BM28723AMUV [ROHM]

BM1050AF是组合了应对高次谐波的功率因数校正(Power Factor Correction)转换器(以下简称PFC部)与DC/DC转换器(以下简称DC/DC部)的复合LSI。DC/DC部采用准谐振方式动作,有助于实现低EMI。BM1050AF内置650V耐压启动电路。PFC部、DC/DC部均外接开关MOSFET及电流检测电阻,可实现自由度高的电源设计。PFC部采用峰值电流控制。利用带AC电压过低补偿电路的乘法器、应对负载变动的电路、最大功率补偿电路等各种保护电路,提供合适的应用方案。此外,内置跳频功能,有助于实现低EMI。DC/DC部的准谐振方式为软开关动作,有助于实现低EMI。内置脉冲串模式,可降低轻负载时的功耗。内置了软启动功能、脉冲串功能、逐周期过电流限制、过电压保护、过负荷保护等各种保护功能。与微控制器间设有通信控制用端子、外部停止端子,可提供适用于各种应用的系统方案。;
BM28723AMUV
型号: BM28723AMUV
厂家: ROHM    ROHM
描述:

BM1050AF是组合了应对高次谐波的功率因数校正(Power Factor Correction)转换器(以下简称PFC部)与DC/DC转换器(以下简称DC/DC部)的复合LSI。DC/DC部采用准谐振方式动作,有助于实现低EMI。BM1050AF内置650V耐压启动电路。PFC部、DC/DC部均外接开关MOSFET及电流检测电阻,可实现自由度高的电源设计。PFC部采用峰值电流控制。利用带AC电压过低补偿电路的乘法器、应对负载变动的电路、最大功率补偿电路等各种保护电路,提供合适的应用方案。此外,内置跳频功能,有助于实现低EMI。DC/DC部的准谐振方式为软开关动作,有助于实现低EMI。内置脉冲串模式,可降低轻负载时的功耗。内置了软启动功能、脉冲串功能、逐周期过电流限制、过电压保护、过负荷保护等各种保护功能。与微控制器间设有通信控制用端子、外部停止端子,可提供适用于各种应用的系统方案。

通信 开关 控制器 微控制器 软启动 脉冲 功率因数校正 转换器
文件: 总82页 (文件大小:5460K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Middle Power Class-D Speaker Amplifier series  
17W+17W  
Full Digital Speaker Amplifier  
with built-in DSP  
BM28723AMUV  
General Description  
Features  
BM28723AMUV is a 17W+17W Class D stereo Speaker  
Amplifier with built-in DSP designed for TVs specifically  
for space-saving and low-power consumption.  
BM28723AMUV features BCD (Bipolar, CMOS, DMOS)  
process technology to achieve high efficiency. In addition,  
BM28723AMUV is packaged in a compact back surface  
heatsink type power package to attain low power  
consumption, low heat generation without external  
heatsink. The package Max output power is only  
17W+17W (When RL=8Ω) as compared to 20W+20W  
(When RL=8Ω) Max output power of package with  
external heat-sink.  
Built-in DSP (Digital Sound Processor) for Audio  
Signal Processing for TVs  
12-Band/ch BQ, 3-Band DRC, Pre-Scaler, Channel  
Mixer, Fine Master Volume, Hard Clipper, Level  
Meter, etc.  
Single Input System for Digital Audio Interface (No  
Master Clock Required)  
- I2S/LJ/RJ Format  
- LRCLK: 32kHz/44.1kHz/48kHz  
- BCLK: 32fs/48fs/64fs  
- SDATA: 16bit/20bit/24bit  
Single Output System for Digital Audio Interface  
The product satisfies all needs for drastic downsizing,  
low-profile structures and powerful high quality playback  
of sound systems.  
- I2S Format  
- SDATA: 16bit/20bit/24bit  
No Snubber Circuit Required (VCCP1, VCCP2≤22V)  
because of Slew Rate Control  
Output Feedback Circuit which prevents decrease of  
sound quality caused by change of power supply  
voltage, achieves low noise and low distortion, so no  
large electrolytic-capacitors for VCC bypass is  
required.  
Key Specifications  
Supply voltage range  
(VCCP1, VCCP2  
10V to 24V  
17W+17W (Typ)  
0.08[%] (Typ)  
)
Speaker output power  
(VCCP1, VCCP2=18V, RL=8Ω)  
THD+N  
Wide Range of Power Supply Input Voltage  
The monaural output reduces the number of  
external parts needed.  
Applications  
High Efficiency and Low Heat Dissipation allowing  
Miniaturization, Slim Design, and also Power Saving  
of the System  
Eliminates pop-noise generated during the power  
supply ON/OFF. High quality muting performance is  
achieved using the soft-muting technology.  
Built-in with Various Protection Functions for Highly  
Reliability Design  
TVs (LCD, OLED)  
Home Audio  
Desktop PC  
Amusement Equipment  
Electronic Music Equipment, etc.  
Typical Application Circuit  
- High Temperature Protection  
- Under Voltage Protection  
SP ch1  
(Lch)  
SP ch2  
(Rch)  
- Output Short Protection  
- DC Voltage Protection for speaker  
- Clock Stop Protection  
Small Package, it reduces surface mount area  
Package  
VQFN032V5050  
W(Typ) x D(Typ) x H(Max)  
5.00mm x 5.00mm x 1.00mm  
Digital  
Audio  
Source  
μ -con  
Figure 1. Typical Application Circuit  
VQFN032V5050  
Product structure: Silicon integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 14 001  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
1/79  
BM28723AMUV  
Pin Configuration and Block Diagram  
32  
31  
30  
29  
28  
27  
26  
25  
BSP1P OUT1P  
REG_G  
NC  
REG_G  
Control  
I/F  
1
2
3
4
5
6
7
8
2 wire I/F  
24  
23  
22  
21  
20  
19  
18  
17  
ADDR  
BCLK  
VCCP1  
Driver  
FET 1P  
GNDP1  
BSP1N  
I2S/LJ/RJ  
I/F  
Driver  
FET 1N  
LRCLK  
SDATA  
8 Times  
Over-  
Sampling  
Digital  
Filter  
OUT1N  
OUT2P  
PWM  
Modulator  
Audio  
DSP  
TEST1  
Driver  
FET 2P  
PLL  
BSP2P  
PLL  
REG15  
REG15  
Driver  
FET 2N  
GNDP2  
VCCP2  
Protection  
DGND  
DVDD  
10  
TEST2  
9
TEST3 SDATAO  
11 12  
BSP2N OUT2N  
15 16  
NC  
14  
13  
Figure 2. Pin Configurations and Block Diagram (Top View)  
Pin Description  
No.  
1
Name  
ADDR  
BCLK  
I/O  
No.  
9
Name  
TEST2  
DVDD  
I/O  
I
No.  
17  
18  
19  
20  
21  
22  
23  
24  
Name  
VCCP2  
GNDP2  
BSP2P  
OUT2P  
OUT1N  
BSP1N  
GNDP1  
VCCP1  
I/O  
-
No.  
25  
26  
27  
28  
29  
30  
31  
32  
Name  
OUT1P  
BSP1P  
REG_G  
NC  
I/O  
I
O
2
I
I
10  
11  
12  
13  
14  
15  
16  
-
-
I
O
-
3
LRCLK  
SDATA  
TEST1  
PLL  
TEST3  
SDATAO  
ERRORX  
NC  
I
I
4
I
O
O
-
O
O
I
5
I
RSTX  
MUTEX  
SCL  
I
6
I/O  
O
-
I
7
REG15  
DGND  
BSP2N  
OUT2N  
I
-
I
8
O
-
SDA  
I/O  
I: input, O: output, -: others  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
2/79  
TSZ22111 15 001  
BM28723AMUV  
I/O Equivalence Circuits  
Caution: The numerical value of I/O equivalence circuit is typical value, not guaranteed.  
