BM81004MUV-ZE2 [ROHM]

Power Supply Support Circuit, Fixed, 6 Channel, VQFN-48;
BM81004MUV-ZE2
型号: BM81004MUV-ZE2
厂家: ROHM    ROHM
描述:

Power Supply Support Circuit, Fixed, 6 Channel, VQFN-48

文件: 总53页 (文件大小:2642K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Power supply IC series for TFT-LCD panels  
12V Input Multi-Channel  
System Power Supply IC  
BM81004MUV  
General Description  
Key Specifications  
BM81004MUV is a system power supply for TFT-LCD  
panels used for liquid crystal TVs. This IC is  
incorporated with Negative and Positive charge pump  
controller and Gate Pulse Modulation (GPM) function. It  
also features built-in EEPROM to contain each setting  
voltage, soft start time etc.  
Input voltage range  
8.6V to 14.0V  
11.7V to 18.0V  
2.2V to 3.7V  
4.8V to 11.1V  
25V to 40.5V  
-10.2V to -4.0V  
750kHz(Typ)  
1MHz(Typ)  
AVDD Output voltage range:  
VIO Output voltage range:  
HAVDD Output voltage range:  
VGH Output voltage range:  
VGL Output voltage range:  
Switching Frequency:  
Features  
Step-up DC/DC converter (AVDD).  
(Synchronous rectification, Built-in load switch).  
Step-down DC/DC converter 1(VIO).  
(Non-synchronous rectification).  
Step-down DC/DC converter 2(VCORE).  
Step-down DC/DC converter 3(HAVDD).  
(Synchronous rectification).  
Operating temperature range:  
-40to +105℃  
Package  
VQFN48V7070A  
W(Typ) x D(Typ) x H(Max)  
7.00mm x 7.00mm x 1.0mm  
Positive charge pump controller (VGH).  
Negative charge pump controller (VGL).  
Gate Pulse Modulation (GPM) function.  
High Voltage LDO (50mA)  
10 bit DAC-controlled Gamma Amplifier 4ch  
8 bit DAC-controlled VCOM Amplifier  
Output voltage control by I2C.  
Built-in EEPROM.  
Switching Frequency 750kHz (AVDD, VIO).  
Switching Frequency 1MHz (VCORE, HAVDD).  
Applications  
TFT-LCD panel  
Typical Application Circuit 1  
TOP VIEW)  
SW  
SW  
VGH  
VIN  
AVDD  
HAVDD  
SWB1  
VGL  
PGND2  
SWB2  
VDD2  
VINB2  
VINB1  
VINB1  
N.C.  
PGATE  
AVDDS  
SWO  
SWI  
VCORE  
AVDD  
SW  
VIN  
SW  
BM81004MUV  
PGND  
PGND  
VL  
SWB1  
SWB1  
AMPGND  
AMP4  
AMP3  
VIO  
COMP  
AGND  
CTRL  
VIN  
AVDD  
Figure 1. Application Circuit 1  
Product structureSilicon monolithic chip This chip is not designed for protection against ratio active rays.  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
1/49  
TSZ2211114001  
 
 
 
 
 
 
BM81004MUV  
Typical Application Circuit 2  
TOP VIEW)  
SW  
SW  
VGH  
VIN  
AVDD  
HAVDD  
SWB1  
VGL  
PGND2  
SWB2  
VDD2  
VINB2  
VINB1  
VINB1  
N.C.  
PGATE  
AVDDS  
SWO  
SWI  
VCORE  
AVDD  
SW  
VIN  
SW  
BM81004MUV  
PGND  
PGND  
VL  
SWB1  
SWB1  
AMPGND  
AMP4  
AMP3  
VIO  
COMP  
AGND  
CTRL  
VIN  
AVDD  
Figure 2. Application Circuit 2  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
2/49  
TSZ22111 15 001  
 
