BM81028AMWV [ROHM]

Multi-Channel System Power Supply IC;
BM81028AMWV
型号: BM81028AMWV
厂家: ROHM    ROHM
描述:

Multi-Channel System Power Supply IC

文件: 总48页 (文件大小:1955K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Power Supply IC Series for TFT-LCD Panels  
Multi-Channel  
System Power Supply IC  
BM81028AMWV  
General Description  
Features  
BM81028AMWV is a system power supply IC for  
TFT-LCD panels which are used in monitors, notebook  
type displays, and tablets.  
Input voltage range:  
Standby current:  
Operating temperature range:  
2.7V to 5.5V  
1.4μA (Typ)  
-40to +85℃  
This IC incorporates HAVDD, VCOM amplifier in addition  
to the power supply for panel driver (SOURCE, GATE,  
and LOGIC power supplies).  
Moreover, this IC has a built-in EEPROM for sequence  
and output voltage setting retention.  
Step-down DC/DC converter 2-channels  
(Synchronous rectification)  
Step-up DC/DC converter  
(Integrated load switch and Synchronous rectification)  
HAVDD amplifier (8bit Resolution)  
VCOM amplifier (8bit Resolution)  
Positive charge pump (Integrated diode)  
Negative charge pump  
Applications  
TFT-LCD Panels which are used in  
Monitors, Note PCs and Tablets.  
I2C Interface Output Voltage Setting Control Function  
(Integrated EEPROM)  
Switching frequency switching function  
(600kHz,1200kHz)  
Protection circuits  
Under-Voltage Lockout  
Thermal Shut Down  
Over-Current Protection  
Over-Voltage Protection  
Short Circuit Protection (Timer Latch type)  
Input tolerant (SCL, SDA,EN)  
Package  
UQFN28V4040A  
W(Typ) D(Typ) H(Max)  
4.0mm x 4.00mm x 1.00m  
Typical Application Circuit  
Fig.1. TypicaApplication Circuit  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays  
.www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
1/44  
TSZ2211114001  
Daattaasshheeeett  
BM81028AMWV  
Pin Configuration  
Fig.2 Pin Configuration  
Pin Descriptions  
Pin  
No.  
Pin  
Name  
Pin  
Pin  
Function  
Function  
No.  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Name  
SWB1  
PVCC1  
SWB2  
PGND2  
SW  
1
2
DRN  
Negative charge pump driver pin  
Step-down DC/DC switching pin 1  
AVDDP AVDD input  
Step-down DC/DC power supply input  
Step-down DC/DC switching pin 2  
Step-down/-up DC/DC ground  
Step-up DC/DC switching pin  
Step-up DC/DC output  
3
HAVDD HAVDD amplifier output  
VCOM VCOM amplifier output  
4
5
GND  
Ground  
6
FAULT FAULT signal output  
AVDD  
7
VCC  
SCL  
Power supply input  
AVDD_S Step-up DC/DC output feedback  
8
Serial clock input (I2C)  
PVCC2  
VLSO  
VGL  
Step-up DC/DC load switch input  
Step-up DC/DC load switch output  
Negative charge pump feedback  
9
SDA  
Serial clock data input (I2C)  
Enable input  
10  
11  
12  
13  
14  
EN  
VREG  
VDD2  
VDD1  
Inner power supply output  
Step-down DC/DC output feedback input 2  
Step-down DC/DC output feedback input 1  
CPGND Charge pump ground  
VGH  
CPP  
DRP  
Positive charge pump feedback  
Built-in Positive charge pump switching Di output  
Positive charge pump driver pin  
PGND1 Step-down DC/DC ground  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
2/44  
Daattaasshheeeett  
BM81028AMWV  
Block Diagram  
VCC  
7
erramp  
pwmcomp  
VDD1  
SWB1  
soft start  
driver  
15  
PGND1  
14  
13  
vref  
VDD1  
PVCC1  
16  
erramp  
pwmcomp  
SWB2  
soft start  
driver  
17  
PGND2  
18  
12  
VREG  
11  
vreg  
VDD2  
PVCC2  
22  
23  
load SW  
VLSO  
SW  
Internal Regulator  
19  
20  
21  
erramp  
AVDD  
register  
DAC  
pwmcomp  
driver  
AVDD_S  
EEPROM  
soft start  
PGND2  
AVDD  
DAC  
SCL  
SDA  
8
9
register  
logic  
HAVDD  
3
AVDD  
DAC  
EN 10  
control  
osc  
register  
register  
4
AVDD  
VDD1  
VDD2  
CP_CLK  
Internal Regulator  
AVDDP  
DRP  
OSCGND  
2
erramp  
DAC  
28  
driver  
CPGND  
VGH  
25  
26  
soft start  
level shift  
level shift  
CPP  
27  
Internal Regilator  
erramp  
6
register  
DAC  
DRN  
FAULT  
fault  
1
driver  
CPGND  
soft start  
GND  
5
VGL  
24  
Fig.3 Block Diagram  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
3/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Function Description of Each Block  
Enumerated below are the different blocks and the output voltages they generate. Also, discussed are the protection circuits  
that can shut down each block to prevent IC destruction.  
All output voltages generated by each block, startup order, and delay time (DELAY1 and DELAY2) can be set through the  
EEPROM. Upon start-up, these settings are read from the EEPROM and copied to the registers.  
Buck Converter Block (VDD1, VDD2)  
Generates the VDD1 and VDD2 voltages after VCC UVLO release at EN=High.  
This block shuts down when SCP or OCP is detected.  
Boost Converter Block (AVDD)  
Generates the AVDD voltage after the configured DELAY2 time.  
This block shuts down when OVP, SCP, or OCP is detected.  
HAVDD Amp Block (HAVDD)  
Generates the HAVDD voltage based on the AVDD voltage.  
Thus, the HAVDD voltage is produced after the AVDD voltage.  
VCOM Amp Block (VCOM)  
Generates the VCOM voltage based on the AVDD voltage.  
Thus, the VCOM voltage is produced after the AVDD voltage.  
Positive Charge Pump Block (VGH)  
Generates the VGH voltage based on the AVDD voltage.  
Thus, the VGH voltage is produced after the AVDD voltage.  
This block shuts down when SCP is detected.  
Negative Charge Pump Block (VGL)  
Generates the VGL voltage based on the AVDD voltage.  
It starts up after the configured DELAY2 time.  
This block shuts down when SCP is detected.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
4/44  
Daattaasshheeeett  
BM81028AMWV  
Absolute Maximum Ratings  
LIMITS  
TYP  
PARAMETER  
SYMBOL  
Unit  
V
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-15  
MAX  
6.5  
Power Supply Voltage  
VCC, PVCC1, PVCC2  
SWB1, SWB2  
VDD1, VDD2  
AVDD, AVDDP, SW  
VLSO  
PVCC1+0.3  
V
V
6.5  
19  
6.5  
V
V
HAVDD, VCOM  
DRP, DRN  
CPP  
AVDDP+0.3  
AVDDP+0.3  
30  
V
Output Pin  
V
V
VGH,  
36  
V
VGL  
0.3  
V
VREG  
-0.3  
-0.3  
-0.3  
VCC+0.3  
6.5  
V
FAULT  
V
Functional Pin Voltage  
Maximum Junction temperature  
Power Dissipation  
SCL, SDA, EN  
Tjmax (1)  
6.5  
V
150  
W
Pd (2)  
2.01  
Operating Temperature Range  
Topr  
-40  
-55  
85  
Storage Temperature Range  
Tstg  
150  
(1) Junction temperature at storage time.  
(2) JEDEC standard (4 layers)  
Recommended Operating Ratings(TA=-40to +85)  
PARAMETER  
SYMBOL  
MIN  
2.7  
TYP  
MAX  
5.5  
Unit  
V
Power Supply Voltage 1  
( DC/DC Block Protection  
Detection Voltage 1 setting)  
Power Supply Voltage 2  
( DC/DC Block Protection  
Detection Voltage 2 setting)  
2.9  
3.1  
3.3  
5.5  
5.5  
5.5  
V
V
V
VCC,PVCC1,PVCC2  
Power Supply Voltage 3  
( DC/DC Block Protection  
Detection Voltage 3 setting)  
Power Supply Voltage 4  
( DC/DC Block Protection  
Detection Voltage 4 setting)  
SWB1,SWB2 Current  
SW Current  
ISW1  
ISW2  
1.0  
1.5  
A
A
Functional Pin Voltage  
EN  
-0.1  
5.5  
V
2 Line Serial Pin Voltage  
2 Line Serial Frequency  
SDA, SCL  
FCLK  
-0.1  
5.5  
V
400  
kHz  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
5/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Electrical Characteristics (Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V)  
1. Buck DC/DC converter block 1 (VDD1)  
LIMITS  
PARAMETER  
SYMBOL  
VDD1  
Unit  
V
Condition  
50mV step  
MIN  
TYP  
MAX  
1.7  
2.4  
1.9  
2.6  
Output Voltage Range  
1.782  
2.475  
1.8  
2.5  
1.818  
2.525  
V
V
VDD1=1.8V setting  
VDD1=2.5V setting  
The time where 90% of set  
voltage is reached.  
Output Voltage Accuracy  
Soft Start time  
VDD1_R  
VDD1_SS  
0.5  
1
2
msec  
Timer Latch Starting Time  
SWB1 H Side ON Resistance  
SWB1 L Side ON Resistance  
SWB1 H Side Leak Current  
SWB1 L Side Leak Current  
Current Limit  
VDD1_SCP  
RON_H1  
RON_L1  
IL_H1  
1.0  
VDD1×0.8  
480  
480  
10  
V
mΩ  
mΩ  
µA  
µA  
A
300  
300  
0
IL_L1  
0
10  
ILMT_SWB1  
DISR_VDD1  
1.5  
25  
Discharge Resistance  
50  
2. Buck DC/DC converter block 2 (VDD2)  
LIMITS  
TYP  
PARAMETER  
SYMBOL  
Unit  
Condition  
MIN  
1.1  
MAX  
1.3  
Output Voltage Range  
VDD2  
V
V
50mV step  
Output Voltage Accuracy  
VDD2_R  
1.188  
1.2  
1.212  
VDD2=1.2V setting  
The time where 90% of set  
voltage is reached.  
Soft Start Time  
VDD2_SS  
0.5  
1
2
msec  
Timer Latch Starting Time  
SWB2 H Side On Resistance  
SWB2 L Side On Resistance  
SWB2 H Side Leak Current  
SWB2 L Side Leak Current  
Current Limit  
VDD2_SCP  
RON_H2  
RON_L2  
IL_H2  
1.0  
VDD2×0.8  
480  
480  
10  
V
mΩ  
mΩ  
µA  
µA  
A
300  
300  
0
IL_L2  
0
10  
ILMT_SWB2  
DISR_VDD2  
1.5  
25  
Discharge Resistance  
50  
3. Boost DC/DC converter block (AVDD)  
LIMITS  
TYP  
PARAMETER  
SYMBOL  
Unit  
Condition  
MIN  
8.0  
MAX  
14.5  
Output Voltage Range  
AVDD  
V
V
0.1V step  
Output Voltage Accuracy1  
