BM60055FV-CE2 [ROHM]

1ch Gate Driver Providing Galvanic Isolation 2500Vrms Isolation Voltage;
BM60055FV-CE2
型号: BM60055FV-CE2
厂家: ROHM    ROHM
描述:

1ch Gate Driver Providing Galvanic Isolation 2500Vrms Isolation Voltage

文件: 总41页 (文件大小:2812K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
1ch Gate Driver Providing Galvanic Isolation  
2500Vrms Isolation Voltage  
BM60055FV-C  
General Description  
Key Specifications  
The BM60055FV-C is a gate driver with an isolation  
voltage of 2500Vrms, I/O delay time of 250ns, minimum  
input pulse width of 170ns. It incorporates the fault signal  
output function (FLT_UVLO, FLT_SC, FLT_OT), under  
voltage lockout (UVLO) function, short circuit protection  
(SCP) function, over temperature protection (OT)  
function, over current protection (OC) function, Soft turn  
off function, 2 level turn off function, active miller  
clamping function, switching controller function and  
output state feedback function.  
Isolation Voltage:  
2500 [Vrms] (Max)  
24 [V] (Max)  
Maximum Gate Drive Voltage:  
I/O Delay Time:  
Minimum Input Pulse Width:  
250 [ns] (Max)  
170 [ns] (Max)  
Package  
W(Typ) x D(Typ) x H(Max)  
9.2mm x 10.4mm x 2.4mm  
SSOP-B28W  
Features  
Fault Signal Output Function  
Under Voltage Lockout Function  
Short Circuit Protection Function  
Over Current Protection Function  
Over Temperature Protection  
Temperature Compensation of OC  
Soft Turn Off Function of SCP  
2 Level Turn Off Function  
Active Miller Clamping  
Switching Controller  
Output State Feedback Function  
AEC-Q100 Qualified (Note 1)  
(Note 1:Grade1)  
Applications  
Automotive isolated IGBT/MOSFET inverter  
gate drive.  
Automotive DC-DC converter.  
Industrial inverters system.  
UPS system.  
Typical Application Circuit  
+
+
OSC  
-
-
GND1  
FLT_UVLO  
INB  
GND2  
OUT2  
FLT  
TIMER  
RESET  
OSC  
OUT1  
S
R
PRE  
DRIVER  
VCC2  
Q
OSFB  
ECU  
INA  
OSFB  
VCC2  
PROOUT  
TC  
LOGIC  
CURRENT  
SOURCE  
LOGIC  
FLT_OT  
FLT_SC  
FB  
+
-
TO  
Temp  
Compensation  
2 level Turn  
off Contol  
-
TCOMP  
RTOFF  
LVOFF  
-
TIMER  
TIMER  
+
+
DAC  
+
COMP  
V_BATT  
VREG  
FET_G  
SENSE  
GND1  
V_BATT  
Rectifier  
/ Ripple filter  
+
-
Snubber  
REGULATOR  
OSC  
Filter  
SCPIN  
OCIN  
Filter  
Filter  
GND1  
SLOPE  
OSC  
+
-
VCC2  
Filter  
Q
S
R
Rectifier  
/ Ripple filter  
UVLOIN  
GND2  
MAX.Duty  
UVLO_BATT  
+
-
GND2  
GND2  
GND1  
Figure 1. Typical Application Circuit  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays  
.www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 14 001  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
1/37  
 
 
 
 
 
 
BM60055FV-C  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package  
W(Typ) x D(Typ) x H(Max).......................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Recommended Range Of External Constants  
Pin Configuration .........................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Thermal Resistance(Note6) ................................................................................................................................................................5  
Recommended Operating Conditions (Ta= -40°C to +125°C) ........................................................................................................5  
Electrical Characteristics.................................................................................................................................................................6  
(Unless otherwise specified Ta=-40°C to125°C, VBATT=4.5V to 30V, VCC2=9V to 24V) ...................................................................6  
Typical Performance Curves...........................................................................................................................................................9  
Figure 3. Main Power Supply Circuit Current 1 ...........................................................................................................................9  
Figure 4. Main Power Supply Circuit Current 2 ...........................................................................................................................9  
Figure 5. Output Side Circuit Current ..........................................................................................................................................9  
Figure 6. FET_G ON-Resistance ................................................................................................................................................9  
Figure 7. Soft-start Time............................................................................................................................................................10  
Figure 9. COMP Pin Sink Current .............................................................................................................................................10  
Figure 10. COMP Pin Source Current.......................................................................................................................................10  
Figure 11. Over-Current Detection Threshold............................................................................................................................11  
Figure 12. Logic input Filtering Time .........................................................................................................................................11  
Figure 13. OUT1 Source ON-Resistance..................................................................................................................................11  
Figure 14. OUT1 Sink ON-Resistance ......................................................................................................................................11  
Figure 15. PROOUT ON-Resistance.........................................................................................................................................12  
Figure 16. Turn ON time............................................................................................................................................................12  
Figure 17. Turn OFF time..........................................................................................................................................................12  
Figure 18. OUT2 ON Resistance ..............................................................................................................................................12  
Figure 19. Over Current Detection Voltage ...............................................................................................................................13  
Figure 20. Short Circuit Detection Voltage ................................................................................................................................13  
Figure 21. Over Temperature Detection Voltage .......................................................................................................................13  
Description of Functions and Examples of Constant Setting ........................................................................................................16  
Selection of Components Externally Connected...........................................................................................................................28  
I/O Equivalent Circuit ....................................................................................................................................................................29  
Operational Notes.........................................................................................................................................................................33  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Reverse Connection of Power Supply............................................................................................................................33  
Power Supply Lines........................................................................................................................................................33  
Ground Voltage...............................................................................................................................................................33  
Ground Wiring Pattern....................................................................................................................................................33  
Thermal Consideration ...................................................................................................................................................33  
Recommended Operating Conditions.............................................................................................................................33  
Inrush Current.................................................................................................................................................................33  
Operation Under Strong Electromagnetic Field ..............................................................................................................33  
Testing on Application Boards.........................................................................................................................................33  
Inter-pin Short and Mounting Errors ...............................................................................................................................33  
Unused Input Pins ..........................................................................................................................................................34  
Regarding the Input Pin of the IC ...................................................................................................................................34  
Ceramic Capacitor..........................................................................................................................................................34  
9.  
10.  
11.  
12.  
13.  
Ordering Information.....................................................................................................................................................................35  
Marking Diagrams.........................................................................................................................................................................35  
Physical Dimension, Tape and Reel Information...........................................................................................................................36  
Revision History............................................................................................................................................................................37  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
2/37  
TSZ22111 15 001  
 