Pin  
No.  
1
Pin  
Voltage  
0V  
Pin Name  
ADDR  
Pin Explanation  
I/O Equivalence Circuit  
2 wire Bus control slave address select pin  
10  
Select LSB data of slave address for 2 wire Bus  
control.  
Input High level to set LSB=1.  
Input Low level to set LSB=0.  
1
Select pull-down resistor after DVDD is applied.  
8
2
BCLK  
3.3V  
3.3V  
Digital audio signal input pin  
10  
Input bit clock of digital audio signal.  
Select pull-up resistor after DVDD is applied.  
2
8
3
4
LRCLK  
SDATA  
Digital audio signal input pin  
10  
Input LR clock of digital audio signal to LRCLK.  
Input data of digital audio signal to SDATA.  
Select pull-up resistor after DVDD is applied.  
3,4  
8
5
9
11  
TEST1  
TEST2  
TEST3  
-
-
-
Test pin  
10  
Connect to DGND.  
5,9,11  
8
6
PLL  
1V  
PLL filter pin  
10  
Connect filter circuit for PLL.  
6
8
7
REG15  
1.5V  
Internal power supply pin for digital circuit  
Connect capacitor.  
10  
Caution: The REG15 of BM28723AMUV should not be used  
as an external supply and cannot support voltage load from  
external source. Therefore, do not connect anything except  
capacitor for stabilization.  
7
8
8
10  
DGND  
DVDD  
0V  
3.3V  
GND pin for Digital I/O  
Power supply pin for Digital I/O.  
Connect capacitor.  
-
-
12  
SDATAO  
3.3V  
Digital audio signal output pin  
10  
Output data of digital audio signal.  
Select pull-up resistor after DVDD is applied.  
12  
8
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
3/79  
TSZ22111 15 001  
BM28723AMUV  
I/O Equivalence Circuits continued  
Pin  
No.  
13  
Pin Name  
ERRORX  
Pin Voltage  
3.3V  
Pin Explanation  
I/O Equivalence Circuit  
Error flag pin  
Connect pull-up resistor.  
High: Normal operation  
Low: Error  
500Ω  
13  
Caution: An error flag is indicated when Output Short  
Protection, DC Voltage Protection for speaker, and High  
Temperature Protection are activated. The flag shows the LSI  
condition during operation.  
8
Don’t use for the protection except this product.  
14  
28  
15  
NC  
-
No-Connection Pin  
Don’t connect anything.  
Boot strap pin, CH2 negative  
Connect a capacitor from pin to OUT2N.  
PWM output pin, CH2 negative  
-
BSP2N  
OUT2N  
-
17  
27  
16  
VCCP2 to 0V  
Connect pin to output LPF.  
15, 19  
16, 20  
Caution 1: If this pin is shorted to GND, the LSI may break.  
Caution 2: When Reset ON or Mute ON, all output transistors  
are OFF and output pins are pulled down by 10kΩ (Typ).  
17  
18  
19  
VCCP2  
GNDP2  
BSP2P  
VCCP2  
0V  
Power supply pin for CH2  
Power GND pin for CH2  
Boot strap pin, CH2 positive  
18  
-
Connect a capacitor from pin to OUT2P.  
PWM output pin, CH2 positive  
20  
OUT2P  
VCCP2 to 0V  
Connect pin to output LPF.  
Caution 1: If this pin is shorted to GND, the LSI may break.  
Caution 2: When Reset ON or Mute ON, all output transistors  
are OFF and output pins are pulled down by 10kΩ (Typ).  
21  
OUT1N  
VCCP1 to 0V  
PWM output pin, CH1 negative  
Connect pin to output LPF.  
24  
27  
Caution 1: If this pin is shorted to GND, the LSI may break.  
Caution 2: When Reset ON or Mute ON, all output transistors  
are OFF and output pins are pulled down by 10kΩ (Typ).  
22, 26  
21, 25  
22  
23  
24  
25  
BSP1N  
GNDP1  
VCCP1  
OUT1P  
-
0V  
Boot strap pin, CH1 negative  
Connect a capacitor from pin to OUT1N.  
Power GND pin for ch1  
VCCP1  
Power supply pin for ch1  
23  
VCCP1 to 0V  
PWM output pin, CH1 positive  
Connect to output LPF.  
Caution 1: If this pin is shorted to GND, the LSI may break.  
Caution 2: When Reset ON or Mute ON, all output transistors  
are OFF and output pins are pulled down by 10kΩ (Typ).  
26  
BSP1P  
-
Boot-strap pin of ch1 positive  
Connect a capacitor from pin to OUT1P.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
4/79  
TSZ22111 15 001  
BM28723AMUV  
I/O Equivalence Circuits - continued  
Pin  
No.  
27  
Pin  
Voltage  
5.7V  
Pin Name  
REG_G  
Pin Explanation  
I/O Equivalence Circuit  
24  
Internal power supply pin for gate driver  
Connect capacitor  
Caution: The REG_G pin of BM28723AMUV should not be used  
as an external supply and cannot support voltage load from external  
source. Therefore, do not connect anything except capacitor for  
stabilization.  
27  
350kΩ  
23  
29  
30  
31  
RSTX  
MUTEX  
SCL  
0V  
0V  
-
Reset pin for Digital circuit  
High: Reset OFF  
Low: Reset ON  
Select pull-down resistor after DVDD is applied.  
Speaker output mute control pin  
High: Mute OFF  
10  
29,30  
Low: Mute ON  
8
Select pull-down resistor after DVDD is applied.  
2 wire Bus control transmit clock input pin  
Input the transmit clock to this pin for 2 wire Bus  
control.  
31  
Caution: This pin is not corresponding to threshold tolerance of 5V.  
Refer to Absolute Maximum Ratings, Input voltage 1  
8
32  
SDA  
-
-
2 wire Bus control data input/output pin  
Input the transmit data to this pin for 2 wire Bus  
control.  
32  
Caution: This pin is not corresponding to threshold tolerance of  
5V.Refer to Absolute Maximum Ratings, Input voltage 1  
8
-
EXP-PAD  
There is no problem when EXP-PAD is left  
unconnected. However, connecting it to ground is  
recommended because the radiation performance  
will be degraded.  
-
The connection to any place except for the ground is  
prohibited.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
5/79  
TSZ22111 15 001  
BM28723AMUV  
Absolute Maximum Ratings (Ta=25°C)  
Parameter  
Supply Voltage  
Symbol  
VCCMAX  
VDVDDMAX  
Limit  
30  
4.5  
Unit  
V
V
Conditions  
Pin 17, 24(Note 1) (Note 2)  
Pin 10(Note 1)  
-0.3 to  
Input Voltage 1  
Pin Voltage 1  
Pin Voltage 2  
VIN1  
VPIN1  
VPIN2  
V
V
V
Pin 1 to 5, 9, 11, 29 to 32(Note 1)  
Pin 27(Note 1)  
VDVDD+0.3(Note 2)  
-0.3 to +7.0  
-0.3 to  
Pin 16, 20, 21, 25(Note 1) (Note 4)  
+VCCMAX  
-0.3 to VOUT1P+7  
-0.3 to VOUT1N+7  
-0.3 to VOUT2P+7  
-0.3 to VOUT2N+7  
-0.3 to +2.1  
-0.3 to +7.0  
-25 to +85  
Pin 26(Note 1) (Note 5)  
Pin 22(Note 1) (Note 5)  
Pin Voltage 3  
VPIN3  
V
Pin 19(Note 1) (Note 5)  
Pin 15(Note 1) (Note 5)  
Pin 7(Note 1)  
Pin Voltage 4  
VPIN4  
VERR  
Topr  
Tstg  
Tj  
V
V
°C  
°C  
°C  
Open-drain Pin Voltage  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature Range  
Pin 13(Note 1)  
-55 to +150  
-40 to +150  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 1) The voltage that can be applied reference to GND (Pin 8, 18, 23).  
