BU2394KN [ROHM]

3ch Clock Generator for Digital Cameras; 3通道时钟发生器的数码相机
BU2394KN
型号: BU2394KN
厂家: ROHM    ROHM
描述:

3ch Clock Generator for Digital Cameras
3通道时钟发生器的数码相机

时钟发生器 数码相机
文件: 总17页 (文件大小:675K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
High-performance Clock Generator Series  
3ch Clock Generator  
for Digital Cameras  
BU2394KN,BU2396KN  
Description  
These clock generators are an IC generating three types of clocks – CCD, USB, and VIDEO clocks – necessary for digital  
still camera systems and digital video camera systems, with a single chip through making use of the PLL technology.  
Generating these clocks with a single chip allows for the simplification of clock system, little space occupancy, reduction in  
the number of components used for mobile camera equipment, which is becoming increasingly downsized and less costly.  
Features  
1) Connecting a crystal oscillator generates multiple clock signals with a built-in PLL.  
2) The CCD clock provides switching selection outputs.  
3) Providing the output of low period-jitter clock.  
4) Incorporating compact package VQFN20 most suited for mobile devices.  
5) Single power supply of 3.3 V  
Applications  
Generation of clocks used in digital still camera and digital video camera systems  
Lineup  
BU2394KN  
3.0V3.6V  
BU2396KN  
3.0V3.6V  
Supply voltage  
Operating temperature range  
Reference input clock  
-5~+70℃  
-5~+70℃  
14.318182MHz  
28.636363MHz  
135.000000MHz  
110.000000MHz  
108.000000MHz  
98.181818MHz  
48.008022MHz  
14.318182MHz  
17.734450MHz  
12.000000MHz  
Output CCD clock  
36.000000MHz  
30.000000MHz  
24.000000MHz  
Output USB clock  
12.000000MHz  
27.000000MHz  
Output VIDEO clock  
Absolute Maximum RatingsTa=25℃)  
Parameter  
Symbol  
VDD  
VIN  
Limit  
-0.57.0  
-0.5VDD+0.5  
-30125  
530  
Unit  
Supply voltage  
Input voltage  
Storage Temperature range  
Power dissipation  
Tstg  
PD  
mW  
*1 Operating temperature is not guaranteed.  
*2 In the case of exceeding Ta = 25, 5.3mW should be reduced per 1℃.  
*3 The radiation-resistance design is not carried out.  
*4 Power dissipation is measured when the IC is mounted to the printed circuit board.  
Sep. 2008  
Recommended Operating Range  
Parameter  
Symbol  
VDD  
VINH  
VINL  
Topr  
Limit  
3.03.6  
Unit  
Supply voltage  
Input H voltage  
Input L voltage  
Operating temperature  
Output load  
0.8VDDVDD  
0.00.2VDD  
-570  
CL  
15(MAX)  
pF  
Electrical characteristics  
BU2394KN(VDD=3.3V, Ta=25, unless otherwise specified.)  
XTAL_SEL=H with crystal oscillator at a frequency of 28.636363 MHz, while XTAL_SEL=L at 14.318182 MHz  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Typ.  
45  
Max.  
60  
Action circuit current】  
Output H voltage】  
CLK1  
At no load  
IDD  
mA  
When current load = - 9.0mA  
When current load = - 7.0mA  
When current load = - 4.5mA  
VOH1  
VOH2  
VOHR  
VDD-0.5  
VDD-0.5  
VDD-0.5  
VDD-0.2  
VDD-0.2  
VDD-0.2  
V
V
V
CLK2  
REF_CLK  
Output L voltage】  
CLK1  
When current load =11mA  
When current load =9.0mA  
When current load =5.5mA  
VOL1  
VOL2  
VOLR  
0.2  
0.2  
0.2  
0.5  
0.5  
0.5  
V
V
V
CLK2  
REF_CLK  
Pull-Up resistance value】  
FS1, FS2, FS3,  
Specified by a current value  
CLK2ON, XTAL_SEL  
Pull-Up  
R
running when a voltage of 0V is  
applied to a measuring pin.  
(R=VDDI)  
125  
250  
375  
Ω
Output frequency】  
CLK1 FS2:H FS3:H  
CLK1 FS2:H FS3:L  
CLK1 FS2:L FS3:L  
CLK1 FS2:L FS3:H  
CLK2  
XTAL×(1188/63)/2  
XTAL×(1056/70)/2  
XTAL×(864/63)/2  
XTAL×(968/63)/2  
XTAL×(228/17)/4  
XTAL Output  
Fclk1-1  
Fclk1-2  
Fclk1-3  
Fclk1-4  
Fclk2-2  
Fref1-1  
Fref1-2  
135.000000  
108.000000  
98.181818  
110.000000  
48.008022  
14.318182  
