LM2904DR2G [ONSEMI]

Single Supply Dual Operational Amplifiers; 单电源双运算放大器
LM2904DR2G
型号: LM2904DR2G
厂家: ONSEMI    ONSEMI
描述:

Single Supply Dual Operational Amplifiers
单电源双运算放大器

运算放大器 放大器电路 光电二极管 PC
文件: 总14页 (文件大小:138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM358, LM258, LM2904,  
LM2904A, LM2904V,  
NCV2904  
Single Supply Dual  
Operational Amplifiers  
http://onsemi.com  
Utilizing the circuit designs perfected for Quad Operational  
Amplifiers, these dual operational amplifiers feature low power drain,  
a common mode input voltage range extending to ground/V , and  
EE  
PDIP−8  
single supply or split supply operation. The LM358 series is  
equivalent to one−half of an LM324.  
N, AN, VN SUFFIX  
CASE 626  
8
These amplifiers have several distinct advantages over standard  
operational amplifier types in single supply applications. They can  
operate at supply voltages as low as 3.0 V or as high as 32 V, with  
quiescent currents about one−fifth of those associated with the  
MC1741 (on a per amplifier basis). The common mode input range  
includes the negative supply, thereby eliminating the necessity for  
external biasing components in many applications. The output voltage  
range also includes the negative power supply voltage.  
1
SOIC−8  
D, VD SUFFIX  
CASE 751  
8
1
Micro8]  
DMR2 SUFFIX  
CASE 846A  
Features  
8
Short Circuit Protected Outputs  
True Differential Input Stage  
1
Single Supply Operation: 3.0 V to 32 V  
Low Input Bias Currents  
PIN CONNECTIONS  
Internally Compensated  
Common Mode Range Extends to Negative Supply  
Single and Split Supply Operation  
ESD Clamps on the Inputs Increase Ruggedness of the Device  
without Affecting Operation  
1
8
7
6
5
Output A  
V
CC  
2
Output B  
Inputs A  
/Gnd  
+
3
4
+
Inputs B  
V
EE  
(Top View)  
Pb−Free Packages are Available  
NCV Prefix for Automotive and Other Applications Requiring Site  
and Control Changes  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 10 of this data sheet.  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 11 of this data sheet.  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
July, 2004 − Rev. 18  
LM358/D  
LM358, LM258, LM2904, LM2904A, LM2904V, NCV2904  
3.0 V to V  
CC(max)  
V
CC  
V
CC  
1.5 V to V  
1.5 V to V  
CC(max)  
EE(max)  
1
2
1
2
V
EE  
V
EE  
/Gnd  
Single Supply  
Split Supplies  
Figure 1.  
Bias Circuitry  
Common to Both  
Amplifiers  
Output  
V
CC  
Q15  
Q22  
Q16  
Q14  
Q13  
40 k  
Q19  
5.0 pF  
Q12  
Q24  
Q23  
25  
Q20  
Q21  
Q18  
Inputs  
Q11  
Q9  
Q17  
Q25  
Q6 Q7  
Q26  
Q2  
Q5  
Q1  
2.0 k  
2.4 k  
Q8  
Q10  
Q3  
Q4  
V
EE  
/Gnd  
Figure 2. Representative Schematic Diagram  
(One−Half of Circuit Shown)  
http://onsemi.com  
2
LM358, LM258, LM2904, LM2904A, LM2904V, NCV2904  
MAXIMUM RATINGS (T = +25°C, unless otherwise noted.)  
A
Rating  
Symbol  
Value  
Unit  
Power Supply Voltages  
Single Supply  
Vdc  
V
CC  
32  
Split Supplies  
V
CC  
, V  
EE  
±16  
Input Differential Voltage Range (Note 1)  
Input Common Mode Voltage Range (Note 2)  
Output Short Circuit Duration  
V
V
±32  
−0.3 to 32  
Continuous  
150  
Vdc  
Vdc  
IDR  
ICR  
SC  
t
Junction Temperature  
T
°C  
°C/W  
°C  
J
Thermal Resistance, Junction−to−Air (Note 3)  
Storage Temperature Range  
R
238  
q
JA  
T
−55 to +125  
stg  
ESD Protection at any Pin  
Human Body Model  
Machine Model  
V
esd  
V
2000  
200  
Operating Ambient Temperature Range  
T
A
°C  
LM258  
LM358  
−25 to +85  
0 to +70  
LM2904/LM2904A  
LM2904V, NCV2904 (Note 4)  
−40 to +105  
−40 to +125  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
1. Split Power Supplies.  
2. For Supply Voltages less than 32 V the absolute maximum input voltage is equal to the supply voltage.  
3. R  
for Case 846A.  
q
JA  
4. NCV2904 is qualified for automotive use.  
http://onsemi.com  
3
 