Output Voltage Accuracy2  
AVDD_R1  
AVDD_R2  
10.395  
-1.0  
10.5  
0
10.605  
+1.0  
AVDD=10.5V setting  
AVDD=9.7 to 11.2V setting  
%
AVDD=8.0 to 9.6V,  
11.3 to 12.8V setting  
AVDD=12.9 to 14.5V  
setting  
Output Voltage Accuracy3  
Output Voltage Accuracy4  
AVDD_R3  
AVDD_R4  
-1.7  
-2.0  
0
0
+1.7  
+2.0  
%
%
Load Switch Soft Start time  
Soft Start Time  
LS_SS  
AVDD_SS  
AVDD_SCP  
AVDD_OVP  
RON_H3  
RON_L3  
IL_H3  
1
2
4
msec  
3.5  
1.5  
80  
5
6.5  
msec AVDD=10.5V setting  
Timer Latch Starting Time  
Over-Voltage Protection voltage  
SW H Side On Resistance  
SW L Side On Resistance  
SW H Side Leak Current  
SW L Side Leak Current  
Current Limit  
AVDD×0.8  
V
V
16  
350  
350  
0
560  
560  
10  
mΩ  
mΩ  
µA  
µA  
A
IL_L3  
0
10  
ILMT_SW  
RON_LS  
DMAX  
2.0  
250  
90  
Load Switch ON Resistor  
Maximum Duty  
400  
mΩ  
%
Discharge Resistance  
DISR_AVDD  
25  
50  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
6/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Electrical Characteristics (Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V)  
4. HAVDD amplifier block (HAVDD)  
LIMITS  
PARAMETER  
SYMBOL  
Unit  
Condition  
MIN  
TYP  
MAX  
0.6×  
AVDD-  
3.1875  
0.6×  
Output Voltage Range  
Resolution  
Integral Non-Linearity Error  
(INL)  
HAVDD  
V
12.5mV step  
AVDD  
RES1  
INL1  
8
Bit  
-1  
+1  
LSB Input code: 02h to FDh  
LSB Input code: 02h to FDh  
Differential Non-Linearity Error  
(DNL)  
DNL1  
-1  
+1  
Output Current Ability (Source)  
Output Current Ability (Sink)  
Load Stability  
ISOURCE1  
ISINK1  
VO1  
200  
200  
10  
70  
mA  
mA  
Io=-15mA to +15mA  
mV  
Slew Rate  
SR1  
20  
V/µsec  
5. VCOM amplifier block (VCOM)  
PARAMETER  
LIMITS  
TYP  
SYMBOL  
VCOM  
Unit  
Condition  
MIN  
MAX  
0.45×  
AVDD-  
3.1875  
0.45×  
AVDD  
Output Voltage Range  
Resolution  
Integral Non-Linearity Error  
(INL)  
Differential Non-Linearity Error  
(DNL)  
Output Current Ability  
(Source)  
V
12.5mV step  
RES2  
INL2  
8
Bit  
-1  
+1  
LSB Input code: 02h to FDh  
LSB Input code: 02h to FDh  
DNL2  
VOL2  
-1  
+1  
200  
mA  
mA  
Output Current Ability (Sink)  
Load Stability  
ISOURCE2  
ISINK2  
200  
10  
Io=-15mA to +15mA  
70  
mV  
V/µsec  
Slew Rate  
SR2  
20  
Discharge Resistor  
DISR_VCOM  
50  
100  
6. Positive charge pump block (VGH)  
PARAMETER  
LIMITS  
SYMBOL  
Unit  
Condition  
MIN  
13  
TYP  
MAX  
26  
Output Voltage Range  
Output Voltage Accuracy  
Soft Start time  
VGH  
V
V
0.2V step  
VGH_R  
17.1  
3.5  
18  
18.9  
6.5  
VGH=18V setting  
VGH_SS  
VGH_SCP  
RON_H4  
RON_L4  
RON_H4  
RON_L4  
DISR_VGH  
5
VGH×0.8  
5
msec VGH=18V setting  
Timer Latch Starting Time  
DRP H Side On Resistance  
DRP L Side On Resistance  
CPP H Side On Resistance  
CPP L Side On Resistance  
Discharge Resistance  
V
10  
10  
10  
150  
300  
7. Negative charge pump block (VGL)  
PARAMETER  
LIMITS  
SYMBOL  
Unit  
Condition  
MIN  
-9.5  
-6.3  
3.5  
TYP  
MAX  
-4  
Output Voltage Range  
Output Voltage Accuracy  
Soft Start time  
VGL  
V
V
0.1V step  
VGH=-6.0V setting  
VGL_R  
-6  
-5.7  
6.5  
VGL_SS  
VGL_SCP  
RON_H5  
RON_L5  
DISR_VGL  
5
VGL×0.8  
5
msec  
V
Timer Latch Starting Time  
DRN H Side On Resistance  
DRN L Side On Resistance  
Discharge Resistance  
10  
250  
500  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
7/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Electrical Characteristics (Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V)  
8. Overall (Entire device)  
LIMITS  
PARAMETER  
SYMBOL  
Unit  
Condition  
MIN  
TYP  
MAX  
Inside Regulator Voltage】  
VREG Output Voltage  
Load Stability  
VREG  
2.15  
2.3  
20  
2.45  
100  
V
V  
mV  
IVREG=20mA  
Oscillator Block】  
DC/DC Block  
Oscillating Frequency 1  
DC/DC Block  
Oscillating Frequency 2  
Charge Pump block  
Oscillating Frequency 1  
Charge Pump block  
Oscillating Frequency 2  
FOSC1  
FOSC2  
480  
960  
240  
480  
600  
1200  
300  
720  
1440  
360  
KHz  
KHz  
KHz  
KHz  
FOSC1_CP  
FOSC2_CP  
600  
720  
Under Voltage Lock Out (UVLO) Circuit】  
UVLO return voltage  
UVLO detection voltage  
Hysteresis  
VUVLO  
2.2  
1.9  
-
2.4  
2.1  
0.3  
2.6  
2.3  
-
V
V
V
VDET  
VHYS  
DC/DC Block Under-Voltage Lockout Circuit Block】  
DC/DC Block  
Protection Detection Voltage 1  
DC/DC Block  
Protection Detection Voltage 2  
DC/DC Block  
Protection Detection Voltage 3  
DC/DC Block  
Protection Detection Voltage 4  
DC/DC Block  
Protection Return Voltage 1  
DC/DC Block  
Protection Return Voltage 2  
DC/DC Block  
Protection Return Voltage 3  
DC/DC Block  
Protection Return Voltage 4  
UVLO is released when  
VCC exceeds 2.8V.  
DC_DET1  
2.35  
2.55  
2.75  
2.95  
2.55  
2.75  
2.95  
3.15  
2.5  
2.7  
2.9  
3.1  
2.7  
2.9  
3.1  
3.3  
2.65  
2.85  
3.05  
3.25  
2.85  
3.05  
3.25  
3.45  
V
V
V
V
V
V
V
V
UVLO is released when  
VCC exceeds 3.0V.  
DC_DET2  
UVLO is released when  
VCC exceeds 3.2V.  
DC_DET3  
UVLO is released when  
VCC exceeds 3.4V.  
DC_DET4  
DC_REL1  
DC_REL2  
DC_REL3  
DC_REL4  
FAULT Signal Output Block】  
Output Off Leak Current  
Output On Resistance  
IFL  
0
1
10  
2
uA  
RON_F  
kΩ  
Control Signal Block1 SDA, SCL】  
Minimum Output Voltage  
VSDA  
VIH1  
0.4  
V
V
ISDA=3mA  
VCC=2.55.5V  
Ta=-40+85℃  
VCC=2.55.5V  
Ta=-40+85℃  
H Level Input Voltage  
L Level Input Voltage  
1.7  
VIL1  
0.6  
V
Control Signal Block2 EN】  
Pull-Down Resistance Value  
RCTL2  
VIH2  
280  
1.7  
400  
520  
kΩ  
VCC=2.55.5V  
Ta=-40+85℃  
VCC=2.55.5V  
Ta=-40+85℃  
H Level Input Voltage  
L Level Input Voltage  
V
VIL2  
0.6  
V
Overall】  
Standby Consumption Current  
Consumption Current  
ICC1  
ICC2  
0.8  
1.7  
1.4  
3.2  
2.0  
4.7  
µA  
EN=L  
EN=H, No switching  
mA  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
8/44  
Daattaasshheeeett  
BM81028AMWV  
Reference Data  
(Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,  
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)  
5
4
3
2
1
0
5
4
3
2
1
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VCC supply voltage [V]  
Fig.4 Standby Current  
VCC supply voltage [V]  
Fig.5 Circuit Current No switching  
800  
750  
700  
650  
600  
550  
500  
450  
400  
1400  
1350  
1300  
1250  
1200  
1150  
1100  
1050  
1000  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VCC supply voltage [V]  
Fig.6 Switching Frequency(600kHz  
VCC supply voltage [V]  
Fig.7 Switching Frequency (1200kHz  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
9/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Reference Data  
(Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,  
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)  
EN  
EN  
5[V/div.]  
5[V/div.]  
VDD1  
VDD1  
1[V/div.]  
1[V/div.]  
I_Vcc  
I_Vcc  
100[mA/div.]  
100[mA/div.]  
1[ms/div.]  
1[ms/div.]  
Fig.8 VDD1Start-up Sequence  
Fig.9 VDD1 Off Sequence  
VDD1  
VDD1  
20[mV/div.]  
20[mV/div.]  
I_LOAD  
I_LOAD  
50[mA/div.]  
50[mA/div.]  
100[us/div.]  
100[us/div.]  
Fig.10 VDD1Load Transient  
(25mA 75mA,tr=4us)  
Fig.11 VDD1Load Transeint  
(75mA 25mA,tf=4us)  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
10/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Reference  
(Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,  
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)  
100  
80  
60  
40  
20  
0
3
2
1
0
-1  
-2  
-3  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
load [mA]  
load [mA]  
Fig.12 VDD1 Efficiency  
Fig.13 VDD1Load Regulation  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
11/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Reference Data  
(Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,  
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)  
EN  
5[V/div.]  
VDD2  
1[V/div.]  
I_Vcc  
100[mA/div.]  
]  
VDD2  
20[mV/div.]  
I_LOAD  
50[mA/div.]  
100[us/div.]  
100[us/div.]  
Fig.16 VDD2 Load Transient  
(50mA 250mA,tr=4us)  
Fig.17 VDD2 Load Transient  
(250mA 50mA,tf=4us)  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
12/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Reference Data  
(Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,  
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)  
100  
80  
60  
40  
20  
0
3
2
1
0
-1  
-2  
-3  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
load [mA]  
load [mA]  
Fig.18 VDD2 Efficiency  
Fig.19 VDD2 Load Regulation  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
13/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Reference Data  
(Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,  
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)  
VDD2  
1[V/div.]  
AVDD  
3[V/div.]  
I_Vcc  
500[mA/div.]  
2[ms/div.]  
2[ms/div.]  
Fig.20 AVDD Start-up Sequence  
Fig.21 AVDD Off Sequence  
AVDD  