17.734450  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
REF_CLK FS1:H  
REF_CLK FS1:L  
Output waveform】  
Duty1 100MHz or less  
XTAL×(706/57)/10  
Measured at a voltage of 1/2 of  
VDD  
Duty1  
Duty2  
45  
50  
50  
55  
Duty2 100MHz or more  
Rise time  
Measured at a voltage of 1/2 of  
VDD  
Period of transition time required  
Tr  
Tf  
2.5  
2.5  
nsec for the output to reach 80% from  
20% of VDD.  
Fall time  
Period of transition time required  
nsec for the output to reach 20% from  
80% of VDD.  
Jitter】  
Period-Jitter 1σ  
Period-Jitter MIN-MAX  
1  
2  
P-J1σ  
P-J  
30  
180  
1
psec  
psec  
msec  
MIN-MAX  
Output Lock-Time】  
3  
Tlock  
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN. If the  
input frequency is set to values shown below, the output frequency will be as listed above.  
When XTAL_SEL is set to H, the input frequency on XTALIN will be 28.636363 MHz.  
When XTAL_SEL is set to L, the input frequency on XTALIN will be 14.318182 MHz.  
2/16  
BU2396N(VDD=3.3V, Ta=25, Crystal =12.000000MHz, unless otherwise specified.)  
Limit  
Parameter  
Symbol  
IDD  
Unit  
mA  
Condition  
Min.  
Typ.  
23  
Max.  
35  
Action circuit current】  
At no load  
Output H voltage】  
TGCLK  
When current load =-5.0mA  
When current load =-5.0mA  
When current load =-5.0mA  
VOHT  
VOHV  
VOHU  
VDD-0.5  
VDD-0.5  
VDD-0.5  
V
V
V
VCLK  
UCLK  
Output L voltage】  
TGCLK  
When current load =5.0mA  
When current load =5.0mA  
When current load =5.0mA  
VOLT  
VOLV  
VOLU  
0.5  
0.5  
0.5  
V
V
V
VCLK  
UCLK  
Pull-Up resistance value】  
TGCLK_SEL1  
TGCLK_SEL2  
Specified by a current value  
running when a voltage of 0V is  
applied to a measuring pin.  
(R=VDDI)  
Pull-up  
R
125  
25  
250  
50  
375  
75  
KΩ  
KΩ  
Pull-Down resistance value】  
TGCLK_EN, TGCLK_PD  
Specified by a current value  
running when a VDD is applied to  
a measuring pin.  
VCLK_EN, VCLK_PD  
Pull-down  
R
(R=VDDI)  
Output frequency】  
TGCLK SEL1:L SEL2:L  
TGCLK SEL1:L SEL2:H  
TGCLK SEL1:H  
VCLK  
XTAL×(48/4)/6  
XTAL×(60/4)/6  
XTAL×(54/3)/6  
XTAL×(54/3)/8  
XTAL output  
TGCLK1  
TGCLK2  
TGCLK3  
VCLK  
24.000000  
30.000000  
36.000000  
27.000000  
12.000000  
MHz  
MHz  
MHz  
MHz  
MHz  
UCLK  
UCLK  
Output waveform】  
Duty  
Measured at a voltage of 1/2 of VDD  
Period of transition time required  
Duty  
Tr  
45  
50  
55  
Rise time  
2.0  
nsec for the output to reach 80% from  
20% of VDD.  
Fall time  
Period of transition time required  
nsec for the output to reach 20% from  
80% of VDD.  
Tf  
2.0  
Jitter】  
Period-Jitter 1σ  
Period-Jitter MIN-MAX  
1  
2  
P-J1σ  
P-J  
50  
psec  
psec  
msec  
300  
MIN-MAX  
Tlock  
Output Lock-Time】  
3  
1
Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to XTALIN.  
If the input frequency is set to 12.000000MHz, the output frequency will be as listed above.  
Common to BU2394KN, BU2396KN  
1 Period-Jitter 1σ  
This parameter represents standard deviation (=1σ) on cycle distribution data at the time when the output clock cycles are  
sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd.  
2 Period-Jitter MIN-MAX  
This parameter represents a maximum distribution width on cycle distribution data at the time when the output clock cycles are  
sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd.  
3 Output Lock-Time  
The Lock-Time represents elapsed time after power supply turns ON to reach a 3.0V voltage, after the system is switched from  
Power-Down state to normal operation state, or after the output frequency is switched, until it is stabilized at a specified frequency,  
respectively.  
3/16  
Reference data (BU2394KN basic data)  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
1.0nsecdiv  
10KHzdiv  
Fig.1 135MHz output wave  
