24  
PLL oscillation frequency  
accuracy 2  
Typ.  
-1.5%  
Typ.  
+1.5%  
Ta= -40 to +105°C  
VDD = 1.8 to 5.5V  
With software adjustment  
16/24  
PLL oscillation start time  
TPLL  
VDD = 1.6 to 5.5V  
-
-
2
ms  
1kHz Low-speed RC oscillator  
(for WDT) frequency accuracy  
Ta= -40 to +105°C  
VDD = 1.6 to 5.5V  
fRC1K  
0.5  
1
2.5  
kHz  
26/57  
FEDL62Q1500C-03  
Input / Output pin 1  
(VDD=1.6 to 5.5V, VSS =0V, Ta=40 to +105οC, unless otherwise specified)  
Measur  
ing  
circuit  
Symbol  
VOH1  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
Output voltage1  
“H”/“L” level  
(P00-P07)  
(P10-P17)  
(P20-P27)  
(P30-P33)  
(P40-P47)  
(P50-P57)  
(P60-P67)  
(P70-P76)  
(P80-P82)  
(P93-P96)  
(PA1-PA4)  
(PB2-PB5)  
IOH1=-10mA  
VDD4.5V  
VDD  
-1.5  
-
-
-
-
IOH1=-1mA  
VDD1.6V  
VDD  
-0.5  
IOL1=+10mA  
VDD4.5V  
-
-
-
-
1.5  
0.5  
VOL1  
IOL1=+1mA  
VDD1.6V  
V
2
Output voltage2  
“L” level  
IOL2=+15mA  
-
-
-
-
0.7  
0.5  
VDD4.5V  
(P01-P07)  
(P10-P17)  
(P20-P27)  
(P30-P33)  
(P40-P47)  
(P50-P57)  
(P60-P67)  
(P70-P76)  
(P80-P82)  
(P93-P96)  
(PA1-PA4)  
(PB2-PB5)  
IOL2=+8mA  
VDD3.0V  
When N-ch open  
drain output  
VOL2  
mode is selected  
IOL2=+3mA  
-
-
-
-
0.4  
0.4  
VDD2.0V  
IOL2=+2mA  
VDD1.6V  
27/57  
FEDL62Q1500C-03  
Input / Output pin 2  
(VDD=1.6 to 5.5V, VSS =0V, Ta=40 to +105οC, unless otherwise specified)  
Measu  
ring  
circuit  
Symbol  
IOH1  
Parameter  
Condition  
Min.  
Typ.  
Max. Unit  
VDD4.5V  
VDD1.6V  
-10*3*5  
-1*3*5  
-
-
-
-
“H” level output  
current1 *6  
1pin  
Total of ‘P00-P07,  
P10-P13, P44-P47,  
P50-P53, P70-P76,  
P80-P82P93-P96’  
or  
Total of ‘P14-P17,  
P20-P27, P30-P33,  
P40-P43, P54-P57  
P60-P67, PA1-PA4,  
PB2-PB5’  
VDD4.5V  
VDD1.6V  
-90*5  
-20*5  
-
-
-
-
“H” level output  
total current *1*4  
IOH3  
(duty50%)  
VDD4.5V  
VDD1.6V  
VDD4.5V  
VDD1.6V  
VDD4.5V  
VDD3.0V  
VDD2.0V  
VDD1.6V  
-180*5  
-40*5  
-
-
-
-
-
-
-
-
-
-
All pin totals  
(duty50%)  
-
-
-
-
-
-
10*3  
1*3  
15*3  
8*3  
3*3  
2*3  
“L” level output  
current1 *6  
1pin (CMOS output  
mode)  
IOL1  
IOL2  
mA  
“L” level output  
current2 *6  
1pin (N-ch open drain  
output mode)  
Total of ‘P00-P07,  
P10-P13, P44-P47,  
P50-P53, P70-P76,  
P80-P82P93-P96’  
or  
Total of ‘P14-P17,  
P20-P27, P30-P33,  
P40-P43, P54-P57  
P60-P67, PA1-PA4,  
PB2-PB5’  
VDD4.5V  
VDD3.0V  
VDD2.0V  
VDD1.6V  
-
-
-
-
-
-
-
-
90  
40  
15  
10  
3
“L” level output  
total current *2*4  
IOL3  
(N-ch open drain output  
mode, duty50%)  
All pin totals  
(N-ch open drain output  
mode, duty50%)  
VDD4.5V  
VDD1.6V  
-
-
-
-
180  
20  
Output leak  
(P00-P07)  
(P10-P17)  
(P20-P27)  
(P30-P33)  
(P40-P47)  
(P50-P57)  
(P60-P67)  
(P70-P76)  
P80-P82)  
P93-P96)  
PA1-PA4)  
PB2-PB5)  
IOOH  
IOOL  
VOH=VDD (High impedance mode)  
VOL=VSS (High impedance mode)  
-
-
-
+1  
μA  
-
-1*5  
28/57  
FEDL62Q1500C-03  
*1 Sink-out current from VDD to the output pin, which can guarantee the device operation.  
*2 Sink-in current from the output pin to VSS, which can guarantee the device operation.  
*3 Do not beyond total current.  
*4 The total current is on the condition of Duty50% (same applies to IOH1).  
When the duty>50% the total current is calculated by following formula.  
Total current = IOL3 x 50/n (When the duty is n%)  
<For an example> When IOL3=100mA and n=80%,  
Total current = IOL3 x 50/80 = 62.5mA  
Current allowed per 1pin is independent of the duty and specified as IOL1 and IOL2.  
Do not apply current larger than Absolute Maximum Ratings.  
*5 The current flowing out the LSI through the pin is described in the negative number.  
The applicable maximum current is the absolute value.  
For example, -1mA means the maximum current 1mA flows out the LSI through the pin.  
*6 VOH1, VOL1, and VOL2 are satisfied with this spec.  
29/57  
FEDL62Q1500C-03  
Input / Output pin 3  
(VDD=1.6 to 5.5V, VSS =0V, Ta=40 to +105οC, unless otherwise specified)  
Measur  
ing  
circuit  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
IIH1  
IIL1  
IIL2  
V/IIL2  
IIH2Z  
IIL2Z  
VIH1=VDD  