BM60055FV-C  
Recommended Range Of External Constants  
Pin Configuration  
Recommended Value  
Pin Name  
Symbol  
Unit  
Min  
1.25  
4.6  
3
Typ  
Max  
50  
30  
-
28  
1
2
GND1  
GND2  
UVLOIN  
OCIN  
TC  
RTC  
-
10  
-
kΩ  
kΩ  
µF  
µF  
µF  
27 SENSE  
26 FET_G  
25 VREG  
RTOFF  
VBATT  
VCC2  
VREG  
RRTOFF  
CVBATT  
CVCC2  
CVREG  
3
4
SCPIN  
LVOFF  
0.4  
0.1  
-
-
5
V_BATT  
COMP  
FB  
24  
23  
22  
21  
1
10  
6
RTOFF  
TCOMP  
TO  
7
8
FLT_SC  
TC  
20 FLT_OT  
19 OSFB  
9
PROOUT  
VCC2  
10  
11  
12  
INA  
18  
INB  
17  
OUT1  
OUT2 13  
16 FLT_UVLO  
15  
14  
GND2  
GND1  
Figure 2. Pin configuration  
Pin Descriptions  
Pin No.  
1
Pin Name  
Function  
GND2  
UVLOIN  
OCIN  
Output-side ground pin  
2
Output-side UVLO setting pin  
Over current detection pin  
Short circuit detection pin  
2-level turn off level setting pin  
2-level turn off time setting pin  
Temp compensation pin of OC  
3
4
SCPIN  
LVOFF  
RTOFF  
TCOMP  
TO  
5
6
7
8
Constant current output pin / Over temperature detection pin  
Constant current setting resistor connection pin  
Soft turn-off pin  
9
TC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
PROOUT  
VCC2  
Output-side power supply pin  
OUT1  
OUT2  
GND2  
GND1  
FLT_UVLO  
INB  
Output pin  
Input and output pin for miller clamp / Gate voltage input pin  
Output-side ground pin  
Input-side ground pin  
Fault (UVLO) output pin  
Control input pin B  
INA  
Control input pin A  
OSFB  
FLT_OT  
FLT_SC  
FB  
Output state feedback output pin  
Fault (OT) output pin  
Fault (SCP) output pin  
Error amplifier inverting input pin for switching controller  
Error amplifier output pin for switching controller  
Main power supply pin  
COMP  
V_BATT  
VREG  
FET_G  
SENSE  
GND1  
Power supply pin for driving MOS FET for switching controller  
MOS FET control pin for switching controller  
Current feedback resistor connection pin for switching controller  
Input-side ground pin  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
3/37  
TSZ22111 15 001  
BM60055FV-C  
Absolute Maximum Ratings  
Parameter  
Symbol  
VBATTMAX  
VCC2MAX  
VINMAX  
Rating  
Unit  
V
-0.3 to+40.0(Note 2)  
-0.3 to +30.0(Note 3)  
-0.3 to 7.0(Note 2)  
-0.3 to +7.0(Note 2)  
Main Power Supply Voltage  
Output-Side Supply Voltage  
V
INA, INB Pin Input Voltage  
V
FLT_UVLO Pin, FLT_SC Pin, FLT_OT Pin,  
VFLTMAX  
V
FLT_UVLO Pin, FLT_SC Pin, FLT_OT Pin,  
OSFB Pin Output Current  
IFLT  
10  
mA  
FB Pin Input Voltage  
VFBMAX  
IFET_GPEAK  
VSCPINMAX, VOCINMAX  
VUVLOINMAX  
VLVOFFINMAX  
VTCOMPINMAX  
VTOMAX  
-0.3 to +7.0(Note 2)  
1000  
V
mA  
V
FET_G Pin Output Current (Peak5µs)  
SCPIN Pin, OCIN Pin Input Voltage  
-0.3 to +6.0(Note 3)  
-0.3 to VCC2+0.3(Note 3)  
-0.3 to VCC2+0.3(Note 3)  
-0.3 to VCC2+0.3(Note 3)  
-0.3 to VCC2+0.3(Note 3)  
8
UVLOIN Pin Input Voltage  
LVOFF Pin Input Voltage  
V
V
TCOMP Pin Input Voltage  
TO Pin Input Voltage  
V
V
TO Pin Output Current  
ITOMAX  
mA  
mA  
mA  
mA  
W
OUT1 Pin Output Current (Peak5µs)  
OUT2 Pin Output Current (Peak5µs)  
PROOUT Pin Output Current (Peak30µs)  
Power Dissipation  
IOUT1PEAK  
IOUT2PEAK  
IPROOUTPEAK10  
Pd  
5000(Note 4)  
5000(Note 4)  
2000(Note 4)  
1.12(Note 5)  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
Topr  
-40 to +125  
°C  
°C  
°C  
Tstg  
-55 to +150  
Tjmax  
+150  
(Note 2) Relative to GND1  
(Note 3) Relative to GND2  
(Note 4) Should not exceed Pd and Tj=150C  
(Note 5) Derate above Ta=25C at a rate of 9.0mW/C. Mounted on a glass epoxy of 114.3 mm 76.2 mm 1.6 mm.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over  
the absolute maximum ratings.  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
4/37  
TSZ22111 15 001  
BM60055FV-C  
Thermal Resistance(Note6)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 8)  
2s2p(Note 9)  
TO252-J5 / TO252-3  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 7)  
θJA  
112.9  
34  
64.4  
23  
°C/W  
°C/W  
ΨJT  
(Note 6)Based on JESD51-2A(Still-Air)  
(Note 7)The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 8)Using a PCB board based on JESD51-3.  
(Note 9)Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70μm  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
74.2mm2(Square)  
Thickness  
Copper Pattern  
Thickness  
Thickness  
Footprints and Traces  
70μm  
74.2mm2 (Square)  
35μm  
70μm  
Recommended Operating Conditions (Ta= -40°C to +125°C)  
Parameter  
Main Power Supply Voltage  
Output-side Supply Voltage  
Output side UVLO voltage  
Symbol  
Min  
Max  
Units  
(Note 10)  
VBATT  
4.5  
9
30.0  
24  
-
V
V
V
(Note 11)  
VCC2  
(Note11)  
VUV2TH  
6
(Note 10) GND1 reference  
(Note 11) GND2 reference  
Insulation Related Characteristics  
Parameter  
Symbol  
RS  
Characteristic  
>109  
Unit  
Insulation Resistance (VIO=500V)  
Insulation Withstand Voltage / 1min  
Insulation Test Voltage / 1sec  
Ω
VISO  
2500  
Vrms  
Vrms  
VISO  
3000  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
5/37  
BM60055FV-C  
Electrical Characteristics  
(Unless otherwise specified Ta=-40°C to125°C, VBATT=4.5V to 30V, VCC2=9V to 24V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
FET_G Pin  
General  
Main Power Supply  
Circuit Current 1  
IBATT1  
0.5  
1.3  
2.2  
mA  
switching operation  
FET_G Pin  
Main Power Supply  
Circuit Current 2  
IBATT2  
ICC2  
0.4  
1.8  
1.2  
3.2  
2.1  
4.8  
mA  
mA  
No Switching  
RTC=10kΩ  
Output Side Circuit Current  
Switching Power Supply Controller  
FET_G Output Voltage H1  
VFETGH1  
4.5  
4.0  
0
5.0  
4.5  
-
5.5  
-
V
V
V
Ω
IOUT=0A(open)  
V_BATT=4.5V  
IOUT=0A(open)  
IOUT=0A(open)  
FET_G Output Voltage H2  
VFETGH2  
VFETGL  
RONGH  
FET_G Output Voltage L  
FET_G ON-Resistance  
(Source-side)  
0.3  
12  
3
6
10mA  
10mA  
FET_G ON-Resistance  
(Sink-side)  
RONGL  
0.3  
0.6  
1.3  
Ω
Oscillation Frequency  
Soft-start Time  
fOSC_SW  
tSS  
80  
-
100  
-
120  
50  
kHz  
ms  
V
FB Pin Threshold Voltage  
FB Pin Input Current  
COMP Pin Sink Current  
VFB  
1.47  
-0.8  
-160  
40  
1.50  
0
1.53  
+0.8  
-40  
IFB  
µA  
µA  
µA  
ICOMPSINK  
ICOMPSOURCE  
-80  
80  
COMP Pin Source Current  
Over Voltage Detection  
Threshold  
Under Voltage Detection  
Threshold  
160  
VOVTH  
VUVTH  
VOCTH  
1.60  
1.23  
0.17  
1.65  
1.30  
0.20  
1.70  
1.37  
0.23  
V
V
V
Over-Current Detection  
Threshold  
V_BATT UVLO OFF Voltage  
V_BATT UVLO ON Voltage  
Maximum ON DUTY  
VUVLOBATTH  
VUVLOBATTL  
DONMAX  
4.05  
3.95  
75  
4.25  
4.15  
85  
4.45  
4.35  
95  
V
V
%
ms  
Protection Holding Time  
tDCDCRLS  
20  
40  
60  
Logic Block  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
Logic Pull-Down Resistance  
Logic Input Filtering Time  
Output  