BM81004MUV  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Typical Application Circuit 1 ............................................................................................................................................................1  
Key Specifications...........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit 2 ............................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................4  
Pin Description................................................................................................................................................................................4  
Block Diagram ................................................................................................................................................................................5  
Description of each Block ...............................................................................................................................................................6  
Absolute Maximum Ratings ............................................................................................................................................................7  
Recommended Operating Ranges .................................................................................................................................................7  
Electrical Characteristics.................................................................................................................................................................8  
Typical Performance Curves.........................................................................................................................................................12  
Timing Chart .................................................................................................................................................................................24  
Example Application .....................................................................................................................................................................25  
Protection function explanation of each block...............................................................................................................................26  
Protection function list...................................................................................................................................................................29  
Serial transmission .......................................................................................................................................................................30  
Register Map ................................................................................................................................................................................33  
Command Table 1.........................................................................................................................................................................34  
Command Table 2.........................................................................................................................................................................35  
Selecting Application Components ...............................................................................................................................................36  
Layout Guideline .............................................................................................................................................................................41  
Power Dissipation.........................................................................................................................................................................41  
I/O Equivalence Circuit .................................................................................................................................................................42  
Operational Notes.........................................................................................................................................................................45  
Ordering Information.....................................................................................................................................................................47  
Marking Diagram ..........................................................................................................................................................................47  
Physical Dimension Tape and Reel Information............................................................................................................................48  
Revision history ............................................................................................................................................................................49  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
3/49  
TSZ22111 15 001  
BM81004MUV  
Pin Configuration  
(TOP VIEW)  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
PGATE  
PGND2  
SWB2  
VDD2  
23 AVDDS  
22  
SWO  
21  
20  
19  
18  
17  
16  
15  
14  
13  
SWI  
SW  
VINB2  
VINB1  
VINB1  
N.C.  
SW  
Thermal Pad  
PGND  
PGND  
VL  
SWB1  
SWB1  
AMPGND  
AMP4  
COMP  
AGND  
CTRL  
AMP3  
1
2
3
4
5
6
7
8
9
10  
11  
12  
Figure 3. Pin Configuration  
PIN No.  
Pin Description  
PIN No.  
SYMBOL  
FUNCTION  
SYMBOL  
FUNCTION  
1
2
AMP2  
AMP1  
VDD1  
PG  
Gamma amplifier output pin 2  
Gamma amplifier output pin 1  
Step-down DC/DC output pin 1  
Power GOOD signal output pin  
Serial data input pin  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
VGL  
DRVN  
DRVP  
VGH  
Negative charge pump output pin  
Negative charge pump drive pin  
Positive charge pump drive pin  
Positive charge pump output pin  
GPM output pin  
3
4
5
SDA  
VGHM  
RE  
6
SCL  
Serial clock input pin  
GPM Slope adjustment pin  
Power supply pin for Step-down DC/DC 3  
7
A0  
I2C address selected pin  
Power supply input pin  
VINB3  
N.C.  
8
AVIN  
HVLDO  
HVCC  
VCOM  
INN  
9
High Voltage LDO output pin  
VCOM and Gamma power supply pin  
VCOM amplifier output pin  
VCOM amplifier feedback pin  
GPM control pin  
SWB3  
PGND3  
VDD3  
EN  
Step-down DC/DC switching pin 3  
Step-down DC/DC GND pin 3  
Step-down DC/DC output pin 3  
Enable pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CTRL  
AGND  
COMP  
VL  
PGND2  
SWB2  
VDD2  
VINB2  
VINB1  
VINB1  
N.C.  
Step-down DC/DC GND pin 2  
Step-down DC/DC switching pin 2  
Step-down DC/DC output pin 2  
Power supply pin for Step-down DC/DC 2  
Power supply pin for Step-down DC/DC 1  
Power supply pin for Step-down DC/DC 1  
Analog GND pin  
Error amplifier output pin  
Internal REG output pin  
Step-up DC/DC GND pin  
Step-up DC/DC GND pin  
Step-up DC/DC switching pin  
Step-up DC/DC switching pin  
Load switch input pin  
PGND  
PGND  
SW  
SW  
SWB1  
SWB1  
AMPGND  
AMP4  
AMP3  
Step-down DC/DC switching pin 1  
Step-down DC/DC switching pin 1  
Gamma amplifier GND pin  
Gamma amplifier output pin 4  
Gamma amplifier output pin 3  
SWI  
SWO  
AVDDS  
PGATE  
Load switch output pin  
Step-up DC/DC feedback pin  
Load switch gate drive pin  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
4/49  
TSZ22111 15 001  
BM81004MUV  
Block Diagram  
AVDD  
HVCC  
HVCC  
HVLDO  
HVLDO  
HVLDO  
HVLDO  
HVCC  
+
COMP  
OPAMP  
-
VCOM  
INN  
PGATE  
AVDDS  
AVDD  
HVCC  
SWO  
SWI  
+
-
DAC  
VIN  
BOOST  
AMP1  
AMP2  
AMP3  
AMP4  
CONVERTER  
+
-
SW  
PGND  
+
-
VIN  
VINB1  
SWB1  
+
-
BUCK  
CONVERTER 1  
VIO  
AMPGND  
VIN  
VDD1  
VINB2  
VIN  
INTERNAL  
REGULATOR  
AVIN  
BUCK  
CONVERTER 2  
VCORE  
VL  
SWB2  
PGND2  
EEPROM  
VDD2  
VINB3  
SWB3  
BUCK  
HAVDD  
SDA  
SCL  
A0  
CONVERTER 3  
PGND3  
I2C  
INTERFACE  
DAC  
VDD3  
DRVP  
SW  
VGH  
SEQUENCE  
CONTROL  
REGULATOR  
EN  
PG  
AVDD  
SW  
VGH  
VGH  
VGL  
GPM  
CTRL  
VGHM  
RE  
AGND  
VGL  
DRVN  
VGL  
SWB1  
Figure 4. Block Diagram  
5/49  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
BM81004MUV  
Description of each Block  
BUCK CONVERTER BLOCK  
2
This block generates VCORE (VDD2) voltage from Power supply voltage.  
After releasing UVLO of VIN, VL starts activating. After Auto Read is operated to EEPROM, VCORE will be activated.  
During operations, it is possible to prevent destruction of IC by OVP, UVP and OCP protection function.  
BUCK CONVERTER BLOCK  
1
This block generates VIO (VDD1) voltage from Power supply voltage of VIO.  
After completing VCORE start-up, VIO starts activating.  
Power on Reset works at the time of VIN startup and the setting that is written to EEPROM will be reflected in Register.  
During operations, it is possible to prevent destruction of IC by OVP, UVP and OCP protection function.  
VGL REGULATOR BLOCK  
This block generates VGL voltage.  
After completing VCORE start-up, VGL starts activating.  
Power on Reset works at the time of VIN startup and the setting that is written to EEPROM will be reflected in Register.  
During operations, it is possible to prevent destruction of IC by UVP and OCP protection function.  
BOOST CONVERTER BLOCK  
This block generates AVDD (SWO) voltage from Power supply voltage.  
It activates when EN=H, and under condition where VIO and VGL are activating.  
Power on Reset works at the time of VIN startup and the setting that is written to EEPROM will be reflected in Register.  
During operations, it is possible to prevent destruction of IC by OVP, UVP and OCP protection function.  
BUCK CONVERTER BLOCK  
3
This block generates HAVDD (VDD3) voltage from Power supply voltage.  
HAVDD starts up following AVDD output voltage.  
The setting voltage range of the HAVDD voltage depends on the AVDD setting voltage, and the lower limit level of the  
HAVDD voltage is limited in AVDD×0.4.  
Power on Reset works at the time of VIN startup and the setting that is written to EEPROM will be reflected in Register.  
During operations, it is possible to prevent destruction of IC by OVP, UVP and OCP protection function.  
HIGH VOLTAGE LDO BLOCK  
This block generates HVLDO voltage from Power supply voltage of AVDD (HVCC).  
HVLDO starts up following AVDD output voltage.  
Power on Reset works at the time of VIN startup and the setting that is written to EEPROM will be reflected in Register.  
During operations, it is possible to prevent destruction of IC by UVP and OCP protection function.  
VCOM AMPLIFIER BLOCK  
This block generates VCOM voltage from Power supply voltage of AVDD (HVCC). VCOM calibrator function is built-in.  
VCOM starts up following AVDD output voltage.  
Power on Reset works at the time of VIN startup and the setting that is written to EEPROM will be reflected in Register.  
GAMMA AMPLIFIER BLOCK  
This block generates AMP1 to 4 voltages from Power supply voltage of AVDD (HVCC).  
AMP1 to 4 startup following AVDD output voltage.  
Power on Reset works at the time of VIN startup and the setting that is written to EEPROM will be reflected in Register.  
VGH REGULATOR BLOCK  
This block generates VGH voltage from AVDD voltage.  
After completing AVDD start-up, VGH starts activating.  
Power on Reset works at the time of VIN startup and the setting that is written to EEPROM will be reflected in Register.  
During operations, it is possible to prevent destruction of IC by OVP, UVP and OCP protection function.  
GPM BLOCK  
This is a switching circuit to drive a gate voltage for TFT that consist of PMOS FET.  