VIL1=VSS  
-
-
-
1
-
Input current1  
(RESET_N)  
-1*1  
μA  
VIL2=VSS (pull-up mode) *2  
VIL2=VSS (pull-up mode) *2  
VIH1=VDD (High impedance mode)  
VIL1=VSS (High impedance mode)  
-1500*1 -300*1 -20*1  
3.7  
-
10  
-
-
80  
1
-
kΩ  
Input current2  
(P00/TEST0)  
-1*1  
μA  
Input current3  
(P01-P07)  
(P10-P17)  
(P20-P27)  
(P30-P33)  
(P40-P47)  
(P50-P57)  
(P60-P67)  
(P70-P77)  
(P80-P82)  
(P93-P96)  
(PA1-PA4)  
(PB2-PB5)  
Input current4  
(PI00-PI01)  
Input voltage1  
(RESET_N)  
(P01-P07)  
(P10-P17)  
(P20-P27)  
(P30-P33)  
(P40-P47)  
(P50-P57)  
(P60-P67)  
(P70-P77)  
(P80-P82)  
(P93-P96)  
(PA1-PA4)  
(PB2-PB5)  
(PI00-PI01)  
IIL3  
VIL1=VSS (pull-up mode) *2  
-250*1  
-30*1  
100  
-
-2*1  
800  
1
4
V/IIL3  
IIH3Z  
VIL1=VSS (pull-up mode) *2  
22  
-
kΩ  
VIH1=VDD (High impedance mode)  
μA  
IIL3Z  
VIL1=VSS (High impedance mode)  
-1*1  
-
-
IIH4  
IIL4  
VIH1=VDD  
VIL1=VSS  
-
-
-
1
-
-1*1  
0.7  
x VDD  
VIH1  
VIL1  
-
-
-
-
VDD  
V
5
0.3  
x VDD  
0
0.7  
x VDD  
VIH2  
VIL2  
-
-
-
-
VDD  
Input voltage2  
(P00/TEST0)  
0.25  
x VDD  
0
Pin capacitance  
(RESET_N)  
(P00/TEST0)  
(P01-P07)  
(P10-P17)  
(P20-P27)  
(P30-P33)  
(P40-P47)  
(P50-P57)  
(P60-P67)  
(P70-P77)  
(P80-P82)  
(P93-P96)  
(PA1-PA4)  
(PB2-PB5)  
(PI00-PI01)  
f = 10kHz  
Ta = +25°C  
CPIN  
-
-
10  
pF  
-
*1 The current flowing out the LSI through the pin is described in the negative number. The applicable maximum current  
is the absolute value. For example, -1mA means the maximum current 1mA flows out the LSI through the pin.  
*2 Measurement conditions: Typ.: VDD = 3.0V, Max.: VDD = 1.6V, Min.: VDD = 5.5V  
30/57  
FEDL62Q1500C-03  
Synchronous Serial Port  
Slave mode  
(VDD=1.8 to 5.5V, VSS =0V, Ta=40 to +105οC, unless otherwise specified)  
Symbol  
tSCYC  
tSW  
Parameter  
Condition  
Min.  
1 *2  
0.5 *3  
Typ.  
Max.  
Unit  
µs  
SCK input cycle  
-
-
-
-
-
-
SCK input pulse width  
µs  
100+  
V
DD=2.4 to 5.5V  
-
-
-
-
-
ns  
ns  
ns  
ns  
HSCLK*1×3  
SOUT output delay time  
SIN input setup time  
tSD  
200+  
VDD=1.8 to 5.5V  
-
HSCLK*1×3  
HSCLK*1  
x1  
tSS  
tSH  
-
-
-
-
80+  
SIN input hold time  
HSCLK*1×3  
*1 Cycle of high speed clock  
*2 Need input cycles of HSCLK x8 or longer  
*3 Need input cycles of HSCLK x4 or longer  
tSCYC  
tSW  
tSW  
0.7×VDD  
SUn_SCLK*  
0.3×VDD  
tSD  
tSD  
0.7×VDD  
0.3×VDD  
SUn_SOUT*  
tSS  
tSH  
0.7×VDD  
0.3×VDD  
SUn_SIN*  
*2nd to 8th function of port, n=0~3  
31/57  
FEDL62Q1500C-03  
Master mode  
Parameter  
(VDD=1.8 to 5.5V, VSS =0V, Ta=40 to +105οC, unless otherwise specified)  
Symbol  
tSCYC  
Condition  
-
Min.  
Typ.  
SCLK*1  
Max.  
Unit  
ns  
SCK output cycle  
-
-
SCLK*1  
×0.4  
SCLK*1  
×0.5  
SCLK*1  
×0.6  
SCK output pulse width  
tSW  
tSD  
tSS  
tSH  
-
ns  
VDD=2.4 to 5.5V  
VDD=1.8 to 5.5V  
VDD=2.4 to 5.5V  
VDD=1.8 to 5.5V  
VDD=2.4 to 5.5V  
VDD=1.8 to 5.5V  
-
-
-
-
-
-
-
100  
ns  
ns  
ns  
ns  
ns  
ns  
SOUT output delay time  
SIN input setup time  
SIN input hold time  
-
160  
120  
180  
80  
-
-
-
-
100  
*1 Clock cycle selected by bit12~8(SnCK4~0) of the serial port n mode register (SIOnMOD)  
VDD2.4V: min250ns, VDD1.8V: min500ns  
tSCYC  
tSW  
tSW  
0.7×VDD  
SUn_SCLK*  
SUn_SOUT*  
SUn_SIN*  
0.3×VDD  
tSD  
tSD  
0.7×VDD  
0.3×VDD  
tSS  
tSH  
0.7×VDD  
0.3×VDD  
*2nd to 8th function of port, n=0~3  
32/57  
FEDL62Q1500C-03  
I2C Bus Interface  
Standard Mode 100kbps  
(VDD=1.8 to 5.5V, VSS =0V, Ta=40 to +105οC, unless otherwise specified)  
Parameter  
Symbol  
fSCL  
Condition  
-
Min.  
0
Typ.  
-
Max.  
100  
Unit  
kHz  
SCL clock frequency  
SCL hold time  
(start/restart condition)  
tHD:STA  
-
4.0  
-
-
µs  
SCL “L” level time  
SCL “H” level time  
tLOW  
tHIGH  
-
-
4.7  
4.0  
-
-
-
-
µs  
µs  
SCL setup time  
(restart condition)  
tSU:STA  
-
4.7  
-
-
µs  
SDA hold time  
SDA setup time  
tHD:DAT  
tSU:DAT  
-
-
0
-
-
-
-
µs  
µs  
0.25  
SDA setup time  
(stop condition)  
tSU:STO  
tBUF  
-
-
4.0  
4.7  
-
-
-
-
µs  
µs  
Bus-free time  
When using the I2C as the master, configure the I2C master n mode register (I2MnMOD) and I2C bus 0 mode register  