VINH  
VINL  
RIND  
tINFIL  
3.5  
-
-
-
-
V
V
INAINB  
INAINB  
INAINB  
INAINB  
1.5  
100  
170  
25  
70  
50  
120  
kΩ  
ns  
OUT1 ON-Resistance  
IOUT=40mA  
IOUT=40mA  
RONH  
0.25  
0.60  
1.35  
Ω
(Source-side)  
OUT1 ON-Resistance  
(Sink-side)  
RONL  
Ω
0.05  
5.0  
0.40  
-
1.15  
-
VCC2=15V  
Guaranteed by design  
OUT1 Maximum Current  
IOUTMAX  
A
0.35  
130  
130  
-60  
0.70  
190  
190  
0
1.45  
250  
250  
+60  
IPROOUT=40mA  
PROOUT ON-Resistance  
Turn ON time  
RONPRO  
tPON  
Ω
ns  
ns  
ns  
Turn OFF time  
tPOFF  
Propagation Distortion  
tPDIST  
tPOFF - tPON  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
6/37  
BM60055FV-C  
Electrical Characteristics - continued  
(Unless otherwise specified Ta=-40°C to125°C, VBATT=4.5V to 30V, VCC2=9V to 24V)  
Parameter  
Symbol  
tRISE  
Min  
-
Typ  
30  
Max  
50  
Unit  
ns  
Conditions  
Load=1nF  
Rise Time  
Fall Time  
OUT2 ON-Resistance  
OUT2 ON Threshold Voltage  
Common Mode Transient Immunity  
tFALL  
RON2  
VOUT2ON  
CM  
-
30  
0.45  
3.0  
-
50  
1.2  
3.3  
-
ns  
Ω
V
Load=1nF  
IOUT=40mA  
0.1  
2.7  
100  
kV/µs Design assurance  
Protection Functions  
Output-side UVLO OFF  
Threshold Voltage  
Output-side UVLO ON  
Threshold Voltage  
Output-side UVLO  
Filtering Time  
VUVLO2H  
VUVLO2L  
0.95  
0.85  
1.5  
1.00  
0.90  
2.0  
2.2  
-
1.05  
0.95  
2.5  
V
V
tUVLO2FIL  
tDUVLO2OUT  
tDUVLO2FLT  
VOCDET  
µs  
µs  
µs  
Output-side UVLO Delay Time  
(OUT)  
1.5  
2.9  
Output-side UVLO Delay Time  
(FLT_UVLO)  
1.5  
65  
Over Current Detection  
Voltage1  
0.658  
0.394  
0.658  
0.874  
0.70  
0.700  
0.420  
0.700  
0.930  
1.00  
0.742  
0.441  
0.742  
0.986  
1.30  
V
V
TCOMP=VCC2  
Over Current Detection  
Voltage2  
TO=4V  
VOCDET  
TCOMP=GND2  
TO=3V  
Over Current Detection  
Voltage3  
VOCDET  
V
TCOMP=GND2  
TO=2.2V  
Over Current Detection  
Voltage4  
VOCDET  
V
TCOMP=GND2  
Over Current Detection  
Filtering Time  
tDOCFIL  
µs  
µs  
µs  
µs  
V
Over Current Detection  
Delay Time (OUT)  
Over Current Detection  
Delay Time (PROUT)  
Over Current Detection  
Delay Time (FLT_SC)  
Short Circuit Detection  
Voltage  
VDOCOUT  
VDOCPROUT  
VDOCFLT_SC  
VSCPDET  
tSCPFIL  
0.73  
0.73  
0.75  
0.95  
0.10  
0.17  
0.19  
0.23  
1.03  
1.03  
1.05  
1.00  
0.20  
0.23  
0.25  
0.29  
1.33  
1.33  
1.35  
1.05  
0.30  
0.38  
0.40  
0.44  
OUT1=30kΩ Pull down  
PROOUT=30kΩ Pull up  
Short Circuit Detection  
Filtering Time  
µs  
µs  
µs  
µs  
Short Circuit Detection  
Delay Time (OUT)  
Short Circuit Detection  
Delay Time (PROOUT)  
Short Circuit Detection  
Delay Time (FLT_SC)  
TC Pin Voltage  
tDSCPOUT  
tDSCPPROOUT  
tDSCPFLT_SC  
OUT1=30kΩ Pull down  
PROOUT=30kΩ Pull up  
VTC  
ITO  
0.975  
0.97  
1.000  
1.00  
1.025  
1.03  
V
TO Pin Output Current  
TO Pin Disconnect Detection  
Voltage  
mA  
RTC=10kΩ  
VTOH  
7
8
9
V
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
7/37  
BM60055FV-C  
Electrical Characteristics - continued  
(Unless otherwise specified Ta=-40°C to125°C, VBATT=4.5V to 30V, VCC2=9V to 24V)  
Parameter  
Over Temperature Detection  
Voltage(ON)  
Symbol  
Min  
Typ  
2.0  
Max  
2.04  
Unit  
V
Conditions  
VOTDETON  
1.96  
Over Temperature Detection  
Voltage(OFF)  
VOTDETOFF  
tDOTOUT  
tDOTFLT  
RONFLT  
2.15  
2
2.2  
10  
2.25  
30  
V
Over Temperature Detection  
Delay time (OUT)  
µs  
OUT1=30kΩ Pull down  
Over Temperature Detection  
Delay Time (FLT_OT)  
1
-
-
35  
80  
µs  
FLT_UVLO, FLT_SC, FLT_OT,  
ON-Resistance  
30  
Ω
IFLT=5mA  
Fault (UVLO) Output  
Holding Time  
tUVLO_FLTRLS  
tSCP_FLTRLS  
VLVOFF1  
20  
20  
40  
40  
60  
60  
0
ms  
ms  
mV  
mV  
Fault (SCP) Output  
Holding Time  
2-Level Turn Off Voltage  
Offset 1  
-300  
-350  
-150  
-200  
VCC2=15V, LVOFF=12V  
VCC2=15V, LVOFF=8V  
2-Level Turn Off Voltage  
Offset 2  
VLVOFF2  
-50  
2-Level Turn Off Enable  
Threshold Voltage  
2-Level Turn Off Time  
Gate State H Detection  
Threshold Voltage  
Gate State L Detection  
Threshold Voltage  
VLVOFFTH  
tRTOFF  
0.7  
1.93  
4.5  
1.0  
2.3  
5.0  
1.3  
2.67  
5.5  
V
µs  
V
RRTOFF=16kΩ  
VOSFBH  
VOSFBL  
ROSFB  
4.0  
-
4.5  
30  
5.0  
80  
V
OSFB Output ON-Resistance  
Ω
IOSFB=5mA  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
8/37  
BM60055FV-C  
Typical Performance Curves  
2.1  
1.9  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.7  
125  
125  
25℃  
25℃  
1.5  
1.3  
1.1  
-40℃  
-40℃  
0.9  
0.7  
0.5  
5
15  
VBATT[V]  
25  
5
15  
VBATT[V]  
25  
Figure 3. Main Power Supply Circuit Current 1  
(FET_G Pin switching operation)  
Figure 4. Main Power Supply Circuit Current 2  
(FET_G Pin No Switching)  
4.8  
4.3  
3.8  
3.3  
2.8  
2.3  
1.8  
10  
8
125℃  
6
Source Side  
25℃  
4
-40℃  
2
Sink Side  
80  
0
-40  
0
40  
120  
9
14  
19  
24  
VCC2[V]  
Ta[]  
Figure 5. Output Side Circuit Current  
Figure 6. FET_G ON-Resistance  
(10mA)  
(RTC=10kΩ)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
9/37  
BM60055FV-C  
Typical Performance Curves continued  
50  
40  
30  
20  
10  
0
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ta[]  
Ta[]  
Figure 7. Soft-start Time  
Figure 8. FB Pin Threshold Voltage  
160  
140  
120  
100  
80  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
60  
40  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ta[]  
Ta[]  
Figure 9. COMP Pin Sink Current  
Figure 10. COMP Pin Source Current  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
10/37  
TSZ22111 15 001  
BM60055FV-C  
Typical Performance Curves - continued  
170  
160  
150  
140  
130  
120  
110  
100  
90  
0.23  
0.21  
0.19  
0.17  
INA OFF Pulse  
INA ON Pulse  
INB OFF Pulse  
INB ON Pulse  
80  
70  
-40  
0
40  
Ta[]  
80  
120  
-40  
0
40  
80  
120  
Ta[]  
Figure 11. Over-Current Detection Threshold  
Figure 12. Logic input Filtering Time  
(INA,INB)  
1.05  
0.85  
0.65  
0.45  
0.25  
0.05  
1.25  
1.05  
0.85  
0.65  
0.45  
0.25  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ta[]  
Ta[]  
Figure 13. OUT1 Source ON-Resistance  
(IOUT=40mA)  
Figure 14. OUT1 Sink ON-Resistance  
(IOUT=40mA)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
11/37  
BM60055FV-C  
Typical Performance Curves - continued  
250  
230  
210  
190  
170  
150  
130  
1.45  
1.18  
0.90  
0.63  
0.35  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ta[]  
Ta[]  
Figure 15. PROOUT ON-Resistance  
(IPROOUT=40mA)  
Figure 16. Turn ON time  
250  
230  
210  
190  
170  
150  
130  
1.1  
0.9  
0.7  
0.5  
0.3  
0.1  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ta[]  
Ta[]  
Figure 17. Turn OFF time  
Figure 18. OUT2 ON Resistance  
(IOUT=40mA)  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