100[mV/div.]  
I_LOAD  
50[mA/div.]  
100[us/div.]  
100[us/div.]  
Fig.22 AVDD Load Transient  
Fig.23 AVDD Load Transient  
(10mA 70mA,tr=4us)  
(70mA 10mA,tf=4us)  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
14/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Reference Data  
(Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,  
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)  
100  
80  
60  
40  
20  
0
3
2
1
0
-1  
-2  
-3  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
load [mA]  
load [mA]  
Fig.24 AVDD Efficiency  
Fig.25 AVDD Load Regulation  
16  
14  
12  
10  
8
6
110  
120  
130  
140  
Digital Codes  
Fig.26 AVDD Linearity  
150  
160  
170  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
15/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Reference Data  
(Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,  
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)  
VDD2  
VDD2  
1[V/div.]  
1[V/div.]  
AVDD  
5[V/div.]  
VGH  
AVDD  
5[V/div.]  
VGH  
5[V/div.]  
5[V/div.]  
I_Vcc  
I_Vcc  
500[mA/div.]  
500[mA/div.]  
2[ms/div.]  
2[ms/div.]  
Fig.27 VGH Start-up Sequence  
Fig.28 VGH Off Sequence  
3
2
27  
24  
21  
18  
15  
12  
1
0
-1  
-2  
-3  
0
2
4
6
8
10  
125  
135  
145  
155  
Digital Codes  
Fig.30 VGH Linearity  
165  
175  
185  
load [mA]  
Fig.29 VGH Load Regulation  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
16/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Reference Data  
(Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,  
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)  
VDD2  
1[V/div.]  
AVDD  
5[V/div.]  
VGL  
5[V/div.]  
I_Vcc  
500[mA/div.]  
2[ms/div.]  
2[ms/div.]  
Fig.31 VGL Start-up Sequence  
Fig.32 VGL Off Sequence  
3
2
-2  
-4  
1
0
-6  
-1  
-2  
-3  
-8  
-10  
0
2
4
6
8
10  
55  
65  
75  
Digital Codes  
Fig.34 VGL Linearity  
85  
95  
105  
load [mA]  
Fig.33 VGL Load Regulation  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
17/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Reference Data  
(Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,  
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)  
3
2
3
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
0
50  
100  
Sink Current [mA]  
Fig.35 HAVDD Sink Current  
150  
200  
250  
300  
0
50  
100  
Source Current [mA]  
Fig.36 HAVDD Source Current  
150  
200  
250  
300  
HAVDD  
HAVDD  
2[V/div.]  
2[V/div.]  
21.6 [V/us]  
18.0 [V/us]  
200[ns/div.]  
200[ns/div.]  
Fig.37 HAVDD Slew Rate Rise  
Fig.38 HAVDD Slew Rate Fall  
( )  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
18/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Reference Data  
(Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,  
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Digital Codes  
Fig.39 HAVDD INL  
Digital Codes  
Fig.40 HAVDD DNL  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
19/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Reference Data  
(Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,  
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)  
3
2
3
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Sink Current [mA]  
Fig.41 VCOMSink Current  
Source Current [mA]  
Fig.42 VCOMSource Current  
VCOM  
VCOM  
2[V/div.]  
2[V/div.]  
21.0 [V/us]  
17.0 [V/us]  
200[ns/div.]  
200[ns/div.]  
Fig.43 VCOMSlew Rate Rise  
Fig.44 VCOMSlew Rate Fall  
( )  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
20/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Reference Data  
(Unless otherwise specified, Ta=25, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,  
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Digital Codes  
Fig.45 VCOMINL  
Digital Codes  
Fig.46 VCOMDNL  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
21/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Timing Chart1  
Start-up Sequence (when operated by EN control)  
Fig.47 Start-Up Sequence Diagram (when operated by EN control)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
22/44  
Daattaasshheeeett  
BM81028AMWV  
Timing Chart1  
OFF Sequence (when operated by EN control)  
Fig.48 OFF Sequence Block (when operated by EN control)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
23/44  
Daattaasshheeeett  
BM81028AMWV  
Timing Chart2  
Start-up Sequence (when operated with EN= VCC condition)  
Fig.49 Start-Up Sequence Diagram (when operated with EN= VCC condition)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
24/44  
Daattaasshheeeett  
BM81028AMWV  
Timing Chart2  
OFF Sequence (when operated with EN= VCC condition)  
Fig.50 OFF Sequence Diagram (when operated with EN= VCC condition)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
25/44  
Daattaasshheeeett  
BM81028AMWV  
Application Example  
C4  
C3  
VCOM  
R6  
R4  
HAVDD  
C7  
DRN  
R3  
C1  
7
6
5
4
3
2
1
DRP  
D1  
SCL  
SDA  
EN  
C27  
C26  
CPP  
VGH  
C11  
C15  
VREG  
VGL  
VDD1  
L15  
C24  
C22  
15 16 17 18 19 20 21  
L19  
AVDD  
C20  
L17  
C16  
VDD2  
C17  
Fig.51 Application Example  
Parts  
Value  
name  
Parts  
Parts Number  
Company  
MURATA  
Value  
Company  
Parts Number  
name  
C1  
C3  
0.1 [µF]  
22[µF]  
GRM155R61H104KE14D  
EMK316ABJ226KD-T  
EMK316ABJ226KD-T  
LMK107BJ475KA-T  
GRM188B31C105KA92D  
JMK107BJ106MA-T  
LMK107BJ475KA-T  
JMK107BJ106MA-T  
TMK316ABJ106KD-T  
LMK107BJ475KA-T  
C24  
C26  
C27  
R3  
1[µF]  
1[µF]  
MURATA  
MURATA  
MURATA  
ROHM  
ROHM  
ROHM  
ROHM  
TOKO  
GRM188B31C105KA92D  
GRM219B31H105KA73  
GRM155R61H104KE14D  
MCR03EZPD  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
MURATA  
C4  
22[µF]  
0.1[µF]  
10[Ω]  
10[Ω]  
100[k]  
-
C7  
4.7[µF]  
1[µF]  
C11  
C15  
C16  
C17  
C20  
C22  
R4  
MCR03EZPD  
10[µF]  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
R6  
MCR03EZPD  
4.7[µF]  
10[µF]  
D1  
RB558W  
L15  
L17  
L19  
4.7[µH]  
4.7[µH]  
4.7[µH]  
1269AS-H-4R7M  
1269AS-H-4R7M  
1276AS-H-4R7M  
10[µF]×2  
4.7[µF]  
TOKO  
TOKO  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
26/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Selecting Application Components  
Selecting the Output LC Constant (Buck Converter : VDD1, VDD2)  
IL  
IL  
IOMAX+  
should not reach the rated value level.  
ILR  
2
I
OMAXMean current  
t
Fig.52 Inductor Current Waveform (Buck Converter : VDD)  
The output inductance (L) is decided by the rated current (ILR)and maximum input current (IOMAX)of the inductance.  
Adjust so that IOMAX + IL / 2 does not reach the rated current value.  
IL can be obtained by the following equation.  
1
L
VO  
VIN  
1
f
I  
=
× (VIN - VO) ×  
×
[A]  
L
where f is the switching frequency  
Set with sufficient margin because the inductance value may have a dispersion of ±30%.  
If the coil current exceeds the rated current (ILR), the IC may be damaged.  
The output capacitor (CO) smoothens the ripple voltage at the output. Select a capacitor that will regulate the output ripple voltage  
within the specifications.  
Output ripple voltage can be obtained by the following equation.  
I  
L
VO  
VIN  
1
f
VPP = I × R  
ESR  
×
×
L
2 Co  
However, since the aforementioned conditions are based on a lot of factors, verify the results using the actual product.  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
27/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Selecting the Output LC Constant (Boost Converter : AVDD)  
IL  
IL  
IOMAX+  
should not reach the rated value level.  
ILR  
2
I
OMAX mean current  
t
Fig.53 Inductor Current Waveform ( Boost Converter : AVDD )  
The output inductance (L) is decided by the rated current (ILR)and maximum input current (IINMAX)of the inductance.  
Adjust so that IINMAX + IL / 2 does not reach the rated current value.  
IL can be obtained by the following equation.  
1
VO VIN  
1
ΔI  
VIN  
[A]  
L
L
VO  
f
where f is the switching frequency  
Set with sufficient margin because the inductance value may have a dispersion of ±30%.  
If the coil current exceeds the rated current (ILR), the IC may be damaged.  
The output capacitor (CO) smoothens the ripple voltage at the output. Select a capacitor that will regulate the output ripple voltage  
within the specifications.  
Output ripple voltage can be obtained by the following equation.  
I  
1
VIN  
VO  
L
V  
PP  
= I  
× R  
ESR  
×
×
I
LMAX  
LMAX  
f × CO  
2   
However, since the aforementioned conditions are based on a lot of factors, verify the results using the actual product.  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
28/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Serial Transmission  
BD81028AMWV uses the I2C bus in communicating with host addresses.  
The device/slave address is always followed by the 1 byte register/select address as shown in the I2C bus format below.  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