(master side, I2UM0MOD) so that meet these specifications.  
Start  
Condition  
Re-start  
Condition  
Stop  
Condition  
I2CUn_SDA  
I2CMn_SDA  
0.7×VDD  
0.3×VDD  
0.7×VDD  
0.3×VDD  
I2CUn_SCL  
I2CMn_SCL  
tSU:STO  
F  
tHD:STA  
tLOW  
tSU:STA tHD:STA  
tSU:DAT tHD:DAT  
tHIGH  
n0 to 1  
33/57  
FEDL62Q1500C-03  
Fast Mode 400kbps  
Parameter  
(VDD=1.8 to 5.5V, VSS =0V, Ta=40 to +105οC, unless otherwise specified)  
Symbol  
Condition  
-
Min.  
0
Typ.  
-
Max.  
400  
Unit  
kHz  
SCL clock frequency  
fSCL  
SCL hold time  
(start/restart condition)  
tHD:STA  
-
0.6  
-
-
µs  
SCL “L” level time  
SCL “H” level time  
tLOW  
tHIGH  
-
-
1.3  
0.6  
-
-
-
-
µs  
µs  
SCL setup time  
(restart condition)  
tSU:STA  
-
0.6  
-
-
µs  
SDA hold time  
SDA setup time  
tHD:DAT  
tSU:DAT  
-
-
0
-
-
-
-
µs  
µs  
0.1  
SDA setup time  
(stop condition)  
tSU:STO  
-
0.6  
-
-
µs  
Bus-free time  
tBUF  
-
1.3  
-
-
µs  
When using the I2C as the master, configure the I2C master n mode register (I2MnMOD) and I2C bus 0 mode register  
(master side, I2UM0MOD) so that meet these specifications.  
Start  
Condition  
Re-start  
Condition  
Stop  
Condition  
I2CUn_SDA  
I2CMn_SDA  
0.7×VDD  
0.3×VDD  
0.7×VDD  
0.3×VDD  
I2CUn_SCL  
I2CMn_SCL  
tSU:STO  
F  
tHD:STA  
tLOW  
tSU:STA tHD:STA  
tSU:DAT tHD:DAT  
tHIGH  
n0 to 1  
34/57  
FEDL62Q1500C-03  
1Mbps Mode  
Parameter  
(VDD=2.7 to 5.5V, VSS =0V, Ta=40 to +105οC, unless otherwise specified)  
Symbol  
Condition  
-
Min.  
0
Typ.  
-
Max.  
1000  
Unit  
kHz  
SCL clock frequency  
fSCL  
SCL hold time  
(start/restart condition)  
tHD:STA  
-
0.26  
-
-
µs  
SCL “L” level time  
SCL “H” level time  
tLOW  
tHIGH  
-
-
0.5  
-
-
-
-
µs  
µs  
0.26  
SCL setup time  
(restart condition)  
tSU:STA  
-
0.26  
-
-
µs  
SDA hold time  
SDA setup time  
tHD:DAT  
tSU:DAT  
-
-
0
-
-
-
-
µs  
µs  
0.1  
SDA setup time  
(stop condition)  
tSU:STO  
-
0.26  
-
-
µs  
Bus-free time  
tBUF  
-
0.5  
-
-
µs  
When using the I2C as the master, configure the I2C master n mode register (I2MnMOD) and I2C bus 0 mode register  
(master side, I2UM0MOD) so that meet these specifications.  
Start  
Condition  
Re-start  
Condition  
Stop  
Condition  
I2CUn_SDA  
I2CMn_SDA  
0.7×VDD  
0.3×VDD  
0.7×VDD  
0.3×VDD  
I2CUn_SCL  
I2CMn_SCL  
tSU:STO  
F  
tHD:STA  
tLOW  
tSU:STA tHD:STA  
tSU:DAT tHD:DAT  
tHIGH  
n0 to 1  
35/57  
FEDL62Q1500C-03  
Reset  
(VDD=1.6 to 5.5V, VSS =0V, Ta=40 to +105οC, unless otherwise specified)  
Measur  
ing  
circuit  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
Reset pulse width*2  
P00 “H” level setup time*1  
P00 “H” level hold time*1  
PRST  
tSP00  
tHP00  
-
-
-
2
1
1
-
-
-
-
-
-
ms  
ms  
ms  
1
*1: The specification is for except the ISP mode. See Chapter 25.4 “In-System Programing Function” in the User’s  
Manual for the timing in ISP mode.  
*2: It means the time after the voltage of VDD reached to 1.6V or higher in the case of power on.  
VIH1  
RESET_N  
VIL1  
VIL1  
PRST  
VIH2  
VIH2  
“H” level or “L” level  
“H” level input  
“H” level or “L” level  
P00/TEST0  
tSP00  
tHP00  
[Note]  
Do not drive a pulse into the RESET_N pin that has the pulse width shorter than the Reset pulse width  
(PRST), otherwise unexpected operation may possibly happen.  
36/57  
FEDL62Q1500C-03  
Slope of Power supply and Power on Reset  
(VSS =0V, Ta=40 to +105οC, unless otherwise specified)  
Measur  
ing  
circuit  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
Power on rising slope  
Power on falling slope  
SVR  
SVF  
-
-
-
60  
2
V/ms  
V/ms  
V
-
-
-
VPORR  
VPORF  
Power up (rising)  
Power down (falling)  
1.47  
1.33  
1.57  
1.49  
1.80  
1.58  
Power on reset detection  
voltage  
V
Power on reset minimum  
pulse width  
1
PPOR  
VINIT  
-
200  
1.8  
-
-
-
-
µs  
Power on voltage  
At power on  
V
CPU operation start time  
(from the release of reset to  
the CPU starts to run)  
tCPUI  
-
11  
16  
-
ms  
At Power supply voltage level change  
SVF  
SVR  
At Power supply restart  
SVF  
SVR  
SVR  