At VDD=3.3V and CL=15pF  
Fig.2 135MHz Period-Jitter  
At VDD=3.3V and CL=15pF  
Fig.3 135MHz Spectrum  
At VDD=3.3V and CL=15pF  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
2.0nsecdiv  
10KHzdiv  
Fig.4 110MHz output wave  
At VDD=3.3V and CL=15pF  
Fig.5 110MHz Period-Jitter  
At VDD=3.3V and CL=15pF  
Fig.6 110MHz Spectrum  
At VDD=3.3V and CL=15pF  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
2.0nsecdiv  
10KHzdiv  
Fig.7 108MHz output wave  
At VDD=3.3V and CL=15pF  
Fig.8 108MHz Period-Jitter  
At VDD=3.3V and CL=15pF  
Fig.9 108MHz Spectrum  
At VDD=3.3V and CL=15pF  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
2.0nsecdiv  
10KHzdiv  
Fig.10 98MHz output wave  
At VDD=3.3V and CL=15pF  
Fig.11 98MHz Period-Jitter  
At VDD=3.3V and CL=15pF  
Fig.12 98MHz Spectrum  
At VDD=3.3V and CL=15pF  
4/16  
Reference data (BU2394KN basic data)  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
5.0nsecdiv  
10KHzdiv  
Fig.13 48MHz output wave  
At VDD=3.3V and CL=15pF  
Fig.14 48MHz Period-Jitter  
At VDD=3.3V and CL=15pF  
Fig.15 48MHz Spectrum  
At VDD=3.3V and CL=15pF  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
10.0nsecdiv  
10KHzdiv  
Fig.16 17.7MHz output wave  
At VDD=3.3V and CL=15pF  
Fig.17 17.7MHz Period-Jitter  
At VDD=3.3V and CL=15pF  
Fig.18 17.7MHz Spectrum  
At VDD=3.3V and CL=15pF  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
10.0nsecdiv  
10KHzdiv  
Fig.19 14.3MHz output wave  
At VDD=3.3V and CL=15pF  
Fig.20 14.3MHz Period-Jitter  
At VDD=3.3V and CL=15pF  
Fig.21 14.3MHz Spectrum  
At VDD=3.3V and CL=15pF  
5/16  
Reference data (BU2394KN Temperature and Supply voltage variations data)  
600  
500  
400  
300  
200  
100  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
-25  
-25  
-25  
-25  
0
25  
50  
75  
100  
TemperatureT[]  
TemperatureT[]  
TemperatureT[]  
Fig.24 135MHz  
Fig.23 135MHz  
Fig.22 135MHz  
TemperaturePeriod-Jitter MIN-MAX  
TemperaturePeriod-Jitter 1σ  
TemperatureDuty  
600  
500  
400  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
300  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
200  
100  
0
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
TemperatureT[]  
TemperatureT[]  
TemperatureT[]  
Fig.26 110MHz  
Fig.27 110MHz  
Fig.25 110MHz  
TemperaturePeriod-Jitter 1σ  
TemperaturePeriod-Jitter MIN-MAX  
TemperatureDuty  
600  
500  
400  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
300  
200  
100  
0
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
TemperatureT[]  
TemperatureT[]  
Fig.29 108MHz  
TemperatureT[]  
Fig.30 108MHz  
Fig.28 108MHz  
TemperaturePeriod-Jitter 1σ  
TemperaturePeriod-Jitter MIN-MAX  
TemperatureDuty  
600  
500  
400  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
VDD=2.9V  
300  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
VDD=3.3V  
VDD=3.7V  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
200  
100  
0
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
TemperatureT[]  
TemperatureT[]  
TemperatureT[]  
Fig.32 98MHz  
Fig.33 98MHz  
Fig.31 98MHz  
TemperaturePeriod-Jitter 1σ  
TemperaturePeriod-Jitter MIN-MAX  
TemperatureDuty  
6/16  
Reference data (BU2394KN Temperature and Supply voltage variations data)  
600  
500  
400  
300  
200  
100  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
VDD=3.7V  
VDD=3.3V  
VDD=2.9V  
VDD=3.7V  
VDD=3.3V  
VDD=2.9V  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
-25  
-25  
-25  
-25  
0
25  
50  
75  
100  
TemperatureT[]  
TemperatureT[]  
TemperatureT[]  
Fig.36 98MHz  
Fig.35 48MHz  
Fig.34 48MHz  
TemperaturePeriod-Jitter MIN-MAX  
TemperaturePeriod-Jitter 1σ  
TemperatureDuty  
600  
500  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
VDD=3.7V  
