LM2904DR [ROHM]

TROPHY SERIES Operational Amplifiers; 奖杯系列运算放大器
LM2904DR
型号: LM2904DR
厂家: ROHM    ROHM
描述:

TROPHY SERIES Operational Amplifiers
奖杯系列运算放大器

运算放大器
文件: 总18页 (文件大小:789K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
General-purpose Operational Amplifiers / Comparators  
TROPHY SERIES  
Operational Amplifiers  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
No.11094EBT02  
Description  
TROPHY  
SERIES  
The Universal Standard family LM358 / 324 and  
LM2904 / 2902 monolithic ICs integrate two independent  
op-amp circuits and phase compensation capacitors  
on a single chip, feature high gain and low power  
consumption, and possess an operating voltage range  
Dual  
Quad  
between 3[V]and 32[V] (single power supply.)  
LM358 family  
LM358DR  
LM2904 family  
LM2904DR  
LM324 family  
LM324DR  
LM2902 family  
LM2902DR  
LM2904PWR  
LM2902PWR  
LM2902KDR  
LM2902KPWR  
LM2902KVQDR  
LM2902KVQPWR  
LM358PWR  
LM358DGKR  
LM324PWR  
LM324KDR  
LM2904DGKR  
LM2904VQDR  
LM2904VQPWR  
Features  
1) Operating temperature range  
Commercial Grade  
LM358/324 family  
LM2904/2902 family :  
:
0[] to + 70[]  
-40[] to +125[]  
Extended Industrial Grade  
2) Wide operating voltage range  
+3[V] to +32[V] (single supply)  
±1.5[V] to ±16[V] (dual supply)  
3) Low supply current  
4) Common-mode input voltage range, including ground  
5) Differential input voltage range equal to maximum ratedsupply voltage  
6) High large signal voltage gain  
7) Wide output voltage range  
Pin Assignment  
1
2
3
4
5
6
7
14  
1OUT  
1IN-  
4OUT  
Vcc  
1OUT  
1IN-  
1
2
3
4
8
7
6
5
13  
4IN-  
12  
1IN+  
Vcc  
4IN+  
2OUT  
2IN-  
- +  
11  
GND  
1IN+  
GND  
10  
2IN+  
2IN-  
3IN+  
+ -  
9
3IN-  
2IN+  
8
2OUT  
3OUT  
TSSOP14  
SOIC8  
TSSOP8  
MSOP8/VSSOP8  
SOIC14  
LM358DR  
LM358PWR  
LM358DGKR  
LM2904DGKR  
LM324DR  
LM324PWR  
LM2904DR  
LM2904VQDR  
LM2904PWR  
LM2904VQPWR  
LM324KDR  
LM2902DR  
LM2902KDR  
LM2902PWR  
LM2902KPWR  
LM2902KVQPWR  
LM2902KVQDR  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
1/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
Absolute Maximum Ratings (Ta=25[])  
Ratings  
LM2904 LM2902 LM2904V LM2902V  
family family family family  
Parameter  
Symbol  
Unit  
LM358  
family  
LM324  
family  
Supply Voltage  
Vcc-GND  
Topr  
+32  
+26  
+32  
-40 to +125  
V
V
Operating Temperature Range  
Storage Temperature Range  
Input Common-mode Voltage  
Maximum Junction Temperature  
0 to +70  
Tstg  
-65 to +150  
-0.3 to +26  
150  
VICM  
Tjmax  
-0.3 to +32  
-0.3 to +32  
Electric Characteristics  
LM358,LM324 family (Unless otherwise specified, Vcc=+5[V])  
Limits  
Temperature  
Fig.  
No  
Parameter  
Symbol  
LM358 family  
LM324 family  
Min. Typ. Max.  
Unit  
Conditions  
range  
Min.  
Typ.  
3
Max.  
VO=1.4[V]  
25℃  
7
9
3
7
9
Input Offset Voltage (*1)  
Input Offset Voltage Drift  
Input Offset Current (*1)  
Input Offset Current Drift  
Input Bias Current (*1)  
VIO  
αVIO  
IIO  
mV VIC=VICR(min)  
Vcc=5[V] to 30[V]  
98  
98  
98  
98  
99  
Full range  
7
μV/℃  
25℃  
2
50  
2
50  
nA VO=1.4[V]  
Full range  
150  
150  
αIIO  
10  
pA/℃  
25℃  
Full range  
25℃  
20  
28  
250  
500  
20  
28  
250  
500  
IIB  
nA VO=1.4[V]  
0
Vcc-1.5  
Vcc-2.0  
Vcc-1.5  
Vcc-2.0  
Input Common-modeVoltage Range  
High Level Output Voltage  
Low Level Output Voltage  
Large Signal Voltage Gain  
Common-mode Rejection Ratio  
Supply-Voltage rejection ratio  
Cross-talk Attenuation  
VICR  
VOH  
V
V
Vcc=5[V] to 30[V]  
Full range  
25℃  
0
Vcc-1.5  
27  
Vcc-1.5  
27  
RL2[k]  
Full range  
Vcc=30[V],RL10[k]  
VOL  
Full range  
25℃  
25  
65  
65  
5
20  
25  
65  
65  
5
20  
mV RL10[k]  
98  
98  
Vcc=15[V]  
VO=1[V] to 11[V]  
RL2[k]  
AVD  
100  
80  
100  
80  
V/mV  
dB  
Vcc=5[V] to 30[V],  
VIC=VICR(min)  
CMRR  
KSVR  
VO1/VO2  
Source  
25℃  
98  
98  
25℃  
100  
120  
100  
120  
dB Vcc=5[V] to 30[V]  
dB f=1[kHz] to 20[kHz]  
25℃  
101  
25℃  
Full range  
25℃  
20  
10  
10  
2
30  
1.2  
20  
10  
10  
2
30  
1.2  
Vcc=15[V],VO=0[V]  
VID=1[V]  
mA  
Output Current (*2)  
20  
20  
99  
Vcc=15[V],VO=0[V]  
VID=-1[V]  
mA  
Sink  
Full range  
25℃  
12  
30  
0.7  
12  
30  
0.7  
μA VO=200[mV],VID=-1[V]  
Full range  
VO=2.5[V],No Load  
Supply Current (All Amps)  
ICC  
SR  
mA  
99  
99  
Vcc=30[V],VO=0.5[V]  
No Load  
RL=1[M],CL=30[pF]  
VI=±10[V]  
Vcc=15[V],GND=-15[V]  
(reference to Fig100)  
RL=1[M],CL=20[pF]  
Full range  
1
2
1.4  
3
Slew Rate at Unity-Gain  
Unity Gain Bandwidth  
25℃  
0.3  
0.5  
V/μs  
B1  
Vn  
25℃  
25℃  
0.7  
40  
1.2  
35  
MHz Vcc=15[V],GND=-15[V]  
(reference to Fig99)  
99  
99  
Vcc=15[V],GND=-15[V]  
nV/ Hz RS=100[],VI=0[V]  
f=1[kHz](reference to Fig99)  
Equivalent Input Noise Voltage  
(*1) Absolute value  
(*2) Under high temperature, consider the power dissipation of IC when selecting the output current.  
When the output terminal is continuously shorted, the output current reduces the temperature inside the IC by flushing.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
2/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
LM2904,LM2902 family (Unless otherwise specified, Vcc=+5[V])  