VDD  
VINIT  
VPORR  
VPORF  
0V  
PPOR  
tCPUI  
At Power on  
At Power off  
[Note]  
If a pulse shorter than the Power on reset minimum pulse width is asserted to VDD, it may cause the MCU  
malfunction.  
Apply prevent measurement such as bypass capacitors or external reset input, and so on.  
Start the high-speed clock when the VDD is within the operating voltage.  
37/57  
FEDL62Q1500C-03  
VLS  
(VDD=1.6 to 5.5V, VSS =0V, Ta=40 to +105οC, unless otherwise specified)  
Condition  
VLS0LV *1  
Measuring  
circuit  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
VVLSR  
VVLSF  
VVLSR  
VVLSF  
VVLSR  
VVLSF  
VVLSR  
VVLSF  
VVLSR  
VVLSF  
VVLSR  
VVLSF  
VVLSR  
VVLSF  
VVLSR  
VVLSF  
VVLSR  
VVLSF  
VVLSR  
VVLSF  
VVLSR  
VVLSF  
VVLSR  
VVLSF  
IVLS  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
Falling  
3.86  
3.84  
3.57  
3.55  
2.94  
2.92  
2.85  
2.83  
2.75  
2.73  
2.66  
2.64  
2.56  
2.54  
2.46  
2.44  
2.37  
2.35  
1.98  
1.96  
1.89  
1.87  
1.79  
1.77  
-
4.06  
4.00  
3.76  
3.70  
3.11  
3.05  
3.01  
2.95  
2.91  
2.85  
2.81  
2.75  
2.71  
2.65  
2.61  
2.55  
2.51  
2.45  
2.11  
2.05  
2.01  
1.95  
1.91  
1.85  
50  
4.26  
4.16  
3.95  
3.85  
3.28  
3.18  
3.17  
3.07  
3.07  
2.97  
2.96  
2.86  
2.86  
2.76  
2.76  
2.66  
2.65  
2.55  
2.24  
2.14  
2.13  
2.03  
2.03  
1.93  
-
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
VLS threshold  
voltage *2  
V
1
VLS Current  
-
nA  
*1 Bit3~Bit0 of voltage level detection circuit 0 level register (VLS0LV).  
*2 The Data VSL0LV = 0CH~0FH is not available to use, if the data is specified it will the same spec as that 0BH is  
specified.  
Analog Comparator  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105oC, unless otherwise specified)  
Measuring  
Symbol  
VCMR  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
circuit  
Comparator same  
phase input  
voltage range  
VDD  
-1.5  
-
0.1  
-
V
Comparator0 input  
offset  
1
VCMOF  
Ta=+25 OCVDD=5.0V  
-
5
-
mV  
V
Comparator  
Reference Voltage  
VCMREF  
-
0.75  
0.8  
0.85  
38/57  
FEDL62Q1500C-03  
Successive Approximation Type A/D Converter  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105  
Symbol  
Parameter  
Resolution  
Overall error  
Condition  
-
Min.  
-
Typ.  
nAD  
-
-
4.5VVREFP *15.5V  
2.7VVREFP *15.5V  
2.2VVREFP *1<2.7V  
1.8VVREFP *1<2.2V  
VREFP=Internal reference voltage  
2.7VVREFP *15.5V  
2.2VVREFP *1<2.7V  
1.8VVREFP *1<2.2V  
VREFP=Internal reference voltage  
RI1kΩ  
-3.5  
-4  
1.2  
-
-6  
-
Integral non-linearity error  
INLAD  
-10  
-15  
-3  
-
-
-
-5  
-
Differential non-linearity  
error  
DNLAD  
-9  
-
-14  
-6  
-
Zero-scale error  
Full-scale error  
ZSE  
FSE  
VREF  
VREFI  
-
RI1kΩ  
-6  
-
A/D reference voltage  
Internal reference voltage  
-
1.8  
1.5  
2.25  
4.5  
18  
-
-
1.55  
4.5VVDD5.5V  
2.2VVDD5.5V  
1.8VVDD5.5V  
-
-
-
Conversion time  
tCONV  
*1 : VDD or P23/VREF is selected for the reference voltage of Successive Approximation Type A/D Converter.  
The current flows during the ADC sampling as it takes charging. Make the output impedance of the analog signal source 1kΩ or smal  
0.1uF capacitor on the ADC input pin is recommended to reduce the noise.  
VDD  
VDDL  
1.0μF  
A
RI1kΩ  
0.1μF  
-
1.0μF  
AINx  
Analog input  
+
VSS  
39/57  
FEDL62Q1500C-03  
D/A Converter  
Parameter  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105oC, unless otherwise specified)  
Symbol  
nDA  
Condition  
Min.  
-
Typ.  
Max.  
Unit  
bit  
Resolution  
-
-
-
-
8
-
Conversion cycle  
tc  
-
10  
-2  
μs  
Integral non-linearity error  
INLDA  
RL=4MΩ  
2
LSB  
Differential non-linearity  
error  
DNLDA  
Ro  
RL=4MΩ  
-1  
3
-
1
9
DACEN bit of D/A converter enable  
register =1  
Output impedance  
6
kΩ  
Reference Voltage Output  
(VDD=1.8 to 5.5V, VSS =0V, Ta=-40 to +105oC, unless otherwise specified)  
Symbol  
VREFO  
Parameter  
Output voltage  
Output impedance  
Condition  
Min.  
Typ.  
1.55  
-
Max.  
-
Unit  
V
-
-
-
-
RVREFO  
500  
kΩ  
Flash Memory  
(VSS= 0V)  
Unit  
Symbol  
TOP  
Parameter  