LM358, LM258, LM2904, LM2904A, LM2904V, NCV2904  
ELECTRICAL CHARACTERISTICS (V = 5.0 V, V = GND, T = 25°C, unless otherwise noted.)  
CC  
EE  
A
LM258  
Typ  
LM358  
Typ  
Characteristic  
Input Offset Voltage  
Symbol  
Min  
Max  
Min  
Max  
Unit  
V
IO  
mV  
V
V
= 5.0 V to 30 V, V = 0 V to V −1.7 V,  
CC  
IC CC  
] 1.4 V, R = 0 W  
O
S
T = 25°C  
2.0  
5.0  
7.0  
7.0  
2.0  
7.0  
9.0  
9.0  
A
T = T  
(Note 5)  
high  
(Note 5)  
low  
A
T = T  
A
Average Temperature Coefficient of Input Offset  
Voltage  
D
V
/
D
T
7.0  
7.0  
m
V
/
°
C
IO  
T = T  
to T (Note 5)  
low  
A
high  
Input Offset Current  
T = T to T  
I
3.0  
−45  
−50  
30  
100  
−150  
−300  
5.0  
−45  
−50  
50  
150  
−250  
−500  
nA  
IO  
(Note 5)  
Input Bias Current  
T = T to T (Note 5)  
low  
A
high  
low  
I
IB  
A
high  
Average Temperature Coefficient of Input Offset  
Current  
D I /D T  
IO  
10  
10  
pA/°C  
T = T  
to T  
(Note 5)  
A
high  
low  
Input Common Mode Voltage Range (Note 6),  
V
V
0
28.3  
28  
0
28.3  
28  
V
ICR  
V
CC  
= 30 V  
V
CC  
= 30 V, T = T  
to T  
low  
0
0
A
high  
Differential Input Voltage Range  
V
CC  
V
CC  
V
IDR  
Large Signal Open Loop Voltage Gain  
A
VOL  
V/mV  
R = 2.0 kW, V = 15 V, For Large V Swing,  
50  
25  
100  
25  
15  
100  
L
CC  
low  
O
T = T  
to T  
(Note 5)  
A
high  
Channel Separation  
1.0 kHz f 20 kHz, Input Referenced  
CS  
−120  
−120  
dB  
dB  
CMR  
70  
65  
85  
65  
65  
70  
Common Mode Rejection  
R
10 kW  
S
Power Supply Rejection  
PSR  
100  
100  
dB  
V
Output Voltage−High Limit  
V
OH  
T = T  
to T  
(Note 5)  
A
high  
low  
V
CC  
V
CC  
V
CC  
= 5.0 V, R = 2.0 kW, T = 25°C  
3.3  
26  
27  
3.5  
28  
3.3  
26  
27  
3.5  
28  
L
A
= 30 V, R = 2.0 kW  
L
= 30 V, R = 10 kW  
L
Output Voltage−Low Limit  
= 5.0 V, R = 10 kW,  
V
5.0  
20  
5.0  
20  
mV  
mA  
OL  
V
CC  
L
T = T  
to T  
(Note 5)  
A
high  
low  
Output Source Current  
= +1.0 V, V = 15 V  
I
I
20  
40  
20  
40  
O+  
V
ID  
CC  
Output Sink Current  
O−  
V
ID  
V
ID  
= −1.0 V, V = 15 V  
10  
12  
20  
50  
10  
12  
20  
50  
mA  
m A  
CC  
= −1.0 V, V = 200 mV  
O
Output Short Circuit to Ground (Note 7)  
I
40  
60  
40  
60  
mA  
mA  
SC  
Power Supply Current (Total Device)  
I
CC  
T = T  
to T  
(Note 5)  
A
high  
low  
V
V
= 30 V, V = 0 V, R = ∞  
1.5  
0.7  
3.0  
1.2  
1.5  
0.7  
3.0  
1.2  
CC  
O
L
= 5 V, V = 0 V, R = ∞  
CC  
O
L
5. LM258: T = −25°C, T  
= +85°C  
LM358: T  
= 0°C, T = +70°C  
high  
low  
high  
low  
LM2904/LM2904A: T = −40°C, T  
= +105°C  
LM2904V & NCV2904: T = −40°C, T = +125°C  
low  
high  
low  
high  
NCV2904 is qualified for automotive use.  
6. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of  
the common mode voltage range is V − 1.7 V.  
CC  
7. Short circuits from the output to V  
can cause excessive heating and eventual destruction. Destructive dissipation can result from  
CC  
simultaneous shorts on all amplifiers.  
http://onsemi.com  
4
 