Device address  
A4 A3 A2  
Register address  
R5 R4 R3 R2  
Data  
D4 D3  
Start  
R/W ACK  
ACK  
ACK STOP  
A6  
A5  
A1  
A0  
R7  
R6  
R1  
R0  
D7  
D6  
D5  
D2  
D1  
D0  
Start  
Device Address  
:
:
Start bit  
Consists of 8 bits in total (A6 to A0 and the R/W bit) (MSB fast).  
If the R/W bit is H, this means read mode.  
If the R/W bit is L, this means write mode.  
Acknowledge bit.  
ACK  
:
When sending and receiving data, there should be an acknowledge bit after each byte.  
If data is sent and received properly, ‘L’ is replied to the sender.  
If data is not received properly, ‘H’ is replied to the sender.  
1 byte select address.  
Data byte. Sending and Receiving data (MSB Fast)  
Stop bit  
Register Address  
Data  
STOP  
:
:
:
There are two writing modes from I2C bus to the registers, single mode and multi mode.  
In single mode, communication is sent to a single register.  
In multi mode, communication is sent to multiple registers by entering multiple data before the stop bit.  
Device address  
Slave address specific to the IC is 1000000 (A6 to A0).  
Register address  
R7 is for TEST MODE. Normally, this should be set to 0.  
R6 and R5 are don’t care bits.  
R4 to R0 are the register address bits.  
Command interface  
Transmission format for data sent and received to the EEPROM is shown below.  
Write operation  
PM I2C Write format (Register Address: 01h to 08h)  
Device address  
Register address  
01h 08h  
R/W ACK  
ACK  
0
ACK  
0
Start  
N-bytes Data  
STOP  
1
0
0
0
0
0
0
0
0
Write data in multi mode by entering data continuously after the register address.  
Data entry should be 8 bits.  
VCOM I2C Write format (Register Address: 09h)  
Device address  
Register address  
09h  
DATA  
D4 D3  
R/W ACK  
ACK  
0
ACK  
0
Start  
STOP  
1
0
0
0
0
0
0
0
0
D7  
D6  
D5  
D2  
D1  
D0  
Write data in single mode (VCOM), designate a register address of 09h.  
Read operation  
I2C Read format  
Device address  
Register address  
01h 09h  
Device address  
R/W ACK  
ACK  
0
R/W ACK  
ACK  
Repeated  
Start  
N-bytes  
Data  
Start  
STOP  
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
1
Read data in the PMIC register through the read command.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
29/44  
Daattaasshheeeett  
BM81028AMWV  
I2C Timing  
tR  
tHIGH  
tF  
80%  
20%  
SCL  
tLOW  
tPD  
tHD:STA  
tSU;DAT  
tHD;DAT  
80%  
20%  
SDA  
(IN)  
tBUF  
tDH  
80%  
20%  
SDA  
(OUT)  
80%  
SCL  
SDA  
tHD;STA  
tSU;STA  
tSU;STO  
80%  
20%  
tl  
S: START bit  
P: STOP bit  
S
P
Fig.54. I2C Timing  
Timing Specification  
NORMAL mode  
TYP  
FAST mode  
TYP  
PARAMETER  
SYMBOL  
Unit  
MIN  
MAX  
MIN  
MAX  
SCL frequency  
SCL”H” time  
fSCL  
tHIGH  
tLOW  
tR  
-
4.0  
4.7  
-
-
-
100  
-
-
0.6  
1.2  
-
-
-
400  
-
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
SCL”L” time  
-
-
-
-
Rising time  
-
1.0  
-
0.3  
Falling time  
tF  
-
-
0.3  
-
-
0.3  
Start bit holding time  
Start bit setup time  
SDA holding time  
SDA setup time  
Acknowledge delay time  
Acknowledge hold time  
Stop bit setup time  
BUS open time  
Noise spike width  
tHD  
4.0  
4.7  
200  
200  
-
-
-
0.6  
0.6  
100  
100  
-
-
-
STA  
tSU  
tHD  
tSU  
-
-
-
-
STA  
DAT  
-
-
-
-
-
-
-
-
-
-
DAT  
tPD  
tDH  
0.9  
0.9  
-
0.1  
-
-
-
-
-
-
0.1  
-
-
-
-
-
tSU  
4.7  
4.7  
-
0.6  
1.2  
-
STO  
tBUF  
-
-
tl  
0.1  
0.1  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
30/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Writing Data to the Register/EEPROM  
After power up and when EN is high, data can be written to the registers or the EEPROM.  
The logic of the register address R4 will determine where the data will be written.  
Check-sum is installed before writing data to prevent malfunctions caused by data error.  
The flowchart of the writing process to the register and EEPROM is shown below.  
Device Address  
1000 000x  
Write  
Read/  
Write?  
Read  
0000 xxxx  
0001 xxxx  
REG ADDRESS  
R4 is ?  
Register DATA  
OUTPUT  
01h~09h  
01h~08h  
09h  
11h~18h  
19h  
REG ADDRESS  
01h~08h/09h?  
REG ADDRESS  
11h~18h/19h?  
NG  
NG  
SHUTDOWN  
SHUTDOWN  
CHK_SUM  
CHK_SUM  
OK  
Write Register  
(09h)  
Write EEPROM  
(01h~08h)  
Write EEPROM  
(09h)  
Write Register  
(01h~08h)  
Writing Data to the Register  
Data is written to the registers when register address R4 is “0”.  
AVDD, VGH, VGL, HAVDD, and VCOM (register address: 01h to 04h) output voltage can be changed by writing data to the  
registers.  
Writing Data to the EEPROM  
Data is written to the EEPROM when register address R4 is “1”.  
Upon start-up and EN is high, data which is stored in the EEPROM is copied to the registers.  
Therefore, by writing to the EEPROM, the start-up settings will be changed.  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
31/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Automatic EEPROM Read Function at Start-up  
Upon BD81028AMWV start-up, a reset signal is generated and each register is initialized.  
After that, when EN is changed from low to high, data which is stored in the EEPROM is copied to the registers.  
Furthermore, the check-sum function is installed to prevent malfunctions caused by data error.  
The automatic EEPROM read function at start-up is further explained by the flow chart below.  
Check-Sum Data  
If data is written to the Register and EEPROM, it is necessary to set check-sum data to prevent malfunctions caused by  
data error. Check-sum data is the complement of the sum of all data. When check-sum data is added to the sum of all data,  
the result should be zero.  
Register  
Address  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
D7 D6 D5 D4 D3 D2 D1 D0  
Calculate the complement  
(bitreverse +1)  
0
0
0
1
0
0
0
1
1
1
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
1
1
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
SUM  
桁上  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
1
0
0
1
0
1
1
1
1
1
1
0
1
0
0
0
1
08h  
(CHECK SUM)  
1
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
To become "0000_0000" (bin) whenRegister01h08h is totaled,  
CHECK SUM DATA is determined.  
Cal TOTAL  
(All data total  
including  
CHECK SUM)  
Return to Normal Operation after Shutdown at Check-Sum Error  
A check-sum of zero indicates a data error and this causes the PMIC to latch in shutdown. There are two ways to reactivate the  
PMIC. First, write to the EEPROM the correct data while the power supply is turned on and EN=L; then toggle EN to H. Lastly,  
reset the power supply and enter the correct data while EN=H.  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
32/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
EEPROM Parameter Setting  
Register  
Bits  
Function  
Default  
9.8V  
Resolution  
0.1V  
Address  
01h  
02h  
8
8
AVDD Output voltage setting  
VGH Output voltage setting  
[8V to 14.5V]  
0.2V  
[13V to 26V]  
18V  
0.1V  
[-9.5V to -4.0]  
03h  
04h  
8
8
VGL Output voltage setting  
-6.0V  
4.23V  
HAVDD Output voltage setting  
12.5mV  
VDD1 Output voltage setting [3:0]  
VDD2 Output voltage setting [6:4]  
VDD startup order setting [7]  
1.8V  
1.2V  
0
0.05V [1.7 to 1.9, 2.4 to 2.6V]  
0.05V [1.1V to 1.3V]  
0VDD12, 1VDD21  
05h  
06h  
07h  
8
7
7
Discharge time setting [2:0]  
DELAY1 time setting [5:3]  
DC/DC UVLO detect/release voltage [7:6]  
0msec  
0msec  
2.5/2.7V  
1msec [0 to 5msec]  
1msec [0 to 5msec]  
0.2V step  
DELAY2 time setting [2:0]  
DELAY3 time setting [6:3]  
Frequency setting [7]  
30msec  
0msec  
1200kHz  
5msec [0 to 40msec]  
2msec [0 to 10msec]  
0600kHz , 11200kHz  
08h  
09h  
8
8
8 bit Check-sum  
42h  
VCOM Output voltage setting  
2.1225V  
12.5mV  
Register map  
Resister  
Address  
01h  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
AVDD [7:0]  
02h  
VGH [7:0]  
VGL [7:0]  
03h  
04h  
HAVDD [7:0]  
05h  
SEQ[0]  
UVLO[1:0]  
FREQ[0]  
VDD2 [2:0]  
VDD1 [3:0]  
DISCHG[2:0]  
DELAY2 [3:0]  
06h  
DELAY1[2:0]  
07h  
DELAY3 [2:0]  
08h  
CHECK SUM[7:0]  
VCOM [7:0]  
09h  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
33/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Command Table 1  
Register  
01h  
AVDD  
Voltage  
Setting  
[V]  
02h  
VGH  
Voltage  
Setting  
[V]  
03h  
VGL  
Voltage  
Setting  
[V]  
04h  
HAVDD  
Voltage  
Setting  
[V]  
05h  
VDD2  
Voltage  
Setting  
[V]  
06h  
DC/DC UVLO DELAY1  
07h  
09h  
VDD  
ON  
Sequence  
VDD1  
Voltage Detect/Release  
Setting  
[V]  
Discharge  
Time  
Setting  
Frequency DELAY3 DELAY2  
VCOM  
Voltage  
Setting  
DATA  
Time  
Setting  
Time  
Setting  
Time  
Setting  
[msec]  
0
Voltage  
[V]  
Setting  
DEC. HEX.  
[msec]  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[msec]  
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