Limits  
Temperature  
range  
Fig.  
Parameter  
Symbol  
LM2904 family  
LM2902 family  
Unit  
Conditions  
No  
Min.  
Typ.  
3
Max.  
Min.  
Typ.  
3
Max.  
25℃  
7
7
VO=1.4[V],VIC=VICR(min)  
Vcc=5[V] to MAX(*5)  
Input Offset Voltage (*3)  
Input Offset Voltage Drift  
VIO  
mV  
98  
Full range  
10  
10  
αVIO  
7
7
μV/℃  
25℃  
Full range  
25℃  
2
2
50  
300  
50  
2
2
50  
300  
50  
LM2904  
LM2902(*5)  
Input Offset  
Current (*3)  
IIO  
nA VO=1.4[V]  
98  
LM2904V  
LM2902V(*5)  
Full range  
150  
150  
Input Offset Current Drift  
Input Bias Current (*3)  
αIIO  
IIB  
10  
10  
pA/℃  
98  
98  
25℃  
Full range  
25℃  
20  
250  
500  
20  
250  
500  
nA VO=1.4[V]  
Vcc-1.5  
Vcc-2.0  
Vcc-1.5  
Vcc-2.0  
Input Common-mode  
Voltage Range  
VICR  
V
V
Vcc=5[V] to MAX(*5)  
Full range  
25℃  
Vcc-1.5  
Vcc-1.5  
RL10[k]  
High Level Output Voltage  
LM2904  
LM2902(*5)  
LM2904V  
LM2902V(*5)  
Full range  
Full range  
23  
27  
24  
28  
23  
27  
24  
Vcc=MAX(*5),RL10[k]  
VOH  
99  
Vcc=MAX(*5),RL10[k]  
Low Level  
Output Voltage  
VOL  
AVD  
Full range  
5
20  
5
20  
mV RL10[k]  
99  
98  
Large Signal  
Voltage Gain  
Vcc=15[V],VO=1[V] to 11[V]  
25℃  
25  
100  
25  
100  
V/mV  
RL2[k]  
LM2904  
LM2902(*5)  
mode Rejection Ratio LM2904V  
LM2902V(*5)  
25℃  
25℃  
50  
65  
80  
80  
50  
60  
80  
80  
dB  
dB  
Common-  
Vcc=5[V] to MAX(*5)  
VIC=VICR(min)  
CMRR  
KSVR  
98  
LM2904  
LM2904V  
M2902(*5)  
65  
100  
50  
60  
100  
100  
120  
Supply Voltage  
Rejection Ratio  
25℃  
dB Vcc=5[V] to MAX(*5)  
dB f=1[kHz] to 20[kHz]  
98  
LM2902V(*5)  
Cross-talk Attenuation  
Output Current (*4)  
VO1/VO2  
Source  
Sink  
25℃  
120  
101  
25℃  
Full range  
25℃  
20  
10  
10  
2
30  
20  
20  
10  
10  
2
30  
20  
60  
Vcc=15[V],VO=0[V]  
VID=1[V]  
mA  
Vcc=15[V],VO=0[V]  
VID=-1[V]  
mA  
99  
Full range  
LM2904  
LM2902(*5)  
LM2904V  
LM2902V(*5)  
25℃  
30  
30  
μA  
Io  
VO=200[mV],VID=-1[V]  
25℃  
12  
40  
0.7  
1
1.2  
2
12  
40  
0.7  
1.4  
1.2  
3
μA  
Full range  
Full range  
VO=2.5[V],No Load  
Supply Current (All Amps)  
ICC  
mA  
99  
Vcc=MAX(*5),VO=0.5[V]  
No Load  
RL=1[M],CL=30[pF],  
VI=±10[V]  
Vcc=15[V],GND=-15[V]  
(reference to Fig100)  
RL=1[M],CL=20[pF]  
MHz Vcc=15[V],GND=-15[V]  
(reference to Fig99)  
Slew Rate at Unity Gain  
Unity-Gain Bandwidth  
SR  
B1  
Vn  
25℃  
25℃  
25℃  
0.3  
0.7  
40  
0.5  
1.2  
35  
V/μs  
99  
99  
99  
Vcc=15[V],GND=-15[V]  
RS=100[]VI=0[V]  
f=1[kHz],  
Equivalent Input Noise Voltage  
(*3) Absolute value  
nV/ Hz  
( reference to Fig99)  
(*4) Under high temperature, consider the power dissipation of the IC when selecting the output current.  
When the output terminal is continuously shorted the output current is reduced to lower the temperature inside the IC.  
(*5) The maximum supply voltage is 26V for the LM2904DR, LM2904PW, LM2904PWR, and LM2904DQKR  
The maximum supply voltage is 32V for the LM2904VQDR and LM2904VQPWR  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
3/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
Reference Data LM358 family  
LM358 family  
LM358 family  
LM358 family  
800  
LM358PWR  
LM358DGKR  
600  
25℃  
32V  
LM358DR  
0℃  
400  
200  
5V  
70℃  
3V  
0
70  
0
25  
50  
75  
100  
[]  
AMBIENT TEMPERATURE
Fig. 1  
Fig. 2  
Fig. 3  
Derating Curve  
Supply Current – Supply Voltage  
Supply Current – Ambient Temperature  
LM358 family  
LM358 family  
LM358 family  
0℃  
0℃  
25℃  
70℃  
25℃  
70℃  
Fig. 4  
Fig. 5  
Maximum Output Voltage – Ambient Temperature  
(VCC=5[V],RL=2[k])  
Fig. 6  
Maximum Output Voltage – Supply Voltage  
Output Source Current – Output Voltage  
(RL=10[k])  
(VCC=5[V])  
LM358 family  
LM358 family  
LM358 family  
15V  
70℃  
3V  
5V  
0℃  
3V  
5V  
15V  
25℃  
Fig. 7  
Fig. 8  
Fig. 9  
Output Source Current – Ambient Temperature  
Output Sink Current – Output Voltage  
Output Sink Current – Ambient Temperature  
(VOUT=0[V])  
(VCC=5[V])  
(VOUT=VCC)  
LM358 family  
LM358 family  
LM358 family  
32V  
0℃  
25℃  
0℃  
25℃  
5V  
3V  
70℃  
70℃  
Fig. 10  
Low Level Sink Current - Supply Voltage  
(VOUT=0.2[V])  
Fig. 11  
Fig. 12  
Low Level Sink Current - Ambient Temperature  
(VOUT=0.2[V])  
Input Offset Voltage - Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
4/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
Reference Data LM358 family  
LM358 family  
LM358 family  
LM358 family  
3V  
32V  
25℃  
0℃  
5V  
32V  
3V  
5V  
70℃  
Fig. 13  
Fig. 14  
Fig. 15  
Input Offset Voltage – Ambient Temperature  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
LM358 family  
Input Bias Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
LM358 family  
LM358 family  
0℃  
70℃  
25℃  
0℃  
25℃  
70℃  
[V]  
Fig. 16  
Fig. 17  
Fig. 18  
Input Offset Current – Supply Voltage  
(Vicm=0[V],VOUT=1.4[V])  
Input Bias Current – Ambient Temperature Input Offset Voltage – Common Mode Input Voltage  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
(VCC=5[V])  
LM358 family  
LM358 family  
LM358 family  
0℃  
15V  
25℃  
3V  
5V  
5V  
32V  
70℃  
Fig. 19  
Fig. 20  
Fig. 21  
Input Offset Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