LM358, LM258, LM2904, LM2904A, LM2904V, NCV2904  
ELECTRICAL CHARACTERISTICS (V = 5.0 V, V = Gnd, T = 25°C, unless otherwise noted.)  
CC  
EE  
A
LM2904  
LM2904A  
LM2904V, NCV2904  
Characteristic  
Input Offset Voltage  
Symbol Min Typ Max Min Typ Max Min Typ Max  
Unit  
V
IO  
mV  
V
V
= 5.0 V to 30 V, V = 0 V to V −1.7 V,  
CC  
IC CC  
] 1.4 V, R = 0 W  
O
S
T = 25°C  
2.0  
7.0  
10  
10  
2.0  
7.0  
10  
10  
7.0  
13  
10  
A
T = T  
(Note 8)  
high  
(Note 8)  
low  
A
T = T  
A
Average Temperature Coefficient of Input Offset  
Voltage  
D
V
/
D
T
7.0  
7.0  
7.0  
m
V
/
°
C
IO  
T = T  
to T (Note 8)  
low  
A
high  
Input Offset Current  
T = T to T  
I
5.0  
45  
−45 −250  
−50 −500  
50  
200  
5.0  
45  
−45 −100  
−50 −250  
50  
200  
5.0  
45  
−45 −250  
−50 −500  
50  
200  
nA  
IO  
(Note 8)  
Input Bias Current  
T = T to T (Note 8)  
low  
A
high  
low  
I
IB  
A
high  
Average Temperature Coefficient of Input Offset  
Current  
D I /D T  
IO  
10  
10  
10  
pA/°C  
T = T  
to T  
(Note 8)  
A
high  
low  
Input Common Mode Voltage Range (Note 9),  
V
V
0
24.3  
24  
0
24.3  
24  
0
24.3  
24  
V
ICR  
V
CC  
= 30 V  
V
CC  
= 30 V, T = T  
to T  
low  
0
0
0
A
high  
Differential Input Voltage Range  
V
CC  
V
CC  
V
CC  
V
IDR  
Large Signal Open Loop Voltage Gain  
A
VOL  
V/mV  
R = 2.0 kW, V = 15 V, For Large V Swing,  
25  
15  
100  
25  
15  
100  
25  
15  
100  
L
CC  
low  
O
T = T  
to T  
(Note 8)  
A
high  
Channel Separation  
1.0 kHz f 20 kHz, Input Referenced  
CS  
−120  
−120  
−120  
dB  
dB  
CMR  
50  
50  
70  
50  
50  
70  
50  
50  
70  
Common Mode Rejection  
R
10 kW  
S
Power Supply Rejection  
PSR  
100  
100  
100  
dB  
V
Output Voltage−High Limit  
V
OH  
T = T  
to T  
(Note 8)  
A
high  
low  
V
CC  
V
CC  
V
CC  
= 5.0 V, R = 2.0 kW, T = 25°C  
3.3  
22  
23  
3.5  
24  
3.3  
22  
23  
3.5  
24  
3.3  
22  
23  
3.5  
24  
L
A
= 30 V, R = 2.0 kW  
L
= 30 V, R = 10 kW  
L
Output Voltage−Low Limit  
= 5.0 V, R = 10 kW,  
V
5.0  
20  
5.0  
20  
5.0  
20  
mV  
mA  
OL  
V
CC  
L
T = T  
to T  
(Note 8)  
A
high  
low  
Output Source Current  
= +1.0 V, V = 15 V  
I
I
20  
40  
20  
40  
20  
40  
O+  
V
ID  
CC  
Output Sink Current  
O−  
V
ID  
V
ID  
= −1.0 V, V = 15 V  
10  
20  
10  
20  
10  
20  
mA  
m A  
CC  
= −1.0 V, V = 200 mV  
O
Output Short Circuit to Ground (Note 10)  
I
40  
60  
40  
60  
40  
60  
mA  
mA  
SC  
Power Supply Current (Total Device)  
I
CC  
T = T  
to T  
(Note 8)  
A
high  
low  
V
V
= 30 V, V = 0 V, R = ∞  
1.5  
0.7  
3.0  
1.2  
1.5  
0.7  
3.0  
1.2  
1.5  
0.7  
3.0  
1.2  
CC  
O
L
= 5 V, V = 0 V, R = ∞  
CC  
O
L
8. LM258: T = −25°C, T  
= +85°C  
LM358: T  
= 0°C, T  
= +70°C  
low  
high  
low  
high  
LM2904/LM2904A: T = −40°C, T  
= +105°C  
LM2904V & NCV2904: T = −40°C, T  
= +125°C  
low  
high  
low  
high  
NCV2904 is qualified for automotive use.  
9. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of  
the common mode voltage range is V − 1.7 V.  
CC  
10.Short circuits from the output to V  
can cause excessive heating and eventual destruction. Destructive dissipation can result from  
CC  
simultaneous shorts on all amplifiers.  
http://onsemi.com  
5
 