VGHM output synchronizes with CTRL input and outputs High voltage = VGH at CTRL=H.  
GPM Falling Limit voltage can be controlled by EEPROM.  
Caution  
EN Input tolerant function is built in this IC. No need to be always EN < VIN.  
When PG pin is not used, PG pin must be connected to GND, or it should be open.  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
6/49  
TSZ22111 15 001  
BM81004MUV  
Absolute Maximum Ratings  
Limits  
Parameter  
Symbol  
Unit  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
TYP  
MAX  
24  
20  
7
AVIN, VINB1, VINB2, VINB3  
-
-
-
-
-
V
V
V
V
V
Supply Voltage  
Input Voltage  
HVCC  
SDA, SCL, A0, EN, CTRL  
VL  
6.5  
7
COMP, PG  
SW, SWI, SWO,  
PGATE, AVDDS, VDD1, SWB1,  
VDD2, SWB2, VDD3, SWB3  
-0.3  
-
24  
V
Output Voltage  
HVLDO, VCOM, INN  
AMP1, AMP2, AMP3, AMP4  
-0.3  
-15  
-0.3  
-40  
-55  
-
-
20  
7
V
VGL, DRVN  
-
V
DRVP, VGH, VGHM, RE  
-
48  
V
Operating Ambient  
Temperature Range  
Ta  
-
-
105  
150  
150  
Storage Temperature  
Range  
Tstg  
Maximum Continuous  
Junction Temperature  
Tjmax (*1)  
Pd  
-
5.08  
24.6  
W
Power Dissipation (*2)  
Θja  
degC/W  
*1  
It shows junction temperature when stores.  
*2 Derate by 40.6mW/at Ta>25(on 4-layer 76.2mm×114.3mm×1.6mm glass epoxy board).  
Recommended Operating Ranges  
(Ta=-40℃~105)  
Limits  
Parameter  
Symbol  
Unit  
MIN  
8.6  
-0.1  
-0.1  
-
TYP  
MAX  
14  
Supply Voltage  
AVIN  
EN, A0, CTRL  
SDA, SCL  
FCLK  
-
-
-
-
V
V
Functional pin voltage  
2 wire serial pin voltage  
2 wire serial frequency  
5.5  
5.5  
V
400  
kHz  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
7/49  
TSZ22111 15 001  
BM81004MUV  
Electrical Characteristics  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V)  
Limits  
Parameter  
GENERAL 】  
Symbol  
Unit  
Condition  
MIN  
TYP  
MAX  
8.0  
7.25  
155  
600  
800  
4.9  
-
8.3  
7.55  
175  
750  
1000  
5
8.6  
7.85  
195  
900  
1200  
5.1  
V
V
VIN rising  
VIN falling  
VIN Under Voltage  
Lockout Threshold  
VIN_  
UVLO  
Thermal shutdown  
TSD  
FOSC1  
FOSC2  
VL  
Design guarantee  
Internal Oscillator Frequency 1  
Internal Oscillator Frequency 2  
VL Voltage  
kHz  
kHz  
V
AVDD, VIO, 0 < Ta < 50℃  
VCORE, HAVDD, 0 < Ta < 50℃  
Consumption Current  
ICC  
5.4  
-
mA  
Not Switching  
LOGIC SIGNALS SDA, SCL, EN, A0, CTRL 】  
High Level Input Voltage  
Low Level Input Voltage  
Minimum Output Voltage  
Pull-Down Resistance  
VIH  
VIL  
2
-
-
V
V
-
-
-
-
0.5  
0.4  
260  
VSDA  
RLOGIC  
V
SDA, ISDA=3mA  
EN, A0, CTRL  
140  
200  
kΩ  
BOOST CONVERTER (AVDD) 】  
Output Voltage Range  
AVDD  
11.7  
-
15.6  
0
18.0  
15.756  
10  
V
V
0.1V step  
Regulation Voltage  
AVDD_R  
ILK_SWH  
RON_SWH  
ILK_SWL  
RON_SWL  
RON_LS  
15.444  
27h, 1%, 0 < Ta < 50℃  
SWI=18V, SW=0V  
ISW=-500mA  
SW=18V  
Hi-Side Leakage Current  
Hi-Side SW ON-Resistance  
Lo-Side SW Leakage Current  
Lo-Side SW ON-Resistance  
Load SW ON-Resistance  
SW Current Limit  
-
uA  
mΩ  
uA  
mΩ  
mΩ  
A
-
100  
0
200  
10  
-
-
100  
100  
5
200  
200  
5.75  
2.8  
21  
ISW=500mA  
ILS=500mA  
-
4.25  
0
5.0A Offset(0.0A) setting  
L=6.8uH, 0 < Ta < 50℃  
ILIM_SW  
ILIM_SET  
SW Current Limit Offset  
Over-Voltage Protection Rise  
Over-Voltage Protection Fall  
AVDD UVP Detecting Voltage  
Soft Start Time  
-
A
0.4A step  
VOVP_AVD  
D_RISE  
18  
-
19.5  
18  
V
VOVP_AVD  
D_FALL  
-
V
VUVP_  
AVDD  
AVDD  
x 0.8  
-
-
V
TSS_  
AVDD  
10  
-
-
7
20  
msec  
A
Load Switch Current Limit  
ILIM_LSW  
ILIM_EXT  
-
External Load Switch  
Current Limit  
450  
-
540  
10  
630  
-
mV  
uA  
PGATE_  
DRV  
PGATE Drive Capability  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
8/49  
TSZ22111 15 001  
BM81004MUV  
Electrical Characteristics  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
MIN  
TYP  
MAX  
BUCK CONVERTER 1 (VIO) 】  
Output Voltage Range  
VIO  
2.2  
-
3.7  
3.366  
10  
V
V
0.1V step  
Regulation Voltage  
VIO_R  
3.234  
3.3  
0
0Bh, 2%, 0 < Ta < 50℃  
VINB1=18V, SWB1=0V  
SWB1=-500mA  
ILK_  
SWB1H  
Hi-Side SWB1 Leak Current  
Hi-Side SWB1 ON-Resistance  
SWB1 Current Limit  
-
-
uA  
mΩ  
A
RON_  
SWB1H  
200  
3.5  
300  
4.2  
ILIM_  
SWB1  
2.8  
L=6.8uH, 0 < Ta < 50℃  
VOVP_  
VIO  
VIO  
x 1.03  
VIO  
x 1.1  
VIO  
x 1.17  
VIO Over-Voltage Protection  
VIO UVP Detecting Voltage  
V
VUVP_  
VIO  
VIO  
x 0.8  
-
-
-
-
V
Frequency 1/4  
Soft Start Time  
TSS_VIO  
3.3  
msec VIO=3.3V  
BUCK CONVERTER 2 (VCORE) 】  
VCORE_  
REF  
VCORE Reference Voltage  
0.396  
0.400  
0.400  
0
0.404  
0.406  
10  
V
V
1%, Ta=25℃  
0.394  
1.5%, 0 < Ta < 50℃  
VINB2=18V, SWB2=0V  
SWB2=-500mA  
ILK_  
SWB2H  
Hi-Side SWB2 Leak Current  
Hi-Side SWB2 ON-Resistance  
Lo-Side SWB2 Leak Current  
Lo-Side SWB2 ON-Resistance  
SWB2 Current Limit  
-
uA  
mΩ  
uA  
mΩ  
A
RON_  
SWB2H  
-
-
175  
0
300  
10  
ILK_  
SWB2L  
SWB2=18V  
RON_  
SWB2L  
-
175  
3.0  
300  
3.6  
SWB2=500mA  
ILIM_  
SWB2  
2.4  
L=6.8uH, 0 < Ta < 50℃  
VCORE Over-Voltage  
Protection  
VOVP_  
VCORE  
VCORE VCORE VCORE  
V
x 1.03  
x 1.1  
x 1.17  
VUVP_  
VCORE  
VCORE  
x 0.8  
VCORE UVP Detecting Voltage  
Soft Start Time  
-
-
V
Frequency 1/4  
TSS_  
VCORE  
-
3
-
msec  
BUCK CONVERTER 3 (HAVDD) 】  
Output Voltage Range  
HAVDD  
4.8  
-
11.1  
7.92  
10  
V
V
0.1V step  
Regulation Voltage  
HAVDD_R  
7.68  
7.8  
0
1Eh, 1.5%, 0 < Ta < 50℃  
VINB3=18V, SWB3=0V  
SWB3=-500mA  
ILK_  
SWB3H  
Hi-Side SWB3 Leak Current  
Hi-Side SWB3 ON-Resistance  
Lo-Side SWB3 Leak Current  
Lo-Side SWB3 ON-Resistance  
SWB3 Current Limit  
-
uA  
mΩ  
uA  
mΩ  
A
RON_  
SWB3H  
-
-
300  
0
500  
10  
ILK_  
SWB3L  
SWB3=18V  
RON_  
SWB3L  
-
300  
1.8  
500  
2.4  
SWB3=500mA  
ILIM_  
SWB3  
1.2  
L=6.8uH, 0 < Ta < 50℃  
HAVDD Over-Voltage  
Protection  
VOVP_  
HAVDD  
HAVDD  
x 1.03  
HAVDD  
x 1.1  
HAVDD  
x 1.17  
V
VUVP_  
HAVDD  
HAVDD  
x 0.8  
HAVDD UVP Detecting Voltage  
-
-
V
Frequency 1/4  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
9/49  
TSZ22111 15 001  
BM81004MUV  
Electrical Characteristics  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
MIN  
TYP  
MAX  
VGH REGULATOR 】  
Output Voltage Range  
VGH  
25  
-
40.5  
V
V
0.5V step  
14h, 1.5%, 0 < Ta < 50℃  
Io=5mA  
Regulation Voltage  
VGH_R  
34.47  
35  
-
35.53  
ILIM_  
DRVP  
Over-Current Protection  
VGH Over-Voltage Protection  
VGH UVP Detecting Voltage  
5
42  
-
-
48  
-
mA  
V
VOVP_  
VGH  
45  
VUVP_  
VGH  
VGH  
x 0.8  
V
Soft Start Time  
TSS_VGH  
-
7
-
msec VGH=35V  
VGL REGULATOR 】  
Output Voltage Range  
VGL  
-10.2  
-
-4.0  
V
V
0.2V step  
0Ah, 1.5%, Ta=25℃  
Io=5mA  
Regulation Voltage  
VGL_R  
-6.09  
-6  
-5.91  
0Ah, 2.0%, 0 < Ta < 50℃  
Io=5mA  
-6.12  
-6  
-5.88  
V
ILIM_  
DRVN  
Over-Current Protection  
VGL UVP Detecting Voltage  
Delay Time  
5
-
-
-
-
-
mA  
V
VUVP_  
VGL  
VGL×0.8  
2.5  
TDLY_VGL  
-
msec  
GATE PULSE MODULATION (GPM) 】  
VGH-VGHM ON-Resistance  
RE-VGHM ON-Resistance  
Propagation Delay  
RGHH  
RGHL  
TGPM  
-
-
3
3
5
-
Ω
Ω
150  
250  
350  
nsec  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
10/49  
TSZ22111 15 001  
BM81004MUV  
Electrical Characteristics  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
MIN  
TYP  
MAX  
HIGH VOLTAGE LDO 】  
LDO  
11.7  
15.12  
15.09  
-
15.2  
18.0  
15.28  
15.31  
-
V
V
0.1V step  
23h, 0.5%  
Output Voltage Range  
Regulation Voltage  
LDO_R  
LDO_R  
15.2  
V
23h, 0.7%, 0 < Ta < 50℃  
ILIM_  
LDO  
Over-Current Protection  
100  
mA  
V
-
LDOx0.8  
-
HVLDO UVP Detecting Voltage LDO_UVP  
VCOM AMPLIFIER 】  
HVLDO  
X0.36  
HVLDO  
X0.54  
30  
V
Output Voltage Range  
Slew Rate  
VCOM_R  
SR  
-
-
-
-
-
-
V/usec No external components  
Output Current Capability  
Load Stability  
I_VCOM  
ΔVO1  
RES1  
LE1  
±200  
±15  
8
mA  
mV  
Bit  
C2h  
Io=-50mA50mA  
DAC Resolution  
DAC Integral Non-linearity Error  
(INL)  
02FD is the allowable margin  
of error against the ideal linear.  
02FD is the allowable margin  
of error against the ideal  
increase of 1LSB.  
-1  
-1  
-
+1  
+1  
LSB  
DAC Differential Non-linearity  
Error (DNL)  
DLE1  
-
LSB  
GAMMA AMPLIFIER 】  
Output Current Capability  
I_AMP  
ΔVO2  
RES2  
30  
-
-
-
-
mA  
mV  
Bit  
Load Stability  
±15  
10  
Io=-5mA5mA  
DAC Resolution  
00F 3F0 is the allowable  
margin of error against the ideal  
linear.  
00F 3F0 is the allowable  
margin of error against the ideal  
increase of 1LSB.  
DAC Integral Non-linearity Error  
(INL)  
LE2  
-2  
-2  
-
-
+2  
+2  
LSB  
LSB  
DAC Differential Non-linearity  
Error (DNL)  
DLE2  
This product has no designed for protection against radioactive rays.  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
11/49  
TSZ22111 15 001  
BM81004MUV  
Typical Performance Curves  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V, VIO=3.3V, VCORE=1.2V,  
AVDD=15.6V, HAVDD=7.8V, VGH=35V, VGL=-6.0V, HVLDO=15.2V, VCOM=6.1V, GAMMA=7.8V, RL=no load)  
1500  
1400  
1300  
1200  
1100  
1000  
900  
8
7
6
5
4
3
2
1
0
AVDD,VIO Frequency  
EN=L  
No Switching  
800  
700  
VCORE,HAVDD Frequency  
600  
500  
5
6
7
8
9
10 11 12 13 14 15  
5
6
7
8
9
10 11 12 13 14 15  
Input Voltage : V [V]  
Input Voltage : V [V]  
IN  
IN  
Figure 5. Input Current vs Input Voltage  
(EN=L, no switching)  
Figure 6. Internal Oscillator Frequency vs Input Voltage  
Figure 7. Power-on (till AVDD and VGH on)  
Figure 8. Power-on (after AVDD on)  
www.rohm.co.jp  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
12/49  
BM81004MUV  
Typical Performance Curves  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V, VIO=3.3V, VCORE=1.2V,  
AVDD=15.6V, HAVDD=7.8V, VGH=35V, VGL=-6.0V, HVLDO=15.2V, VCOM=6.1V, GAMMA=7.8V, RL=no load)  
3
2
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
0
-1  
-2  
-3  
VIN=12V  
VIO=3.3V  
VIN=12V  
VIO=3.3V  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800 1000 1200 1400  
Output Current [mA]  
Output Current [mA]  
Figure 9. VIO Efficiency vs Output Current  
Figure 10. VIO Output Voltage vs Output Current  
VIO (10mV/Div AC)  
VIO (100mV/Div AC)  
ΔV6.3mV  
SWB1 (10V/Div)  
ISWB1 (500mA/Div)  
IOUT (500mA/Div)  
IOUT=500mA  
IOUT=100mA  
IOUT (500mA/Div)  
1usec/Div  
50usec/Div  
Figure 11. VIO Load Transient  
Figure 12. VIO Switching  
(Output Current=500mA)  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
13/49  
TSZ22111 15 001  
BM81004MUV  
Typical Performance Curves  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V, VIO=3.3V, VCORE=1.2V,  
AVDD=15.6V, HAVDD=7.8V, VGH=35V, VGL=-6.0V, HVLDO=15.2V, VCOM=6.1V, GAMMA=7.8V, RL=no load)  
3
2
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
0
VIN=12V  
VCORE=1.2V  
-1  
-2  
-3  
VIN=12V  
VCORE=1.2V  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800 1000 1200 1400  
Output Current [mA]  
Output Current [mA]  
Figure 13. VCORE Efficiency vs Output Current  
Figure 14. VCORE Output Voltage vs Output Current  
VCORE (10mV/Div AC)  
VCORE (100mV/Div AC)  
ΔV6.4mV  
SWB2 (10V/Div)  
IOUT=300mA  
ISWB2 (500mA/Div)  
IOUT (500mA/Div)  
IOUT=10mA  
IOUT (200mA/Div)  
50usec/Div  
1usec/Div  
Figure 15. VCORE Load Transient  
Figure 16. VCORE Switching  
(Output Current=500mA)  
www.rohm.co.jp  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
14/49  
BM81004MUV  
Typical Performance Curves  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V, VIO=3.3V, VCORE=1.2V,  
AVDD=15.6V, HAVDD=7.8V, VGH=35V, VGL=-6.0V, HVLDO=15.2V, VCOM=6.1V, GAMMA=7.8V, RL=no load)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3
2
1
0
VIN=12V  
-1  
-2  
-3  
AVDD=15.6V  