12/37  
TSZ22111 15 001  
BM60055FV-C  
Typical Performance Curves - continued  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
TO=2.2V (TCOMP=GND2)  
0.9  
0.8  
TO=3V (TCOMP=GND2)  
TCOMP=VCC2  
0.7  
0.6  
0.5  
TO=4V (TCOMP=GND2)  
0.4  
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Ta[]  
Ta[]  
Figure 19. Over Current Detection Voltage  
Figure 20. Short Circuit Detection Voltage  
2.21  
2.16  
2.11  
2.06  
2.01  
1.96  
OFF Voltage  
ON Voltage  
-40  
0
40  
80  
120  
Ta[]  
Figure 21. Over Temperature Detection Voltage  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
13/37  
TSZ22111 15 001  
BM60055FV-C  
Description of Pins and Cautions on Layout of Board  
1. V_BATT (Main power supply pin)  
This is the main power supply pin. Connect a bypass capacitor between V_BATT and GND1 in order to suppress voltage  
variations. Make sure that power is supplied even when the switching power supply is not used, since the internal  
reference voltage of the input side of chip is generated from this power supply.  
2. GND1 (Input-side ground pin)  
The GND1 pin is a ground pin for the input side.  
3. GND2 (Output-side ground pin)  
The GND2 pin is a ground pin for the output side. Connect GND2 pin to the emitter / source of the output device.  
4. INA, INB (Control input pin A, Control input pin B)  
They are pins for determining the output logic.  
INB  
H
INA  
L
OUT1  
L
L
H
H
L
L
L
L
H
H
5. FLT_UVLO, FLT_SC, FLT_OT (Fault output pins)  
These pins have open drains that output fault signals when faults occur (i.e., when the under voltage lockout function  
(UVLO) or short circuit protection function (SCP) or over current protection function (OC) or over temperature protection  
(OT) is activated).  
State  
FLT_UVLO  
FLT_SC  
Hi-Z  
Hi-Z  
L
FLT_OT  
Hi-Z  
Hi-Z  
Hi-Z  
L
While in normal operation  
Hi-Z  
L
V_BATT UVLO or VCC2 UVLO or TO pin open  
SCP or OC  
OT  
Hi-Z  
Hi-Z  
Hi-Z  
6. OSFB (Output pin for monitoring gate condition)  
This is an open drain pin which outputs the state of gate logic of the output element monitored with OUT2 pin.  
OUT2(input)  
OSFB  
Hi-Z  
L
H
L
7. FB (Error amplifier inverting input pin for switching controller)  
This is a voltage feedback pin of the switching controller. This pin combine with voltage monitoring at over voltage  
protection function and under voltage protection function for switching controller. When over voltage or under voltage  
protection is activated, switching controller will be at OFF state (FET_G pin outputs Low). When the protection holding  
time (tDCDCRLS) is completed, the protection function will be released. Under voltage function is not activated during  
soft-start.  
8. COMP (Error amplifier output pin for switching controller)  
This is the gain control pin of the switching controller. Connect a phase compensation capacitor and resistor. When the  
switching controller is not used, connect it to GND1.  
9. VREG (Power supply pin for the driving MOS FET of the switching controller)  
This is the power supply pin for the driving MOSFET of the switching controller transformer drive. Be sure to connect a  
capacitor between VREG and GND1 even when the switching controller is not used, in order to prevent oscillation and to  
suppress voltage variation due to FET_G output current.  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
14/37  
TSZ22111 15 001  
BM60055FV-C  
Description of Pins and Cautions on Layout of Board continued  
10. FET_G (MOS FET control pin for switching controller)  
This is a MOSFET control pin for the switching controller transformer drive. Leave it open when the switching controller is  
not used.  
11. SENSE (Connection to the current feedback resistor of the switching controller)  
This is a pin connected to the resistor of the switching controller current feedback. FET_G pin output duty is controlled by  
the voltage value of this pin. This pin combines with current monitoring at over current protection function for switching  
controller. When over current protection is activated, switching controller will be at OFF state (FET_G pin outputs Low).  
When the protection holding time (tDCDCRLS) is completed, the over current function will be released.  
12. OUT1(Output pin)  
The OUT1 pin is a gate driving pin.  
13. OUT2 (Miller clamp pin)  
The OUT2 pin is for preventing the increase in gate voltage due to the Miller current of the power device connected to the  
OUT pin. It also functions as a pin for monitoring gate voltage for for miller clamp function and output state feedback  
function. If both functions are not used, short-circuit the OUT2 pin to the GND2 pin.  
14. PROOUT (Soft turn-OFF pin)  
This pin is for soft turn-OFF of output pin when short-circuit protection or over current protection is in action.  
15. SCPIN (Short circuit current detection pin)  
This pin is used to detect current for short circuit protection. When the SCPIN voltage exceeds the voltage set with the  
VSCPDET parameter, the SCP function will be activated, this will make the IC function in an open state. To avoid such  
trouble, connect a resistor between the SCPIN and the GND2 or short the SCPIN pin to GND2 when the SCP function is  
not used.  
16. OCIN (Over current detection pin)  
This pin is used to detect current for over current protection. When the OCIN voltage exceeds the voltage set with the  
VOCDET parameter, the OC function will be activated, this will make the IC function in an open state. To avoid such trouble,  
connect a resistor between the OCIN and the GND2 or short the OCIN pin to GND2 when the OC function is not used.  
17. TCOMP (Temperature compensation pin)  
This pin is for temperature compensation of over current detection. If the function is used, connect TCOMP to GND2. If the  
function is not used, connect TCOMP to VCC2.  
18. LVOFF (2-level turn off level setting pin)  
The LVOFF pin is a pin used to make setting of 2-level turn off time. The voltage of LVOFF pin is 2-level turn off level.  
When the VLVOFF > VLVOFFTH, 2-level turn off function is activated  
19. RTOFF (2-level turn off time setting pin)  
The RTOFF pin is a pin used to make the setting of 2-level turn off time. Connect a resistor RRT between RTOFF and the  
GND2 pin.  
20. TC (Resistor connection pin for setting constant current source output)  
The TC pin is a resistor connection pin for setting the constant current output. If an arbitrary resistance value is connected  
between TC and GND2, it is possible to set the constant current value output from TO.  
21. TO (Constant current output / sensor voltage input pin)  
The TO pin is constant current output / voltage input pin. It can be used as a temperature protection input by connecting  