LM358, LM258, LM2904, LM2904A, LM2904V, NCV2904  
CIRCUIT DESCRIPTION  
The LM358 series is made using two internally  
V
= 15 Vdc  
R = 2.0 kW  
CC  
compensated, two−stage operational amplifiers. The first  
stage of each consists of differential input devices Q20 and  
Q18 with input buffer transistors Q21 and Q17 and the  
differential to single ended converter Q3 and Q4. The first  
stage performs not only the first stage gain function but also  
performs the level shifting and transconductance reduction  
functions. By reducing the transconductance, a smaller  
compensation capacitor (only 5.0 pF) can be employed, thus  
saving chip area. The transconductance reduction is  
accomplished by splitting the collectors of Q20 and Q18.  
Another feature of this input stage is that the input common  
mode range can include the negative supply or ground, in  
single supply operation, without saturating either the input  
devices or the differential to single−ended converter. The  
second stage consists of a standard current source load  
amplifier stage.  
L
T = 25°C  
A
5.0 m s/DIV  
Figure 3. Large Signal Voltage  
Follower Response  
Each amplifier is biased from an internal−voltage  
regulator which has a low temperature coefficient thus  
giving each amplifier good temperature characteristics as  
well as excellent power supply rejection.  
20  
18  
16  
14  
12  
120  
V
V
= 15 V  
= Gnd  
CC  
EE  
100  
80  
T = 25°C  
A
60  
10  
Negative  
40  
8.0  
Positive  
6.0  
4.0  
2.0  
0
20  
0
−20  
1.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
0
2.0 4.0  
6.0 8.0  
10  
12  
14 16  
18 20  
V /V POWER SUPPLY VOLTAGES (V)  
CC EE,  
f, FREQUENCY (Hz)  
Figure 4. Input Voltage Range  
Figure 5. Large−Signal Open Loop Voltage Gain  
http://onsemi.com  
6
LM358, LM258, LM2904, LM2904A, LM2904V, NCV2904  
14  
12  
550  
V
V
= 30 V  
= Gnd  
CC  
EE  
R = 2.0 kW  
L
500  
450  
V
V
= 15 V  
= Gnd  
CC  
T = 25°C  
A
C = 50 pF  
Input  
EE  
L
10  
Gain = −100  
R = 1.0 kW  
R = 100 kW  
I
400  
350  
300  
250  
8.0  
Output  
F
6.0  
4.0  
2.0  
0
200  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
1.0  
10  
100  
1000  
f, FREQUENCY (kHz)  
t, TIME (ms)  
Figure 6. Large−Signal Frequency Response  
Figure 7. Small Signal Voltage Follower  
Pulse Response (Noninverting)  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
T = 25°C  
R = R  
L
A
90  
80  
0.3  
0
70  
0
5.0  
10  
15  
20  
25  
30  
35  
0
2.0 4.0 6.0 8.0  
10  
12  
14 16  
18  
20  
V
CC  
, POWER SUPPLY VOLTAGE (V)  
V
CC  
, POWER SUPPLY VOLTAGE (V)  
Figure 8. Power Supply Current versus  
Power Supply Voltage  
Figure 9. Input Bias Current versus  
Supply Voltage  
http://onsemi.com  
7
LM358, LM258, LM2904, LM2904A, LM2904V, NCV2904  
50 k  
R1  
V
CC  
5.0 k  
V
CC  
R2  
1/2  
V
CC  
10 k  
1/2  
V
ref  
V
O
LM358  
V
O
LM358  
MC1403  
+
+
2.5 V  
1
f =  
o
1
2
2
pRC  
V
ref  
=
V
CC  
For: f = 1.0 kHz  
o
R = 16 kW  
C = 0.01 m F  
R1  
R2  
R
C
V
O
= 2.5 V (1 +  
)
C
R