Condition  
Data flash memory, At write/erase  
Flash ROM, At write/erase  
At write/erase  
Range  
-40 to +85  
0 to +40  
Operating temperature  
Operating voltage  
°C  
V
VDD  
+1.8 to +5.5  
10000  
100  
CEPD  
CEPP  
Data Flash  
Maximum rewrite count  
times  
Program Flash  
Program Flash  
Block erase  
16K  
-
B
Data Flash  
all area  
1K  
Erase unit  
Program Flash  
Sector erase  
-
-
-
B
ms  
B
Data Flash  
128  
Block erase /  
Sector erase  
Erase time (Max.)  
Write unit  
50  
Program Flash  
Data Flash  
Program Flash  
Data Flash  
-
4
1
-
-
80  
40  
15  
Write time (Max.)  
μs  
Data retention period  
YDR  
years  
40/57  
FEDL62Q1500C-03  
Measuring circuit  
Measuring circuit 1  
CV : 1.0μF  
CL : 1.0μF  
CGL : 12pF  
CDL : 12pF  
VDD  
VDDL  
VSS  
XT0  
Crystal resonator  
(32.768kHz)  
CGL  
XT1  
A
CV  
CL  
Measuring circuit 2  
(*2)  
VIH  
V
(*1)  
Current  
load  
VIL  
VDD  
VDDL  
VSS  
(*1) Input logic circuit to determine the specified measuring conditions  
(*2) Measured connecting specified pins  
Measuring circuit 3  
(*2)  
A
VIH  
(*1)  
VIL  
VDD  
VDDL  
VSS  
(*1) Input logic circuit to determine the specified measuring conditions  
(*2) Measured connecting specified pins  
41/57  
FEDL62Q1500C-03  
Measuring circuit 4  
(*2)  
A
VDD  
VSS  
VDDL  
(*2) Measured connecting specified pins  
Measuring circuit 5  
VIH  
(*1)  
VIL  
VDD  
VDDL  
VSS  
(*1) Input logic circuit to determine the specified measuring conditions  
42/57  
FEDL62Q1500C-03  
Characteristics graphs  
These Graphs on the following pages are references for designing an application.  
43/57  
FEDL62Q1500C-03  
IOH vs VDD-VOH1 (VDD=5V TYP.)  
IOH vs VDD-VOH1 (VDD=5V TYP.)  
-40[]  
25[]  
85[]  
105[]  
5
4
3
2
1
0
-60  
-50  
-40  
-30  
-20  
-10  
0
IOH[mA]  
IOH vs VDD-VOH1 (VDD=3V TYP.)  
IOH vs VDD-VOH1 (VDD=3V TYP.)  
-40[]  
25[]  
85[]  
105[]  
3
2.5  
2
1.5  
1
0.5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
IOH[mA]  
44/57  
FEDL62Q1500C-03  
IOL vs VOL1 (VDD=5V TYP.)  
IOL vs VOL1 (VDD=5V TYP.)  
-40[]  
25[]  
85[]  
105[]  
5
4
3
2
1
0
0
10  
20  
30  
40  
50  
IOL[mA]  
IOL vs VOL1 (VDD=3V TYP.)  
IOL vs VOL1 (VDD=3V TYP.)  
-40[]  
25[]  
85[]  
105[]  
3
2.5  
2
1.5  
1
0.5  
0
0
5
10  
15  
20  
IOL[mA]  
45/57  
FEDL62Q1500C-03  
IOL vs VOL2 (VDD=5V TYP.)  
IOL vs VOL2 (VDD=5V TYP.)  
-40[]  
25[]  
85[]  
105[]  
5
4
3
2
1
0
0
20  
40  
60  
80  
100  
IOL[mA]  
IOL vs VOL2 (VDD=3V TYP.).  
IOL vs VOL2 (VDD=3V TYP.)  
-40[]  
25[]  
85[]  
105[]  
3
2.5  
2
1.5  
1
0.5  
0
0
10  
20  
30  
40  
50  
IOL[mA]  
46/57  
FEDL62Q1500C-03  
VDD VS IIL2 (TYP. VIL2=VSS)  
VDD vs IIL2 (TYP. VIL2=VSS)  
-40℃  
25℃  
85℃  
105℃  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
1
2
3
4
5
6
VDD[V]  
Pull-up resistor  
VDD VS VDD/IIL2 (TYP. VIL2=VSS)  
Pull-up resistor  
VDD vs VDD/IIL2 (TYP. VIL2=VSS)  
-40℃  
25℃  
85℃  
105℃  
14  
12  
10  
8
6
4
2
0
1
2
3
4
5
6
VDD[V]  
47/57  
FEDL62Q1500C-03  
VDD VS IIL3 (TYP. VIL3=VSS)  
VDD vs IIL3 (TYP. VIL3=VSS)  
-40℃  
25℃  
85℃  
105℃  
0
-50  
-100  
-150  
-200  
1
2
3
4
5
6
VDD[V]  
Pull-up resistor  
VDD VS VDD/IIL3 (TYP. VIL3=VSS)  
Pull-up resistor  
VDD vs VDD/IIL3 (TYP. VIL3=VSS)  
-40℃  
25℃  
85℃  
105℃  
350  
300  
250  
200  
150  
100  
50  
0
1
2
3
4
5
6
VDD[V]  
48/57  
FEDL62Q1500C-03  
Consumption current of ADC VS operating voltage  
PLL frequency=16MHz temp=25oC ch0 VREF=VDD  
consumption current of ADC  
(PLL frequency=16MHz temp=25oC ch0 VREF=VDD )  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
2
2.5  
3
3.5  
VDD [V]  
4
4.5  
5
5.5  
49/57  
FEDL62Q1500C-03  
TEMP VS Low-speed RC oscillator frequency accuracy 1  
without software adjustment (Typ.)  
Low-speed RC oscillator frequency accuracy 1  
without software adjustment (Typ.)  
VDD=1.8V  
VDD=3V  
VDD=5.5V  
4
3
2
1
0
-1  
-2  
-3  
-4  
-40  
-20  
0
20  
40  
60  
80  
100  
Temp[oC]  
TEMP VS PLL oscillator frequency accuracy 1  
without software adjustment (24MHz Typ.)  
PLL oscillator frequency accuracy 1  
without software adjustment (24MHz Typ.)  
VDD=1.8V  
VDD=3V  