an element with arbitrary impedance between TO pin and GND. Furthermore, the TO pin disconnect detection function is  
built-in.  
22. UVLOIN (Output-side UVLO setting input pin)  
The UVLOIN pin is a pin for deciding UVLO setting value of VCC2. The threshold value of UVLO can be set by dividing  
the resistance voltage of VCC2 and inputting such value.  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
15/37  
TSZ22111 15 001  
BM60055FV-C  
Description of Functions and Examples of Constant Setting  
1. Fault Status Output  
This function is used to output a fault signal from the FLT_UVLO pin when the under voltage lockout function (UVLO) is  
activated, the FLT_SC pin when the short circuit protection function (SCP) or over current protection (OC) is activated,  
and the FLT_OT pin when the over temperature protection (OT) is activated.  
The functions of UVLO and SCP/OC is to hold the fault signal until fault output holding time (tUVLO_FLTRLS, tSCP_FLTRLS,) is  
completed.  
Status  
Normal  
UVLO  
FLT_UVLO pin  
Fault occurs (UVLO or SCP or OC)  
Status  
Hi-Z  
L
Hi-Z  
L
FLT_UVLO  
FLT_SC  
Status  
Normal  
SCP, OC  
FLT_SC pin  
Hi-Z  
L
Figure 22. Fault Status Output Timing Chart (SCP/OC,UVLO)  
The OT function holds the fault signal until TO pin voltage goes high above VTODETOFF.  
Status  
Normal  
OT  
FLT_OT pin  
Hi-Z  
L
Status  
Fault occurs (OT)  
Hi-Z  
FLT_OT  
L
35us  
Figure 23. Fault Status Output Timing Chart (OT)  
When UVLO function is activated during SCP or OC, the Fault output holding time occurs after UVLO cancellation.  
Fault occurs (SCP or OC)  
SCP or OC Status  
Fault occurs (UVLO)  
UVLO Status  
Hi-Z  
FLT_SC  
L
Hi-Z  
FLT_UVLO  
L
Fault output holding time (tUVLO_FLTRLS  
)
Figure 24. Fault Status Output Timing Chart (SCP/OC and UVLO)  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
16/37  
TSZ22111 15 001  
BM60055FV-C  
2. Under Voltage Lockout (UVLO) Function  
BM60055FV-C incorporates the under voltage lockout (UVLO) function on V_BATT and VCC2. When the power supply  
voltage drops to the UVLO ON voltage, OUT1 turns off and the FLT_UVLO pin will both output the “L” signal.  
When the power supply voltage rises to the UVLO OFF voltage, these pins will be reset. However, during the fault output  
holding time set in “Fault status output” section, the OUT pin and the FLT_UVLO pin will hold the “L” signal. In addition, to  
prevent mis-triggering due to noise, mask time tUVLO2FIL are set on both low and high voltage sides.  
H
L
INA  
V
VUUVVLLOOBBAATTTTLH  
V_BATT  
Hi-Z  
L
FLT_UVLO  
H
L
H
L
OUT1  
FET_G  
Figure 25. V_BATT UVLO Function Operation Timing Chart  
H
L
INA  
UVLOIN  
V
V
UVLO2H  
UVLO2L  
Hi-Z  
L
FLT_UVLO  
H
OUT1  
L
H
L
FET_G  
Figure 26. VCC2 UVLO Function Operation Timing Chart  
When VLVOFF < VLVOFFTH, normal turn off is activated.  
H
L
IN  
VLVOFFTH  
L
VLVOFF  
VUVLOBATTH /VUVLO2H  
VUVLOBATTL /VUVLO2L  
V_BATT  
UVLOIN  
H
OUT1  
OUT2  
Hi-Z  
L
Hi-Z  
L
Hi-Z  
PROOUT  
L
Hi-Z  
FLT_UVLO  
L
Gate voltage  
VOUT2ON  
tUVLOBATTH  
tUVLO2FIL  
tUVLOBATTH  
tUVLO2FIL  
Fault output holding time  
Figure 27. UVLO Operation Timing Chart (Normal Turn off)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
17/37  
BM60055FV-C  
When VLVOFF > VLVOFFTH, 2-level turn off is activated.  
H
L
IN  
VLVOFF  
H
VLVOFFTH  
VUVLOBATTH /VUVLO2H  
VUVLOBATTL /VUVLO2L  
V_BATT  
UVLOIN  
H
OUT1  
OUT2  
VLVOFF  
L
Hi-Z  
L
Hi-Z  
PROOUT  
L
Hi-Z  
FLT_UVLO  
L
VLVOFF  
VOUT2ON  
Gate voltage  
tUVLOBATTH  
tUVLO2FIL  
tUVLOBATTH  
tUVLO2FIL  
Fault output holding time  
Figure 28. UVLO Operation Timing Chart (2 level turn off)  
Description of Functions and Examples of Constant Setting - continued  
3. Short Circuit Protection (SCP) Function  
When the SCPIN pin voltage exceeds a voltage set with the VSCPDET parameter, the SCP function will be activated. When  
the SCP function is activated, soft turn off is activated.  
When the SCP function is activated, OUT pin voltage will be set to the “Hi-Z” level and the PROOUT pin voltage will be set  
to “L” level first. Next, OUT2 pin voltage < VOUT2ON, internal MOS of OUT2 pin is turned ON (miller clamping) and OUT1 will  
become L.  
H
IN  
L
VSCDET  
SCPIN  
H
OUT1  
Hi-Z  
L
Hi-Z  
OUT2  
L
Hi-Z  
PROOUT  
L
Hi-Z  
FLT_SC  
L
Gate voltage  
VOUT2ON  
tON or tON+ RTOFF  
t
tON or tON+ RTOFF  
t
tON or tON+ RTOFF  
t
tSCPFIL  
tSCPFIL  
Fault output holding time  
Fault output holding time  
Figure 29. SCP Operation Timing Chart  
18/37  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
BM60055FV-C  
4. Over Current Protection (OC) Function  
When the OCIN pin voltage exceeds a voltage set with the VOCDET parameter, the OC function will be activated. When the  
OC function is activated, soft turn off is activated.  
When the OC function is activated, OUT pin voltage will be set to the “Hi-Z” level and the PROOUT pin voltage will be set  
to “L” level first. Next, OUT2 pin voltage < VOUT2ON, internal MOS of OUT2 pin is turned ON (miller clamping) and OUT1 will  
become L.  
H
IN  
L
VOCDET  
OCIN  
H
OUT1  
Hi-Z  
L
Hi-Z  
OUT2  
L
Hi-Z  
PROOUT  
L
Hi-Z  
FLT_SC  
L
Gate voltage  
VOUT2ON  
tON or tON+ RTOFF  
t
tON or tON+ RTOFF  
t
tON or tON+ RTOFF  
t
tASFIL  
tASFIL  
Fault output holding time  
Figure 30. OC Operation Timing Chart  
Fault output holding time  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
19/37  
TSZ22111 15 001  
BM60055FV-C  
Description of Functions and Examples of Constant Setting - continued  
5. 2-Level Turn Off  
When VLVOFF > VLVOFFTH, 2-level turn off is activated.  
2-level turn off time tRTOFF and voltage level VLVOFF is adjustable by external elements of RTOFF pin and LVOFF pin.  
The values of the 2-level turn off level VLVOFF is determined by the values of the voltage of LVOFF pin.  
The values of the 2-level turn off time tRTOFF is determined by the values of the resistor RRT according to the following  
formula (typical values):  
[us]  
[
]
tRTOFF =0.145×RRT kΩ +0.05  
The propagation delay time (ON) of the OUT1 is delayed for the same time as the 2-level turn off time tRTOFF.  
When VLVOFF < VLVOFFTH, Turn on time does not include 2-level turn off time and normal turn off is activated.  
VCC2  
RTOFF  
timer  
Gate on/off  
RRT  
OUT1  
3 state buffer  
LVOFF  
+
-
GND2  
Figure 31. 2 level turn off function block diagram  
H
VLVOFF  
VLVOFFTH  
L
H
IN  
L
H
VLVOFF  
OUT1  
L
PROOUT  
L
H
VLVOFF  
Gate voltage  
VOUT2ON  
L
tON  
tOFF  
tON  
tRTOFF  
tON  
tRTOFF  
Figure 32. Timing Chart of Turn Off  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
20/37  
TSZ22111 15 001  
BM60055FV-C  
6. Temperature Compensation of OC  