Figure 11. Wien Bridge Oscillator  
Figure 10. Voltage Reference  
1
C
+
1/2  
R
e
1
R
Hysteresis  
LM358  
R2  
V
OH  
R1  
V
1/2  
O
+
1/2  
LM358  
V
a R1  
ref  
R1  
e
o
LM358  
+
V
O
V
in  
V
OL  
b R1  
V
V
inH  
1
C
inL  
1/2  
R
R1  
R1 + R2  
V
(V − V )+ V  
ref  
ref  
V
=
OL  
ref  
inL  
LM358  
+
e
2
R
R1  
R1 + R2  
(V − V ) + V  
ref  
V
inH  
=
OH  
ref  
e = C (1 + a + b) (e − e )  
1
R1  
R1 + R2  
o
2
H =  
(V − V )  
OH OL  
Figure 12. High Impedance Differential Amplifier  
Figure 13. Comparator with Hysteresis  
1
2
f =  
o
R
p
R
100 k  
RC  
R1 = QR  
1
2
C1  
V
ref  
=
V
CC  
V
in  
R2  
C
R1  
C
R2 =  
1/2  
T
R
BP  
100 k  
LM358  
+
R3 = T  
1/2  
LM358  
N R2  
1/2  
C1 = 10 C  
+
LM358  
+
For: f  
= 1.0 kHz  
= 10  
= 1  
V
o
ref  
V
ref  
Q
T
Bandpass  
Output  
R3  
V
ref  
BP  
T
= 1  
N
R1  
R2  
1/2  
C1  
Notch Output  
R
C
= 160 kW  
= 0.001 m F  
LM358  
+
R1 = 1.6 MW  
R2 = 1.6 MW  
R3 = 1.6 MW  
V
ref  
Where:  
T
T
= Center Frequency Gain  
BP  
ꢀ= Passband Notch Gain  
N
Figure 14. Bi−Quad Filter  
http://onsemi.com  
8
LM358, LM258, LM2904, LM2904A, LM2904V, NCV2904  
V
CC  
R3  
C
C
R1  
V
in  
1/2  
V
O
LM358  
+
CO  
CO = 10 C  
R2  
V
ref  
1
2
V
ref  
=
V
CC  
Given:  
f = center frequency  
o
A(f ) = gain at center frequency  
o
Choose value f , C  
o
Q
p f C  
Then: R3 =  
R1 =  
1
2
Triangle Wave  
Output  
V
=
V
CC  
R2  
o
ref  
R3  
300 k  
V
+
1/2  
ref  
2 A(f )  
o
R3  
+
1/2  
R1 R3  
2
LM358  
75 k  
R2 =  
4Q R1 −R3  
LM358  
R1  
100 k  
Square  
Wave  
Output  
Q f  
o o  
For less than 10% error from operational amplifier.  
Where f and BW are expressed in Hz.  
< 0.1  
V
ref  
BW  
C
o
R
f
R1 + R  
R2 R1  
C
If source impedance varies, filter may be preceded with voltage  
follower buffer to stabilize filter parameters.  
f =  
if, R3 =  
4 CR R1  
f
R2 + R1  
Figure 16. Multiple Feedback Bandpass Filter  
Figure 15. Function Generator  
http://onsemi.com  
9
LM358, LM258, LM2904, LM2904A, LM2904V, NCV2904  
ORDERING INFORMATION  
Device  
Operating Temperature Range  
Package  
SOIC−8  
SOIC−8  
Shipping  
LM358D  
98 Units/Rail  
LM358DR2  
LM358DR2G  
2500 Tape & Reel  
2500 Tape & Reel  
SOIC−8  
(Pb−Free)  
LM358DMR2  
Micro8  
4000 Tape & Reel  
4000 Tape & Reel  
0°C to +70°C  
LM358DMR2G  
Micro8  
(Pb−Free)  
LM358N  
PDIP−8  
50 Units/Rail  
50 Units/Rail  
LM358NG  
PDIP−8  
(Pb−Free)  
LM258D  
SOIC−8  
SOIC−8  
98 Units/Rail  
LM258DR2  
LM258DR2G  
2500 Tape & Reel  
2500 Tape & Reel  
SOIC−8  
(Pb−Free)  
−25°C to +85°C  
LM258DMR2  
LM258N  
Micro8  
PDIP−8  
SOIC−8  
SOIC−8  
4000 Tape & Reel  
50 Units/Rail  
LM2904D  
98 Units/Rail  
LM2904DR2  
LM2904DR2G  
2500 Tape & Reel  
2500 Tape & Reel  
SOIC−8  
(Pb−Free)  
LM2904DMR2  
Micro8  
2500 Tape & Reel  
2500 Tape & Reel  
−40°C to +105°C  
LM2904DMR2G  
Micro8  
(Pb−Free)  
LM2904N  
PDIP−8  
Micro8  
50 Units/Rail  
4000 Tape & Reel  
50 Units/Rail  
LM2904ADMR2  
LM2904AN  
LM2904VD  
LM2904VDG  
PDIP−8  
SOIC−8  
98 Units/Rail  
SOIC−8  
98 Units/Rail  
(Pb−Free)  