VDD=5.5V  
4
3
2
1
0
-1  
-2  
-3  
-4  
-40  
-20  
0
20  
40  
60  
80  
100  
Temp[oC]  
50/57  
FEDL62Q1500C-03  
PACKAGE DIMENSIONS  
52pin TQFP Package  
(Unit: mm)  
Notes for Mounting the Surface Mount Type Package  
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore,  
before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package  
code and desired mounting conditions (reflow method, temperature and times).  
51/57  
FEDL62Q1500C-03  
64pin TQFP Package  
(Unit: mm)  
Notes for Mounting the Surface Mount Type Package  
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore,  
before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package  
code and desired mounting conditions (reflow method, temperature and times).  
52/57  
FEDL62Q1500C-03  
64pin QFP Package  
(Unit: mm)  
Notes for Mounting the Surface Mount Type Package  
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore,  
before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package  
code and desired mounting conditions (reflow method, temperature and times).  
53/57  
FEDL62Q1500C-03  
80pin QFP Package  
(Unit: mm)  
Notes for Mounting the Surface Mount Type Package  
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore,  
before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package  
code and desired mounting conditions (reflow method, temperature and times).  
54/57  
FEDL62Q1500C-03  
REVISION HISTORY  
Page  
Document  
No.  
Date  
Description  
Previous Current  
Edition  
Edition  
FEDL62Q1500C-01  
Nov 15, 2019  
-
-
1st Revision.  
Changed comment for UART.  
4, 8  
21  
4, 8  
21  
Changed note for Termination of unused pins.  
Added parameter “Operating temperature (Chip-Junction)”  
in Recommended Operating Conditions  
22  
22  
Removed the section “Operation Confirmed Crystal  
Unit(32.768kHz)”.  
This section is mentioned in Applications Note;  
“Operation-confirmed oscillator for ML62Q1000 series”.  
FEDL62Q1500C-02  
Jul 28, 2020  
23  
-
-
37  
*
23  
37  
*
Added thermal characteristics section  
Changed note for Slope of Power supply and Power on Reset.  
Corrected typo  
*
*
Corrected Typo  
FEDL62Q1500C-03  
May 19, 2022  
-
56  
Added Notes for product usage  
55/57  
FEDL62Q1500C-03  
Notes for product usage  
Notes on this page are applicable to the all microcontroller products.  
For individual notes on each LAPIS Technology microcontroller product, refer to [Note]  
in the chapters of each user's manual.  
The individual notes of each user’s manual take priority over those contents in this page if they are different.  
1. HANDLING OF UNUSED INPUT PINS  
Fix the unused input pins to the power pin or GND to prevent to cause the device performing wrong operation or  
increasing the current consumption due to noise, etc. If the handlings for the unused pins are described in the chapters,  
follow the instruction.  
2. STATE AT POWER ON  
At the power on, the data in the internal registers and output of the ports are undefined until the power supply voltage  
reaches to the recommended operating condition and "L" level is input to the reset pin.  
On LAPIS Technology microcontroller products that have the power on reset function, the data in the internal registers  
and output of the ports are undefined until the power on reset is generated.  
Be careful to design the application system does not work incorrectly due to the undefined data of internal registers and  
output of the ports.  
3. ACCESS TO UNUSED MEMORY  
If reading from unused address area or writing to unused address area of the memory, the operations are not guaranteed.  
4. CHARACTERISTICS DIFFERENCE BETWEEN THE PRODUCTS  
Electrical characteristics, noise tolerance, noise radiation amount, and the other characteristics are different from each  
microcontroller product.  
When replacing from other product to LAPIS Technology microcontroller products, please evaluate enough the  
apparatus/system which implemented LAPIS Technology microcontroller products.  
5. USE ENVIRONMENT  
When using this product in a high humidity environment and an environment where dew condensation, take  