[kHz]  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
[msec]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
[V]  
0
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.0  
-4.1  
-4.2  
-4.3  
-4.4  
-4.5  
0.6×AVDD  
VDD1→VDD2  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
2.5 / 2.7  
0.45×AVDD  
1
2
3
4
5
6
7
8
0.6×AVDD-0.0125 VDD1→VDD2  
0.6×AVDD-0.0250 VDD1→VDD2  
0.6×AVDD-0.0375 VDD1→VDD2  
0.6×AVDD-0.0500 VDD1→VDD2  
0.6×AVDD-0.0625 VDD1→VDD2  
0.6×AVDD-0.0750 VDD1→VDD2  
0.6×AVDD-0.0875 VDD1→VDD2  
0.6×AVDD-0.1000 VDD1→VDD2  
0.6×AVDD-0.1125 VDD1→VDD2  
0.6×AVDD-0.1250 VDD1→VDD2  
0.6×AVDD-0.1375 VDD1→VDD2  
0.6×AVDD-0.1500 VDD1→VDD2  
0.6×AVDD-0.1625 VDD1→VDD2  
0.6×AVDD-0.1750 VDD1→VDD2  
0.6×AVDD-0.1875 VDD1→VDD2  
0.6×AVDD-0.2000 VDD1→VDD2  
0.6×AVDD-0.2125 VDD1→VDD2  
0.6×AVDD-0.2250 VDD1→VDD2  
0.6×AVDD-0.2375 VDD1→VDD2  
0.6×AVDD-0.2500 VDD1→VDD2  
0.6×AVDD-0.2625 VDD1→VDD2  
0.6×AVDD-0.2750 VDD1→VDD2  
0.6×AVDD-0.2875 VDD1→VDD2  
0.6×AVDD-0.3000 VDD1→VDD2  
0.6×AVDD-0.3125 VDD1→VDD2  
0.6×AVDD-0.3250 VDD1→VDD2  
0.6×AVDD-0.3375 VDD1→VDD2  
0.6×AVDD-0.3500 VDD1→VDD2  
0.6×AVDD-0.3625 VDD1→VDD2  
0.6×AVDD-0.3750 VDD1→VDD2  
0.6×AVDD-0.3875 VDD1→VDD2  
0.6×AVDD-0.4000 VDD1→VDD2  
0.6×AVDD-0.4125 VDD1→VDD2  
0.6×AVDD-0.4250 VDD1→VDD2  
0.6×AVDD-0.4375 VDD1→VDD2  
0.6×AVDD-0.4500 VDD1→VDD2  
0.6×AVDD-0.4625 VDD1→VDD2  
0.6×AVDD-0.4750 VDD1→VDD2  
0.6×AVDD-0.4875 VDD1→VDD2  
0.6×AVDD-0.5000 VDD1→VDD2  
0.6×AVDD-0.5125 VDD1→VDD2  
0.6×AVDD-0.5250 VDD1→VDD2  
0.6×AVDD-0.5375 VDD1→VDD2  
0.6×AVDD-0.5500 VDD1→VDD2  
0.6×AVDD-0.5625 VDD1→VDD2  
0.6×AVDD-0.5750 VDD1→VDD2  
0.6×AVDD-0.5875 VDD1→VDD2  
0.6×AVDD-0.6000 VDD1→VDD2  
0.6×AVDD-0.6125 VDD1→VDD2  
0.6×AVDD-0.6250 VDD1→VDD2  
0.6×AVDD-0.6375 VDD1→VDD2  
0.6×AVDD-0.6500 VDD1→VDD2  
0.6×AVDD-0.6625 VDD1→VDD2  
0.6×AVDD-0.6750 VDD1→VDD2  
0.6×AVDD-0.6875 VDD1→VDD2  
0.6×AVDD-0.7000 VDD1→VDD2  
0.6×AVDD-0.7125 VDD1→VDD2  
0.6×AVDD-0.7250 VDD1→VDD2  
0.6×AVDD-0.7375 VDD1→VDD2  
0.6×AVDD-0.7500 VDD1→VDD2  
0.6×AVDD-0.7625 VDD1→VDD2  
0.6×AVDD-0.7750 VDD1→VDD2  
0.6×AVDD-0.7875 VDD1→VDD2  
5
0.45×AVDD-0.0125  
0.45×AVDD-0.0250  
0.45×AVDD-0.0375  
0.45×AVDD-0.0500  
0.45×AVDD-0.0625  
0.45×AVDD-0.0750  
0.45×AVDD-0.0875  
0.45×AVDD-0.1000  
0.45×AVDD-0.1125  
0.45×AVDD-0.1250  
0.45×AVDD-0.1375  
0.45×AVDD-0.1500  
0.45×AVDD-0.1625  
0.45×AVDD-0.1750  
0.45×AVDD-0.1875  
0.45×AVDD-0.2000  
0.45×AVDD-0.2125  
0.45×AVDD-0.2250  
0.45×AVDD-0.2375  
0.45×AVDD-0.2500  
0.45×AVDD-0.2625  
0.45×AVDD-0.2750  
0.45×AVDD-0.2875  
0.45×AVDD-0.3000  
0.45×AVDD-0.3125  
0.45×AVDD-0.3250  
0.45×AVDD-0.3375  
0.45×AVDD-0.3500  
0.45×AVDD-0.3625  
0.45×AVDD-0.3750  
0.45×AVDD-0.3875  
0.45×AVDD-0.4000  
0.45×AVDD-0.4125  
0.45×AVDD-0.4250  
0.45×AVDD-0.4375  
0.45×AVDD-0.4500  
0.45×AVDD-0.4625  
0.45×AVDD-0.4750  
0.45×AVDD-0.4875  
0.45×AVDD-0.5000  
0.45×AVDD-0.5125  
0.45×AVDD-0.5250  
0.45×AVDD-0.5375  
0.45×AVDD-0.5500  
0.45×AVDD-0.5625  
0.45×AVDD-0.5750  
0.45×AVDD-0.5875  
0.45×AVDD-0.6000  
0.45×AVDD-0.6125  
0.45×AVDD-0.6250  
0.45×AVDD-0.6375  
0.45×AVDD-0.6500  
0.45×AVDD-0.6625  
0.45×AVDD-0.6750  
0.45×AVDD-0.6875  
0.45×AVDD-0.7000  
0.45×AVDD-0.7125  
0.45×AVDD-0.7250  
0.45×AVDD-0.7375  
0.45×AVDD-0.7500  
0.45×AVDD-0.7625  
0.45×AVDD-0.7750  
0.45×AVDD-0.7875  
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
34/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Command Table 2  
Register  
01h  
AVDD  
Voltage  
Setting  
[V]  
02h  
VGH  
Voltage  
Setting  
[V]  
03h  
VGL  
Voltage  
Setting  
[V]  
04h  
HAVDD  
Voltage  
Setting  
[V]  
05h  
VDD2  
Voltage  
Setting  
[V]  
06h  
DC/DC UVLO DELAY1  
07h  
09h  
VDD  
ON  
Sequence  
VDD1  
Voltage Detect/Release  
Setting  
[V]  
Discharge  
Time  
Setting  
Frequency DELAY3 DELAY2  
VCOM  
Voltage  
Setting  
DATA  
Time  
Setting  
Time  
Setting  
Time  
Setting  
[msec]  
0
Voltage  
[V]  
Setting  
DEC. HEX.  
[msec]  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[msec]  
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
[kHz]  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
600  
[msec]  
8
[V]  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.5  
14.4  
14.3  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
13.1  
13.0  
12.9  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
26.0  
25.8  
-4.6  
-4.7  
-4.8  
-4.9  
-5.0  
-5.1  
-5.2  
-5.3  
-5.4  
-5.5  
-5.6  
-5.7  
-5.8  
-5.9  
-6.0  
-6.1  
-6.2  
-6.3  
-6.4  
-6.5  
-6.6  
-6.7  
-6.8  
-6.9  
-7.0  
-7.1  
-7.2  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
-7.8  
-7.9  
-8.0  
-8.1  
-8.2  
-8.3  
-8.4  
-8.5  
-8.6  
-8.7  
-8.8  
-8.9  
-9.0  
-9.1  
-9.2  
-9.3  
-9.4  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
0.6×AVDD-0.8000 VDD1→VDD2  
0.6×AVDD-0.8125 VDD1→VDD2  
0.6×AVDD-0.8250 VDD1→VDD2  
0.6×AVDD-0.8375 VDD1→VDD2  
0.6×AVDD-0.8500 VDD1→VDD2  
0.6×AVDD-0.8625 VDD1→VDD2  
0.6×AVDD-0.8750 VDD1→VDD2  
0.6×AVDD-0.8875 VDD1→VDD2  
0.6×AVDD-0.9000 VDD1→VDD2  
0.6×AVDD-0.9125 VDD1→VDD2  
0.6×AVDD-0.9250 VDD1→VDD2  
0.6×AVDD-0.9375 VDD1→VDD2  
0.6×AVDD-0.9500 VDD1→VDD2  
0.6×AVDD-0.9625 VDD1→VDD2  
0.6×AVDD-0.9750 VDD1→VDD2  
0.6×AVDD-0.9875 VDD1→VDD2  
0.6×AVDD-1.0000 VDD1→VDD2  
0.6×AVDD-1.0125 VDD1→VDD2  
0.6×AVDD-1.0250 VDD1→VDD2  
0.6×AVDD-1.0375 VDD1→VDD2  
0.6×AVDD-1.0500 VDD1→VDD2  
0.6×AVDD-1.0625 VDD1→VDD2  
0.6×AVDD-1.0750 VDD1→VDD2  
0.6×AVDD-1.0875 VDD1→VDD2  
0.6×AVDD-1.1000 VDD1→VDD2  
0.6×AVDD-1.1125 VDD1→VDD2  
0.6×AVDD-1.1250 VDD1→VDD2  
0.6×AVDD-1.1375 VDD1→VDD2  
0.6×AVDD-1.1500 VDD1→VDD2  
0.6×AVDD-1.1625 VDD1→VDD2  
0.6×AVDD-1.1750 VDD1→VDD2  
0.6×AVDD-1.1875 VDD1→VDD2  
0.6×AVDD-1.2000 VDD1→VDD2  
0.6×AVDD-1.2125 VDD1→VDD2  
0.6×AVDD-1.2250 VDD1→VDD2  
0.6×AVDD-1.2375 VDD1→VDD2  
0.6×AVDD-1.2500 VDD1→VDD2  
0.6×AVDD-1.2625 VDD1→VDD2  
0.6×AVDD-1.2750 VDD1→VDD2  
0.6×AVDD-1.2875 VDD1→VDD2  
0.6×AVDD-1.3000 VDD1→VDD2  
0.6×AVDD-1.3125 VDD1→VDD2  
0.6×AVDD-1.3250 VDD1→VDD2  
0.6×AVDD-1.3375 VDD1→VDD2  
0.6×AVDD-1.3500 VDD1→VDD2  
0.6×AVDD-1.3625 VDD1→VDD2  
0.6×AVDD-1.3750 VDD1→VDD2  
0.6×AVDD-1.3875 VDD1→VDD2  
0.6×AVDD-1.4000 VDD1→VDD2  
0.6×AVDD-1.4125 VDD1→VDD2  
0.6×AVDD-1.4250 VDD1→VDD2  
0.6×AVDD-1.4375 VDD1→VDD2  
0.6×AVDD-1.4500 VDD1→VDD2  
0.6×AVDD-1.4625 VDD1→VDD2  
0.6×AVDD-1.4750 VDD1→VDD2  
0.6×AVDD-1.4875 VDD1→VDD2  
0.6×AVDD-1.5000 VDD1→VDD2  
0.6×AVDD-1.5125 VDD1→VDD2  
0.6×AVDD-1.5250 VDD1→VDD2  
0.6×AVDD-1.5375 VDD1→VDD2  
0.6×AVDD-1.5500 VDD1→VDD2  
0.6×AVDD-1.5625 VDD1→VDD2  
0.6×AVDD-1.5750 VDD1→VDD2  
0.6×AVDD-1.5875 VDD1→VDD2  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
2.7 / 2.9  
0.45×AVDD-0.8000  
0.45×AVDD-0.8125  
0.45×AVDD-0.8250  
0.45×AVDD-0.8375  
0.45×AVDD-0.8500  
0.45×AVDD-0.8625  
0.45×AVDD-0.8750  
0.45×AVDD-0.8875  
0.45×AVDD-0.9000  
0.45×AVDD-0.9125  
0.45×AVDD-0.9250  
0.45×AVDD-0.9375  
0.45×AVDD-0.9500  
0.45×AVDD-0.9625  
0.45×AVDD-0.9750  
0.45×AVDD-0.9875  
0.45×AVDD-1.0000  
0.45×AVDD-1.0125  
0.45×AVDD-1.0250  
0.45×AVDD-1.0375  
0.45×AVDD-1.0500  
0.45×AVDD-1.0625  
0.45×AVDD-1.0750  
0.45×AVDD-1.0875  
0.45×AVDD-1.1000  
0.45×AVDD-1.1125  
0.45×AVDD-1.1250  
0.45×AVDD-1.1375  
0.45×AVDD-1.1500  
0.45×AVDD-1.1625  
0.45×AVDD-1.1750  
0.45×AVDD-1.1875  
0.45×AVDD-1.2000  
0.45×AVDD-1.2125  
0.45×AVDD-1.2250  
0.45×AVDD-1.2375  
0.45×AVDD-1.2500  
0.45×AVDD-1.2625  
0.45×AVDD-1.2750  
0.45×AVDD-1.2875  
0.45×AVDD-1.3000  
0.45×AVDD-1.3125  
0.45×AVDD-1.3250  
0.45×AVDD-1.3375  
0.45×AVDD-1.3500  
0.45×AVDD-1.3625  
0.45×AVDD-1.3750  
0.45×AVDD-1.3875  
0.45×AVDD-1.4000  
0.45×AVDD-1.4125  
0.45×AVDD-1.4250  
0.45×AVDD-1.4375  
0.45×AVDD-1.4500  
0.45×AVDD-1.4625  
0.45×AVDD-1.4750  
0.45×AVDD-1.4875  
0.45×AVDD-1.5000  
0.45×AVDD-1.5125  
0.45×AVDD-1.5250  
0.45×AVDD-1.5375  
0.45×AVDD-1.5500  
0.45×AVDD-1.5625  
0.45×AVDD-1.5750  
0.45×AVDD-1.5875  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
106 6A  
107 6B  
108 6C  
109 6D  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
122 7A  
123 7B  
124 7C  
125 7D  
126  
127  
7E  
7F  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
35/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Command Table 3  
Register  
01h  
AVDD  
Voltage  
Setting  
[V]  
02h  
VGH  
Voltage  
Setting  
[V]  
03h  
VGL  
Voltage  
Setting  
[V]  
04h  
HAVDD  
Voltage  
Setting  
[V]  
05h  
VDD2  
Voltage  
Setting  
[V]  
06h  
DC/DC UVLO DELAY1  
07h  
09h  
VDD  
ON  
Sequence  
VDD1  
Voltage Detect/Release  
Setting  
[V]  
Discharge  
Time  
Setting  
Frequency DELAY3 DELAY2  
VCOM  
Voltage  
Setting  
DATA  
Time  
Setting  
Time  
Setting  
Time  
Setting  
[msec]  
0
Voltage  
[V]  
Setting  
DEC. HEX.  
[msec]  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[msec]  
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
[kHz]  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
[msec]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