(Note 2) Do not exceed Tj=150°C.  
(Note 3) Refer to Recommended Operating Ratings for VDVDD  
.
(Note 4) This LSI should be used within AC peak limits at all conditions. Overshoot should be 30V with reference to GND.  
Undershoot should be 10ns and 30V with reference to VCCP1 and VCCP2. (Refer to Figure 3-1)  
(Note 5) This LSI should be used in lower than this rating by all means.  
Undershoot should be 10ns and (VOUT1P or VOUT1N or VOUT2P or VOUT2N) +7V. (Refer to Figure 3-2)  
Overshoot to OUT1P or  
OUT1N or OUT2P or OUT2N  
7V (Max)  
VCCP1,  
VCCP2  
Overshoot to  
GND  
30V (Max)  
Undershoot to Vcc  
30V(Max)  
BSP1P  
BSP1N  
BSP2P  
BSP2N  
Undershoot to OUT1P or  
OUT1N or OUT2P or OUT2N  
7V (Max)  
OUT1P  
OUT1N  
OUT2P  
OUT2N  
GND  
10ns  
10ns  
Figure 3-1  
Figure 3-2  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
6/79  
TSZ22111 15 001  
BM28723AMUV  
Thermal Resistance(Note 6)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 8)  
2s2p(Note 9)  
VQFN032V5050  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 7)  
θJA  
138.9  
11  
39.1  
5
°C/W  
°C/W  
ΨJT  
(Note 6) Based on JESD51-2A (Still-Air)  
(Note 7) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 8) Using a PCB board based on JESD51-3.  
(Note 9) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70μm  
Thermal Via(Note 10)  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20mm  
Φ0.30mm  
Top  
Copper Pattern  
Bottom  
Thickness  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
70μm  
Footprints and Traces  
70μm  
74.2mm x 74.2mm  
35μm  
74.2mm x 74.2mm  
(Note 10) This thermal via connects with the copper pattern of all layers.  
Recommended Operating Conditions (Ta=-25°C to +85°C)  
Parameter  
Supply voltage  
Symbol  
VCCP1  
VCCP2  
Limit  
10 to 24  
10 to 24  
Unit  
V
V
Conditions  
Pin 24(Note 1) (Note 2)  
Pin 17(Note 1) (Note 2)  
VDVDD  
Pin 10 (Note 1)  
3.0 to 3.6  
6.4  
V
Ω
Ω
Ω
21V<VCCP1, VCCP2≤24V(Note 2)  
14V<VCCP1, VCCP2≤21V(Note 2)  
VCCP1, VCCP2≤14V(Note 2)  
Minimum load impedance  
RL  
4.8  
3.6  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
7/79  
TSZ22111 15 001  
BM28723AMUV  
Electrical Characteristics  
(Unless otherwise specified Ta=25°C, VCCP1, VCCP2=18V, VDVDD=3.3V, VRSTX=3.3V, VMUTEX=3.3V, f=1kHz, fs=48kHz, RL=8Ω,  
DSP: Through, Driver Gain (GDRV) =26dB, LC Filter: L=10μH, Cg=0.47μF, Without Snubber circuit)  
Limit  
Typ  
Parameter  
Total Circuit  
Symbol  
Unit  
Conditions  
Min  
Max  
Pin 17, 24, -infinity dBFS input,  
No load  
ICC1  
IDD1  
ICC2  
-
-
-
45  
9
90  
19  
mA  
mA  
μA  
Circuit Current 1  
(Normal mode)  
Pin 10, -infinity dBFS input, No load  
Pin 17, 24, -infinity dBFS input,  
No load, VRSTX=0V, VMUTEX=0V  
Pin 10, -infinity dBFS input, No load  
VRSTX=0V, VMUTEX=0V  
110  
400  
Circuit Current 2  
(Reset mode)  
IDD2  
-
2.5  
7.0  
mA  
Open-drain Pin  
VERR  
-
-
0.8  
V
Pin 13, IOUT=0.5mA  
Low Level Voltage  
High Level Input Voltage  
Low Level Input Voltage  
Input Pull-up Resistance  
Input Pull-down Resistance  
Input Current  
VIH  
VIL  
RUP  
RDN  
2.5  
0
22  
31  
-
-
33  
47  
3.3  
0.8  
-
V
V
kΩ  
kΩ  
Pin 1 to 5, 9, 11, 29 to 32  
Pin 1 to 5, 9, 11, 29 to 32  
Pin 2 to 4, VIN=0V  
-
Pin 1, 29, 30, VIN=3.3V  
IIL  
-1  
0
-
μA  
Pin 31, 32, VIN=0V  
(SCL, SDA pin)  
Input Current  
(SCL, SDA pin)  
IIH  
-
0
1
μA  
Pin 31, 32, VIN=3.3V  
Speaker Amplifier Output  
VCCP1, VCCP2=13V,  
THD+N=10%  
VCCP1, VCCP2=16V,  
THD+N=10%  
Maximum Output Power 1(Note 11)  
PO1  
PO2  
-
-
10  
15  
-
-
W
W
Maximum Output Power 2(Note 11)  
VCCP1, VCCP2=12V, PO=1W,  
BW=AES17 (20Hz -22kHz)  
With snubber circuit  
PO=1W, 1kHz BPF  
Total Harmonic Distortion(Note 11)  
THD  
-
0.08  
-
%
Crosstalk(Note 11)  
CT  
PSRR  
VNO  
60  
-
90  
60  
-
-
-
dB  
dB  
Vripple=1Vrms, f=1kHz  
PSRR(Note 11)  
-Infinity dBFS input, BW=A-Weight  
Output Noise Voltage(Note 11)  
-
150  
μVrms  
fPWM1  
fPWM2  
fPWM3  
-
-
-
256  
352.8  
384  
-
-
-
kHz  
kHz  
kHz  
fS=32 kHz  
fS=44.1 kHz  
fS=48 kHz  
PWM (Pulse Width Modulation)  
Frequency  
(Note 11) These Parameters show the typical performance of device and depend on board layout, parts, and power supply.  