When TCOMP = GND2, Temperature compensation of OC is activated.  
If the function is not used, connect TCOMP to VCC2.  
TCOMP=GND2  
The temperature of OC detection voltage can be compensated in accordance with TO voltage.  
[V]  
VOC = 0.283 VTO +1.552  
TCOMP=VCC2  
[V]  
VOC = 0.7  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
21/37  
TSZ22111 15 001  
BM60055FV-C  
Description of Functions and Examples of Constant Setting - continued  
7. Miller Clamping  
When OUT1=L and OUT2 pin voltage < VOUT2ON, internal MOS of OUT2 pin is turned ON, and Miller clamp function  
operates.  
OUT2 pin  
IN  
OUT2  
input voltage  
Not more than  
VOUT2ON  
L
L
H
X
Hi-Z  
VCC2  
OUT1  
PREDRIVER  
PREDRIVER  
LOGIC  
OUT2  
GND2  
PREDRIVER  
+
-
Figure 33. Block Diagram of Miller Clamp Function  
H
L
INA  
SCPIN  
VSCDET  
Hi-Z  
L
FLT_SC  
OUT1  
H
Hi-Z  
L
OUT2  
(input)  
VOUT2ON  
H
L
PROOUT  
Hi-Z  
L
OUT2  
(output)  
tON  
tFLTRLS  
Figure 34. Timing chart of Miller Clamp Function  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
22/37  
TSZ22111 15 001  
BM60055FV-C  
Description of Functions and Examples of Constant Setting - continued  
8. Over Temperature Protection Function  
Constant current is supplied from TO pin from the built-in constant current circuit. This current value can be adjusted in  
accordance with the resistance value connected between TC and GND2. Furthermore, TO pin has voltage input function,  
and when the TO pin voltage < VOTDETON, OUT1 turns off and FLT_OT becomes L. When the TO pin voltage goes high  
above VOTDETOFF, the OT function will be released.  
VTC 10  
Constant current value  
RTC  
VCC2  
×10  
FLT_OT  
TO  
filter  
Z
TC  
RTC  
GND2  
Figure 35. Block Diagram of Temperature Monitor Function  
When VLVOFF < VLVOFFTH, normal turn off is activated.  
H
IN  
L
VLVOFF  
TO  
VLVOFFTH  
L
VOTDETOFF  
VOTDETON  
H
OUT1  
L
Hi-Z  
OUT2  
L
Hi-Z  
PROOUT  
L
Hi-Z  
FLT_OT  
L
Gate voltage  
VOUT2ON  
tOTFIL  
tOTFIL  
~ 35us  
Figure 36. OT Operation Timing Chart (Normal turn off)  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
23/37  
TSZ22111 15 001  
BM60055FV-C  
Description of Functions and Examples of Constant Setting continued  
When VLVOFF > VLVOFFTH, 2-level turn off is activated.  
H
L
IN  
VLVOFF  
VLVOFFTH  
L
VOTDETOFF  
VOTDETON  
TO  
H
OUT1  
L
Hi-Z  
OUT2  
L
Hi-Z  
PROOUT  
L
Hi-Z  
FLT_OT  
L
VLVOFFTH  
VOUT2ON  
Gate voltage  
tOTFIL  
tOTFIL  
~ 35us  
Figure 37. OT Operation Timing Chart (2 level turn off)  
9. Switching Controller  
(1) Basic action  
This IC has a built-in switching power supply controller which repeats ON/OFF synchronizing with internal clock.  
When V_BATT voltage is supplied (V_BATT > VUVLOBATTH), FET_G pin starts switching by soft-start. Output voltage is  
determined by the following equation by external resistance and winding ratio “n” of flyback transformer (n= VOUT2 side  
winding number/VOUT1  
VOUT2 V R1 R2  
FB  
/R2  
side winding nunmber)  
V
(2) MAX DUTY  
When, for example, output load is large, and voltage level of SENSE pin does not reach current detection level, output  
is forcibly turned OFF by Maximum On Duty (DONMAX).  
(3) Pinconditions when the switching power supply controller is not used  
Implement pin connection as shown below when switching power supply is not used.  
Pin Number  
Pin Name  
FB  
Treatment Method  
Connect to VREG  
Connect to GND1  
Connect power supply  
Connect capacitor  
No connection  
22  
23  
24  
25  
26  
27  
COMP  
V_BATT  
VREG  
FET_G  
SENSE  
Connect to GND1  
10. Output State Feedback Function  
When gate logic of output device monitored with OUT2 pin is H, a logic H is the output from OSFB pin. When OUT2 pin is  
L, a logic L is the output from OSFB pin.  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
24/37  
TSZ22111 15 001  
BM60055FV-C  
Description of Functions and Examples of Constant Setting - continued  
11. I/O Condition Table  
Input  
Output  
No.  
Status  
1
2
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
UVLO  
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
X
X
L
X
X
X
X
X
X
L
X
X
L
L
L
L
X
X
L
L
H
H
L
L
L
L
X
X
X
H
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
L
Z
L
T
T
L
L
T
T
L
L
Z
L
T
T
L
L
L
Z
L
Z
L
Z
L
Z
L
Z
L
Z
L
Z
L
Z
L
Z
L
Z
Z
Z
Z
Z
L
Z
Z
Z
L
Z
Z
Z
Z
Z
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Z
Z
Z
Z
Z
Z
Z
Z
L
L
Z
Z
Z
Z
L
Z
Z
L
L
L
L
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
V_BATT UVLO  
SCP  
3
H
L
4
L
V_BATT UVLO  
OT  
5
L
H
L
6
L
L
7
H
H
H
H
H
H
H
H
H
H
L
H
H
L
H
L
8
L
V_BATT UVLO  
VCC2 UVLO  
9
X
X
H
H
H
H
H
H
L
H
L
10  
11  
12  
13  
14  
15  
16  
17  
L
X
X
H
H
L
H
L
V_BATT UVLO  
OC  
H
L
V_BATT UVLO  
H
L
L
SCP  
OT  
VCC2 UVLO  
X
H
18  
19  
20  
21  
22  
23  
24  
25  
26  
H
H
H
H
H
L
L
L
L
H
H
L
L
L
L
L
H
H
L
L
L
L
L
L
X
X
X
X
X
L
X
X
X
X
X
H
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
H
L
L
L
L
L
L
T
T
L
L
L
Z
L
Z
L
Z
L
Z
L
L
L
L
L
L
Z
Z
Z
Z
L
Z
Z
L
L
L
L
L
L
L
L
L
L
L
Z
Z
Z
Z
Z
L
L
Z
Z
Z
Z
Z
Z
L
Z
L
L
L
L
L
L
L
SCP  
OT  
H
L
SCP  
VCC2 UVLO  
H
L
L
L
OT  
VCC2 UVLO  
L
L
H
L
L
L
L
: V_BATT > UVLO, X: Don't care, Z: Hi-Z, T: 2-level turn off  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
25/37  
TSZ22111 15 001  
15.Feb.2016 Rev.001  
BM60055FV-C  
Description of Functions and Examples of Constant Setting - continued  
Input  
Output  
No.  
Status  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
H
H
L
L
L
L
L
L
L
L
L
L
L
H
H
L
H
H
H
H
H
H
L
X
X
L
L
L
L
L
L
L
L
H
H
L
X
X
H
H
L
X
X
X
X
X
X
X
X
X
X
X
X
H
X
X
X
X
X
X
X
X
X
X
X
X
X
H
L
Z
L
T
T
L
L
T
T
Z
L
Z
L
T
Z
L
Z
L
Z
L
Z
L
Z
L
Z
L
Z
L
Z
Z
Z
Z
Z
Z
Z
Z
Z
L
Z
Z
Z
Z
Z
Z
Z
Z
L
L
L
L
Z
Z
Z
L
L
Z
Z
L
L
Z
Z
Z
Z
L
L
Z
Z
Z
L
L
L
L
Z
Z
Z
Z
Z
Z
Z
Z
L
Z
L
Z
L
L
L
L
L
Z
L
Z
SCP  
OT  
H
L
L
L
H
L
L
L
H
H
H
H
H
H
H
H
H
L
H
L
L
VCC2 UVLO  
L
H
L
L
L
H
H
H
X
X
H
H
L
OC  
H
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
H
L
H
H
H
L
L
L
L
L
L
L
L
X
X
X
H
H
H
H
L
L
H
L
T
L
L
Z
L
Z
Z
Z
Z
Z
L
Z
L
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
L
Z
L
Z
L
Z
L
Z
L
Z
L
L
L
H
H
L
H
L
H
H
H
H
T
T
L
Normal  
H
L
L
H
H
L
H
L
L
L
H
L
L
L
L
: V_BATT > UVLO, X: Don't care, Z: Hi-Z, T: 2-level turn off  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
26/37  
TSZ22111 15 001  
BM60055FV-C  
Description of Functions and Examples of Constant Setting - continued  
12. Power Supply Startup / Shutdown Sequence  
H
L
INA  
VUVLOBATTL  
VUVLO2H  
VUVLOBATTL  
V_BATT  
VCC2  
0V  
VUVLO2H  
0V  
H
Hi-Z  
OUT1  
L
Hi-Z  
OUT2  
PROOUT  
L
Hi-Z  
L
Hi-Z  
FLT_UVLO  
L
H
L
INA  
V_BATT  
VUVLOBATTH  
VUVLO2L  
VUVLOBATTH  
VUVLO2L  
0V  
0V  
VCC2  
OUT1  
H
Hi-Z  
L
Hi-Z  
OUT2  
L
Hi-Z  
PROOUT  
FLT_UVLO  
L