Large Signal Voltage Gain – Supply Voltage  
Large Signal Voltage Gain  
– Ambient Temperature  
(RL=2[k])  
(RL=2[k])  
LM358 family  
LM358 family  
LM358 family  
36V  
32V  
0℃  
25℃  
70℃  
5V  
3V  
Fig. 22  
Fig. 23  
Fig. 24  
Common Mode Rejection Ratio  
– Supply Voltage  
Common Mode Rejection Ratio  
– Ambient Temperature  
Power Supply Rejection Ratio  
– Ambient Temperature  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
5/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
Reference Data LM324 family  
BA2904 family  
LM324 family  
LM324 family  
LM324 family  
1000  
LM324PWR  
LM324DR  
800  
LM324KDR  
32V  
25℃  
600  
400  
200  
0
0℃  
5V  
70℃  
3V  
70  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [
]
Fig. 25  
Fig. 26  
Fig. 27  
Derating Curve  
Supply Current – Supply Voltage  
Supply Current – Ambient Temperature  
LM324 family  
LM324 family  
LM324 family  
0℃  
0℃  
25℃  
70℃  
25℃  
70℃  
Fig. 28  
Fig. 29  
Maximum Output Voltage – Ambient Temperature  
(VCC=5[V],RL=2[k])  
Fig. 30  
Maximum Output Voltage – Supply Voltage  
Output Source Current – Output Voltage  
(RL=10[k])  
(VCC=5[V])  
LM324 family  
LM324 family  
LM324 family  
15V  
70℃  
3V  
5V  
0℃  
5V  
3V  
15V  
25℃  
Fig. 31  
Fig. 32  
Fig. 33  
Output Source Current – Ambient Temperature  
Output Sink Current – Output Voltage  
Output Sink Current – Ambient Temperature  
(VOUT=0[V])  
(VCC=5[V])  
(VOUT=VCC)  
LM324 family  
LM324 family  
LM324 family  
32V  
0℃  
25℃  
0℃  
25℃  
5V  
3V  
70℃  
70℃  
Fig. 34  
Low Level Sink Current - Supply Voltage  
(VOUT=0.2[V])  
Fig. 35  
Fig. 36  
Low Level Sink Current - Ambient Temperature  
(VOUT=0.2[V])  
Input Offset Voltage - Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
6/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
Reference Data LM324 family  
LM324 family  
LM324 family  
LM324 family  
3V  
25℃  
32V  
0℃  
5V  
32V  
3V  
5V  
70℃  
Fig. 37  
Fig. 38  
Fig. 39  
Input Offset Voltage – Ambient Temperature  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
LM324 family  
Input Bias Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
LM324 family  
LM324 family  
0℃  
70℃  
25℃  
0℃  
25℃  
70℃  
[V]  
Fig. 40  
Fig. 41  
Fig. 42  
Input Offset Current – Supply Voltage  
(Vicm=0[V],VOUT=1.4[V])  
Input Bias Current – Ambient Temperature Input Offset Voltage – Common Mode Input Voltage  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
(VCC=5[V])  
LM324 family  
LM324 family  
LM324 family  
25℃  
15V  
0℃  
3V  
5V  
5V  
32V  
70℃  
Fig. 43  
Fig. 44  
Fig. 45  
Input Offset Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
Large Signal Voltage Gain – Supply Voltage  
Large Signal Voltage Gain  
– Ambient Temperature  
(RL=2[k])  
(RL=2[k])  
LM324 family  
LM324 family  
LM324 family  
36V  
32V  
0℃  
25℃  
5V  
3V  
70℃  
Fig. 46  
Fig. 47  
Fig. 48  
Common Mode Rejection Ratio  
– Supply Voltage  
Common Mode Rejection Ratio  
– Ambient Temperature  
Power Supply Rejection Ratio  
– Ambient Temperature  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
7/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
Reference Data LM2904 family  
LM2904 family  
LM2904 family  
LM2904 family  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
800  
600  
400  
200  
0
LM2904PWR  
LM2904VQPWR  
LM2904DGKR  
32V  
25℃  
LM2904DR  
LM2904VQDR  
40℃  
5V  
125℃  
105℃  
3V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE
[]  
Fig. 49  
Fig. 50  
Fig. 51  
Derating Curve  
Supply Current – Supply Voltage  
Supply Current – Ambient Temperature  
LM2904 family  
LM2904 family  
LM2904 family  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
5
-40℃  
-40℃  
4
3
2
1
0
25℃  
125℃  
105℃  
25℃  
105℃  
125℃  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
SUPPLY VOLTAGE [V]  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig. 52  
Fig. 53  
Fig. 54  
Maximum Output Voltage – Supply Voltage  
Maximum Output Voltage – Ambient Temperature  
(VCC=5[V],RL=2[k])  
Output Source Current – Output Voltage  
(RL=10[k])  
(VCC=5[V])  
LM2904 family  
LM2904 family  
LM2904 family  
100  
30  
20  
10  
0
50  
15V  
105℃  
3V  
40  
10  
5V  
125℃  
30  
1
-40℃  
25℃  
5V  
15V  
3V  
20  
0.1  
10  
0
0.01  
0.001  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
0
0.4  
0.8  
1.2  
1.6  
2
AMBIENT TEMPERATURE []  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig. 55  
Fig. 56  
Fig. 57  
Output Source Current – Ambient Temperature  
Output Sink Current – Output Voltage  
Output Sink Current – Ambient Temperature  
(VOUT=0[V])  
(VCC=5[V])  
(VOUT=VCC)  
LM2904 family  
LM2904 family  
LM2904 family  
80  
8
80  
-40℃  
32V  
70  
60  
50  
40  
30  
20  
10  
0
6
25℃  
70  
-40℃  
25℃  
5V  
4
60  
50  
2
0
40  
125℃  
105℃  
3V  
30  
-2  
105℃  
125℃  
20  
10  
0
-4  
-6  
-8  
-50 -25  
0
25 50 75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig. 58  
Fig. 59  
Fig. 60  
Low Level Sink Current - Ambient Temperature  
(VOUT=0.2[V])  
Low Level Sink Current - Supply Voltage  
Input Offset Voltage - Supply Voltage  
(VOUT=0.2[V])  