HAVDD=7.8V  
(source)  
VIN=12V  
AVDD=15.6V  
HAVDD=7.8V  
source)  
0
200  
400  
600  
800 1000 1200 1400  
0
200  
400 600  
Output Current [mA]  
800  
1000  
Output Current [mA]  
Figure 17. HAVDD Efficiency vs Output Current (source)  
Figure 18. HAVDD Output Voltage vs Output Current (source)  
HAVDD (10mV/Div AC)  
HAVDD (100mV/Div AC)  
ΔV6.8mV  
SWB3 (10V/Div)  
IOUT=350mA  
ISWB3 (500mA/Div)  
IOUT (500mA/Div)  
IOUT=0mA  
IOUT (300mA/Div)  
200usec/Div  
1usec/Div  
Figure 19. HAVDD Load Transient (source)  
Figure 20. HAVDD Switching (source)  
(Output Current=500mA)  
www.rohm.co.jp  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0313AAF00420-1-2  
15/49  
4.Dec.2014 Rev.002  
BM81004MUV  
Typical Performance Curves  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V, VIO=3.3V, VCORE=1.2V,  
AVDD=15.6V, HAVDD=7.8V, VGH=35V, VGL=-6.0V, HVLDO=15.2V, VCOM=6.1V, GAMMA=7.8V, RL=no load)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3
2
1
0
VIN=12V  
-1  
-2  
-3  
AVDD=15.6V  
HAVDD=7.8V  
(sink)  
VIN=12V  
AVDD=15.6V  
HAVDD=7.8V  
sink)  
0
200  
400  
600  
800 1000 1200 1400  
0
200  
400 600  
Output Currnet [mA]  
800  
1000  
Output Current [mA]  
Figure 21. HAVDD Efficiency vs Output Current (sink)  
Figure 22. HAVDD Output Voltage vs Output Current (sink)  
HAVDD (10mV/Div AC)  
ΔV9.4mV  
HAVDD (100mV/Div AC)  
SWB3 (10V/Div)  
ISWB3 (500mA/Div)  
IOUT (500mA/Div)  
IOUT (300mA/Div)  
IOUT=350mA  
IOUT=0mA  
1usec/Div  
200usec/Div  
Figure 23. HAVDD Load Transient (sink)  
Figure 24. HAVDD Switching (sink)  
(Output Current=500mA)  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
16/49  
TSZ22111 15 001  
BM81004MUV  
Typical Performance Curves  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V, VIO=3.3V, VCORE=1.2V,  
AVDD=15.6V, HAVDD=7.8V, VGH=35V, VGL=-6.0V, HVLDO=15.2V, VCOM=6.1V, GAMMA=7.8V, RL=no load)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3
2
1
0
VIN=12V  
AVDD=15.6V  
-1  
-2  
-3  
VIN=12V  
AVDD=15.6V  
0
200  
400  
600  
800 1000 1200 1400  
0
200  
400 600  
Output Current [mA]  
800  
1000  
Output Current [mA]  
Figure 25. AVDD Efficiency vs Output Current  
Figure 26. AVDD Output Voltage vs Output Current  
AVDD (10mV/Div AC)  
AVDD (200mV/Div AC)  
SW (10V/Div )  
ΔV18.0mV  
IOUT=500mA  
ISW (1A/Div )  
IOUT=100mA  
IOUT (500mA/Div )  
IOUT (500mA/Div )  
50usec/Div  
1usec/Div  
Figure 27. AVDD Load Transient  
Figure 28. AVDD Switching  
(Output Current=500mA)  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
17/49  
TSZ22111 15 001  
BM81004MUV  
Typical Performance Curves  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V, VIO=3.3V, VCORE=1.2V,  
AVDD=15.6V, HAVDD=7.8V, VGH=35V, VGL=-6.0V, HVLDO=15.2V, VCOM=6.1V, GAMMA=7.8V, RL=no load)  
3
VGH (200mV/Div AC)  
2
1
0
IOUT=50mA  
IOUT=10mA  
-1  
VIN=12V  
IOUT (50mA/Div)  
AVDD=15.6V  
VGH=35V  
-2  
-3  
200usec/Div  
10  
30  
50  
70  
Output Current [mA]  
90  
110  
130  
150  
Figure 29. VGH Load Transient  
Figure 30. VGH Output Voltage vs Output Current  
VGH (20mV/Div AC)  
ΔV38.7mV  
SW (10V/Div )  
IOUT=50mA  
IOUT (50mA/Div )  
5usec/Div  
Figure 31. VGH Ripple Voltage  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
18/49  
TSZ22111 15 001  
BM81004MUV  
Typical Performance Curves  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V, VIO=3.3V, VCORE=1.2V,  
AVDD=15.6V, HAVDD=7.8V, VGH=35V, VGL=-6.0V, HVLDO=15.2V, VCOM=6.1V, GAMMA=7.8V, RL=no load)  
3
2
VGL (100mV/Div AC)  
1
0
IOUT=50mA  
IOUT=10mA  
-1  
VIN=12V  
IOUT (50mA/Div)  
VGL=-6.0V  
-2  
-3  
200usec/Div  
10  
30  
50  
70  
Output Current [mA]  
90  
110  
130  
150  
Figure 32. VGL Load Transient  
Figure 33. VGL Output Voltage vs Output Current  
ΔV28.2mV  
SWB1 (10V/Div )  
IOUT=50mA  
IOUT (50mA/Div )  
5usec/Div  
Figure 34. VGL Ripple Voltage  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
19/49  
TSZ22111 15 001  
BM81004MUV  
Typical Performance Curves  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V, VIO=3.3V, VCORE=1.2V,  
AVDD=15.6V, HAVDD=7.8V, VGH=35V, VGL=-6.0V, HVLDO=15.2V, VCOM=6.1V, GAMMA=7.8V, RL=no load)  
CTRL (5V/Div)  
VGHM (5V/Div)  
CTRL (5V/Div)  
VGHM (5V/Div)  
Delay=255nsec  
Delay=270nsec  
VGH=28V  
VGH=28V  
No Capacitive Load  
RE Resister=0Ω  
No Capacitive Load  
RE Resister=0Ω  
500nsec/Div  
500nsec/Div  
Figure 35. GPM Propagation Delay (rise)  
Figure 36. GPM Propagation Delay (fall)  
CTRL (5V/Div)  
Clamp Voltage 20V  
VGHM (10V/Div)  
500usec/Div  
Figure 37. GPM Clamp Voltage (20V Clamp)  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
20/49  
TSZ22111 15 001  
BM81004MUV  
Typical Performance Curves  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V, VIO=3.3V, VCORE=1.2V,  
AVDD=15.6V, HAVDD=7.8V, VGH=35V, VGL=-6.0V, HVLDO=15.2V, VCOM=6.1V, GAMMA=7.8V, RL=no load)  
3
2
1
0
-1  
VIN=12V  
AVDD=15.6V
HVLDO=15.2V  
-2  
-3  
0
20  
40 60  
Output Current [mA]  
80100  
Figure 38. HVLDO Output Voltage vs Output Current  
3
2
1
0
3
2
1
0
-1  
-1  
-2  
-3  
VIN=12V  
VIN=12V  
AVDD=15.6V  
HVLDO=15.2V  
GAMMA=7.8V  
AVDD=15.6V  
HVLDO=15.2V  
VCOM=6.1V  
-2  
-3  
-200 -150 -100 -50  
0
50 100 150 20
-20 -15 -10  
-5  
Output Current [mA]  
0
5
10  
15  
20  
Output Current [mA]  
Figure 39. VCOM Output Voltage vs Output Current  
Figure 40. GAMMA Output Voltage vs Output Current  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
21/49  
TSZ22111 15 001  
BM81004MUV  
Typical Performance Curves  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V, VIO=3.3V, VCORE=1.2V,  
AVDD=15.6V, HAVDD=7.8V, VGH=35V, VGL=-6.0V, HVLDO=15.2V, VCOM=6.1V, GAMMA=7.8V, RL=no load)  
VCOM (5V/Div)  
S/R = 43.6V/us  
VCOM (5V/Div)  
S/R = 43.3V/us  
100nsec/Div  
100nsec/Div  
Figure 41. VCOM Slew RateRise)  
Figure 42. VCOM Slew RateFall)  
1
0.5  
0
1
0.5  
0
000h  
0FF  
000h  
0FF  
-0.5  
-1  
-0.5  
-1  
BIT  
BIT  
Figure 43. VCOM DNL vs BIT  
Figure 44. VCOM INL vs BIT  
www.rohm.co.jp  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
22/49  
BM81004MUV  
Typical Performance Curves  
(Unless otherwise specified, Ta=25, AVIN,VINB1,VINB2,VINB3=12V, VIO=3.3V, VCORE=1.2V,  
AVDD=15.6V, HAVDD=7.8V, VGH=35V, VGL=-6.0V, HVLDO=15.2V, VCOM=6.1V, GAMMA=7.8V, RL=no load)  
2
1
0
2
1
0
000h  
3FF  
000h  
3FF  
-1  
-2  
-1  
-2  
BIT  
BIT  
Figure 45. GAMMA DNL vs BIT  
Figure 46. GAMMA INL vs BIT  
www.rohm.co.jp  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
23/49  
TSZ22111 15 001  
BM81004MUV  
Timing Chart  
ON and OFF Sequence of this IC are shown below.  
VIN_  
UVLO  
VIN_  
UVLO  
VIN  
VL_  
UVLO  
VL  
TEAR  
TSS_VCORE / 3.0ms  
TSS_VIO / 3.3ms  
EEPROM  
Auto Read  
VCORE  
VIO  
VGL  
VGL  
DELAY  
TDLY_VGL / 2.5ms  
(internal)  
EN  
TSS_AVDD  
TSS_LSW / 10ms  
Load Swith ON  
AVDD  
HAVDD  
TSS_VGH / 7ms  
VGH  
CTRL  
VGHM  
VGHM = RE  
VGHM = VGH  
Figure 47. Timing Chart  
VL activates with UVLO release of VIN.  
It reads EEPROM data by Auto Read operation after VL finish its activation.  
After Auto Read completion, VCORE activates. The Soft Start time of VCORE is 3msec.  
(TEAR=2msec)  
After VCORE soft-start completion, VIO activates. The Soft Start time of VIO is 3.3msec if the setting is 3.3V.  
After VIO soft-start completion, PG becomes high and VGL activates. (If SWB1 is used)  
The Soft Start time of VGL depends on output voltage setting, external capacitor etc.  
2.5msec after VIO soft-start completion, Load SW turns ON (10msec) because of EN=High and AVDD activates.  
The Soft Start time of AVDD can be changed by register setting. (10msec or 20msec)  
After AVDD started, VGH activates. The Soft Start time of VGH is 7msec if the setting is 35V.  
After VGH started, CTRL rising or falling will be a trigger to activate GPM operation.  
When VGHM voltage at CTRL =L reaches the GPM clamp voltage, VGHM output is high impedance.  
GPM, VGH, AVDD, HAVDD shuts down when EN=Low. GPM output (VGHM) will be the same potential with RE.  
All output shuts down when UVLO of VIN is detected. VGHM will be the same potential with VGH.  
AVDD  
HVLDO  
HVLDO, HAVDD and VCOM starts up followed by  
AVDD output voltage. AMP 1 to 4 startup followed by  
HVLDO output voltage.  
HAVDD  
When EN=low, AVDD and HAVDD output become  
VCOM  
high impedance. HVLDO, VCOM and AMP1 to 4  
output shut down followed by AVDD till AVDD is  
AMP1-4  
below a certain level.  
EN  
Figure 48. Timing Chart 2  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
24/49  
TSZ2211115001  
BM81004MUV  
Example Application  
TOP VIEW)  
SW  
SW  
RFP2  
CFP2  
CFP4  
QP  
CFP3  
CFP1 RFP1  
AVDD  
VGH  
VIN  
C31  
DFP2  
DFP1  
C28  
RQP  
RQN  
QN  
HAVDD  
L35  
C35  
CFN2  
R30  
DFN1  
SWB1  
VGL  
CFN1 RFN1  
C39  
PGND2  
SWB2  
VDD2  
VINB2  
VINB1  
VINB1  
N.C.  
PGATE  
AVDDS  
SWO  
SWI  
C25  
L39  
VCORE  
AVDD  
R39_2 R39_1 C39_0  
C40  
C22  
SW  
VIN  
SW  
C41  
BM81004MUV  
L19  
C19  
PGND  
PGND  
VL  
D45  
SWB1  
SWB1  
AMPGND  
AMP4  
AMP3  
L3  
VIO  
C3  
COMP  
AGND  
CTRL  
C54  
C53  
C52  
C51  
VIN  
C9  
C8  
AVDD  
Figure 49. Example Application  
Parts  
Application circuit components list  
Parts  
name  
Value  
Company  
Parts Number  
Value  
Company  
Parts Number  
name  
C3  
C8  
4x 10 [uF]  
1 [uF]  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
MURATA  
GRM21BB31A106KE18  
GRM188B31E105KA75  
GRM31CB31E106KA75  
GRM31CB31E106KA75  
GRM31CB31E106KA75  
GRM188B11E682KA01  
GRM188CB31E105KA75  
GRM31CB31E106KA75  
GRM31CB31E106KA75  
GRM219B31C475KE15  
GRM188B31H104KA92  
GRM188B11H471KA01  
GRM188B31H104KA92  
GRM188B31H104KA92  
GRM21BB31H105KA12  
GRM188B11H222KA01  
GRM31CB31H106KA12  
GRM31CB31E106KA75  
GRM31CB31E106KA75  
GRM21BB31A106KE18  
GRM188B31H104KA92  
C40  
C41  
10 [uF]  
MURATA  
MURATA  
MURATA  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
GRM31CB31E106KA75  
GRM31CB31E106KA75  
GRM188B31H104KA92  
MCR03  
2x 10 [uF]  
0.1 [uF]  
2.7 [kΩ]  
300 [Ω]  
330 [Ω]  
120 [Ω]  
2.2 [Ω]  
2.2 [Ω]  
100 [kΩ]  
100 [kΩ]  
6.8 [uH]  
6.8 [uH]  
6.8 [uH]  
6.8 [uH]  
-
C9  
10 [uF]  
C51-54  
R15  
C10  
10 [uF]  
C11  
10 [uF]  
R30  
MCR25  
C15  
6.8 [nF]  
1 [uF]  
R39_1  
R39_2  
RFN1  
RFP1-2  
RQN  
RQP  
L19  
MCR03  
C16  
MCR03  
C19  
2x 10 [uF]  
4x 10 [uF]  
4.7 [uF]  
0.1 [uF]  
470 [pF]  
0.1 [uF]  
0.1 [uF]  
1 [uF]  
MCR25  
C22  
MCR25  
C25  
MCR03  
CFN1  
CFN2  
CFP1  
CPF2  
CPF3  
CFP4  
C28  
MCR03  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
ROHM  
NS10165T6R8N  
NRS8040T6R8M  
NRS8040T6R8M  
NRS8040T6R8M  
RSX301L-30  
RB558W  
L3  
L35  
L39  
2.2 [nF]  
10 [uF]  
D45  
DFN1  
DFP1  
DFP2  
QN  
-
ROHM  
C31  
10 [uF]  
-
ROHM  
RB558W  
C35  
2x 10 [uF]  
4x 10 [uF]  
22 [nF]  
-
ROHM  
RB558W  
C39  
PNP  
ROHM  
2SCR513P  
C39_0  
QP  
NPN  
ROHM  
2SAR513P  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
25/49  
TSZ2211115001  
BM81004MUV  
Protection function explanation of each block  
1. BUCK CONVERTER BLOCK 1 (VIO)  
1-1. Over Voltage Protection (OVP)  
OVP function is incorporated to prevent IC or other components from malfunctioning due to rising VIO voltage.  
Voltage inputted to VDD1 pin is monitored and if VIO voltage reaches VIO>110% (Typ), it is considered as unusual  
condition thus, OVP function is operated. If OVP is detected, switching is stopped until OVP release voltage (100%, Typ)  
falls to VIO voltage. After OVP is released, switching is re-started.  
1-2. Over Current Protection (OCP)  
If excessive load current (SWB1 peak current>3.5A, Typ) is present, it limits current to flow to builtin Power MOS by  