The standard value is in mounting device and parts on surface of ROHM’s board directly.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
8/79  
TSZ22111 15 001  
BM28723AMUV  
Typical Performance Curves  
Unless otherwise specified Ta=25°C, VCCP1, VCCP2=18V, VDVDD=3.3V, VRSTX=3.3V, VMUTEX=3.3V, f=1kHz, fs=48kHz, RL=8Ω,  
DSP: Through, Driver Gain (GDRV) =26dB  
Measured by ROHM designed 4 layers board(Note 12)  
180  
160  
140  
120  
100  
80  
60  
50  
40  
30  
20  
10  
0
VRSTX=VMUTEX=0V  
RL=8Ω  
No Signal  
VRSTX=3.3V  
RL=8Ω  
No Signal  
VMUTEX=3.3V  
60  
40  
VMUTEX=0V  
20  
0
8
10 12 14 16 18 20 22 24 26  
Supply Voltage: VCCP1, VCCP2 [V]  
8
10 12 14 16 18 20 22 24 26  
Supply Voltage: VCCP1,VCCP2 [V]  
Figure 4. Circuit Current vs Supply Voltage  
Figure 5. Circuit Current vs Supply Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
RL=8Ω  
RL=6Ω  
RL=6Ω  
RL=4Ω  
RL=4Ω  
RL=8Ω  
RL=8Ω,6Ω : VCCP1,VCCP2=18V  
RL=8Ω,6Ω : VCCP1,VCCP2=18V  
RL=4Ω  
: VCCP1,VCCP2=14V  
RL=4Ω  
: VCCP1,VCCP2=14V  
0
5
10  
15 20  
0
5
10  
Output Power [W/CH]  
15  
20  
Output Power [W/CH]  
Figure 6. Efficiency vs Output Power  
Figure 7. Circuit Current vs Output Power  
(Note 12) 100mmx100mmx1.6mm FR4 4-layer glass epoxy board Cu Thickness 35μm/70μm/70μm/35μm For Application Evaluation Board  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
9/79  
TSZ22111 15 001  
BM28723AMUV  
Typical Performance Curves - continued  
Unless otherwise specified Ta=25°C, VCCP1, VCCP2=18V, VDVDD=3.3V, VRSTX=3.3V, VMUTEX=3.3V, f=1kHz, fs=48kHz, RL=8Ω,  
DSP: Through, Driver Gain (GDRV) =26dB  
Measured by ROHM designed 4 layers board(Note 12)  
RL=8Ω  
Po=1W  
RL=8Ω  
Po=1W  
20ms/div  
2ms/div  
Speaker output  
Speaker output  
MUTEX(2V/div)  
MUTEX(2V/div)  
Figure 8. Waveform at soft start  
Figure 9. Waveform at soft mute  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
25  
20  
15  
10  
5
RL=8Ω  
RL=8Ω  
VCCP1,VCCP2=18V  
VCCP1,VCCP2=12V  
THD+N=10%  
THD+N=1%  
VCCP1,VCCP2=24V  
0
10  
12  
14  
16  
18  
20  
22  
24  
0
5
10  
15  
20  
Supply Voltage: VCCP1,VCCP2 [V]  
Output Power [W/CH]  
Figure 10. Output Power vs Supply Voltage  
Figure 11. Circuit Current vs Output Power  
Caution 1: Dotted line means exceeding maximum junction temperature.In that case heat dissipation measures such as the heat sink are necessary separately.  
Caution 2: Use this LSI in 20W or less output power even with heat dissipation measures.  
(Note 12) 100mmx100mmx1.6mm FR4 4-layer glass epoxy board Cu Thickness 35μm/70μm/70μm/35μm For Application Evaluation Board  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
10/79  
TSZ22111 15 001  
31.Aug.2018 Rev.001  
BM28723AMUV  
Typical Performance Curves - continued  
Unless otherwise specified Ta=25°C, VCCP1, VCCP2=18V, VDVDD=3.3V, VRSTX=3.3V, VMUTEX=3.3V, f=1kHz, fs=48kHz,  
DSP: Through, Driver Gain (GDRV) =26dB  
Measured by ROHM designed 4 layers board(Note 12)  
30  
25  
20  
15  
10  
5
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
RL=6Ω  
VCCP1,VCCP2=18V  
RL=6Ω  
VCCP1,VCCP2=12V  
THD+N=10%  
THD+N=1%  
VCCP1,VCCP2=21V  
0
10  
12  
14  
16  
18  
20  
22  
0
5
10  
15  
20  
Output Power [W/CH]  
Figure 13. Circuit Current vs Output Power  
Supply Voltage: VCCP1,VCCP2 [V]  
Figure 12. Output Power vs Supply Voltage  
Caution 1: Dotted line means exceeding maximum junction temperature.In that case heat dissipation measures such as the heat sink are necessary separately.  
Caution 2: Use this LSI in 20W or less output power even with heat dissipation measures.  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
20  
18  
16  
14  
12  
10  
8
RL=4Ω  
RL=4Ω  
VCCP1,VCCP2=12V  
VCCP1,VCCP2=14V  
THD+N=10%  
THD+N=1%  
6
4
2
0
0
5
10  
15  
20  
10  
12  
14  
16  
Supply Voltage: VCCP1,VCCP2 [V]  
Output Power [W/CH]  
Figure 14. Output Power vs Supply Voltage  
Figure 15. Circuit Current vs Output Power  
Caution 1: Dotted line means exceeding maximum junction temperature.In that case heat dissipation measures such as the heat sink are necessary separately.  
Caution 2: Use this LSI in 15W or less output power even with heat dissipation measures.  
(Note 12) 100mmx100mmx1.6mm FR4 4-layer glass epoxy board Cu Thickness 35μm/70μm/70μm/35μm For Application Evaluation Board  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
11/79  
TSZ22111 15 001  
31.Aug.2018 Rev.001  
BM28723AMUV  
Typical Performance Curves - continued  
Unless otherwise specified Ta=25°C, VCCP1, VCCP2=18V, VDVDD=3.3V, VRSTX=3.3V, VMUTEX=3.3V, f=1kHz, fs=48kHz, RL=8Ω,  
DSP: Through, Driver Gain (GDRV) =26dB  
Measured by ROHM designed 4 layers board(Note 12)  
0
-20  
30  
28  
26  
24  
22  
20  
Po=1W  
B.W. none  
RL=8Ω  
No Signal  
B.W. none  
RL=8Ω  
OUT1  
OUT2  
-40  
-60  
OUT1  
OUT2  
-80  
-100  
-120  
-140  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
Frequency [Hz]  
10k  
100k  
Frequency [Hz]  
Figure 16. Noise FFT vs Frequency  
Figure 17. Voltage Gain vs Frequency  
10  
1
10  
B.W. 20Hz to 22kHz  
B.W. 20Hz to 22kHz  
Po=1W  
RL=8Ω  
RL=8Ω  
1
f=6kHz  
f=1kHz  
0.1  
0.01  
0.1  
OUT1  
z
OUT2  
f=100Hz  
0.01  
0
0
1
10  
100  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Output Power [W]  
Figure 18. THD+N vs Output Power  
Figure 19. THD+N vs Frequency  
(Note 12) 100mmx100mmx1.6mm FR4 4-layer glass epoxy board Cu Thickness 35μm/70μm/70μm/35μm For Application Evaluation Board  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
12/79  
TSZ22111 15 001  
BM28723AMUV  
Typical Performance Curves - continued  
Unless otherwise specified Ta=25°C, VCCP1, VCCP2=18V, VDVDD=3.3V, VRSTX=3.3V, VMUTEX=3.3V, f=1kHz, fs=48kHz, RL=8Ω,  
DSP: Through, Driver Gain (GDRV) =26dB  
Measured by ROHM designed 4 layers board(Note 12)  
120  
Po=1W  
RL=8Ω  
OUT1 to OUT2  
100  
OUT2 to OUT1  
80  
60  
40  
20  
0
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Figure 20. Crosstalk vs Frequency  
(Note 12) 100mmx100mmx1.6mm FR4 4-layer glass epoxy board Cu Thickness 35μm/70μm/70μm/35μm For Application Evaluation Board  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