(Vicm=0[V], VOUT=1.4[V])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
8/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
Reference Data LM2904 family  
LM2904 family  
LM2904 family  
LM2904 family  
50  
40  
30  
20  
10  
0
8
50  
40  
30  
20  
10  
0
6
4
3V  
25  
32V  
-40℃  
2
0
5V  
32V  
-2  
-4  
-6  
-8  
3V  
5V  
105℃  
125℃  
-50 -25  
0
25 50  
75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE [  
]
Fig. 61  
Fig. 62  
Fig. 63  
Input Offset Voltage – Ambient Temperature  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
LM2904 family  
LM2904 family  
LM2904 family  
10  
8
50  
6
4
-40℃  
105℃  
125℃  
40  
30  
20  
10  
0
5
25℃  
-40℃  
25℃  
2
0
0
-2  
-4  
-6  
-8  
125℃  
105℃  
-5  
-10  
-10  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25  
50  
75 100 125 150  
-1  
0
1
2
3
4
5
[V]  
INPUT VOLTAGE
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig. 64  
Fig. 65  
Fig. 66  
Input Offset Current – Supply Voltage  
(Vicm=0[V],VOUT=1.4[V])  
Input Bias Current – Ambient Temperature Input Offset Voltage – Common Mode Input Voltage  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
(VCC=5[V])  
LM2904 family  
LM2904 family  
LM2904 family  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
10  
-40℃  
25℃  
15V  
5
0
3V  
5V  
5V  
32V  
105℃  
125℃  
80  
-5  
80  
70  
70  
60  
-10  
60  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
4
6
8
10  
12  
14  
16  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig. 67  
Fig. 68  
Fig. 69  
Input Offset Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
Large Signal Voltage Gain – Supply Voltage  
Large Signal Voltage Gain  
– Ambient Temperature  
(RL=2[k])  
(RL=2[k])  
LM2904 family  
LM2904 family  
LM2904 family  
140  
140  
140  
130  
120  
110  
100  
90  
36V  
32V  
120  
100  
120  
-40℃  
25℃  
100  
80  
80  
125℃  
5V  
105℃  
80  
3V  
60  
60  
70  
40  
60  
40  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig. 70  
Fig. 71  
Fig. 72  
Common Mode Rejection Ratio  
– Supply Voltage  
Common Mode Rejection Ratio  
– Ambient Temperature  
Power Supply Rejection Ratio  
– Ambient Temperature  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
9/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
Reference Data LM2902 family  
LM2902 family  
LM2902 family  
LM2902 family  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1000  
800  
600  
400  
200  
0
LM2902PWR  
LM2902KPWR  
LM2902KVQPWR  
32V  
25℃  
40℃  
LM2902DR  
LM2902KDR  
LM2902KVQDR  
5V  
125℃  
105℃  
3V  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
[]  
AMBIENT TEMPERATURE
Fig. 73  
Fig. 74  
Fig. 75  
Derating Curve  
Supply Current – Supply Voltage  
Supply Current – Ambient Temperature  
LM2902 family  
LM2902 family  
LM2902 family  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
5
-40℃  
-40℃  
4
3
2
1
0
25℃  
125℃  
105℃  
25℃  
105℃  
125℃  
0
10  
20  
30  
40  
-50 -25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
SUPPLY VOLTAGE [V]  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig. 76  
Fig. 77  
Fig. 78  
Maximum Output Voltage – Supply Voltage  
Maximum Output Voltage – Ambient Temperature  
(VCC=5[V],RL=2[k])  
Output Source Current – Output Voltage  
(RL=10[k])  
(VCC=5[V])  
LM2902 family  
LM2902 family  
LM2902 family  
100  
30  
20  
10  
0
50  
15V  
105℃  
3V  
40  
10  
125℃  
5V  
30  
1
-40℃  
25℃  
5V  
3V  
15V  
20  
0.1  
10  
0
0.01  
0.001  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
0
0.4  
0.8  
1.2  
1.6  
2
AMBIENT TEMPERATURE []  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig. 79  
Fig. 80  
Fig. 81  
Output Source Current – Ambient Temperature  
Output Sink Current – Output Voltage  
Output Sink Current – Ambient Temperature  
(VOUT=0[V])  
(VCC=5[V])  
(VOUT=VCC)  
LM2902 family  
LM2902 family  
LM2902 family  
80  
8
80  
-40℃  
32V  
70  
60  
50  
40  
30  
20  
10  
0
6
25℃  
70  
-40℃  
25℃  
5V  
4
60  
50  
40  
2
0
125℃  
3V  
105℃  
30  
-2  
105℃  
125℃  
20  
10  
0
-4  
-6  
-8  
-50 -25  
0
25 50 75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Fig. 82  
Fig. 83  
Fig. 84  
Low Level Sink Current - Ambient Temperature  
(VOUT=0.2[V])  
Low Level Sink Current - Supply Voltage  
Input Offset Voltage - Supply Voltage  
(VOUT=0.2[V])  
(Vicm=0[V], VOUT=1.4[V])  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
10/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
Reference Data LM2902 family  
LM2902 family  
LM2902 family  
LM2902 family  
50  
40  
30  
20  
10  
0
8
50  
40  
30  
20  
10  
0
6
4
3V  
25  
32V  
-40℃  
2
0
5V  
32V  
-2  
-4  
-6  
-8  
3V  
5V  
105℃  
125℃  
-50 -25  
0
25 50  
75 100 125 150  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE [  
]
Fig. 85  
Fig. 86  
Fig. 87  
Input Offset Voltage – Ambient Temperature  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Supply Voltage  
(Vicm=0[V], VOUT=1.4[V])  
Input Bias Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
LM2902 family  
LM2902 family  
LM2902 family  
10  
8
50  
6
4
-40℃  
105℃  
125℃  
40  
30  
20  
10  
0
5
25℃  
-40℃  
25℃  
2
0
0
-2  
-4  
-6  
-8  
125℃  
105℃  
-5  
-10  
-10  
0
5
10  
15  
20  
25  
30  