Hi-Z  
L
: Since the VCC2 to GND2 pin voltage is low and the output MOS does not turn ON,  
the output pins become Hi-Z conditions.  
:Since the V_BATT pin voltage is low and the FLT_UVLO output MOS does not turn  
ON, the output pins become Hi-Z conditions.  
Figure 38. Power Supply Startup / Shutdown Sequence  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
27/37  
TSZ22111 15 001  
BM60055FV-C  
Selection of Components Externally Connected  
Recommended  
Recommended  
Recommended  
ROHM  
MCR03EZP  
Recommended  
ROHM  
MCR100JZH  
MCR18EZP  
LTR50UZP  
ROHM  
sumida  
MCR03EZP  
CEEH139C  
CEER117  
+
+
OSC  
-
-
GND1  
GND2  
OUT2  
FLT_UVLO  
INB  
TIMER  
FLT  
RESET  
OSC  
OUT1  
PRE  
DRIVER  
S
R
VCC2  
Q
OSFB  
ECU  
INA  
VCC2  
OSFB  
PROOUT  
LOGIC  
CURRENT  
SOURCE  
LOGIC  
FLT_OT  
FLT_SC  
TC  
TO  
+
-
2 level Turn  
off Contol  
Temp  
Compensation  
FB  
TCOMP  
RTOFF  
LVOFF  
-
+
-
TIMER  
TIMER  
+
DAC  
+
COMP  
V_BATT  
V_BATT  
Rectifier  
/ Ripple filter  
+
-
Snubber  
REGULATOR  
OSC  
Filter  
VREG  
FET_G  
SENSE  
GND1  
SCPIN  
OCIN  
Filter  
Filter  
SLOPE  
GND1  
VCC2  
OSC  
+
-
Filter  
Q
S
R
Rectifier  
/ Ripple filter  
UVLOIN  
GND2  
+
-
MAX.Duty  
UVLO_BATT  
GND2  
GND2  
GND1  
Recommended  
ROHM  
MCR100JZH  
LTR50UZP  
Recommended  
ROHM  
MCR03EZP  
Recommended  
ROHM  
MCR03EZP  
MCR18EZP  
Recommended  
ROHM  
RB168M150  
Recommended  
ROHM  
LTR18EZP  
Figure 39. For using switching power supply controller  
Recommended  
ROHM  
MCR100JZH  
MCR18EZP  
LTR50UZP  
Recommended  
ROHM  
MCR03EZP  
Recommended  
ROHM  
MCR03EZP  
+
+
OSC  
-
-
GND1  
GND2  
FLT_UVLO  
INB  
FLT  
OSC  
TIMER  
OUT2  
OUT1  
VCC2  
PROOUT  
TC  
RESET  
PRE  
DRIVER  
S
R
VCC2  
Q
OSFB  
INA  
ECU  
OSFB  
FLT_OT  
FLT_SC  
FB  
LOGIC  
LOGIC  
CURRENT  
SOURCE  
+
-
TO  
Temp  
Compensation  
2 level Turn  
off Contol  
-
TCOMP  
RTOFF  
LVOFF  
SCPIN  
OCIN  
-
TIMER  
TIMER  
+
+
DAC  
+
COMP  
V_BATT  
VREG  
FET_G  
V_BATT  
+
-
REGULATOR  
OSC  
Filter  
Filter  
Filter  
SLOPE  
OSC  
+
-
Filter  
Q
S
R
GND1  
SENSE  
GND1  
UVLOIN  
GND2  
+
-
MAX.Duty  
UVLO_BATT  
GND1  
GND2  
GND1  
Recommended  
ROHM  
MCR100JZH  
LTR50UZP  
Recommended  
ROHM  
MCR03EZP  
Figure 40. For non-using switching power supply controller  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
28/37  
TSZ22111 15 001  
BM60055FV-C  
I/O Equivalent Circuit  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Pin Function  
Internal Power  
Supply  
VCC2  
UVLOIN  
2
UVLOIN  
Output-side UVLO setting pin  
GND2  
VCC2  
Internal Power  
Supply  
OCIN  
3
4
Over current detection pin  
OCIN  
SCPIN  
SCPIN  
Short circuit detection pin  
GND2  
VCC2  
Internal Power  
Supply  
LVOFF  
5
6
7
LVOFF  
2-level turn off level setting pin  
GND2  
VCC2  
Internal Power  
Supply  
RTOFF  
RTOFF  
2-level turn off time setting pin  
GND2  
VCC2  
Internal Power  
Supply  
TCOMP  
TCOMP  
GND2  
Temperature compensation pin  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
29/37  
TSZ22111 15 001  
BM60055FV-C  
I/O Equivalent Circuit - continued  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Pin Function  
Internal power  
supply  
TO  
VCC2  
TO  
8
Constant current output pin /  
sensor voltage input pin  
TC  
TC  
9
Constant current setting resistor  
connection pin  
GND2  
VCC2  
PROOUT  
10  
PROOUT  
Soft turn-off pin /Gate voltage input pin  
GND2  
VCC2  
OUT1  
12  
OUT1  
Output pin  
GND2  
Internal power  
supply  
VCC2  
OUT2  
13  
OUT2  
GND2  
Output pin for miller clamp  
/ Gate voltage input pin  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
30/37  
BM60055FV-C  
I/O Equivalent Circuit - continued  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Pin Function  
FLT_UVLO  
16  
UVLO fault output pin  
FLT_UVLO  
OSFB  
FLT_SC
FLT_OT  
OSFB  
18  
Output state feedback output pin  
FLT_OT  
19  
OT fault output pin  
FLT_SC  
GND1  
20  
SCP fault output pin  
Internal power  
supply  
V_BATT  
INB  
17  
Control input pin B  
INA  
INB  
INA  
18  
GND1  
Control input pin A  
Internal power  
supply  
V_BATT  
FB  
22  
FB  
Error amplifier inverting input pin  
for switching controller  
GND1  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
31/37  
BM60055FV-C  
I/O Equivalent Circuit - continued  
Pin Name  
Pin  
No.  
Input Output Equivalent Circuit Diagram  
Pin Function  
Internal power  
supply  
V_BATT  
COMP  
COMP  
23  
Error amplifier output pin  
for switching controller  
GND1  
V_BATT  
VREG  
Internal power  
supply  
25  
Power supply pin for driving  
MOS FET  
of switching controller  
VREG  
FET_G  
GND1  
FET_G  
26  
MOS FET control pin  
for switching controller  
Internal power  
suppy  
V_BATT  
SENSE  
27  
SENSE  
GND1  
Current feedback resistor  
connection pin  
for switching controller  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
32/37  
BM60055FV-C  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating,  
increase the board size and copper area to prevent exceeding the Pd rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush  
current may flow instantaneously due to the internal powering sequence and delays, especially if the IC  
has more than one power supply. Therefore, give special consideration to power coupling capacitance,  
power wiring, width of ground wiring, and routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
33/37  
TSZ22111 15 001  
BM60055FV-C  
Operational Notes continued  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 42. Example of monolithic IC structure  
13. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
34/37  
TSZ22111 15 001  
BM60055FV-C  
Ordering Information  
-
B M 6  
0
0
5
5
F
V
C E 2  
Part Number  
Package  
FV : SSOP-B28W  
Product class  
C : for Automotive applications  
Packaging and forming specification  
E2 : Embossed tape and reel  
(SSOP-B28W)  
Marking Diagrams  
SSOP-B28W (TOP VIEW)  
Part Number Marking  
LOT Number  
B M 6 0 0 5 5  
1PIN MARK  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
35/37  
TSZ22111 15 001  
BM60055FV-C  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP-B28W  
(Max 9.55 (include.BURR))  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
36/37  
BM60055FV-C  
Revision History  
Date  
Revision  
001  
Changes  
New Release  
15.Feb.2016  
www.rohm.com  
TSZ02201-0818ABH00120-1-2  
15.Feb.2016 Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
37/37  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Datasheet  
BM60055FV-C - Web Page  
Part Number  
Package  
Unit Quantity  
BM60055FV-C  
SSOP-B28W  
1500  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
1500  
Taping  
inquiry  
Yes  