[V]  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
12.8  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
12.0  
11.9  
11.8  
11.7  
11.6  
11.5  
11.4  
11.3  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10.0  
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
9.2  
9.1  
9.0  
8.9  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
25.6  
25.4  
25.2  
25.0  
24.8  
24.6  
24.4  
24.2  
24.0  
23.8  
23.6  
23.4  
23.2  
23.0  
22.8  
22.6  
22.4  
22.2  
22.0  
21.8  
21.6  
21.4  
21.2  
21.0  
20.8  
20.6  
20.4  
20.2  
20.0  
19.8  
19.6  
19.4  
19.2  
19.0  
18.8  
18.6  
18.4  
18.2  
18.0  
17.8  
17.6  
17.4  
17.2  
17.0  
16.8  
16.6  
16.4  
16.2  
16.0  
15.8  
15.6  
15.4  
15.2  
15.0  
14.8  
14.6  
14.4  
14.2  
14.0  
13.8  
13.6  
13.4  
13.2  
13.0  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
0.6×AVDD-1.6000 VDD2→VDD1  
0.6×AVDD-1.6125 VDD2→VDD1  
0.6×AVDD-1.6250 VDD2→VDD1  
0.6×AVDD-1.6375 VDD2→VDD1  
0.6×AVDD-1.6500 VDD2→VDD1  
0.6×AVDD-1.6625 VDD2→VDD1  
0.6×AVDD-1.6750 VDD2→VDD1  
0.6×AVDD-1.6875 VDD2→VDD1  
0.6×AVDD-1.7000 VDD2→VDD1  
0.6×AVDD-1.7125 VDD2→VDD1  
0.6×AVDD-1.7250 VDD2→VDD1  
0.6×AVDD-1.7375 VDD2→VDD1  
0.6×AVDD-1.7500 VDD2→VDD1  
0.6×AVDD-1.7625 VDD2→VDD1  
0.6×AVDD-1.7750 VDD2→VDD1  
0.6×AVDD-1.7875 VDD2→VDD1  
0.6×AVDD-1.8000 VDD2→VDD1  
0.6×AVDD-1.8125 VDD2→VDD1  
0.6×AVDD-1.8250 VDD2→VDD1  
0.6×AVDD-1.8375 VDD2→VDD1  
0.6×AVDD-1.8500 VDD2→VDD1  
0.6×AVDD-1.8625 VDD2→VDD1  
0.6×AVDD-1.8750 VDD2→VDD1  
0.6×AVDD-1.8875 VDD2→VDD1  
0.6×AVDD-1.9000 VDD2→VDD1  
0.6×AVDD-1.9125 VDD2→VDD1  
0.6×AVDD-1.9250 VDD2→VDD1  
0.6×AVDD-1.9375 VDD2→VDD1  
0.6×AVDD-1.9500 VDD2→VDD1  
0.6×AVDD-1.9625 VDD2→VDD1  
0.6×AVDD-1.9750 VDD2→VDD1  
0.6×AVDD-1.9875 VDD2→VDD1  
0.6×AVDD-2.0000 VDD2→VDD1  
0.6×AVDD-2.0125 VDD2→VDD1  
0.6×AVDD-2.0250 VDD2→VDD1  
0.6×AVDD-2.0375 VDD2→VDD1  
0.6×AVDD-2.0500 VDD2→VDD1  
0.6×AVDD-2.0625 VDD2→VDD1  
0.6×AVDD-2.0750 VDD2→VDD1  
0.6×AVDD-2.0875 VDD2→VDD1  
0.6×AVDD-2.1000 VDD2→VDD1  
0.6×AVDD-2.1125 VDD2→VDD1  
0.6×AVDD-2.1250 VDD2→VDD1  
0.6×AVDD-2.1375 VDD2→VDD1  
0.6×AVDD-2.1500 VDD2→VDD1  
0.6×AVDD-2.1625 VDD2→VDD1  
0.6×AVDD-2.1750 VDD2→VDD1  
0.6×AVDD-2.1875 VDD2→VDD1  
0.6×AVDD-2.2000 VDD2→VDD1  
0.6×AVDD-2.2125 VDD2→VDD1  
0.6×AVDD-2.2250 VDD2→VDD1  
0.6×AVDD-2.2375 VDD2→VDD1  
0.6×AVDD-2.2500 VDD2→VDD1  
0.6×AVDD-2.2625 VDD2→VDD1  
0.6×AVDD-2.2750 VDD2→VDD1  
0.6×AVDD-2.2875 VDD2→VDD1  
0.6×AVDD-2.3000 VDD2→VDD1  
0.6×AVDD-2.3125 VDD2→VDD1  
0.6×AVDD-2.3250 VDD2→VDD1  
0.6×AVDD-2.3375 VDD2→VDD1  
0.6×AVDD-2.3500 VDD2→VDD1  
0.6×AVDD-2.3625 VDD2→VDD1  
0.6×AVDD-2.3750 VDD2→VDD1  
0.6×AVDD-2.3875 VDD2→VDD1  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.15  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.20  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
2.9 / 3.1  
0.45×AVDD-1.6000  
0.45×AVDD-1.6125  
0.45×AVDD-1.6250  
0.45×AVDD-1.6375  
0.45×AVDD-1.6500  
0.45×AVDD-1.6625  
0.45×AVDD-1.6750  
0.45×AVDD-1.6875  
0.45×AVDD-1.7000  
0.45×AVDD-1.7125  
0.45×AVDD-1.7250  
0.45×AVDD-1.7375  
0.45×AVDD-1.7500  
0.45×AVDD-1.7625  
0.45×AVDD-1.7750  
0.45×AVDD-1.7875  
0.45×AVDD-1.8000  
0.45×AVDD-1.8125  
0.45×AVDD-1.8250  
0.45×AVDD-1.8375  
0.45×AVDD-1.8500  
0.45×AVDD-1.8625  
0.45×AVDD-1.8750  
0.45×AVDD-1.8875  
0.45×AVDD-1.9000  
0.45×AVDD-1.9125  
0.45×AVDD-1.9250  
0.45×AVDD-1.9375  
0.45×AVDD-1.9500  
0.45×AVDD-1.9625  
0.45×AVDD-1.9750  
0.45×AVDD-1.9875  
0.45×AVDD-2.0000  
0.45×AVDD-2.0125  
0.45×AVDD-2.0250  
0.45×AVDD-2.0375  
0.45×AVDD-2.0500  
0.45×AVDD-2.0625  
0.45×AVDD-2.0750  
0.45×AVDD-2.0875  
0.45×AVDD-2.1000  
0.45×AVDD-2.1125  
0.45×AVDD-2.1250  
0.45×AVDD-2.1375  
0.45×AVDD-2.1500  
0.45×AVDD-2.1625  
0.45×AVDD-2.1750  
0.45×AVDD-2.1875  
0.45×AVDD-2.2000  
0.45×AVDD-2.2125  
0.45×AVDD-2.2250  
0.45×AVDD-2.2375  
0.45×AVDD-2.2500  
0.45×AVDD-2.2625  
0.45×AVDD-2.2750  
0.45×AVDD-2.2875  
0.45×AVDD-2.3000  
0.45×AVDD-2.3125  
0.45×AVDD-2.3250  
0.45×AVDD-2.3375  
0.45×AVDD-2.3500  
0.45×AVDD-2.3625  
0.45×AVDD-2.3750  
0.45×AVDD-2.3875  
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
138 8A  
139 8B  
140 8C  
141 8D  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
154 9A  
155 9B  
156 9C  
157 9D  
158  
159  
9E  
9F  
160 A0  
161 A1  
162 A2  
163 A3  
164 A4  
165 A5  
166 A6  
167 A7  
168 A8  
169 A9  
170 AA  
171 AB  
172 AC  
173 AD  
174 AE  
175 AF  
176 B0  
177 B1  
178 B2  
179 B3  
180 B4  
181 B5  
182 B6  
183 B7  
184 B8  
185 B9  
186 BA  
187 BB  
188 BC  
189 BD  
190 BE  
191 BF  
8.2  
8.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
36/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Command Table 4  
Register  
01h  
AVDD  
Voltage  
Setting  
[V]  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
02h  
VGH  
Voltage  
Setting  
[V]  
03h  
VGL  
Voltage  
Setting  
[V]  
04h  
HAVDD  
Voltage  
Setting  
[V]  
05h  
VDD2  
Voltage  
Setting  
[V]  
06h  
DC/DC UVLO DELAY1  
07h  
09h  
VDD  
ON  
Sequence  
VDD1  
Voltage Detect/Release  
Setting  
[V]  
Discharge  
Time  
Setting  
Frequency DELAY3 DELAY2  
VCOM  
Voltage  
Setting  
DATA  
Time  
Setting  
Time  
Setting  
Time  
Setting  
[msec]  
0
Voltage  
[V]  
Setting  
DEC. HEX.  
192 C0  
193 C1  
194 C2  
195 C3  
196 C4  
197 C5  
198 C6  
199 C7  
200 C8  
201 C9  
202 CA  
203 CB  
204 CC  
205 CD  
206 CE  
207 CF  
208 D0  
209 D1  
210 D2  
211 D3  
212 D4  
213 D5  
214 D6  
215 D7  
216 D8  
217 D9  
218 DA  
219 DB  
220 DC  
221 DD  
222 DE  
223 DF  
[msec]  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[msec]  
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
[kHz]  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
1200  
[msec]  
8
[V]  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
13.0  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
-9.5  
0.6×AVDD-2.4000 VDD2→VDD1  
0.6×AVDD-2.4125 VDD2→VDD1  
0.6×AVDD-2.4250 VDD2→VDD1  
0.6×AVDD-2.4375 VDD2→VDD1  
0.6×AVDD-2.4500 VDD2→VDD1  
0.6×AVDD-2.4625 VDD2→VDD1  
0.6×AVDD-2.4750 VDD2→VDD1  
0.6×AVDD-2.4875 VDD2→VDD1  
0.6×AVDD-2.5000 VDD2→VDD1  
0.6×AVDD-2.5125 VDD2→VDD1  
0.6×AVDD-2.5250 VDD2→VDD1  
0.6×AVDD-2.5375 VDD2→VDD1  
0.6×AVDD-2.5500 VDD2→VDD1  
0.6×AVDD-2.5625 VDD2→VDD1  
0.6×AVDD-2.5750 VDD2→VDD1  
0.6×AVDD-2.5875 VDD2→VDD1  
0.6×AVDD-2.6000 VDD2→VDD1  
0.6×AVDD-2.6125 VDD2→VDD1  
0.6×AVDD-2.6250 VDD2→VDD1  
0.6×AVDD-2.6375 VDD2→VDD1  
0.6×AVDD-2.6500 VDD2→VDD1  
0.6×AVDD-2.6625 VDD2→VDD1  
0.6×AVDD-2.6750 VDD2→VDD1  
0.6×AVDD-2.6875 VDD2→VDD1  
0.6×AVDD-2.7000 VDD2→VDD1  
0.6×AVDD-2.7125 VDD2→VDD1  
0.6×AVDD-2.7250 VDD2→VDD1  
0.6×AVDD-2.7375 VDD2→VDD1  
0.6×AVDD-2.7500 VDD2→VDD1  
0.6×AVDD-2.7625 VDD2→VDD1  
0.6×AVDD-2.7750 VDD2→VDD1  
0.6×AVDD-2.7875 VDD2→VDD1  
0.6×AVDD-2.8000 VDD2→VDD1  
0.6×AVDD-2.8125 VDD2→VDD1  
0.6×AVDD-2.8250 VDD2→VDD1  
0.6×AVDD-2.8375 VDD2→VDD1  
0.6×AVDD-2.8500 VDD2→VDD1  
0.6×AVDD-2.8625 VDD2→VDD1  
0.6×AVDD-2.8750 VDD2→VDD1  
0.6×AVDD-2.8875 VDD2→VDD1  
0.6×AVDD-2.9000 VDD2→VDD1  
0.6×AVDD-2.9125 VDD2→VDD1  
0.6×AVDD-2.9250 VDD2→VDD1  
0.6×AVDD-2.9375 VDD2→VDD1  
0.6×AVDD-2.9500 VDD2→VDD1  
0.6×AVDD-2.9625 VDD2→VDD1  
0.6×AVDD-2.9750 VDD2→VDD1  
0.6×AVDD-2.9875 VDD2→VDD1  
0.6×AVDD-3.0000 VDD2→VDD1  
0.6×AVDD-3.0125 VDD2→VDD1  
0.6×AVDD-3.0250 VDD2→VDD1  
0.6×AVDD-3.0375 VDD2→VDD1  
0.6×AVDD-3.0500 VDD2→VDD1  
0.6×AVDD-3.0625 VDD2→VDD1  
0.6×AVDD-3.0750 VDD2→VDD1  
0.6×AVDD-3.0875 VDD2→VDD1  
0.6×AVDD-3.1000 VDD2→VDD1  
0.6×AVDD-3.1125 VDD2→VDD1  
0.6×AVDD-3.1250 VDD2→VDD1  
0.6×AVDD-3.1375 VDD2→VDD1  
0.6×AVDD-3.1500 VDD2→VDD1  
0.6×AVDD-3.1625 VDD2→VDD1  
0.6×AVDD-3.1750 VDD2→VDD1  
0.6×AVDD-3.1875 VDD2→VDD1  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.30  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
1.70  
1.75  
1.80  
1.85  
1.90  
2.40  
2.45  
2.50  
2.55  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
2.60  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
3.1 / 3.3  
0.45×AVDD-2.4000  
0.45×AVDD-2.4125  
0.45×AVDD-2.4250  
0.45×AVDD-2.4375  
0.45×AVDD-2.4500  
0.45×AVDD-2.4625  
0.45×AVDD-2.4750  
0.45×AVDD-2.4875  
0.45×AVDD-2.5000  
0.45×AVDD-2.5125  
0.45×AVDD-2.5250  
0.45×AVDD-2.5375  
0.45×AVDD-2.5500  
0.45×AVDD-2.5625  
0.45×AVDD-2.5750  
0.45×AVDD-2.5875  
0.45×AVDD-2.6000  
0.45×AVDD-2.6125  
0.45×AVDD-2.6250  
0.45×AVDD-2.6375  
0.45×AVDD-2.6500  
0.45×AVDD-2.6625  
0.45×AVDD-2.6750  
0.45×AVDD-2.6875  
0.45×AVDD-2.7000  
0.45×AVDD-2.7125  
0.45×AVDD-2.7250  
0.45×AVDD-2.7375  
0.45×AVDD-2.7500  
0.45×AVDD-2.7625  
0.45×AVDD-2.7750  
0.45×AVDD-2.7875  
0.45×AVDD-2.8000  
0.45×AVDD-2.8125  
0.45×AVDD-2.8250  
0.45×AVDD-2.8375  
0.45×AVDD-2.8500  
0.45×AVDD-2.8625  
0.45×AVDD-2.8750  
0.45×AVDD-2.8875  
0.45×AVDD-2.9000  
0.45×AVDD-2.9125  
0.45×AVDD-2.9250  
0.45×AVDD-2.9375  
0.45×AVDD-2.9500  
0.45×AVDD-2.9625  
0.45×AVDD-2.9750  
0.45×AVDD-2.9875  
0.45×AVDD-3.0000  