35  
-50 -25  
0
25  
50  
75 100 125 150  
-1  
0
1
2
3
4
5
[V]  
INPUT VOLTAGE
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE []  
Fig. 88  
Fig. 89  
Fig. 90  
Input Offset Current – Supply Voltage  
(Vicm=0[V],VOUT=1.4[V])  
Input Bias Current – Ambient Temperature Input Offset Voltage – Common Mode Input Voltage  
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])  
(VCC=5[V])  
LM2902 family  
LM2902 family  
LM2902 family  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
10  
-40℃  
25℃  
15V  
5
0
3V  
5V  
5V  
32V  
105℃  
125℃  
80  
-5  
80  
70  
70  
60  
-10  
60  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
4
6
8
10  
12  
14  
16  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Fig. 91  
Fig. 92  
Fig. 93  
Input Offset Current – Ambient Temperature  
(Vicm=0[V],VOUT=1.4[V])  
Large Signal Voltage Gain – Supply Voltage  
Large Signal Voltage Gain  
– Ambient Temperature  
(RL=2[k])  
(RL=2[k])  
LM2902 family  
LM2902 family  
LM2902 family  
140  
140  
36V  
32V  
140  
130  
120  
110  
100  
90  
-40℃  
25℃  
120  
100  
120  
100  
80  
80  
125℃  
5V  
105℃  
3V  
80  
60  
60  
70  
40  
60  
40  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
AMBIENT TEMPERATURE []  
AMBIENT TEMPERATURE []  
SUPPLY VOLTAGE [V]  
Fig. 94  
Fig. 95  
Fig. 96  
Common Mode Rejection Ratio  
– Supply Voltage  
Common Mode Rejection Ratio  
– Ambient Temperature  
Power Supply Rejection Ratio  
– Ambient Temperature  
(*)The data above is ability value of sample, it is not guaranteed.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
11/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
Circuit Diagram  
Vcc  
IN-  
OUT  
IN+  
GND  
Fig.97 Circuit Diagram (each Op-Amp)  
Measurement Circuit 1 NULL Method Measurement Condition  
Vcc,GND,EK,VICR Unit:[V]  
LM358/LM324 family  
LM2904/LM2902 family  
Measurement item  
Input Offset Voltage  
VF S1 S2 S3  
Calculation  
Vcc GND EK VICR Vcc GND EK VICR  
VF1 ON ON OFF 5 to 30  
0
0
0
0
0
0
0
0
0
0
1.4  
1.4  
1.4  
1.4  
1.4  
-11.4  
1.4  
0
0
0
0
0
0
0
5 to 30  
0
0
0
0
0
0
0
0
0
0
1.4  
1.4  
1.4  
1.4  
1.4  
-11.4  
1.4  
0
0
0
0
0
0
0
1
2
Input Offset Current  
VF2 OFF OFF OFF  
5
5
5
5
VF3 OFF ON  
OFF  
Input Bias Current  
3
4
5
6
VF4 ON OFF  
5
5
VF5  
15  
15  
5
15  
15  
5
Large Signal Voltage Gain  
ON ON ON  
VF6  
VF7  
Common-mode Rejection Ratio  
Supply Voltage Rejection Ratio  
ON ON OFF  
VF8  
5
1.4 3.5  
5
1.4 3.5  
VF9  
5
1.4  
1.4  
0
0
5
1.4  
1.4  
0
0
ON ON OFF  
VF10  
30  
30  
Calculation-  
1.Input Offset Voltage (VIO)  
VF1  
0.1[μF]  
Vio  
[V]  
1+ Rf /Rs  
2. Input offset current (IIO)  
Rf  
VF2 - VF1  
50[k]  
Iio  
[A]  
0.1[μF]  
500[k]  
Ri(1+ Rf / Rs)  
EK  
S1  
VOUT  
Vcc  
3.Input Bias Current (IIB)  
+15[V]  
Rs  
Ri  
VF4 -  
VF3  
2× Ri (1+ Rf / Rs)  
[A]  
Ib  
500[k]  
50[] 10[k]  
50[] 10[k]  
VICR  
DUT  
4.Large Signal Voltage Gain (AVD)  
S3  
Rs  
Ri  
S2  
Rf 50[k]  
10× (1+ Rf /Rs)  
VF6 - VF5  
1000[pF]  
[dB]  
AV 20× Log  
GND  
VF  
V
RL  
-15[V]  
5.Common-mode rejection ratio (CMRR)  
3.5× (1+ Rf/ Rs)  
VF8-VF7  
[dB]  
Log  
CMRR 20×  
Fig.98 Measurement Circuit 1 (each Op-Amp)  
6.Supply Voltage rejection ratio (KSVR)  
Vcc×(1+Rf/Rs)  
[dB]  
PSRR 20×Log  
=
VF10 - VF9  
Vcc=25V  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
12/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
Measurement Circuit 2: Switch Condition  
SW SW SW SW SW SW SW SW SW SW SW SW SW SW SW  
10 11 12 13 14 15  
SW No.  
1
2
3
4
5
6
7
8
9
Supply Current  
OFF OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF OFF  
OFF OFF ON OFF OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF  
OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF ON OFF OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF OFF ON OFF OFF OFF OFF ON ON ON OFF OFF OFF OFF  
OFF ON OFF OFF OFF ON ON OFF OFF ON ON OFF OFF OFF OFF  
ON OFF OFF OFF ON OFF ON OFF OFF OFF OFF ON OFF OFF OFF  
High Level Output Voltage  
Low Level Output Voltage  
Output Source Current  
Output Sink Current  
Slew Rate  
Unity-gain Bandwidth Product  
Equivalent Input Noise Voltage  
Input voltage  
3[V]  
SW4  
SW5  
SW6  
R2  
R3  
Vcc  
0.5[V]  
A
t
Input waveform  
Output voltage  
SR  
ΔV / Δt  
SW1 SW2 SW3  
SW10 SW11 SW12 SW13 SW14 SW15  
3[V]  
SW7 SW8 SW9  
RS  
R1  
GND  
ΔV  
A
RL  
CL  
V
V
VIN- VIN+  
VOUT  
Δt  
0.5[V]  
t
Output waveform  
Fig.99 Measurement Circuit 2 (each Op-Amp)  
Fig.100 Slew Rate Input Waveform  
Measurement Circuit 3: Cross-talk Attenuation  
R2=100[k]  
R2=100[k]  
Vcc=+2.5[V]  
Vcc=+2.5[V]  
R1=1[k]  
R1=1[k]  
other  
CH  
CH1  
VIN  
VOUT1  
=0.5 [Vrms]  
V
R1//R2  
R1//R2  
VOUT2  
V
GND=-2.5[V]  
GND=-2.5[V]  
100×VOUT1  
VO1/VO2=20×log  
VOUT2  
Fig.101 Measurement Circuit 3  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
13/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
Description of Electrical Characteristics  
Described below are descriptions of the relevant electrical terms  
Please note that item names, symbols and their meaning may differ form those on another manufacturer’s documents.  
1. Absolute maximum ratings  