相关型号:

BM60059FV-C

内置绝缘电压2500Vrms、输入输出延迟时间450ns、最小输入脉冲宽度400ns的绝缘元件的栅极驱动器。内置故障信号输出功能、低电压时误动作防止功能(UVLO)、短路保护功能(SCP)、米勒钳位功能、温度监测功能、开关控制、栅极恒流驱动功能、栅极状态监视功能。
ROHM

BM60060FV-C

内置绝缘电压2500Vrms、输入输出延迟时间210ns、最小输入脉冲宽度90ns的绝缘元件的栅极驱动器。内置故障信号输出功能、防止低压故障功能(UVLO)、短路保护功能(SCP、内置检测电压温度特性校正功能)、检出短路时切断时间缩短功能、米勒钳位功能(MC)、温度监测功能、开关控制、栅极电阻切换功能、栅极状态监视功能。
ROHM

BM60210FV-C

High Voltage High & Low-side, Gate Driver
ROHM

BM60210FV-CE2

High Voltage High & Low-side, Gate Driver
ROHM

BM60212FV-C

BM60212FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置内置镜夹功能/低电压时误动作防止功能(UVLO)。
ROHM

BM60213FV-C

BM60213FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置低电压时误动作防止功能(UVLO)。
ROHM

BM60213FV-CE2

Buffer/Inverter Based MOSFET Driver,
ROHM

BM6031B

Supplementary Fuseblocks BM Series
COOPER

BM6031PQ

Supplementary Fuseblocks BM Series
COOPER

BM6031SQ

Supplementary Fuseblocks BM Series
COOPER

BM6032B

Supplementary Fuseblocks BM Series
COOPER

BM6032PQ

Supplementary Fuseblocks BM Series
COOPER