VDD=3.3V  
VDD=2.9V  
VDD=3.7V  
400  
VDD=3.3V  
VDD=2.9V  
300  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
200  
100  
0
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
TemperatureT[]  
TemperatureT[]  
TemperatureT[]  
Fig.38 17.7MHz  
Fig.39 17.7MHz  
Fig.37 17.7MHz  
TemperaturePeriod-Jitter 1σ  
TemperaturePeriod-Jitter MIN-MAX  
TemperatureDuty  
600  
500  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
VDD=3.7V  
VDD=3.3V  
VDD=2.9V  
VDD=3.7V  
VDD=3.3V  
VDD=2.9V  
400  
300  
200  
100  
0
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
TemperatureT[]  
TemperatureT[]  
Fig.41 14.3MHz  
TemperatureT[]  
Fig.42 14.3MHz  
Fig.40 14.3MHz  
TemperaturePeriod-Jitter 1σ  
TemperaturePeriod-Jitter MIN-MAX  
TemperatureDuty  
60  
50  
40  
30  
20  
10  
0
VDD=3.7V  
VDD=3.3V  
VDD=2.9V  
0
25  
50  
75  
100  
TemperatureT[]  
Fig.43 At 1chip operation  
TemperatureConsumption current  
7/16  
Reference data (BU2396KN basic data)  
z
RBW=1KHz  
VBW=100Hz  
500psecdiv  
5.0nsecdiv  
10KHzdiv  
Fig.44 36MHz output waveform  
At VDD=3.3V and CL=15pF  
Fig.45 136MHz Period-Jitter  
At VDD=3.3V and CL=15pF  
Fig.46 36MHz Spectrum  
At VDD=3.3V and CL=15pF  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
5.0nsecdiv  
10KHzdiv  
Fig.47 30MHz output waveform  
At VDD=3.3V and CL=15pF  
Fig.48 30MHz Period-Jitter  
At VDD=3.3V and CL=15pF  
Fig.49 30MHz Spectrum  
At VDD=3.3V and CL=15pF  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
5.0nsecdiv  
10KHzdiv  
Fig.50 24MHz output waveform  
At VDD=3.3V and CL=15pF  
Fig.51 24MHz Period-Jitter  
At VDD=3.3V and CL=15pF  
Fig.52 24MHz Spectrum  
At VDD=3.3V and CL=15pF  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
5.0nsecdiv  
10KHzdiv  
Fig.53 27MHz output waveform  
At VDD=3.3V and CL=15pF  
Fig.54 27MHz Period-Jitter  
At VDD=3.3V and CL=15pF  
Fig.55 27MHz Spectrum  
At VDD=3.3V and CL=15pF  
8/16  
Reference data (BU2396KN basic data)  
RBW=1KHz  
VBW=100Hz  
500psecdiv  
5.0nsecdiv  
10KHzdiv  
Fig.56 12MHz output waveform  
At VDD=3.3V and CL=15pF  
Fig.57 12MHz Period-Jitter  
At VDD=3.3V and CL=15pF  
Fig.58 12MHz Spectrum  
At VDD=3.3V and CL=15pF  
Reference data (BU2396KN Temperature and Supply voltage variations data)  
600  
500  
400  
300  
200  
100  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
-25  
-25  
-25  
0
25  
50  
75  
100  
Temperature T[  
]
TemperatureT[]  
TemperatureT[]  
Fig.60 36MHz  
TemperaturePeriod-Jitter 1σ  
Fig.59 36MHz  
TemperatureDuty  
Fig.61 36MHz  
TemperaturePeriod-Jitter MIN-MAX  
600  
500  
400  
100  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
VDD=2.9V  
300  
VDD=3.3V  
VDD=3.7V  
200  
100  
0
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
Temperature T[  
]
TemperatureT[]  
TemperatureT[]  
Fig.64 30MHz  
Fig.62 30MHz  
TemperatureDuty  
Fig.63 30MHz  
TemperaturePeriod-Jitter 1σ  
TemperaturePeriod-Jitter MIN-MAX  
600  
500  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
400  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
VDD=2.9V  
VDD=3.3V  
300  
VDD=3.7V  
200  
100  
0
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
TemperatureT[]  
TemperatureT[]  
TemperatureT[]  
Fig.65 24MHz  
Fig.66 24MHz  
Fig.67 24MHz  
TemperatureDuty  
TemperaturePeriod-Jitter 1σ  
TemperaturePeriod-Jitter MIN-MAX  
9/16  
Reference data (BU2396KN Temperature and Supply voltage variations data)  
600  
500  
400  
300  
200  
100  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
VDD=3.7V  
VDD=3.3V  
VDD=2.9V  
VDD=3.7V  
VDD=3.3V  
VDD=2.9V  
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
-25  
-25  
-25  
0
25  
50  
75  
100  
Temperature T[  
]
TemperatureT[]  
Fig.69 27MHz  
TemperaturePeriod-Jitter 1σ  