LM2904VDR2  
SOIC−8  
Micro8  
2500 Tape & Reel  
4000 Tape & Reel  
50 Units/Rail  
−40°C to +125°C  
LM2904VDMR2  
LM2904VN  
PDIP−8  
SOIC−8  
Micro8  
NCV2904DR2*  
2500 Tape & Reel  
4000 Tape & Reel  
NCV2904DMR2*  
*NCV2904 is qualified for automotive use.  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
10  
LM358, LM258, LM2904, LM2904A, LM2904V, NCV2904  
MARKING DIAGRAMS  
PDIP−8  
N SUFFIX  
CASE 626  
PDIP−8  
AN SUFFIX  
CASE 626  
PDIP−8  
VN SUFFIX  
CASE 626  
8
1
8
8
1
8
1
LMx58N  
AWL  
YYWW  
LM2904N  
AWL  
YYWW  
LM2904AN  
AWL  
LM2904VN  
AWL  
YYWW  
YYWW  
1
SOIC−8  
D SUFFIX  
CASE 751  
SOIC−8  
VD SUFFIX  
CASE 751  
8
1
8
8
*
LMx58  
ALYW  
2904  
ALYW  
2904V  
ALYW  
1
1
Micro8  
DMR2 SUFFIX  
CASE 846A  
8
8
1
8
8
*
x58  
AYW  
2904  
AYW  
904A  
AYW  
904V  
AYW  
1
1
1
x
= 2 or 3  
A
WL, L  
YY, Y  
= Assembly Location  
= Wafer Lot  
= Year  
WW, W = Work Week  
*This diagram also applies to NCV2904  
http://onsemi.com  
11  
LM358, LM258, LM2904, LM2904A, LM2904V, NCV2904  
PACKAGE DIMENSIONS  
PDIP−8  
N, AN, VN SUFFIX  
CASE 626−05  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−B−  
MILLIMETERS  
INCHES  
MIN  
0.370  
1
4
DIM MIN  
MAX  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
10.16  
6.60 0.240  
4.45 0.155  
0.51 0.015  
1.78 0.040  
F
−A−  
NOTE 2  
L
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27 0.030  
0.30 0.008  
3.43  
0.050  
0.012  
0.135  
K
L
0.115  
C
7.62 BSC  
0.300 BSC  
M
N
−−−  
0.76  
10  
−−−  
1.01 0.030  
10  
0.040  
_
_
J
−T−  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
B
0.13 (0.005)  
T
A
http://onsemi.com  
12  
LM358, LM258, LM2904, LM2904A, LM2904V, NCV2904  
PACKAGE DIMENSIONS  
SOIC−8  
D, VD SUFFIX  
CASE 751−07  
ISSUE AB  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
−X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
−Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
0.275  
4.0  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
13  
LM358, LM258, LM2904, LM2904A, LM2904V, NCV2904  
PACKAGE DIMENSIONS  
Micro8  
DMR2 SUFFIX  
CASE 846A−02  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
−A−  
−B−  
K
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)  
PER SIDE.  
5. 846A−01 OBSOLETE, NEW STANDARD 846A−02.  
PIN 1 ID  
G
MILLIMETERS  
INCHES  
D 8 PL  
DIM MIN  
MAX  
3.10  
3.10  
1.10  
MIN  
MAX  
0.122  
0.122  
0.043  
0.016  
M
S
S
0.08 (0.003)  
T
B
A
A
B
C
D
G
H
J
2.90  
2.90  
−−−  
0.25  
0.65 BSC  
0.05  
0.13  
4.75  
0.40  
0.114  
0.114  
−−−  
0.40 0.010  
0.026 BSC  
SEATING  
PLANE  
0.15 0.002  
0.23 0.005  
5.05 0.187  
0.70 0.016  
0.006  
0.009  
0.199  
0.028  
−T−  
C
0.038 (0.0015)  
K
L
L
J
H
SOLDERING FOOTPRINT*  
1.04  
8X 0.041  
0.38  
8X  
0.015  
3.20  
4.24  
5.28  
0.126  
0.167 0.208  
mm  
inches  
0.65  
ǒ
Ǔ
SCALE 8:1  
6X0.0256  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Micro8 is a trademark of International Rectifier.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
LM358/D  