controlling Switching.  
1-3. Under Voltage Protection (UVP)  
Timer-latch type output UVP function is built-in.  
When unusual condition (VIO<80%) is detected, SWB1 frequency is divided into 1/4 and UVP timer starts.  
If the unusual condition continues up to 10msec (Typ), all output will be latched in shutdown state. Power reset is needed to  
remove the latch state and to re-start.  
2. BUCK CONVERTER BLOCK 2 (VCORE)  
2-1. Over Voltage Protection (OVP)  
OVP function is incorporated to prevent IC or other components from malfunctioning due to rising VCORE voltage.  
Voltage inputted to VDD2 pin is monitored and if VCORE voltage reaches VCORE>110%(Typ), it is considered as unusual  
condition thus, OVP function is operated. If OVP is detected, switching is stopped until OVP release voltage (100%,Typ)  
falls to VCORE voltage. After OVP is released, switching is re-started.  
2-2. Over Current Protection (OCP)  
If excessive load current (SWB2 peak current>3.0A, Typ) is present, it limits current to flow to builtin Power MOS by  
controlling Switching.  
2-3. Under Voltage Protection (UVP)  
Timer-latch type output UVP function is built-in.  
When unusual condition (VCORE<80%) is detected, SWB2 frequency is divided into 1/4 and UVP timer starts.  
If the unusual condition continues upto 10msec (Typ), all output will be latched in shutdown state. Power reset is needed to  
remove the latch state and to re-start.  
3. VGL REGULATOR BLOCK  
3-1. Over Current Protection (OCP)  
If excessive load current (I_DRVN>5mA, Min) is present, It controls source current (Base current of NPN Tr) of DRVN.  
3-2. Under Voltage Protection (UVP)  
Timer-latch type output UVP function is built in.  
When unusual condition is detected (VGL>80%), UVP time counter get started, and if the unusual condition continues up to  
10msec (Typ), all output is latched in shutdown condition. Power reset is needed to cancel the latch state and to re-start.  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
26/49  
TSZ2211115001  
BM81004MUV  
4. BOOST CONVERTER BLOCK (AVDD)  
4-1. Over Voltage Protection (OVP)  
OVP function is built in to prevent IC or other components from malfunctioning due to excessive rise in AVDD voltage.  
The voltage inputted to SWO pin is being monitored. If the SWO pin voltage becomes 19.5V (Typ), OVP is detected. Once  
OVP is detected, switching is stopped. After AVDD voltage falls below OVP detection release voltage 18V (Typ), switching  
is restarted.  
4-2. Over Current Protection (OCP)  
If excessive load current over 5A (Typ) of SW peak current is present, OCP limits current to rush to built-in Power MOS by  
controlling its output switching.  
4-3. Under Voltage Protection (UVP)  
Timer-latch type output UVP function is built in.  
When an unusual condition is detected (AVDD<80%), UVP timer starts. If the unusual condition continues upto 10msec  
(Typ), all output is latched in shutdown condition. Power reset is needed to remove the latch state and to re-start.  
4-4. Load Switch Over Current Protection (LSW_OCP)  
If excessive load current (7A, Typ) is present, It controls current of load switch.  
5. BUCK CONVERTER BLOCK 3 (HAVDD)  
5-1. Over Voltage Protection (OVP)  
OVP function is incorporated for preventing IC or other components from malfunctioning due to rising HAVDD voltage.  
Voltage inputted to VDD3 pin is being monitored and if HAVDD voltage reaches HAVDD>110% (Typ), it is considered as  
unusual condition thus, OVP function is operated. If OVP is detected, switching is stopped until OVP release voltage (100%,  
Typ) falls to HAVDD voltage. After OVP release, switching is re-started.  
5-2. Over Current Protection (OCP)  
If excessive load current is demanded (SWB3 peak current>1.5A, Typ), it limits current to flow to builtin Power MOS by  
controlling Switching.  
5-3. Under Voltage Protection (UVP)  
Timer-latch type output UVP function is built-in.  
When the unusual condition (HAVDD<80%) is detected, SWB3 frequency is divided into 1/4 and UVP timer starts.  
If the unusual condition continues up to 10msec(typ.), all output will be latched with shutdown state. Power reset is needed  
to remove the latch state and to re-start.  
6. HIGH VOLTAGE LDO BLOCK  
6-1. Over Current Protection (OCP)  
If excessive load current (I_HVLDO>100mA, typ.) is present, It controls source current of HVLDO.  
6-2. Under Voltage Protection (UVP)  
Timer-latch type output UVP function is built in.  
When an unusual condition is detected (HVLDO<80%), UVP timer starts. If unusual condition continues up to 10msec (Typ),  
all output is latched in shutdown condition. Power reset is needed to remove the latch state and to re-start.  
7. VGH REGULATOR BLOCK  
7-1. Over Voltage Protection (OVP)  
OVP function is incorporated to prevent IC or other components from malfunctioning due to rising VGH voltage.  
Voltage inputted to VGH pin is being monitored and if VGH voltage reaches VGH>38V (Typ), it is considered as unusual  
condition so that OVP function is operated. If OVP is detected, limit DRVP current until OVP release voltage (35V, Typ) falls  
to VGH voltage. After OVP release, switching is re-started.  
7-2. Over Current Protection (OCP)  
If excessive load current (I_DRVP>5mA, Min) is present, It controls sink current (Base current of PNP Tr ) of DRVP.  
7-3. Under Voltage Protection (UVP)  
Timer-latch type output UVP function is built-in.  
When an unusual condition is detected (VGH<80%), UVP timer starts. If the unusual condition continues up to 10msec  
(Typ), all output is latched in shutdown condition. Power reset is needed to remove the latch state and to re-start.  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
27/49  
TSZ2211115001  
BM81004MUV  
8. GENERAL  
8-1. Thermal shutdown  
All outputs will shut down when the IC temperature exceeds 175(Typ). After the temperature falls below 150(Typ),  
the operation re-starts.  
8-2. VIN Under Voltage Lock Out  
VIN Under Voltage Lock Out prevents the circuit malfunction below the UVLO voltage. If VIN voltage is below the UVLO  
voltage (8.3V / 7.55V), it enters the standby state.  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
28/49  
TSZ2211115001  
BM81004MUV  
Protection function list  
Protective  
BLOCK  
Working Condition  
Action  
Protective removal  
VIO<100%  
Function  
OVP  
VIO>110%  
I_SWB1>3.5A  
VIO<80%  
Stops switching.  
BUCK  
CONVERTER  
1
OCP  
UVP  
Control switching pulse duty to not over current limit.  
Frequency becomes 1/4  
I_SWB1<3.5A  
VIO>80%  
IC shutdown if UVP status maintains during 10msec.  
IC restart  
OVP  
OCP  
UVP  
VCORE>110%  
I_SWB2>3.0A  
VCORE<80%  
Stops switching.  
VCORE<100%  
BUCK  
CONVERTER  
2
Control switching pulse duty to not over current limit.  
Frequency becomes 1/4  
I_SWB2<3.0A  
VCORE>80%  
IC restart  
IC shutdown if UVP status maintains during 10msec.  
Limit DRVN current.  
OCP  
UVP  
OVP  
OCP  
UVP  
OCP  
I_DRVN>5mA  
VGL<80%  
I_DRVN<5mA  
IC restart  
VGL  
REGULATOR  
IC shutdown if UVP status maintains during 10msec.  
Stops switching  
AVDD>19.5V  
I_SW>5A  
AVDD<18V  
I_SW<5A  
BOOST  
CONVERTER  
Control switching pulse duty to not over current limit.  
IC shutdown if UVP status maintains during 10msec.  
Control switching pulse duty to not over current limit.  
AVDD<80%  
I_SWO>7.0A  
IC restart  
LOAD SW  
IC restart  
OVP  
OCP  
UVP  
HAVDD>110%  
I_SWB3>1.5A  
HAVDD<80%  
Stops switching.  
HAVDD<100%  
BUCK  
CONVERTER  
3
Control switching pulse duty to not over current limit.  
Frequency becomes 1/4  
I_SWB3<1.5A  
HAVDD>80%  
IC restart  
IC shutdown if UVP status maintains during 10msec.  
Limit HVLDO current.  
HIGH  
VOLTAGE  
LDO  
OCP  
UVP  
OVP  
OCP  
UVP  
TSD  
I_HVLDO>100mA  
HVLDO<80%  
VGH>45V  
I_HVLDO<100mA  
IC restart  
IC shutdown if UVP status maintains during 10msec.  
DRVP current limit to 0mA  
VGH<42V  
VGH  
REGULATOR  
I_DRVP>5 mA  
VGH<80%  
Limit DRVP current.  
I_DRVP<5mA  
IC restart  
IC shutdown if UVP status maintains during 10msec.  
IC shutdown  
Tj>175℃  
Tj<150℃  
GENERAL  
UVLO  
VIN<7.55V  
IC shutdown  
VIN>8.3V  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
29/49  
TSZ2211115001  
BM81004MUV  
Serial transmission  
Use I2C BUS control for command interface with Host.  
Writing or reading by specifying 1 byte Register address besides Slave address.  
I2C BUS slave mode format is shown below.  
Slave Address  
Register Address  
Select Register Address (8bit)  
Register Address  
DATA  
8bit DATA  
DATA  
R/W A  
A
0
A
0
Write operation Start  
Read operation Start  
Stop  
Stop  
0
0
1
1
0
0
0
0
0
A0  
A0  
0
0
Slave Address  
R/W A  
A
0
A
0
Select Register Address (8bit)  
8bit DATA  
0
0
0
1
0
Start  
Slave Address  
:
:
Start condition  
Send 7 bit data in all with bit of Read Mode (H) or Write Mode (L).  
(MSB First)  
A0 are selectable (1/0) with the slave address select pin.  
Acknowledge  
ACK  
:
Sending or receiving data includes acknowledge bit per byte.  
If the data is sent and received properly, Lis sent and received.  
If His sent and received, it means there is no Acknowledge.  
Use 1 byte select address.  
Data byte. Sending and Receiving data (MSB First)  
Stop condition  
Register Address  
Data  
STOP  
:
:
:
For writing mode from I2C BUS to register, there are Single mode and Multi-mode.  
On single mode, write data to one designated register.  
On multi-mode, as a start address register specified in the second byte, writing data can be performed continuously, by  
entering multiple data.  
Single mode or multi-mode setting can be configured by having or not having stop bit.  
Single Mode Timing Chart  
start  
Slave Address  
Write Ackn  
Resister Address  
Ackn  
Data  
Ackn  
Stop  
SCL  
SDA_in  
A6  
A6  
A5  
A5  
A4  
A4  
A3  
A3  
A2  
A2  
A1  
A1  
A0 R/W Ackn R7  
A0 R/W Ackn R7  
R6  
R6  
R5  
R5  
R4  
R4  
R3  
R3  
R2  
R2  
R1  
R1  
R0 Ackn D7  
R0 Ackn D7  
D6  
D6  
D5  
D5  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0 Ackn  
D0 Ackn  
D4  
Device_Out  
Multi-Mode Timing Chart  
start  
Slave Address  
Write Ackn  
Resister Address (Ex.01h)  
Ackn  
Data (to Resister 01h)  
Ackn  
Data (to Resister 02h)  
Ackn  
・・・  
・・・  
・・・  
SCL  
SDA_in  
A6  
A6  
A5  
A5  
A4  
A4  
A3  
A3  
A2  
A2  
A1  
A1  
A0 R/W Ackn R7  
A0 R/W Ackn R7  
R6  
R6  
R5  
R5  
R4  
R4  
R3  
R3  
R2  
R2  
R1  
R0 Ackn  
R0 Ackn  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0 Ackn  
D0 Ackn  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0 Ackn  
D0 Ackn  
D7  
R1  
D7  
Device_Out  
Data(toResister05h)
Ackn  
Data(toResister06h)  
Ackn  
Stop  
・・・  
・・・  
・・・  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0 Ackn D7  
D0 Ackn D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0 Ackn  
D0 Ackn  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
30/49  
TSZ2211115001  
BM81004MUV  
I2CTiming Diagram  
tR  
tHIGH  
tF  
70%  
30%  
SCL  
tLOW  
tPD  
tHD:STA  
tSU;DAT  
tHD;DAT  
70%  
30%  
SDA  
(IN)  
tBUF  
tDH  
70%  
30%  
SDA  
(OUT )  
70%  
SCL  
SDA  
tHD;STA  
tSU;STA  
tSU;STO  
70%  
30%  
tl  
SSTART bit  
PSTOP bit  
S
P
Figure 50. I2C Timing Diagram  
NORMA LMODE  
Timing standard values  
FAST MODE  
TYP  
Parameter  
Symbol  
Unit  
MIN  
TYP  
MAX  
MIN  
MAX  
SCL frequency  
SCL high time  
SCL  
tHIGH  
tLOW  
-
4.0  
4.7  
-
-
-
100  
-
-
0.6  
1.2  
-
-
-
400  
-
kHz  
us  
us  
us  
us  
us  
us  
ns  
ns  
us  
us  
us  
us  
us  
SCL low time  
-
-
-
-
Rise Time  
tR  
-
1.0  
-
0.3  
Fall Time  
tF  
-
-