TemperatureT[]  
Fig.70 27MHz  
TemperaturePeriod-Jitter MIN-MAX  
Fig.68 27MHz  
TemperatureDuty  
600  
500  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
400  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
200  
VDD=2.9V  
VDD=3.3V  
VDD=3.7V  
300  
100  
0
-25  
0
25  
50  
75  
100  
-25  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
Temperature T[  
]
TemperatureT[]  
Fig.72 12MHz  
TemperaturePeriod-Jitter 1σ  
TemperatureT[]  
Fig.73 12MHz  
TemperaturePeriod-Jitter MIN-MAX  
Fig.71 12MHz  
TemperatureDuty  
40  
30  
20  
10  
0
VDD=3.7V  
VDD=3.3V  
VDD=2.9V  
0
25  
50  
75  
100  
TemperatureT[]  
Fig.74 At 1chip operation  
TemperatureConsumption current  
10/16  
List of BU2396KN Operation Modes  
When XTAL_SEL=L, (When a crystal oscillator of 14.318182-MHz frequency is used)  
Xtal(MHz)  
14.318182  
14.318182  
14.318182  
14.318182  
14.318182  
14.318182  
14.318182  
14.318182  
14.318182  
14.318182  
14.318182  
14.318182  
14.318182  
14.318182  
14.318182  
14.318182  
CLK2ON  
FS1  
FS2  
FS3  
CLK1(MHz)  
135.000000  
135.000000  
135.000000  
135.000000  
108.000000  
108.000000  
108.000000  
108.000000  
98.181818  
98.181818  
98.181818  
98.181818  
110.000000  
110.000000  
110.000000  
110.000000  
CLK2(MHz)  
48.008022  
48.008022  
Fixed to L  
Fixed to L  
48.008022  
48.008022  
Fixed to L  
Fixed to L  
48.008022  
48.008022  
Fixed to L  
Fixed to L  
48.008022  
48.008022  
Fixed to L  
Fixed to L  
REF_CLK(MHz)  
14.318182  
17.734450  
14.318182  
17.734450  
14.318182  
17.734450  
14.318182  
17.734450  
14.318182  
17.734450  
14.318182  
17.734450  
14.318182  
17.734450  
14.318182  
17.734450  
When XTAL_SEL=H, (When a crystal oscillator of 28.636363MHz frequency is used)  
Xtal(MHz)  
28.636363  
28.636363  
28.636363  
28.636363  
28.636363  
28.636363  
28.636363  
28.636363  
28.636363  
28.636363  
28.636363  
28.636363  
28.636363  
28.636363  
28.636363  
28.636363  
CLK2ON  
FS1  
FS2  
FS3  
CLK1(MHz)  
135.000000  
135.000000  
135.000000  
135.000000  
108.000000  
108.000000  
108.000000  
108.000000  
98.181818  
98.181818  
98.181818  
98.181818  
110.000000  
110.000000  
110.000000  
110.000000  
CLK2(MHz)  
48.008022  
48.008022  
Fixed to L  
Fixed to L  
48.008022  
48.008022  
Fixed to L  
Fixed to L  
48.008022  
48.008022  
Fixed to L  
Fixed to L  
48.008022  
48.008022  
Fixed to L  
Fixed to L  
REF_CLK(MHz)  
14.318182  
17.734450  
14.318182  
17.734450  
14.318182  
17.734450  
14.318182  
17.734450  
14.318182  
17.734450  
14.318182  
17.734450  
14.318182  
17.734450  
14.318182  
17.734450  
11/16  
List of BU2396KN Operation Modes  
TGCLK_SEL  
TGCLK  
Output  
VCLK  
Output  
UCLK  
Output  
PLL1  
30M,24M  
PLL2  
36M,27M  
TGCLK_SEL1  
TGCLK_EN  
VCLK_EN  
TGCLK_PD  
VCLK_PD  
2
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Fixed to L  
Power-Down  
Power-Down  
1
0
1
0
1
0
1
0
Fixed to L  
Normal  
operation  
Power-Down  
Fixed to L  
Normal  
operation  
Power-Down  
24MHz output  
30MHz output  
36MHz output  
36MHz output  
Normal  
operation  
Power-Down  
Normal  
operation  
Power-Down  
1
0
1
Normal  
operation  
Power-Down  
Fixed to L  
Normal  
operation  
Power-Down  
24MHz output  
30MHz output  
36MHz output  
36MHz output  
Normal  
operation  
Power-Down  
Normal  
operation  
Power-Down  
12MHz  
output  
Fixed to L  
Fixed to L  
Power-Down  
27MHz  
output  
Normal  
operation  
1
Normal  
operation  
Fixed to L  
Power-Down  
Fixed to L  
24MHz output  
30MHz output  
36MHz output  
36MHz output  
Normal  
operation  
Power-Down  
Normal  
operation  
Fixed to L  
Power-Down  
27MHz  
output  
24MHz output  
30MHz output  
36MHz output  
36MHz output  
Normal  