13/79  
TSZ22111 15 001  
BM28723AMUV  
Typical Performance Curves - continued  
Unless otherwise specified Ta=25°C, VCCP1, VCCP2=18V, VDVDD=3.3V, VRSTX=3.3V, VMUTEX=3.3V, f=1kHz, fs=48kHz, RL=6Ω,  
DSP: Through, Driver Gain (GDRV) =26dB  
Measured by ROHM designed 4 layers board(Note 12)  
0
-20  
30  
28  
26  
24  
22  
20  
Po=1W  
B.W. none  
RL=6Ω  
No Signal  
B.W. none  
RL=6Ω  
OUT1  
OUT2  
-40  
-60  
OUT1  
OUT2  
-80  
-100  
-120  
-140  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Frequency [Hz]  
Figure 21. Noise FFT vs Frequency  
Figure 22. Voltage Gain vs Frequency  
10  
1
10  
1
B.W. 20Hz to 22kHz  
B.W. 20Hz to 22kHz  
Po=1W  
RL=6Ω  
RL=6Ω  
f=6kHz  
0.1  
0.01  
0.1  
0.01  
OUT1  
z
f=1kHz  
OUT2  
f=100Hz  
0
0
1
10  
100  
10  
100  
1k  
10k  
100k  
Output Power [W]  
Frequency [Hz]  
Figure 23. THD+N vs Output Power  
Figure 24. THD+N vs Frequency  
(Note 12) 100mmx100mmx1.6mm FR4 4-layer glass epoxy board Cu Thickness 35μm/70μm/70μm/35μm For Application Evaluation Board  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
14/79  
TSZ22111 15 001  
BM28723AMUV  
Typical Performance Curves - continued  
Unless otherwise specified Ta=25°C, VCCP1, VCCP2=18V, VDVDD=3.3V, VRSTX=3.3V, VMUTEX=3.3V, f=1kHz, fs=48kHz, RL=6Ω,  
DSP: Through, Driver Gain (GDRV) =26dB  
Measured by ROHM designed 4 layers board(Note 12)  
120  
OUT1 to OUT2  
Po=1W  
RL=6Ω  
100  
OUT2 to OUT1  
80  
60  
40  
20  
0
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Figure 25. Crosstalk vs Frequency  
(Note 12) 100mmx100mmx1.6mm FR4 4-layer glass epoxy board Cu Thickness 35μm/70μm/70μm/35μm For Application Evaluation Board  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
15/79  
TSZ22111 15 001  
BM28723AMUV  
Typical Performance Curves - continued  
Unless otherwise specified Ta=25°C, VCCP1, VCCP2=18V, VDVDD=3.3V, VRSTX=3.3V, VMUTEX=3.3V, f=1kHz, fs=48kHz, RL=4Ω,  
DSP: Through, Driver Gain (GDRV) =26dB  
Measured by ROHM designed 4 layers board(Note 12)  
30  
28  
26  
24  
22  
20  
0
-20  
Po=1W  
B.W. none  
RL=4Ω  
No Signal  
B.W. none  
RL=4Ω  
OUT1  
OUT2  
-40  
-60  
OUT1  
OUT2  
-80  
-100  
-120  
-140  
10  
100  
1k  
Frequency [Hz]  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Figure 26. Noise FFT vs Frequency  
Figure 27. Voltage Gain vs Frequency  
10  
10  
B.W. 20Hz to 22kHz  
B.W. 20Hz to 22kHz  
Po=1W  
RL=4Ω  
RL=4Ω  
1
0.1  
1
0.1  
f=6kHz  
OUT1  
z
f=1kHz  
OUT2  
f=100Hz  
0.01  
0.01  
0.01  
0.1  
1
10  
100  
10  
100  
1k  
10k  
100k  
Output Power [W]  
Frequency [Hz]  
Figure 28. THD+N vs Output Power  
Figure 29. THD+N vs Frequency  
(Note 12) 100mmx100mmx1.6mm FR4 4-layer glass epoxy board Cu Thickness 35μm/70μm/70μm/35μm For Application Evaluation Board  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
16/79  
TSZ22111 15 001  
BM28723AMUV  
Typical Performance Curves - continued  
Unless otherwise specified Ta=25°C, VCCP1, VCCP2=18V, VDVDD=3.3V, VRSTX=3.3V, VMUTEX=3.3V, f=1kHz, fs=48kHz, RL=4Ω,  
DSP: Through, Driver Gain (GDRV) =26dB  
Measured by ROHM designed 4 layers board(Note 12)  
120  
OUT1 to OUT2  
Po=1W  
RL=4Ω  
100  
80  
60  
40  
20  
0
OUT2 to OUT1  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
Figure 30. Crosstalk vs Frequency  
(Note 12) 100mmx100mmx1.6mm FR4 4-layer glass epoxy board Cu Thickness 35μm/70μm/70μm/35μm For Application Evaluation Board  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
17/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function  
1
DSP Block Functional Overview  
No. Function  
Specification  
1
Pre-Scaler  
•Lch/Rch become same set point.  
•+48dB to -79dB (0.5dB step), -infinity dB  
•It is able to set mixing of Left and Right channel which are inputted digital signal  
to Audio DSP  
2
Channel Mixer  
•Selectable in L, (L+R) /2, L-R, R, MUTE  
3
12 Band BQ  
•12 Band Bi-quad (BQ) type filter.  
•Only 5 coefficients are required. (b0, b1, b2, a1, a2)  
•Lch/Rch dependent or independent.  
•The Filter types which can be attained are  
Peaking/Low-shelf/High-shelf/Low-pass/High-pass/All-pass/Notch.  
•There is soft transition function.  
4
5
Fine Master Volume  
3 Band DRC  
•Lch/Rch become same set point or independent set.  
•+24dB to -103dB (0.125dB step), -infinity dB  
•There are soft transition and soft mute functions.  
•There are 3 band DRC.  
•It is possible to set the slope of compression level.  
6
7
Post-scaler  
•Lch/Rch become same set point.  
•+48dB to -79dB (0.5dB step), -infinity dB  
•Lch/Rch become independent set point.  
•+0.7dB to -0.8dB (0.1dB step)  
Fine Post-scaler  
8
9
DC cut HPF  
Hard Clipper  
•1st order HPF  
•Cut OFF frequency fc: 1Hz  
•Lch/Rch become same set point.  
•Clip level: 0dB to -22.5dB (-0.1dB step)  
I2S  
LJ  
RJ  
Fine  
post  
scaler/  
ch  
Fine  
Master  
Volum  
e/ch  
Pre  
Scaler  
Chanel  
Mixer  
DC cut  
HPF  
Hard  
Clipper  
3Band  
DRC  
Post  
Scaler  
12Band  
/ch BQ  
Input1  
Main  
Figure 31. DSP Block Diagram  
About description of the register setting the register value is written at hex.  
Also, the value with blue background is initial value.  
2
RSTX Pin(Note 13) (Note 14) , MUTEX Pin Function  
RSTX  
(29pin)  
MUTEX  
(30pin)  
Speaker Output  
DSP Block  
Reset ON  
(OUT1P, OUT1N, OUT2P, OUT2N)  
High-Z_low(Note 15)  
Low  
Low  
Low  
(Low power consumption)  
High-Z_low(Note 15)  
Normal operation  
(Mute ON)  
High  
(Mute ON) (Note 16)  
Normal operation  
(Mute OFF)  
Normal operation  
High  
Low  
High  
High  
(Mute OFF)  
Don’t use.  
(Note 13) When RSTX is set to low, internal registers are initialized.  
(Note 14) If VDVDD is under 3V, RSTX is set to low once for 10ms (Min), and set to high again. Then DSP is needed to set parameter again.  
(Note 15) This means that all output transistors are OFF and output pins are pulled down by 10kΩ (Typ).  
(Note 16) Speaker output becomes High-Z_low after elapse of PWM stop time after setting MUTEX Low.  