0.3  
-
-
0.3  
Start condition hold time  
Start condition setup time  
SDA hold time  
tHDSTA  
tSUSTA  
tHDDAT  
tSUDAT  
tPD  
4.0  
4.7  
200  
200  
-
-
-
0.6  
0.6  
100  
100  
-
-
-
-
-
-
-
-
-
-
-
SDA setup time  
-
-
-
-
-
-
Acknowledge delay time  
Acknowledge hold time  
Stop condition setup time  
Bus release time  
Noise spike width  
0.9  
0.9  
tDH  
-
0.1  
-
-
-
-
-
-
0.1  
-
-
-
-
-
tSUSTO  
tBUF  
4.7  
4.7  
-
0.6  
1.2  
-
-
-
Tl  
0.1  
0.1  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
31/49  
TSZ2211115001  
BM81004MUV  
Command Interface  
EEPROM transmission format for data sent and received is shown below.  
I2C Write format  
Slave Address  
Register Address  
00h to 0Ch  
DATA  
R/W  
0
A
0
A
0
A
0
Start  
Stop  
N-bytes DATA  
0
1
0
0
0
0 A0  
It can enter further Register from 3 byte by entering data continuously.  
DATA after 0Dh is invalid.  
Inputted Data reflect to the Register at the ACK output timing.  
I2C Read format  
1. Read data from DAC Register  
Slave Address  
Start  
Register Address  
R/W  
0
A
0
A
0
00h to 0Ch  
DATA  
0
1
0
0
0
0
0
A0  
A0  
Slave Address  
R/W  
1
A
0
A
0
Repeated  
Start  
Stop  
N-bytes DATA  
0
1
0
0
0
EEPROM Write Format  
EEPROM (DAC Register) transmission format for write is shown below.  
EEPROM Write format  
Slave Address  
Register Address  
DATA  
R/W  
0
A
0
A
A
0
Start  
Stop  
0
1
0
0
0
0
A0  
1
1
1
1
1
1
1
1
0
1
X
X
X
X
X
X
X
D6 to D0 : Dont care  
Automatic EEPROM Read Function at Start-up  
Upon BM81110MUW start-up, a reset signal is generated and each register is initialized.  
After VL activation is finished, data which is stored in the EEPROM is copied to the registers.  
The automatic EEPROM read function at start-up is further explained by the flow chart below.  
VL ACTIVE  
EEPROM READ  
TRANSFER DATA  
REGISTER  
START OPERATION  
Figure 51. Automatic EEPROM Read Function at Start-up  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
32/49  
BM81004MUV  
Content of EEPROM setting  
Register  
Bits  
Function  
Default(*1)  
Resolution  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
6
6
3
1
4
6
5
2
5
6
Channel Disable Register  
AVDD output voltage setting[5:0]  
AVDD OCP offset setting[2:0]  
AVDD soft start time setting[0]  
VIO output voltage setting[3:0]  
HAVDD output voltage setting[5:0]  
VGH output voltage setting[4:0]  
GPM clamp voltage setting[1:0]  
VGL output voltage setting[4:0]  
HVLDO output voltage setting[5:0]  
00h  
-
15.6V [27h]  
1.6A [04h]  
10msec [00h]  
3.3V [0Bh]  
7.8V [1Eh]  
35V [14h]  
0.1V [11.7V to 18.0V]  
0.4A [0A to 2.8A]  
10msec [10msec or 20msec]  
0.1V [2.2V to 3.7V]  
0.1V [4.8V to 11.1V]  
0.5V [25V to 40.5V]  
5V [15V to 30V]  
20V [01h]  
-6.0V [0Ah]  
15.2V [23h]  
0.2V [-10.2V to -4.0V]  
0.1V [11.7V to 18.0V]  
HVLDOx0.18/256  
[HVLDOx0.36 to HVLDOx0.54]  
8
VCOM output voltage setting[7:0]  
6.103V[C5h]  
0Ah  
10  
10  
10  
10  
8
AMP1 output voltage setting[9:0]  
AMP2 output voltage setting[9:0]  
AMP3 output voltage setting[9:0]  
AMP4 output voltage setting[9:0]  
7.808V[1F2h]  
7.808V[1F2h]  
HVLDO/1024[0V to HVLDO]  
HVLDO/1024[0V to HVLDO]  
HVLDO/1024[0V to HVLDO]  
HVLDO/1024[0V to HVLDO]  
0Bh[7:6], 0Ch  
0Bh[5:4], 0Dh  
0Bh[3:2], 0Eh  
0Bh[1:0], 0Fh  
FFh  
7.808V[1F2h]  
7.808V[1F2h]  
Control Register[7:0]  
*1 Factory value.  
*2 Value of default voltage setting. The Soft start time of each output changes depending on a setting voltage.  
Channel Disable Register  
Register Address = 00h  
[7]  
-
[6]  
-
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
VCORE  
HAVDD  
VGH  
VGL  
GPM  
AVDD_EXT  
0Enable 1Disable  
AVDD_EXT 1AVDD external mode  
Control Register  
Register  
Address  
DATA  
[BIN]  
Function  
Write to EEPROM from DAC Register data.  
FFh  
1xxx_xxxx  
xDon’t care bit  
Register Map  
Resister  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
FFh  
VCORE  
HAVDD  
VGH  
VGL  
GPM  
AVDD_EXT  
00h  
27h  
04h  
00h  
0Bh  
1Eh  
14h  
01h  
0Ah  
23h  
C5h  
55h  
F2h  
F2h  
F2h  
F2h  
AVDD[5:0]  
AVDD OCP offset[2:0]  
AVDD SS  
VIO [3:0]  
HAVDD [5:0]  
VGH [4:0]  
GPM clamp [1:0]  
AMP4[9:8]  
VGL [4:0]  
HVLDO[5:0]  
VCOM [7:0]  
AMP1[9:8]  
AMP2[9:8]  
AMP3[9:8]  
AMP1[7:0]  
AMP2[7:0]  
AMP3[7:0]  
AMP4[7:0]  
Control Register )  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
33/49  
TSZ2211115001  
BM81004MUV  
Command Table 1  
Register Address  
01  
[5:0]  
02  
[2:0]  
AVDD  
OCP  
offset  
[A]  
0.0  
0.4  
0.8  
1.2  
03  
[0]  
04  
[3:0]  
05  
[5:0]  
06  
[4:0]  
07  
[1:0]  
08  
[4:0]  
09  
[5:0]  
AVDD  
soft  
start  
[msec]  
10  
GPM  
clamp  
[V]  
DATA  
(HEX)  
AVDD  
[V]  
VIO  
[V]  
HAVDD  
[V]  
VGH  
[V]  
VGL  
[V]  
HVLDO  
[V]  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
11.7  
11.8  
11.9  
12.0  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
12.7  
12.8  
12.9  
13.0  
13.1  
13.2  
13.3  
13.4  
13.5  
13.6  
13.7  
13.8  
13.9  
14.0  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.7  
14.8  
14.9  
15.0  
15.1  
15.2  
15.3  
15.4  
15.5  
15.6  
15.7  
15.8  
15.9  
16.0  
16.1  
16.2  
16.3  
16.4  
16.5  
16.6  
16.7  
16.8  
16.9  
17.0  
17.1  
17.2  
17.3  
17.4  
17.5  
17.6  
17.7  
17.8  
17.9  
18.0  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
7.0  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
8.0  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
9.0  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
10.0  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
10.8  
10.9  
11.0  
11.1  
25.0  
25.5  
26.0  
26.5  
27.0  
27.5  
28.0  
28.5  
29.0  
29.5  
30.0  
30.5  
31.0  
31.5  
32.0  
32.5  
33.0  
33.5  
34.0  
34.5  
35.0  
35.5  
36.0  
36.5  
37.0  
37.5  
38.0  
38.5  
39.0  
39.5  
40.0  
40.5  
15  
20  
25  
30  
-4.0  
-4.2  
-4.4  
-4.6  
-4.8  
-5.0  
-5.2  
-5.4  
-5.6  
-5.8  
-6.0  
-6.2  
-6.4  
-6.6  
-6.8  
-7.0  
-7.2  
-7.4  
-7.6  
-7.8  
-8.0  
-8.2  
-8.4  
-8.6  
-8.8  
-9.0  
-9.2  
-9.4  
-9.6  
-9.8  
-10.0  
-10.2  
11.7  
11.8  
11.9  
12.0  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
12.7  
12.8  
12.9  
13.0  
13.1  
13.2  
13.3  
13.4  
13.5  
13.6  
13.7  
13.8  
13.9  
14.0  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.7  
14.8  
14.9  
15.0  
15.1  
15.2  
15.3  
15.4  
15.5  
15.6  
15.7  
15.8  
15.9  
16.0  
16.1  
16.2  
16.3  
16.4  
16.5  
16.6  
16.7  
16.8  
16.9  
17.0  
17.1  
17.2  
17.3  
17.4  
17.5  
17.6  
17.7  
17.8  
17.9  
18.0  
20  
1.6  
2.0  
2.4  
2.8  
: Default Value  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
34/49  
TSZ2211115001  
BM81004MUV  
Command Table 2  
Register Address  
Register Address  
0A  
[7:0]  
0B[7:6], 0C  
[9:0]  
0B[5:4], 0D  
0B[3:2], 0E  
[9:0]  
0B[1:0], 0F  
[9:0]  
[9:0]  
DATA  
(HEX)  
VCOM  
[V]  
DATA  
(HEX)  
AMP1  
[V]  
AMP2  
[V]  
AMP3  
[V]  
AMP4  
[V]  
00  
01  
02  
HVLDOx0.18x(3 - 0/256)  
HVLDOx0.18x(3 - 1/256)  
HVLDOx0.18x(3 - 2/256)  
000  
001  
002  
HVLDOx(1 - 0/1024)  
HVLDOx(1 - 1/1024)  
HVLDOx(1 - 2/1024)  
HVLDOx(1 - 0/1024)  
HVLDOx(1 - 1/1024)  
HVLDOx(1 - 2/1024)  
HVLDOx(1 - 0/1024)  
HVLDOx(1 - 1/1024)  
HVLDOx(1 - 2/1024)  
HVLDOx(1 - 0/1024)  
HVLDOx(1 - 1/1024)  
HVLDOx(1 - 2/1024)  
FD  
FE  
FF  
HVLDOx0.18x(3 - 253/256)  
HVLDOx0.18x(3 - 254/256)  
HVLDOx0.18x(3 - 255/256)  
3FD  
3FE  
3FF  
HVLDOx(1 - 1021/1024) HVLDOx(1 - 1021/1024) HVLDOx(1 - 1021/1024) HVLDOx(1 - 1021/1024)  
HVLDOx(1 - 1022/1024) HVLDOx(1 - 1022/1024) HVLDOx(1 - 1022/1024) HVLDOx(1 - 1022/1024)  
HVLDOx(1 - 1023/1024) HVLDOx(1 - 1023/1024) HVLDOx(1 - 1023/1024) HVLDOx(1 - 1023/1024)  
In case of HVLDO=15.2[V]  
Register Address  
Register Address  
0A  
[7:0]  
0B[7:6], 0C  
[9:0]  
0B[5:4], 0D  
[9:0]  
0B[3:2], 0E  
[9:0]  
0B[1:0], 0F  
[9:0]  
DATA  
(HEX)  
VCOM  
[V]  
DATA  
(HEX)  
AMP1  
[V]  
AMP2  
[V]  
AMP3  
[V]  
AMP4  
[V]  
00  
01  
02  
8.208  
8.197  
8.187  
000  
001  
002  
15.200  
15.185  
15.170  
15.200  
15.185  
15.170  
15.200  
15.185  
15.170  
15.200  
15.185  
15.170  
C5  
6.103  
1F2  
7.808  
7.808  
7.808  
7.808  
FD  
FE  
FF  
5.504  
5.493  
5.483  
3FD  
3FE  
3FF  
0.045  
0.030  
0.015  
0.045  
0.030  
0.015  
0.045  
0.030  
0.015  
0.045  
0.030  
0.015  
step  
0.011  
step幅  
0.015  
0.015  
0.015  
0.015  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
35/49  
TSZ2211115001  
BM81004MUV  
Selecting Application Components  
1. Buck Converter  
1-1. Selecting the Output LC Constant  
IL  
IL  
IOMAX+  
should not exceed the rated value  
ILR  
2
I
OMAXMean current  
t
Figure 52. Inductor Current Waveform (Buck Converter).  
The output inductance (L) is decided by the rated current (ILR)and maximum input current (IOMAX)of the inductance.  
Adjust so that IOMAX+ΔIL / 2 does not exceed the rated current value.  
ΔIL can be obtained by the following equation.  
1
L
VO  
VIN  
1
f
ΔI  
=
× (VIN - VO) ×  
×
[A]  
L
where f is the switching frequency  
Set with sufficient margin because the inductance value may have a dispersion of ±30%.  
If the coil current exceeds the rated current (ILR), the IC may be damaged.  
1-2. Selecting the Input/Output capacitor  
The output capacitor (CO) smoothens the ripple voltage at the output. Select a capacitor that will regulate the output ripple voltage  
within the specifications.  
Output ripple voltage can be obtained by the following equation.  
ΔI  
L
VO  
VIN  
1
f
ΔVPP = ΔI × R  
ESR  
×
×
L
2 Co  
However, since the aforementioned conditions are based on a lot of factors, verify the results using the actual product.  
Since the peak current flows between the input and output at the DC/DC converter, a capacitor is required to install at the  
Input side. For the reason, the low ESR capacitor is recommended as an input capacitor which has the value more than  
10μF and less than 100mΩ ESR. If an out of range capacitor is selected, the excessive ripple voltage is superimposed on  
the input voltage, thus, it may cause the malfunction of the IC.  
However these conditions may vary according to the load current, input voltage, output voltage, inductance and switching  
frequency. Be sure to perform margin check using the actual product.  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
36/49  
TSZ2211115001  
BM81004MUV  
1-3. Selecting the Output rectifier diode  
A schottky barrier is recommended as rectifier diode to be used at the output stage of the DC/DC converter. Select carefully  
in consideration of the maximum inductor current, maximum output voltage and power supply voltage.  
ΔI  
L
Maximum inductor current I  
Diode Maximum Absolute Current  
Diode Maximum Absolute Voltage  
OMAX  
IN  
2
Maximum input voltage  
V
Provide sufficient design margins for a tolerance of 30% to 40 for each parameter.  
2. Boost Converter  
2-1. Selecting the Output LC Constant  
IL  
IL  
IOMAX+  
should not exceed the rated value  
level.  
2
ILR  
I
OMAX mean current  
t
Figure 53. Inductor Current Waveform (Boost Converter).  
The output inductance (L) is decided by the rated current (ILR)and maximum input current (IINMAX)of the inductance.  
Adjust so that IINMAX+ΔIL / 2 does not exceed the rated current value.  
ΔIL can be obtained by the following equation.  
1
VO VIN  
1
Δ I  
VIN   
[A]  
L
L
VO  
f
where f is the switching frequency  
Set with sufficient margin because the inductance value may have a dispersion of ±30%.  
If the coil current exceeds the rated current (ILR), the IC may be damaged.  
2-2. Selecting the Output capacitor  