0.45×AVDD-3.0125  
0.45×AVDD-3.0250  
0.45×AVDD-3.0375  
0.45×AVDD-3.0500  
0.45×AVDD-3.0625  
0.45×AVDD-3.0750  
0.45×AVDD-3.0875  
0.45×AVDD-3.1000  
0.45×AVDD-3.1125  
0.45×AVDD-3.1250  
0.45×AVDD-3.1375  
0.45×AVDD-3.1500  
0.45×AVDD-3.1625  
0.45×AVDD-3.1750  
0.45×AVDD-3.1875  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
0
0
0
0
0
0
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
234 EA  
235 EB  
236 EC  
237 ED  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
250 FA  
251 FB  
252 FC  
253 FD  
254  
255  
FE  
FF  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
37/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Protection functions  
Over-Voltage Protection  
AVDD  
16V  
Threshold (Typ)  
When OVP is detected, switching turns OFF to control the rising output voltage.  
When the output voltage decreases to a lower value, the switching will turn back ON.  
Operation  
Short Circuit Protection  
VDD1  
VDD2  
AVDD  
VGH  
VGL  
VGL×0.8  
Threshold (Typ)  
VDD1×0.8  
VDD2×0.8  
AVDD×0.8  
VGH×0.8  
When a channel detects SCP, a timer is activated.  
Operation  
10msec after that, all channels will be latched to shutdown state.  
To return to normal operation, reset the power supply.  
Over-Current Protect  
VDD1  
1.0A  
VDD2  
1.0A  
AVDD  
1.5A  
Threshold (Min)  
Operation  
When OCP is detected, switching turns OFF to limit the FET from generating current.  
When the FET current decreases to a lower value, the switching will turn back ON.  
Thermal Shutdown  
VDD1  
VDD2  
AVDD  
HAVDD  
VCOM  
VGH  
VGL  
VGL  
Threshold (Typ)  
Operation  
175℃  
When device temperature goes above 175(Typ), all channels are shut down.  
VCC UVLO  
VDD1  
VDD2  
AVDD  
HAVDD  
2.4V  
VCOM  
VGH  
Falling (Typ)  
Rising (Typ)  
2.1V  
Circuit malfunction is prevented by making sure the IC is turned off when VCC is below the  
UVLO threshold. There is a hysteresis between the rising and falling threshold to avoid triggering  
UVLO by power supply noise.  
Operation  
DC/DC converter UVLO  
VDD1  
VDD2  
AVDD  
HAVDD  
VCOM  
VGH  
VGL  
Falling (Typ)  
Rising (Typ)  
2.5 / 2.7 / 2.9 / 3.1V  
2.7 / 2.9 / 3.1 / 3.3 V  
2.8 / 3.0 / 3.2 / 3.4 V  
Watch start (Typ)  
DC/DC converter output error is prevented by making sure all channels are turned off when a  
DC/DC converter output is below the UVLO threshold.  
Operation  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
38/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
FAULT Output  
The FAULT output indicates the status of the protection circuits of this IC.  
Because FAULT is an open-drain output, place a pull-up resistor externally.  
When the FAULT output will not be used, connect to GND.  
10kto 220kΩ  
FAULT  
Fig. 55 FAULT Output  
FAULT=H  
During stable operation when none of the protection circuits are in effect.  
This is due to the external pull-up resistance.  
FAULT=L  
When any of the protection circuits (UVLO, OCP, OVP, TSD, and SCP) are triggered.  
This indicates a circuit error.  
The recommended external pull-up resistance for the FAULT output is 10kto 220k. An external resistance of under  
10kcan generate an offset voltage during FAULT=L caused by the voltage drop across the internal on resistance. On the  
other hand, an external resistance of more than 220kcan interfere with the output during FAULT=H because of leak  
current.  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
39/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
I/O Equivalent Circuits  
1.DRN, 28. DRP  
2.AVDDP  
3.HAVDD, 4.VCOM  
AVDDP  
6.FAULT  
7.VCC  
8.SCL  
VCC  
9.SDA  
10.EN  
11.VREG  
12.VDD2, 13.VDD1  
15.SWB1, 17.SWB2  
16.PVCC1, 22.PVCC2  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
40/44  
Daattaasshheeeett  
BM81028AMWV  
19.SW  
20.AVDD  
21.AVDD_S  
AVDD  
AVDD  
23.VLSO  
24.VGL  
26.VGH, 27CPP  
PVCC2  
VREG  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
41/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Operational Notes  
1) Absolute maximum ratings  
Operating the IC over the absolute maximum ratings may damage the IC. In addition, it is impossible to predict all  
destructive situations such as short-circuit modes, open circuit modes, etc. Therefore, it is important to consider circuit  
protection measures, like adding a fuse, in case the IC is operated in a special mode exceeding the absolute maximum  
ratings.  
2) Ground potential  
The voltage of the ground pin must be the lowest voltage of all pins of the IC at all operating conditions. Ensure that no pins  
are at a voltage below the ground pin at any time, even during transient condition.  
3) Thermal consideration  
Use a thermal design that allows for a sufficient margin by taking into account the permissible power dissipation (Pd) in  
actual operating conditions.  
4) Short between pins and mounting errors  
Be careful when mounting the IC on printed circuit boards. The IC may be damaged if it is mounted in a wrong orientation  
or if pins are shorted together. Short circuit may be caused by conductive particles caught between the pins.  
5) Operation under strong electromagnetic field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
6) Testing on application boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the  
IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be  
turned off completely before connecting or removing it from the test setup during the inspection process. To prevent  
damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.  
7) Regarding input pins of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated.  
P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or  
transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
C
E
Pin A  
B
C
E
N
P+  
P+  
P+  
N
N
N
P+  
P
Parasitic  
element  
N
P
N
P substrate  
P substrate  
Parasitic  
element  
GND  
GND  
GND  
GND  
Parasitic element  
Parasitic element  
Other adjacent elements  
Example of a Simple Monolithic IC Structure  
8) Over-current protection circuit (OCP)  
The IC incorporates an over-current protection circuit that operates in accordance with the rated output capacity. This circuit  
protects the IC from damage when the load becomes shorted. It is also designed to limit the output current (without  
latching) in the event of a large transient current flow, such as from a large capacitor or other component connected to the  
output pin. This protection circuit is effective in preventing damage to the IC in cases of sudden and unexpected current  
surges. The IC should not be used in applications where the over current protection circuit will be activated continuously.  
9) Thermal shutdown circuit (TSD)  
The IC incorporates a built-in thermal shutdown circuit, which is designed to turn off the IC when the internal temperature of  
the IC reaches a specified value. It is not designed to protect the IC from damage or guarantee its operation. Do not  
continue to operate the IC after this function is activated. Do not use the IC in conditions where this function will always be  
activated.  
10) DC/DC switching line wiring pattern  
DC/DC converter switching line (wiring from the switching pin to inductor, Nch MOS) must be as short and thick as possible  
to reduce line impedance. If the wiring is long, ringing caused by switching would increase and this may exceed the  
absolute maximum voltage ratings. If the parts are located far apart, consider inserting a snubber circuit.  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
42/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
Ordering Information  
B M 8  
1
0
2
8 A M W V  
ZE2  
Part Number  
Package  
MWV: UQFN28V4040A  
Packaging and forming specification  
ZE2: Embossed tape and reel  
Physical Dimension Tape and Reel Information  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2000pcs  
Quantity  
ZE2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
Marking Diagram (TOP VIEW)  
UQFN28V4040A (TOP VIEW)  
Part Number Marking  
8 1 0 2 8  
A
LOT Number  
1PIN MARK  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
43/44  
TSZ2211115001  
Daattaasshheeeett  
BM81028AMWV  
MODIFICATION RECORD  
Rev.001  
Rev.002  
-
Original  
P.1  
Change input voltage range, Add Input tolerant  
Change Recommended Operating Ratings  
(Power Supply Voltage, SWB1,SWB2 Current, SW Current )  
P.5  
Change package name  
P.1, P.43  
P.26  
Rev.003  
Clerical error correction (D1)  
www.rohm.com  
TSZ02201-0313AAF00430-1-2  
12.May.2015 Rev.003  
© 2013 ROHM Co., Ltd. All rights reserved.  
44/44  
TSZ2211115001  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
BM81028AMWV - Web Page  
Distribution Inventory  
Part Number  
Package  
Unit Quantity  
BM81028AMWV  
UQFN28V4040P  
2500  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
2500  
Taping  
inquiry  
Yes  