Refer to PWM Sampling Frequency in next page for PWM stop time.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
18/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function - continued  
3
PWM Sampling Frequency  
PWM sampling frequency of speaker output, Soft mute time, Soft start time and PWM stop time depend on sampling  
frequency (fS) of the digital audio signal. These transition times are changed by sending the data to select address 0x15[1:0].  
Default=0x3  
Sampling  
PWM Sampling  
Frequency  
0x15[1:0]  
Value  
Soft Mute  
Time  
Soft Start  
Time  
PWM Stop  
Time  
frequency (fS)  
0x0  
0x1  
0x2  
0x3  
0x0  
0x1  
0x2  
0x3  
0x0  
0x1  
0x2  
0x3  
10.7ms  
21.4ms  
42.7ms  
85.4ms  
11.7ms  
23.3ms  
46.5ms  
92.9ms  
16.1ms  
32.1ms  
64.1ms  
128.1ms  
10.7ms  
10.7ms  
10.7ms  
10.7ms  
11.7ms  
11.7ms  
11.7ms  
11.7ms  
16.1ms  
16.1ms  
16.1ms  
16.1ms  
86ms  
106ms  
125ms  
162ms  
93ms  
48kHz  
384kHz  
352.8kHz  
256kHz  
113ms  
135ms  
177ms  
116ms  
148ms  
178ms  
241ms  
44.1kHz  
32 kHz  
4
Setting Driver Gain (GDRV  
)
It can change the driver gain of the output FET driver part.  
Set it depending on speaker used because the maximum output level changes by speaker load impedance value.  
When set the driver gain, change after setting MUTEX pin to Low (>PWM stop time).  
Pop noise may be occurred if the driver gain is set while MUTEX=High.  
Default=0x03  
Driver Gain  
Select Address  
Value  
GDRV (BTL)  
26dB (Typ)  
32dB (Typ)  
0xF3[7:0]  
0xF3[7:0]  
0x03  
0x0B  
Regarding 0xF3 address,  
Prohibit to set except data 0x03 and 0x0B to address 0xF3.  
The setting value is fixed by transmitting 0xF8=0x01. If the setting value of address 0xF3 is changed, certainly set  
0xF8=0x01 again. In addition, wait time more than 10ms is necessary after 0xF8=0x01 setting.  
5
Setting of When Monaural output  
When monaural output setting is applied as shown in Application Circuit Example3, set 0xF2 register during start-up (Refer  
to P.62 20. The wake-up Procedure of power-up).  
Setting 0xF2=0x0A, DC voltage protection function at the speaker of OUT2 side can be disabled, therefore it is possible to  
use Application Circuit Example3.  
Default=0x02  
Select Address  
0xF2[7:0]  
Value  
0x02  
0x0A  
PWM Output  
Stereo  
Monaural  
0xF2[7:0]  
Regarding 0xF2 address,  
Prohibit to set except data 0x02 and 0x0A to address 0xF2.  
The setting value is fixed by transmitting 0xF8=0x01. If the setting value of address 0xF2 is changed, certainly set  
0xF8=0x01 again. In addition, wait time more than 10ms is necessary after 0xF8=0x01 setting.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
19/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function - continued  
6
Level Diagram  
V
IN G  
DSP   
(1)DSPGain 10  
G
20  
DRV  
(2)DriverGain(BTL) 10  
20  
RL  
rDS rDC  
(3)Loss   
2
RL  
(1)  
(2)  
(3)  
Feedback  
VCCP1  
VCCP2  
rDS  
ON  
OFF  
ON  
LPF  
LPF  
rDC  
rDC  
RL  
C
Feedback  
driver  
VIN  
DSP  
(GDSP  
PWM  
Modulator  
FET  
)
rDS  
(GDRV  
)
OFF  
Cg  
Cg  
VCCP1,VCCP2  
The Duty ratio of  
PWM output is  
different from that  
of the DSP output.  
VDVDD  
0V  
0V  
PWM output  
from DSP  
PWM output  
at FET  
VCCP1,VCCP2  
VCCP1,VCCP2  
VDVDD  
VO_DSP  
0V  
VO_SP  
0V  
DSP output signal  
(It converts it into the analog signal. )  
FET output signal  
(It converts it into the  
analog signal. )  
-(VCCP1,VCCP2  
)
Speaker output signal  
(BTL output)  
VIN  
GDSP  
GDRV  
: I2S input level [dBFS]  
: DSP gain [dB]  
: Feedback driver gain [dB]  
V
IN G  
DSP   
VO _ DSP 10  
[Vrms]  
20  
VCCP1,VCCP2 : Power supply voltage for power amp [V]  
VDVDD  
RL  
rDS  
: Power supply voltage for DSP [V]  
: Speaker load resistance [Ω]  
: Output FET on resistance [Ω]  
(Typ=0.23Ω)  
G
DRV  
VO _ SP VO _ DSP 10  
  
RL  
rDS rDC RL  
20  
[Vrms]  
2
rDC  
: Direct current resistance of coil [Ω]  
V
IN G  
20  
G
DRV  
DSP   
2  
10  
10  
  
RL  
rDS rDC  
20  
2
R  
L   
[W]  
P
O(THD1%)  
RL  
P
O(THD10%)=P  
×1.25  
O(THD1%)  
[W]  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
20/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function - continued  
7
2 Wire Bus Control Signal Specification  
7.1 Electrical Characteristics and Timing of Bus Line and I/O Stage  
SDA  
tBUF
t
tF  
t
HD;STA  
t
t
R
tLOW  
SCL  
t
t
t
tT  
tO  
t
HD;STA  
tSU;STA  
tHIGH  
tSU;DAT  
tHD;STO  
HD;DAT  
P
S
Sr  
P
Figure 32  
SDA and SCL bus line characteristics(Note 18) (Unless otherwise specified Ta=25°C, VDVDD=3.3V)  
High Speed Mode  
Parameter  
SCL Clock Frequency  
Bus Free Time between a STOP and START Condition  
Hold Time (repeated) START Condition.  
After this period, the first clock pulse is generated.  
Low Period of the SCL Clock  
High Period of the SCL Clock  
Set-up Time for a Repeated START Condition  
Data Hold Time  
Symbol  
Unit  
Min  
0
1.3  
Max  
400  
-
1
2
fSCL  
tBUF  
kHz  
μs  
3
tHD;STA  
0.6  
-
μs  
4
5
6
7
8
tLOW  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tR  
tF  
tSU;STO  
Cb  
1.3  
0.6  
-
-
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
pF  
0.6  
-
-
-
0(Note 17)  
250  
Data Set-up Time  
9
Rise Time of both SDA and SCL Signals  
Fall Time of both SDA and SCL Signals  
Set-up Time for STOP Condition  
20+0.1Cb  
20+0.1Cb  
0.6  
300  
300  
-
10  
11  
12  
Capacitive Load for each Bus Line  
-
400  
Caution: The above-mentioned numerical values are all the values corresponding to VIHmin and the VILmax level.  
(Note 17) To exceed an undefined area on the fall-edge of SCL (Refer to VIH min of the SCL signal) , the transmitting set like SoC should internally offer the  
holding time of 300ns or more for the SDA signal.  
(Note 18) SCL and SDA pin is not corresponding to threshold tolerance of 5V.  
Use it within Input voltage 1 of the absolute maximum rating.  
7.2 Command Interface  
2 wire Bus Control is used for command interface between host CPU. It not only writes but also it is possible to read it  
excluding a part of register. In addition to Slave Address, set and write 1 byte of Select Address to read out the data. 2 wire  
bus Slave mode format is illustrated below.  