相关型号:

LM2904DRE4

DUAL OPERATIONAL AMPLIFIERS
TI

LM2904DRG3

DUAL OPERATIONAL AMPLIFIERS
TI

LM2904DRG4

DUAL OPERATIONAL AMPLIFIERS
TI

LM2904DT

LOW POWER DUAL OPERATIONAL AMPLIFIERS
STMICROELECTR

LM2904DT

SILICON MONNOLITHIC INTEGRATED CIRCUIT
ROHM

LM2904EDR2G

运算放大器,单电源,双路
ONSEMI

LM2904EYF-C

LM2904EYxxx-C是将高增益且接地检测输入独立的运算放大器以2个电路集成于1枚芯片的单片IC。3V~32V的宽工作电压范围,消耗电流低,适用于引擎控制单元、EPS、ABS等各类车载应用。不仅如此,还具有出色的抗EMI性能,可轻松替换现有产品,EMI设计也更容易。
ROHM

LM2904EYFJ-C (开发中)

LM2904EYxxx-C是将高增益且接地检测输入独立的运算放大器以2个电路集成于1枚芯片的单片IC。工作电压范围宽达3V~32V,且消耗电流低,适用于引擎控制单元、EPS、ABS等各类车载应用。不仅如此,还具有出色的抗EMI性能,可轻松替换现有产品,EMI设计也更容易。
ROHM

LM2904EYFVM-C

LM2904EYxxx-C是将高增益且接地检测输入独立的运算放大器以2个电路集成于1枚芯片的单片IC。3V~32V的宽工作电压范围,消耗电流低,适用于引擎控制单元、EPS、ABS等各类车载应用。不仅如此,还具有出色的抗EMI性能,可轻松替换现有产品,EMI设计也更容易。
ROHM

LM2904F

Ground Sense Operational Amplifiers
ROHM

LM2904F-E2

Ground Sense Operational Amplifiers
ROHM

LM2904FJ

Ground Sense Operational Amplifiers
ROHM