moisture-proof measures.  
56/57  
FEDL62Q1500C-03  
Notes  
1) The information contained herein is subject to change without notice.  
2) When using LAPIS Technology Products, refer to the latest product information (data sheets, user’s manuals, application notes, etc.), and  
ensure that usage conditions (absolute maximum ratings, recommended operating conditions, etc.) are within the ranges specified. LAPIS  
Technology disclaims any and all liability for any malfunctions, failure or accident arising out of or in connection with the use of LAPIS  
Technology Products outside of such usage conditions specified ranges, or without observing precautions. Even if it is used within such  
usage conditions specified ranges, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent  
personal injury, fire or the other damage from break down or malfunction of LAPIS Technology Products, please take safety at your own  
risk measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing  
backups and fail-safe procedures. You are responsible for evaluating the safety of the final products or systems manufactured by you.  
3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard operation of  
semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software,  
and information in the design of your product or system. And the peripheral conditions must be taken into account when designing circuits  
for mass production. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising  
from the use of these circuits, software, and other related information.  
4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Technology or any third  
party with respect to LAPIS Technology Products or the information contained in this document (including but not limited to, the Product  
data, drawings, charts, programs, algorithms, and application examplesetc.). Therefore LAPIS Technology shall have no responsibility  
whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.  
5) The Products are intended for use in general electronic equipment (AV/OA devices, communication, consumer systems,  
gaming/entertainment sets, etc.) as well as the applications indicated in this document. For use of our Products in applications requiring a  
high degree of reliability (as exemplified below), please be sure to contact a LAPIS Technology representative and must obtain written  
agreement: transportation equipment (cars, ships, trains, etc.), primary communication equipment, traffic lights, fire/crime prevention,  
safety equipment, medical systems, servers, solar cells, and power transmission systems, etc. LAPIS Technology disclaims any and all  
liability for any losses and damages incurred by you or third parties arising by using the Product for purposes not intended by us. Do not use  
our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and  
submarine repeaters, etc.  
6) The Products specified in this document are not designed to be radiation tolerant.  
7) LAPIS Technology has used reasonable care to ensure the accuracy of the information contained in this document. However, LAPIS  
Technology does not warrant that such information is error-free and LAPIS Technology shall have no responsibility for any damages arising  
from any inaccuracy or misprint of such information.  
8) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. LAPIS  
Technology shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.  
9) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and  
provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations  
and the Foreign Exchange and Foreign Trade Act..  
10) Please contact a ROHM sales office if you have any questions regarding the information contained in this document or LAPIS Technology's  
Products.  
11) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Technology.  
(Note) “LAPIS Technology” as used in this document means LAPIS Technology Co., Ltd.  
Copyright 2018 – 2022 LAPIS Technology Co., Ltd.  
2-4-8 Shinyokohama, Kouhoku-ku,Yokohama 222-8575, Japan  
https://www.lapis-tech.com/en/  
57/57  