MSB  
Slave Address  
LSB  
MSB  
Select Address  
LSB  
MSB  
LSB  
S
A
A
Data  
A
P
Figure 33  
S:  
Start Condition  
Slave Address:  
Data of 8bit in total is sent with a bit of Read mode (High) or Write mode (Low) after slave  
Address (7bit) set by ADDR pin. (MSB first)  
A:  
Acknowledge-bit will be added byte per byte in the data that acknowledge is sent and received.  
Low will be sent and received when the data is correctly sent and received.  
There was no acknowledgement for High.  
Select Address:  
Use 1byte of select address. (MSB first)  
Data:  
P:  
Sent and received data-byte data. (MSB first)  
Stop Condition  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
21/79  
TSZ22111 15 001  
31.Aug.2018 Rev.001  
BM28723AMUV  
Command Interface - continued  
MSB  
6
5
LSB  
SDA  
SCL  
Start Condition  
Stop Condition  
SDASCL=High  
SDASCL=High  
Figure 34  
7.3 Slave Address  
•While ADDR Pin is Low  
MSB  
LSB  
A6  
1
A5  
0
A4  
A3  
0
A2  
0
A1  
0
A0  
0
R/W  
1/0  
0
•While ADDR Pin is High  
MSB  
LSB  
A6  
1
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
A0  
1
R/W  
1/0  
Figure 35  
7.4 Writing of Data  
Basic forma
S
Slave Address  
A
A
Select Address  
A
Data  
A
A
P
: Master to Slave,  
: Slave to Master  
•Auto-increment format  
Slave Address  
S
Select Address  
A
Data 1  
Data 2  
A
Data 3…N  
A
P
: Master to Slave,  
Figure 36  
: Slave to Master  
7.5 Reading of Dat
First of all, the address (0x20 in the example) for reading is written in the register of the 0xD0 address at the time of reading.  
In the following stream, data is read after the slave address. Do not return the acknowledge when ending the reception.  
S
Slave Address  
0x80  
A
A
Req_Addr  
0xD0  
A
Select Address  
0x20  
A
P
(ex.)  
S
Slave Address  
0x81  
Data 1  
0x**  
A
Data 2  
0x**  
A
A
Data N  
0x**  
Ā
P
(ex.)  
: Master to Slave,  
: Slave to Master, A: With Acknowledge, Ā: Without Acknowledge  
Figure 37  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
22/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function - continued  
8
Format of Digital Audio Signal  
LRCLK: It is L/R Clock Input Signal  
It is available of 32kHz/44.1kHz/48kHz with those clocks (fS) that are same to the sampling frequency (fS).  
The data of the left channel and the right channel for one sample is input to this section.  
BCLK: It is Bit Clock Input Signal  
It is used for the latch of data in everyone bit by sampling frequency’s 32 times frequency (32fS) or 48 times frequency  
(48fS) or 64 times sampling frequency (64fS). However, if the 32fS is selected, the data length is held static of 16bit.  
SDATA: It is Data Input Signal  
It is amplitude data. Word length is different according to the resolution of the input digital audio signal.  
It is available of 16bit/20bit/24bit.  
The digital input format is available of I2S, Left-justified and Right-justified formats.  
The figure below shows the timing chart of each transmission mode.  
SDATAO: Audio Data Output After DSP Processing  
This output syncs with inputted LRCLK and BCLK.  
Output format is available of I2S format only.  
BCLK Clock 64fS  
I2S 64fs Format  
LRCLK  
Left Channel Right Channel  
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64  
1
BCLK  
MSB  
S 141312 1110 9 8  
LSB  
1 0  
MSB LSB  
S 141312 1110 9 8 7 6 5 4 3 2 1 0  
SDATA  
7
6 5 4 3  
2
16bit Mode  
20bit Mode  
24bit Mode  
16bit Mode  
20bit Mode  
24bit Mode  
Left-Justified 64fs Format  
LRCLK  
Left Channel Right Channel  
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64  
1
BCLK  
MSB  
SDATA S 14 131211 10 9 8 7  
LSB  
0
LSB  
MSB  
S 14 131211 10 9 8 7 6 5 4 3 2 1 0  
6
5 4 3 2  
1
16bit Mode  
20bit Mode  
24bit Mode  
16bit Mode  
20bit Mode  
24bit Mode  
Right-Justified 64fs Format  
LRCLK  
Left Channel Right Channel  
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64  
1
BCLK  
MSB  
S 1413 1211 10 9 8  
LSB  
1 0  
MSB LSB  
S 1413 1211 10 9 8 7 6 5 4 3 2 1 0  
7
6 5 4 3  
2
SDATA  
16bit Mode  
20bit Mode  
24bit Mode  
16bit Mode  
20bit Mode  
24bit Mode  
Figure 38  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
23/79  
TSZ22111 15 001  
BM28723AMUV  
8
Format of Digital Audio Signal - continued  
BCLK Clock 48fS  
I2S 48fs Format  
LRCLK  
Left Channel  
Right Channel  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1  
BCLK  
MSB  
S 1413121110 9  
LSB  
MSB  
LSB  
8
7
6
5
4
3
2
1
0
S 1413121110 9 8 7 6 5 4 3 2 1 0  
SDATA  
16bit Mode  
20bit Mode  
24bit Mode  
16bit Mode  
20bit Mode  
24bit Mode  
Left-Justified 48fs Format  
LRCLK  
Left Channel  
Right Channel  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48  
BCLK  
MSB  
S 1413121110 9  
LSB  
MSB  
LSB  
8
7
6
5
4
3
2
1
0
S 1413121110 9 8 7 6 5 4 3 2 1 0  
SDATA  
16bit Mode  
20bit Mode  
24bit Mode  
16bit Mode  
20bit Mode  
24bit Mode  
Right-Justified 48fs Format  
LRCLK  
Left Channel  
Right Channel  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48  
BCLK  
MSB  
S 1413121110 9  
LSB  
MSB  
LSB  
8
7
6
5
4
3
2
1
0
S 1413121110 9 8 7 6 5 4 3 2 1 0  
SDATA  
16bit Mode  
20bit Mode  
24bit Mode  
16bit Mode  
20bit Mode  
24bit Mode  
Figure 39  
BCLK Clock 32fS  
I2S 32fs Format  
LRCLK  
Left Channel  
Right Channel  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1  
BCLK  
MSB  
S 1413121110 9  
LSB MSB  
LSB  
8
7
6
5
4
3
2
1
0
S 1413121110 9 8 7 6 5 4 3 2 1 0  
SDATA  
16bit Mode  
16bit Mode  
Left-Justified 32fs Format  
LRCLK  
Left Channel  
Right Channel  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
BCLK  
MSB  
S 1413121110 9  
LSB MSB  
LSB  
8
7
6
5
4
3
2
1
0
S 1413121110 9 8 7 6 5 4 3 2 1 0  
SDATA  
16bit Mode  
16bit Mode  
Right-Justified 32fs Format  
LRCLK  
Left Channel  
Right Channel  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
BCLK  
MSB  
S 1413121110 9  
LSB MSB  
LSB  
8
7
6
5
4
3
2
1
0
S 1413121110 9 8 7 6 5 4 3 2 1 0  
SDATA  
16bit Mode  
16bit Mode  
Figure 40  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
24/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function - continued  
9
Format Setting for Digital Audio Signa
Set BCLK clock fs, word length and data format by transmitting command according to the inputted digital audio signal.  
SDATAO output word length is able to be set independently of input word length.  
It is available of I2S format only.  