The output capacitor (CO) smoothens the ripple voltage at the output. Select a capacitor that will regulate the output ripple voltage  
within the specifications.  
Output ripple voltage can be obtained by the following equation.  
ΔI  
1
VIN  
VO  
L
ΔV  
PP  
= I  
LMAX  
× R  
ESR  
×
×
I
LMAX  
f × CO  
2
However, since the aforementioned conditions are based on a lot of factors, verify the results using the actual product.  
Since the peak current flows between the input and output at the DC/DC converter, a capacitor is required to install at the  
Input side. For the reason, the low ESR capacitor is recommended as an input capacitor which has the value more than  
10μF and less than 100mΩ ESR. If an out of range capacitor is selected, the excessive ripple voltage is superimposed on  
the input voltage, thus, it may cause the malfunction of the IC.  
However these conditions may vary according to the load current, input voltage, output voltage, inductance and switching  
frequency. Be sure to perform the margin check using the actual product.  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
37/49  
TSZ2211115001  
BM81004MUV  
2-3. Setting phase compensation  
Phase setting procedure.  
Stable negative feedback condition is achieved as follows:  
When the gain is set to 1 (0 dB), phase delay should not be more than 150°.Consequently, phase margin should not be  
less than 30°.  
Also, since DC/DC converter applications are sampled according to the switching frequency, the whole system GBW should  
be set to not more than 1/10 of the switching frequency. The target characteristics of the applications can be summarized  
as follows:  
When the gain is set to 1 (0 dB), the phase delay should not be more than 150°.  
And phase margin should not be less than 30°.  
The frequency when the gain is set to 0 dB should not be more than 1/10 of the switching frequency.  
The responsiveness is determined by the GBW limitation. Consequently, to increase the circuit response, higher switching  
frequencies are required.  
AVDD is in current mode control. The current mode control is a two-pole single-zero system. The poles are formed by the  
error amplifier and load while added zero is for phase compensation.  
By placing poles appropriately, the circuit can maintain good stability and transient load response.  
Bode plot diagram of general DC/DC converter is described below. At point (a), gain starts falling via the output impedance  
of the error amplifier and forms a pole by capacitor Ccp. When point (b) is reached, a zero is formed by resistor Rpc and  
capacitor Ccp to cancel the pole by loading and balance variation of Gain and phase.  
The GBW (i.e., frequency when the gain is 0 dB) is determined by phase compensation capacitor connected to the error  
amplifier. If GBW is to be reduced, increase the capacitance of the capacitor.  
(a)  
-20dB/decade  
Vo  
A
0
R3  
C1  
R1  
R2  
Gain  
[dB]  
GBW(b)  
f
-
+
COMP  
Rcp  
Ccp  
A
0
Phase  
[deg]  
-90°  
Phase margin  
-90  
-180°  
-180  
f
Figure 54. Setting phase compensation.  
Formed Zero (fz1) by Rcp resistor and Ccp Capacitor are shown by using the following equation.  
And also, Feed-forward capacitor C1 and R1 resistor both create Formed Zero (fz2) and it is used as boosting phase  
margin in the limited frequency area.  
1
Phase lead fZ1 =  
Phase lead fZ2 =  
[Hz]  
2πCcpRcp  
1
[Hz]  
2πC1R1  
The formed zero fz2 phase compensation is built into the IC.  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
38/49  
TSZ2211115001  
BM81004MUV  
3. Positive Charge Pump : VGH  
3-1. Selecting the Output rectifier diode  
Select carefully in consideration of the maximum load current, maximum output voltage and power supply voltage.  
Maximum output current  
I
Diode Maximum Absolute Current  
OMAX  
Maximum output voltage AVDD  
Diode Maximum Absolute Voltage  
Provide sufficient design margins for a tolerance of 30%~40 for each parameter.  
3-2. Selecting the Output PNP transistor  
Select carefully in consideration of the maximum load current, maximum output voltage and power supply voltage.  
AVDDVIN  
Boost Converter Duty  
D =  
AVDD  
I
OMAX  
D
Maximum Output current  
Transistor Maximum Absolute Current  
Power supply voltage  
DC gain  
AVDD x 2  
IOMAX / IBASE  
Transistor Maximum Absolute Voltage  
Transistor hfe  
Power dissipation (Doubler Mode)  
Power dissipation (Tripler Mode)  
Maximum DRVP current  
( 2 x AVDD VGH 2 x Vf ) x IOUT  
( 3 x AVDD VGH 4 x Vf ) x IOUT  
IBASE5mA)  
Transistor Power dissipation  
Transistor Power dissipation  
Provide sufficient design margins for a tolerance of 30%~40 for each parameter.  
3-3. Selecting the base emitter resistor  
100kΩ base-emitter resistor used to ensure proper operation.  
3-4. Selecting the flying capacitor and the switch node resistor  
A 0.1uF to 0.47uF flying capacitor and 1Ω to 20Ω resistor are appropriate for most applications.  
3-5. Selecting the output capacitor  
A 10uF ceramic capacitor is appropriate for most applications. More capacitor can be added to improve the load transient  
response.  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
39/49  
TSZ2211115001  
BM81004MUV  
4. Negative Charge Pump : VGL  
4-1. Selecting the Output rectifier diode  
Select carefully in consideration of the maximum load current, maximum output voltage and power supply voltage.  
Maximum output current  
I
Diode Maximum Absolute Current  
OMAX  
VIN  
Maximum switching voltage  
Diode Maximum Absolute Voltage  
Provide sufficient design margins for a tolerance of 30%~40 for each parameter.  
4-2. Selecting the Output NPN transistor  
Select carefully in consideration of the maximum load current, maximum output voltage and power supply voltage.  
VINVIO  
Converter Duty  
D =  
VIN  
I
OMAX  
D
Maximum Output current  
Transistor Maximum Absolute Current  
Power supply voltage  
DC gain  
VIN  
Transistor Maximum Absolute Voltage  
Transistor hfe  
IOMAX / IBASE  
Power dissipation (Doubler Mode)  
Maximum DRVN current  
(VIN - VGL 2 x Vf ) x IOUT  
IBASE5mA)  
Transistor Power dissipation  
Provide sufficient design margins for a tolerance of 30%~40 for each parameter.  
4-3. Selecting the base emitter resistor  
100kΩ base-emitter resistor used to ensure proper operation.  
4-4. Selecting the flying capacitor and the switch node resistor  
A 0.1uF to 0.47uF flying capacitor and 1Ω to 20Ω resistor are appropriate for most applications.  
4-5. Selecting the output capacitor  
A 10uF ceramic capacitor is appropriate for most applications. More capacitor can be added to improve the load transient  
response.  
5. High Voltage LDO : HVLDO  
5-1. Selecting the output capacitor  
A 4.7uF to10uF ceramic capacitor is appropriate for most applications.  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
40/49  
TSZ2211115001  
BM81004MUV  
Layout Guideline  
DC/DC converter switching line must be as short and thick as possible to reduce line impedance. If the wiring is long,  
ringing caused by switching would increase and this may exceed the absolute maximum voltage ratings. If the parts are  
located far apart, consider inserting a snubber circuit.  
The thermal Pad on the back side of IC has the great thermal conduction to the chip. So using the GND plain as broad and  
wide as possible can help thermal dissipation. And a lot of thermal via for helping the spread of heat to the different layer is  
also effective. When there is unused area on PCB, please arrange the copper foil plain of DC nodes, such as GND, VIN  
and VOUT for helping heat dissipation of IC or circumference parts.  
Power Dissipation  
6
(2) 5.08W  
5
(1) 4.01W  
4
3
2
1
0
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE : Ta []  
VQFN48V7070A Package  
On 4-layer 114.3mm×74.2mm×1.6mm glass epoxy PCB  
(1) 2-layer board (Backside copper foil area 74.2 mm ×74.2 mm)  
(2) 4-layer board (The 2nd, 3rd layers and backside copper foil area 74.2 mm ×74.2 mm)  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
41/49  
TSZ2211115001  
BM81004MUV  
I/O Equivalence Circuit  
1, 2, 47, 48. AMP1~4  
3. VDD1  
4.PG  
HVCC  
HVCC  
VINB1  
PG  
AMPx  
VDD1  
5.SDA  
6.SCL  
7.A0  
Internal reg.  
Internal reg.  
AVIN  
Internal reg.  
SCL  
SDA  
A0  
8. AVIN  
9.HVLDO  
10. HVCC  
AVIN  
HVCC  
HVCC  
HVLDO  
11.VCOM  
12. INN  
13. CTRL  
HVCC  
Internal reg.  
HVCC  
CTRL  
INN  
VCOM  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
42/49  
TSZ2211115001  
BM81004MUV  
I/O Equivalence Circuit - continued  
15.COMP  
16.VL  
19, 20.SW  
SWO  
Internal reg.  
AVIN  
SWI  
SW  
VL  
COMP  
21.SWI  
22.SWO  
23.AVDDS  
SWO  
SWO  
SWO  
SWO  
SWI  
SW  
SWI  
SW  
AVDDS  
24.PGATE  
25.VGL  
26.DRVN  
SWI  
SWI  
VL  
VL  
VL  
Internal reg.  
PGATE  
DRVN  
VGL  
27.DRVP  
28.VGH  
29.VGHM  
VGH  
VGH VGH  
VGH  
DRVP  
VGHM  
RE  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
43/49  
TSZ2211115001  
BM81004MUV  
I/O Equivalence Circuit - continued  
30.RE  
31.VINB3  
33. SWB3  
VGH  
VGH VGH  
VINB3  
VINB3  
VGHM  
RE  
SWB3  
35. VDD3  
36. EN  
38. SWB2  
Internal reg.  
VINB3  
VDD3  
SWB2  
39. VDD2  
40. VINB2  
41, 42.VINB1  
VINB2  
VINB2  
VINB1  
VDD2  
44, 45. SWB1  
VINB1  
SWB1  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
44/49  
TSZ2211115001  
BM81004MUV  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size  
and copper area to prevent exceeding the Pd rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately  
obtained. The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush  
current may flow instantaneously due to the internal powering sequence and delays, especially if the IC  
has more than one power supply. Therefore, give special consideration to power coupling capacitance,  
power wiring, width of ground wiring, and routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
45/49  
TSZ2211115001  
BM81004MUV  
Operational Notes continued  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 55. Example of monolithic IC structure  
13. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
14. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe  
Operation (ASO).  
15. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below  
the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
16. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
46/49  
TSZ2211115001  
BM81004MUV  
Ordering Information  
B M 8 1 0 0 4 M U V  
ZE2  
Part number  
Package  
MUV:VQFN48V7070A  
Packaging and forming specification  
ZE2: Embossed tape and reel  
Marking Diagram  
VQFN48V7070A (TOP VIEW)  
Part Number Marking  
8 1 0 0 4  
LOT Number  
1PIN MARK  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
47/49  
TSZ2211115001  
BM81004MUV  
Physical Dimension Tape and Reel Information  
Package Name  
VQFN48V7070A  
ZE2  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
48/49  
BM81004MUV  
Revision history  
Date  
Revision  
001  
Contents  
2014.09.16  
2014.12.04  
New release  
Page 8/49 TSD: MIN, MAX added  
002  
Page 9/49 VOVP_VIO, VOVP_VCORE and VOVP_HAVDD: MIN, MAX added  
www.rohm.com  
TSZ02201-0313AAF00420-1-2  
4.Dec.2014 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
49/49  
TSZ2211115001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-GE  
Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-GE  
Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
BM81004MUV - Web Page  
Distribution Inventory  
Part Number  
Package  
Unit Quantity  
BM81004MUV  
VQFN48V7070A  
1500  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
1500  
Taping  
inquiry  
Yes  