operation  
Power-Down  
12/16  
BU2394KN Application Circuit  
/
Description of Terminal  
for Video  
14.318182MHz  
0.1uF  
17.734450MHz  
for USB  
DATA  
PLL1  
135.000000MHz  
108.000000MHz  
110.000000MHz  
98.181818MHz  
48.008022MHz  
CLK1  
CLK2  
11  
16  
4
5
XIN  
XTAL  
OSC  
1
2
AVDD  
AVDD  
15 VDD1  
XOUT  
14 VDD1  
48.008022MHz  
PLL2  
PLL3  
1
1
4
0.1uF  
0.1uF  
BU2394KN  
VQFN-20  
3
AVSS  
13 VSS1  
1
2
4
XIN  
12  
:CLK2ON  
XTAL_SEL  
CLK2ON  
7
11  
12  
10  
9
5
XOUT  
:CLK1OUT  
R
for CCD  
17.734450MHz  
14.318182MHz  
135.000000MHz  
110.000000MHz  
108.000000MHz  
98.181818MHz  
10  
FS1  
FS2  
REF_CLK  
19  
FS3  
8
Fig.76  
Fig.75  
Description of Terminal  
PIN No.  
1
PIN NAME  
AVDD  
Function  
Analog power source  
Analog power source  
Analog GND  
2
AVDD  
AVSS  
3
4
XIN  
Crystal IN  
5
XOUT  
Crystal OUT  
6
TEST1  
XTAL_SEL  
FS3  
TEST pin, normally open, equipped with pull-down  
7
Crystal oscillator selection, H: 28.636 MHz, L: 14.318 MHz, equipped with pull-up  
CLK1,2 output selection, equipped with pull-up  
CLK1,2 output selection, equipped with pull-up  
REFCLK output selection, equipped with pull-up  
110M/98M/108M/135M output  
8
9
FS2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
FS1  
CLK1OUT  
CLK2ON  
VSS1  
CLK2 output control, H: Enable, L: Disable, equipped with pull-up  
CLK1/CLK2 & Internal digital GND  
VDD1  
CLK1/2 & Internal digital power supply  
CLK1/2 & Internal digital power supply  
48M output  
VDD1  
CLK2OUT  
VSS2  
REFCLK GND  
VDD2  
REFCLK power supply  
REF_CLK  
TEST2  
14.3M/17.7M output  
TEST pin, normally open, equipped with pull-down  
Note) Basically, mount ICs to the substrate for use. If the ICs are not mounted to the substrate, the characteristics of ICs may  
not be fully demonstrated.  
Mount 0.1uF as bypass capacitors in the vicinity of the IC pins between 1&2 PIN and 3PIN, 13PIN and 14&15PIN, and  
17PIN and 18PIN, respectively.  
Even though we believe that the example of the application circuit is worth of a recommendation, please be sure to  
thoroughly recheck the characteristics before use.  
As to the jitters, the TYP values vary with the substrate, power supply, output loads, noises, and others.  
Besides, for the use, the operating margin should be thoroughly checked.  
13/16  
BU2396KN Application Circuit  
/
Description of Terminal  
XIN  
4
5
XTAL  
OSC  
12.000000MHz  
UCLK  
XOUT  
16  
for Video  
27.000000MHz  
TGCLK_EN  
0.1uF  
10  
7
for USB  
12.000000MHz  
DATA  
PLL1  
TGCLK_SEL2  
30.000000MHz  
24.000000MHz  
11 TGCLK  
36.000000MHz  
1
2
3
AVDD  
AVDD  
AVSS  
15 VDD1  
8
9
TGCLK_SEL1  
TGCLK_PD  
14 VDD1  
0.1uF  
0.1uF  
1
6
BU2396KN  
VQFN-20  
13 VSS1  
4
XIN  
12 VCLK_EN  
11 TGCLK  
1
8
5
XOUT  
PLL2  
VCLK  
19  
for  
R
CCD  
36.000000MHz  
30.000000MHz  
24.000000MHz  
27.000000MHz  
20  
12  
VCLK_PD  
VCLK_EN  
Fig.77  
Fig.78  
Description of Terminal  
PIN No.  
1
PIN NAME  
AVDD  
Function  
Analog power source  
Analog power source  
Analog GND  
2
AVDD  
3
AVSS  
4
XIN  
Crystal IN  
5
XOUT  
Crystal OUT  
6
TEST  
TEST pin, normally open, equipped with pull-down  
TGCLK frequency selection, equipped with pull-up  
TGCLK frequency selection, equipped with pull-up  
7
TGCLK_SEL2  
TGCLK_SEL1  
TGCLK_PD  
TGCLK_EN  
TGCLK  
VCLK_EN  
VSS1  
8
9
TGCLK Power-Down control, H:enable, L:Power-Down, equipped with pull-down  
TGCLK output control, H: Enable, L: Output fixed to L, equipped with pull-down  
36M, 30M, 24M output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VCLK output control, H:enable, L: Output fixed to L, equipped with pull-down  
TGCLK,UCLK & Internal digital GND  
VDD1  
TGCLK,UCLK & Internal digital power supply  