The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of characteristics or damage to the part  
itself as well as peripheral components.  
1.1 Power supply voltage (Vcc/GND)  
Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals without causing deterioration of  
characteristics or destruction of the internal circuitry.  
1.2 Differential input voltage (VID)  
Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC.  
1.3 Input common-mode voltage range (VICR)  
Signifies the maximum voltage that can be supplied to the non-inverting and inverting terminals without causing deterioration of the electrical characteristics  
or damage to the IC itself. Normal operation is not guaranteed within the input common-mode voltage range of the maximum ratings – use within the input  
common-mode voltage range of the electric characteristics instead.  
1.4 Operating temperature range and storage temperature range (Topr, Tstg)  
The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power  
consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive  
deterioration of the electrical characteristics.  
1.5 Power dissipation (Pd)  
Indicates the power that can be consumed by a specific mounted board at ambient temperature (25). For packaged products, Pd is determined by the  
maximum junction temperature and the thermal resistance.  
2. Electric characteristics  
2.1 Input offset voltage (VIO)  
Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the  
output voltage to 0V.  
2.2 Input offset voltage drift (αVIO)  
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.  
2.3 Input offset current (IIO)  
Indicates the difference of the input bias current between the non-inverting and inverting terminals.  
2.4 Input offset current drift (αIIO)  
Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation.  
2.5 Input bias current (IIB)  
Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input  
bias current at the inverting terminal.  
2.6 Circuit current (ICC)  
Indicates the current of the IC itself that flows under specific conditions and during no-load steady state.  
2.7 High level output voltage/low level output voltage (VOH/VOL)  
Signifying the voltage range that can be output by under specific load conditions, it is in general divided into high level output voltage and low level output  
voltage. High level output voltage indicates the upper limit of the output voltage, while low level output voltage the lower limit.  
2.8 Differential voltage amplification (AVD)  
The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting terminals, it is (normally) the amplifying  
rate (gain) with respect to DC voltage.  
AVD = (output voltage fluctuation) / (input offset fluctuation)  
2.9 Input common-mode voltage range (VICR)  
Indicates the input voltage range under which the IC operates normally.  
2.10 Common-mode rejection ratio (CMRR)  
Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation).  
CMRR = (change in input common-mode voltage) / (input offset fluctuation)  
2.11 Power supply rejection ratio (KSVR)  
Denotes the ratio of fluctuation of the input offset voltage when the supply voltage is changed (DC fluctuation).  
KSVR = (change in power supply voltage) / (input offset fluctuation)  
2.12 Output source current/ output sink current (IOH/IOL)  
The maximum current that can be output under specific output conditions, it is divided into output source current and output sink current. The output source  
current indicates the current flowing out of IC, and the output sink current the current flowing into the IC.  
2.13 Cross talk attenuation (VO1/VO2)  
Expresses the amount of fluctuation in the input offset voltage or output voltage with respect to the change in the output voltage of a driven channel.  
2.14 Slew rate at unity gain (SR)  
Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied.  
2.15 Unity gain bandwidth (B1)  
The product of the specified signal frequency and the gain of the op-amp at such frequency, it gives the approximate value of the frequency where the gain of  
the op-amp is 1 (maximum frequency, unity gain frequency).  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
14/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
Derating Curves  
800  
1000  
800  
600  
400  
200  
0
LM2902PWR  
LM2902KPWR  
LM2902KQVPWR  
LM358DGKR  
LM2904PWR  
LM358DR  
LM2904VQPWR  
600  
400  
200  
0
LM358PWR  
LM2902DR  
LM2902KDR  
LM2902KQVDR  
LM2904DGKR  
LM2904DR  
LM2904VQDR  
LM324PWR  
LM324DR  
LM324KDR  
70  
75  
70  
75  
0
25  
50  
100  
125  
150  
0
25  
50  
100  
125  
150  
AMBIENT TEMPERATURE [℃]  
AMBIENT TEMPERATURE [℃]  
LM358DR/PWR/DGKR  
LM324DR/PWR/KDR  
LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM2902DR/PWR/KDR/KPWR/KQDR/KQPWR  
Power Dissipation  
Power Dissipation  
Package  
Pd[W]  
450  
θja [/W]  
Package  
Pd[W]  
610  
θja [/W]  
4.9  
3.6  
4.0  
SOIC14  
SOIC8 (*8)  
500  
TSSOP14  
870  
7.0  
TSSOP8 (*6)  
470  
3.76  
MSOP8/VSSOP8 (*7)  
θja = (Tj-Ta)/Pd[/W]  
Fig.102 Derating Curves  
Precautions  
1) Unused circuits  
When there are unused circuits, it is recommended that they be connected as in Figure 103,  
Vcc  