相关型号:

BM81028AMWV

Multi-Channel System Power Supply IC
ROHM

BM81028AMWV-ZE2

Multi-Channel System Power Supply IC
ROHM

BM81110MUW

BM81110MUW是面向液晶电视的TFT-LCD面板用系统电源。在面板驱动电源(SOURCE用电压、LOGIC用电压)之外,还内置了正/负电荷泵控制器及Gate Pulse Modulation功能。还有保持各种设定值的EEPROM,可自由设定输出电压及SOFT START时间等。
ROHM

BM81110MUW-ZE2

Power Supply Support Circuit,
ROHM

BM81810MUF-M

BM81810MUF-M is a power management IC for TFT-LCD panels which are used in car navigation, in-vehicle center panel, and instrument cluster. This IC incorporates VCOM amplifier, Gate Pulse Modulation (GPM) in addition to the power supply for panel driver (SOURCE, GATE, and LOGIC power supplies). Moreover, this IC has a built-in EEPROM for sequence and output voltage setting retention.
ROHM

BM81810MUV-M

Automotive Panel Power Management IC
ROHM

BM81810MUV-ME2

Automotive Panel Power Management IC
ROHM

BM8290

9.25】8.05mm Max.(L】W),8.85mm Max. Height.
SUMIDA

BM831

0.7~1.4GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP
BEREX

BM831_18

0.7~1.4GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP
BEREX

BM851

1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP
BEREX

BM851_18

1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP
BEREX