TGCLK,UCLK & Internal digital power supply  
12M output  
VDD1  
UCLK  
VSS2  
VCLK GND  
VDD2  
VCLK power source  
VCLK  
27M output  
VCLK_PD  
VCLK Power-Down control, H:enable, L:Power-Down, equipped with pull-down  
Note) Basically, mount ICs to the substrate for use. If the ICs are not mounted to the substrate, the characteristics of ICs may  
not be fully demonstrated.  
Mount 0.1uF as bypass capacitors in the vicinity of the IC pins between 1&2 PIN and 3PIN, 13PIN and 14&15PIN, and  
17PIN and 18PIN, respectively.  
Even though we believe that the example of the application circuit is worth of a recommendation, please be sure to  
thoroughly recheck the characteristics before use.  
As to the jitters, the TYP values vary with the substrate, power supply, output loads, noises, and others. Besides, for the  
use, the operating margin should be thoroughly checked.  
14/16  
Cautions on use  
(1) Absolute Maximum Ratings  
An excess in the absolute maximum ratings, such as applied voltage (VDD or VIN), operating temperature range (Topr),  
etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit.  
If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take  
physical safety measures including the use of fuses, etc.  
(2) Recommended operating conditions  
These conditions represent a range within which characteristics can be provided approximately as expected. The  
electrical characteristics are guaranteed under the conditions of each parameter.  
(3) Reverse connection of power supply connector  
The reverse connection of power supply connector can break down ICs. Take protective measures against the  
breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC’s  
power supply terminal.  
(4) Power supply line  
Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines.  
In this regard, for the digital block power supply and the analog block power supply, even though these power supplies  
has the same level of potential, separate the power supply pattern for the digital block from that for the analog block,  
thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to  
the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.  
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal.  
At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the  
capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus  
determining the constant.  
(5) GND voltage  
Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state.  
Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric  
transient.  
(6) Short circuit between terminals and erroneous mounting  
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting  
can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or  
between the terminal and the power supply or the GND terminal, the ICs can break down.  
(7) Operation in strong electromagnetic field  
Be noted that using ICs in the strong electromagnetic field can malfunction them.  
(8) Inspection with set PCB  
On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress.  
Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set  
PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the  
jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In  
addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention  
to the transportation and the storage of the set PCB.  
(9) Input terminals  
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the  
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of  
the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input  
terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not  
apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power  
supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the  
guaranteed value of electrical characteristics.  