setting the non-inverting input terminal to a potential within the in-phase input voltage range (VICR).  
2) Input terminal voltage  
Applying GND + 32V to the input terminal is possible without causing deterioration of the electrical  
characteristics or destruction, irrespective of the supply voltage. However, this does not ensure  
normal circuit operation.  
connect  
to Vicm  
Please note that the circuit operates normally only when the input voltage is within the common mode  
input voltage range of the electric characteristics.  
GND  
3) Power supply (single / dual)  
The op-amp operates when the voltage is applied between Vcc and GND.  
Therefore, the single supply op-amp can be used as a dual supply op-amp as well.  
Fig.103 Disable circuit example  
4) Power dissipation (Pd)  
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise of chip temperature, including  
reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under the actual operating conditions and apply a sufficient  
margin in thermal design. Refer to the thermal derating curves for more information.  
5) Short-circuits between pins and erroneous mounting  
Incorrect mounting may damage the IC. In addition, the presence of foreign substances between the outputs, the output and the power supply, or the output  
and GND may also result in IC destruction.  
6) Operation in a strong electromagnetic field  
Operation in a strong electromagnetic field may cause malfunctions.  
7) Radiation  
This IC is not designed to withstand radiation.  
8) IC handing  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical characteristics due to piezoelectric (piezo)  
effects.  
9) IC operation  
The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected to the middle potential of Vcc and  
GND, crossover distortion occurs at the changeover between discharging and charging of the output current. Connecting a resistor between the output  
terminal and GND and increasing the bias current for Class A operation will suppress crossover distortion.  
10) Board inspection  
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition,  
when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please  
take measures against ESD in the assembly process as well as during transportation and storage.  
11) Output capacitor  
Discharge of the external output capacitor to Vcc is possible via internal parasitic elements when Vcc is shorted to GND, causing damage to the internal  
circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation due to output capacitive load does not occur, such as in voltage  
comparators, use an output capacitor with a capacitance less than 0.1μF.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
15/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
Ordering part number  
L M 2  
9
0
2
K
V Q  
D
R
Operating Voltage  
VQ : 32V  
None : 26V  
Family name  
LM358  
LM324  
LM2902  
LM2904  
Package type  
R : Real  
ESD tolerance  
application  
K : 2kV  
D
: SOIC  
P W : TSSOP  
DGK : MSOP/VSSOP  
None : Normal  
SOIC8  
<Tape and Reel information>  
4.9± 0.2  
(MAX 5.25 include BURR)  
Tape  
Embossed carrier tape  
2500pcs  
+6°  
Quantity  
4°  
4°  
8
7
6
5
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
Direction  
of feed  
(
)
1
2
3
4
0.545  
0.2± 0.1  
S
1.27  
0.42± 0.1  
Direction of feed  
1pin  
0.1  
S
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
SOIC14  
<Tape and Reel information>  
8.65± 0.1  
+6°  
4°  
(Max 9.0 include BURR)  
Tape  
Embossed carrier tape  
4°  
14  
8
Quantity  
2500pcs  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
Direction  
of feed  
(
)
1
7
1PIN MARK  
0.515  
+0.05  
0.03  
0.22  
0.08  
S
+0.05  
0.42  
1.27  
0.04  
M
0.08  
Direction of feed  
1pin  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
TSSOP8  
<Tape and Reel information>  
3.0± 0.1  
(MAX 3.35 include BURR)  
4 ± ±4  
Tape  
Embossed carrier tape  
8
7 6 5  
Quantity  
2500pcs  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
Direction  
of feed  
(
)
1
2
3
4
1PIN MARK  
+0.05  
0.145  
0.03  
0.525  
S
0.08 S  
+0.05  
0.245  
M
0.04  
0.08  
Direction of feed  
1pin  
0.65  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
16/17  
LM358DR/PWR/DGKR,LM2904DR/PWR/DGKR/VQDR/VQPWR  
LM324DR/PWR/KDR,LM2902DR/PER/KDR/KPWR/KVQDR/KVQPWR  
Technical Note  
TSSOP14  
<Tape and Reel information>  
5.0± 0.1  
(Max 5.35 include BURR)  
Tape  
Embossed carrier tape  
2500pcs  
4
± 4  
14  
8
Quantity  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
Direction  
of feed  
(
)
1
7
0.55  
1PIN MARK  
+0.05  
0.145  
0.03  
S
0.08  
+0.05  
0.04  
S
Direction of feed  
1pin  
0.245  
0.65  
M
0.08  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
MSOP / VSSOP8  
<Tape and Reel information>  
3.0± 0.1  
(MAX 3.35 include BURR)  
4 ± ±4  
Tape  
Embossed carrier tape  
8
7 6 5  
Quantity  
2500pcs  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
Direction  
of feed  
(
)
1
2
3
4
1PIN MARK  
+0.05  
0.525  
0.145  
0.03  
S
0.08  
0.08  
S
M
+0.05  
0.32  
0.04  
Direction of feed  
1pin  
0.65  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.06 - Rev.B  
17/17  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