相关型号:

ML62Q1544

ML62Q1500/ML62Q1800系列是内置16位CPU nX-U16/100、并集成了程序存储器(FLASH存储器)、数据存储器(RAM)、DATA FLASH、乘除法运算器、CRC运算器、DMA控制器、时钟发生电路、定时器、通用端口、简易RTC、UART、同步串行端口、I2C总线(主/从)、蜂鸣器、电压电平检测功能(VLS)、逐次比较型A/D转换器、D/A转换器、模拟比较器、安全功能等丰富外围功能的高性能CMOS 16位微控制器。16位CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q1500/ML62Q1800系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的FLASH写入功能。
ROHM

ML62Q1544C

标准型 ML62Q1500组 ROM容量:32KB to 256KB
ROHM

ML62Q1550

ML62Q1500/ML62Q1800系列是内置16位CPU nX-U16/100、并集成了程序存储器(FLASH存储器)、数据存储器(RAM)、DATA FLASH、乘除法运算器、CRC运算器、DMA控制器、时钟发生电路、定时器、通用端口、简易RTC、UART、同步串行端口、I2C总线(主/从)、蜂鸣器、电压电平检测功能(VLS)、逐次比较型A/D转换器、D/A转换器、模拟比较器、安全功能等丰富外围功能的高性能CMOS 16位微控制器。16位CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q1500/ML62Q1800系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的FLASH写入功能。
ROHM

ML62Q1551

ML62Q1500/ML62Q1800系列是内置16位CPU nX-U16/100、并集成了程序存储器(FLASH存储器)、数据存储器(RAM)、DATA FLASH、乘除法运算器、CRC运算器、DMA控制器、时钟发生电路、定时器、通用端口、简易RTC、UART、同步串行端口、I2C总线(主/从)、蜂鸣器、电压电平检测功能(VLS)、逐次比较型A/D转换器、D/A转换器、模拟比较器、安全功能等丰富外围功能的高性能CMOS 16位微控制器。16位CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q1500/ML62Q1800系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的FLASH写入功能。
ROHM

ML62Q1552

ML62Q1500/ML62Q1800系列是内置16位CPU nX-U16/100、并集成了程序存储器(FLASH存储器)、数据存储器(RAM)、DATA FLASH、乘除法运算器、CRC运算器、DMA控制器、时钟发生电路、定时器、通用端口、简易RTC、UART、同步串行端口、I2C总线(主/从)、蜂鸣器、电压电平检测功能(VLS)、逐次比较型A/D转换器、D/A转换器、模拟比较器、安全功能等丰富外围功能的高性能CMOS 16位微控制器。16位CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q1500/ML62Q1800系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的FLASH写入功能。
ROHM

ML62Q1553

ML62Q1500/ML62Q1800系列是内置16位CPU nX-U16/100、并集成了程序存储器(FLASH存储器)、数据存储器(RAM)、DATA FLASH、乘除法运算器、CRC运算器、DMA控制器、时钟发生电路、定时器、通用端口、简易RTC、UART、同步串行端口、I2C总线(主/从)、蜂鸣器、电压电平检测功能(VLS)、逐次比较型A/D转换器、D/A转换器、模拟比较器、安全功能等丰富外围功能的高性能CMOS 16位微控制器。16位CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q1500/ML62Q1800系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的FLASH写入功能。
ROHM

ML62Q1553C

标准型 ML62Q1500组 ROM容量:32KB to 256KB
ROHM

ML62Q1554

ML62Q1500/ML62Q1800系列是内置16位CPU nX-U16/100、并集成了程序存储器(FLASH存储器)、数据存储器(RAM)、DATA FLASH、乘除法运算器、CRC运算器、DMA控制器、时钟发生电路、定时器、通用端口、简易RTC、UART、同步串行端口、I2C总线(主/从)、蜂鸣器、电压电平检测功能(VLS)、逐次比较型A/D转换器、D/A转换器、模拟比较器、安全功能等丰富外围功能的高性能CMOS 16位微控制器。16位CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q1500/ML62Q1800系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的FLASH写入功能。
ROHM

ML62Q1554C

标准型 ML62Q1500组 ROM容量:32KB to 256KB
ROHM

ML62Q1555

ML62Q1500/ML62Q1800系列是内置16位CPU nX-U16/100、并集成了程序存储器(FLASH存储器)、数据存储器(RAM)、DATA FLASH、乘除法运算器、CRC运算器、DMA控制器、时钟发生电路、定时器、通用端口、简易RTC、UART、同步串行端口、I2C总线(主/从)、蜂鸣器、电压电平检测功能(VLS)、逐次比较型A/D转换器、D/A转换器、模拟比较器、安全功能等丰富外围功能的高性能CMOS 16位微控制器。16位CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q1500/ML62Q1800系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的FLASH写入功能。
ROHM

ML62Q1556

ML62Q1500/ML62Q1800系列是内置16位CPU nX-U16/100、并集成了程序存储器(FLASH存储器)、数据存储器(RAM)、DATA FLASH、乘除法运算器、CRC运算器、DMA控制器、时钟发生电路、定时器、通用端口、简易RTC、UART、同步串行端口、I2C总线(主/从)、蜂鸣器、电压电平检测功能(VLS)、逐次比较型A/D转换器、D/A转换器、模拟比较器、安全功能等丰富外围功能的高性能CMOS 16位微控制器。16位CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q1500/ML62Q1800系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的FLASH写入功能。
ROHM

ML62Q1557

ML62Q1500/ML62Q1800系列是内置16位CPU nX-U16/100、并集成了程序存储器(FLASH存储器)、数据存储器(RAM)、DATA FLASH、乘除法运算器、CRC运算器、DMA控制器、时钟发生电路、定时器、通用端口、简易RTC、UART、同步串行端口、I2C总线(主/从)、蜂鸣器、电压电平检测功能(VLS)、逐次比较型A/D转换器、D/A转换器、模拟比较器、安全功能等丰富外围功能的高性能CMOS 16位微控制器。16位CPU nX-U16/100可通过流水线架构的并行处理实现一个时钟周期一个指令的高效指令执行。ML62Q1500/ML62Q1800系列具有片上调试功能,可在开发板上进行软件调试及软件改写。另外还具有ISP(In-System Programming)功能,可轻松实现在量产生产线上的FLASH写入功能。
ROHM