(10) Ground wiring pattern  
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND  
pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that  
resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of  
the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.  
(11) External capacitor  
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a  
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, et  
15/16  
Name selection of ordered type  
-
B
U
2
3
9
X
K
N
E
2
Part No.  
Type  
Package Type  
Packing specification  
2394, 2396  
KNVQFN20  
E2: Reel-like emboss taping  
VQFN20  
<Tape and Reel information>  
<Dimension>  
Embossed carrier tape(with dry pack)  
Tape  
4.2 0.1  
4.0 0.1  
2500pcs  
E2  
Quantity  
(1.1)  
16  
15  
11  
3
10  
Direction  
of feed  
(0  
.35)  
(0  
.5)  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
6
20  
(0.22)  
1
5
0.5  
0.22 0.05  
0.05  
(0.6+00..31  
)
0.05  
Direction of feed  
1pin  
Reel  
(Unit:mm)  
When you order , please order in times the amount of package quantity.  
Catalog No.08T802A '08.9 ROHM ©  
Appendix  
Notes  
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM  
CO.,LTD.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you  
wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM  
upon request.  
Examples of application circuits, circuit constants and any other information contained herein illustrate the  
standard usage and operations of the Products. The peripheral conditions must be taken into account  
when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document. However, should  
you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no re-  
sponsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and examples  
of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to  
use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no re-  
sponsibility whatsoever for any dispute arising from the use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic equipment  
or devices (such as audio visual equipment, office-automation equipment, communication devices, elec-  
tronic appliances and amusement devices).  
The Products are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or  
malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard against the  
possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as  
derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your  
use of any Product outside of the prescribed scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or system  
which requires an extremely high level of reliability the failure or malfunction of which may result in a direct  
threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment,  
aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear  
no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intend-  
ed to be used for any such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may be controlled under  
the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2009 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix-Rev4.0  

相关型号:

BU2394KN-E2

Clock Generator, 135MHz, CMOS, ROHS COMPLIANT, VQFN-20
ROHM

BU2394KN_08

3ch Clock Generator for Digital Cameras
ROHM

BU2396KN

3ch Clock Generator for Digital Cameras
ROHM

BU2396KN-E2

Clock Generator, 36MHz, CMOS, ROHS COMPLIANT, VQFN-20
ROHM

BU239XK-E2N

3ch Clock Generator for Digital Cameras
ROHM

BU23TD2WNVX

1ch 200mA CMOS LDO Regulators
ROHM

BU23TD2WNVX-GTL

Fixed Positive LDO Regulator
ROHM

BU23TD3WG-GTR

Fixed Positive LDO Regulator
ROHM

BU23TD3WG-TR

Fixed Positive LDO Regulator
ROHM

BU23UA3WNVX-TL

Versatile Package FULL CMOS LDO Regulator
ROHM

BU23UB3WG-GTL

Versatile Package FULL CMOS LDO Regulator
ROHM

BU23UB3WG-GTR

Versatile Package FULL CMOS LDO Regulator
ROHM