LM2904DR2

DUAL DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS
ONSEMI

LM2904DR2

Operational Amplifier, 2 Func, 7000uV Offset-Max, BIPolar, PDSO8, PLASTIC, SO-8
MOTOROLA

LM2904DR2G

Single Supply Dual Operational Amplifiers
ONSEMI

LM2904DRE4

DUAL OPERATIONAL AMPLIFIERS
TI

LM2904DRG3

DUAL OPERATIONAL AMPLIFIERS
TI

LM2904DRG4

DUAL OPERATIONAL AMPLIFIERS
TI

LM2904DT

LOW POWER DUAL OPERATIONAL AMPLIFIERS
STMICROELECTR

LM2904DT

SILICON MONNOLITHIC INTEGRATED CIRCUIT
ROHM

LM2904EDR2G

运算放大器,单电源,双路
ONSEMI

LM2904EYF-C

LM2904EYxxx-C是将高增益且接地检测输入独立的运算放大器以2个电路集成于1枚芯片的单片IC。3V~32V的宽工作电压范围,消耗电流低,适用于引擎控制单元、EPS、ABS等各类车载应用。不仅如此,还具有出色的抗EMI性能,可轻松替换现有产品,EMI设计也更容易。
ROHM

LM2904EYFJ-C (开发中)

LM2904EYxxx-C是将高增益且接地检测输入独立的运算放大器以2个电路集成于1枚芯片的单片IC。工作电压范围宽达3V~32V,且消耗电流低,适用于引擎控制单元、EPS、ABS等各类车载应用。不仅如此,还具有出色的抗EMI性能,可轻松替换现有产品,EMI设计也更容易。
ROHM

LM2904EYFVM-C

LM2904EYxxx-C是将高增益且接地检测输入独立的运算放大器以2个电路集成于1枚芯片的单片IC。3V~32V的宽工作电压范围,消耗电流低,适用于引擎控制单元、EPS、ABS等各类车载应用。不仅如此,还具有出色的抗EMI性能,可轻松替换现有产品,EMI设计也更容易。
ROHM