相关型号:

BM81028AMWV-ZE2

Multi-Channel System Power Supply IC
ROHM

BM81110MUW

BM81110MUW是面向液晶电视的TFT-LCD面板用系统电源。在面板驱动电源(SOURCE用电压、LOGIC用电压)之外,还内置了正/负电荷泵控制器及Gate Pulse Modulation功能。还有保持各种设定值的EEPROM,可自由设定输出电压及SOFT START时间等。
ROHM

BM81110MUW-ZE2

Power Supply Support Circuit,
ROHM

BM81810MUF-M

BM81810MUF-M is a power management IC for TFT-LCD panels which are used in car navigation, in-vehicle center panel, and instrument cluster. This IC incorporates VCOM amplifier, Gate Pulse Modulation (GPM) in addition to the power supply for panel driver (SOURCE, GATE, and LOGIC power supplies). Moreover, this IC has a built-in EEPROM for sequence and output voltage setting retention.
ROHM

BM81810MUV-M

Automotive Panel Power Management IC
ROHM

BM81810MUV-ME2

Automotive Panel Power Management IC
ROHM

BM8290

9.25】8.05mm Max.(L】W),8.85mm Max. Height.
SUMIDA

BM831

0.7~1.4GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP
BEREX

BM831_18

0.7~1.4GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP
BEREX

BM851

1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP
BEREX

BM851_18

1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP
BEREX

BM9164

1A BiCMOS LDO
BOOKLY