BCLClock  
Default=0x0  
Select Address  
0x03[5:4]  
Value  
0x0  
Explanation of Operation  
Explanation of Operation  
Explanation of Operation  
Explanation of Operation  
64fS  
0x1  
0x2  
0x3  
48fS  
32fS  
Don't use  
DatFormat  
Default=0x0  
Select Address  
0x03[3:2]  
Value  
0x0  
I2S format  
0x1  
0x2  
0x3  
Left-justified format  
Right-justified format  
Don't use  
Word Length  
Default=0x2  
Select Address  
0x03[1:0]  
Value  
0x0  
16 bit  
0x1  
0x2  
0x3  
20 bit  
24 bit  
Don't use  
SDATAO OutpuWord Length  
Default=0x2  
Select Address  
0x78[1:0]  
Value  
0x0  
16 bit  
0x1  
0x2  
0x3  
20 bit  
24 bit  
Don't use  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
25/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function - continued  
10 Audio Interface Format and Timing  
Electrical characteristics and timing of BCLK, LRCLK and SDATA  
1/fLRCLK  
VIH  
LRCLK  
VIL  
Tr  
Tf  
1/fBCLK  
VIH  
VIL  
BCLK  
Tr  
Tf  
Figure 41. Clock Timing  
THLRCLK  
VIH  
VIL  
LRCLK  
TLLRCLK  
tHD;LR  
tSU;LR  
THBCLK  
VIH  
VIL  
BCLK  
TLBCLK  
tSU:SD  
tHD:SD  
VIH  
VIL  
SDATA  
LRCLK DUTY=fLRCLK x (THLRCLK or TLLRCLK  
)
BCLK DUTY =fBCLK x (THBCLK or TLBCLK  
)
Figure 42. Audio Interface Timing  
Limit  
No.  
Parameter  
LRCLK Frequency  
BCLK Frequency  
Symbol  
fLRCLK  
fBCLK  
Unit  
kHz  
Min  
32  
-10%  
2.048  
-10%  
20  
20  
20  
20  
40  
Max  
48  
+10%  
3.072  
1
2
MHz  
+10%  
3
4
5
6
7
8
Setup Time, LRCLK(Note 19)  
Hold Time, LRCLK(Note 19)  
Setup Time, SDATA  
Hold Time, SDATA  
LRCLK, DUTY Ratio  
BCLK, DUTY Ratio  
LRCLK, BCLK,  
tSU;LR  
tHD;LR  
tSU;SD  
tHD;SD  
dLRCLK  
dBCLK  
-
-
-
-
60  
60  
ns  
ns  
ns  
ns  
%
40  
%
9
Tr,Tf  
-
12  
ns  
Rise Time, Fall Time  
(Note 19) This regulation is to keep rising edge of LRCLK and rising edge of BCLK from overlapping.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
26/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function - continued  
11 Power Supply Start-up Sequence  
Power up VCCP1, VCCP2 simultaneously.  
The setup order of VCCP1  
(and VCCP2) and DVDD does  
VCCP1,VCCP2  
DVDD  
VCCP1  
VCCP2  
DVDD  
not have the constraint  
3V  
t
t
Keep RSTX to low during the  
section which LRCLK,BCLK is  
unstable in.  
Input stable LRCLK,BCLK in the technical limit  
range to show in P.26 after RSTX =high .  
Take measures to show it in P.63 when input of  
BCLK,LRCLK becomes unstable.  
After DVDD  
rises, Input  
BCLK and  
LRCLK.  
BCLK  
LRCLK  
SDATA  
Set RSTX to high after input more than  
1ms in stable LRCLK,BCLK in the  
technical limit range to show to P.26  
After DVDD  
rises and 10 or  
more ms  
More than  
10ms  
passes, Input  
stable LRCLK  
and BCLK.  
where after set  
RSTX to high.  
RSTX  
t
More than  
1ms  
After set  
RSTX to high  
and 1 or more  
ms passes,  
please send 2  
wire command.  
SDA  
SCL  
t
Data  
transmis  
sion  
Data  
transmi  
ssion  
Refer to  
P.62  
Refer to  
P.62  
(No.3 to  
(No.5 to  
No.17)  
No.4)  
More than 100ms  
MUTEX  
Set MUTEX to high.  
t
TWAIT: Refer to P.74  
OUT1P  
OUT1N  
OUT2P  
OUT2N  
t
Soft start time  
Speaker  
BTL output  
(After LC filter)  
t
Figure 43. Power Supply Start-up Sequence  
Caution 1: Refer to P.62 20. The wake-up Procedure of power-up.  
Caution 2: Make sure to input Low to RSTX pin from external at the time power up DVDD.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
27/79  
TSZ22111 15 001  
31.Aug.2018 Rev.001  
BM28723AMUV  
Description of Function - continued  
12 Power Supply Shut-down Sequence  
Power down VCCP1, VCCP2 simultaneously.  
VCCP1, VCCP2  
VCCP1  
VCCP2  
DVDD  
DVDD  
t
After PWM stop time, please stop I2S signal.  
BCLK  
LRCLK  
SDATA  
t
SetMUTEXlow.  
MUTEX  
t
SCL  
SDA  
t
Wait Time  
After PWM stop time, set RSTX=low  
RSTX  
t
PWM stop  
time(Refer to  
P.19)  
OUT1P  
OUT1N  
OUT2P  
OUT2N  
t
Soft mute time  
t
Speaker  
BTL output  
(After LC filter)  
Figure 44. Power Supply Shut-down Sequence  
Caution: When power supply shut-down sequence is executed, before doing RSTX Highy Low, set MUTEX High Low and hold Wait time > PWM stop  
time.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
28/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function - continued  
13 Protection Function  
About ERRORX pin (Pin 13)  
If LSI detects Output short protection or DC voltage protection or high temperature protection, LSI informs abnormality with  
ERRORX pin as Low level in the protection function operation. This is a function indicating the abnormal condition of this  
product.  
ERRORX pin does not become Low in the case of detecting Under voltage protection or Clock stop protection.  
Protection  
Function  
Speaker  
ERRORX  
Detecting & Releasing Condition  
PWM Output Output(Note 20)  
Detecting current=10A (Typ)/5A (Min, Tj=85°C)  
/3.9A (Min, Tj=150°C)  
Output Short  
Protection  
Detecting  
condition  
High-Z_low  
Low  
(Latch)  
(Latch) (Note 21)  
DC Voltage  
Protection  
Detecting PWM output Duty ratio=0% or 100%  
High-Z_low  
Low  
(Latch)  
condition  
for 42ms (Typ, fS=48kHz) and over  
(Latch) (Note 21)  
Detecting  
condition  
Chip temperature to be more than 150°C (Min)  
High-Z_low  
High  
Temperature  
Protection  
Low  
Releasing  
condition  
Normal  
operation  
Chip temperature to be less than 120°C (Min)  
Detecting Power supply voltage to be below  
condition 7.0V (Typ)/6.0V (Min)/8.0V (Max)  
High-Z_low  
Under Voltage  
Protection  
High  
Releasing Power supply voltage to be above  
Normal  
condition  
7.5V (Typ)/6.5V (Min)/8.5V (Max)  
operation  
BCLK signal has stopped more than constant period  
of time.  
LRCLK signal has stopped more than constant period  
of time.  
BCLK frequency becomes lower than constant  
frequency speed.  
BCLK frequency becomes higher than constant  
frequency speed.  
Detecting  
condition  
High-Z_low  
Clock Stop  
Protection  
Clock stop protection is detected if any of the  
condition described above happens.  
Refer to P.58 to P.61.  
High  
LRCLK has not stopped more than constant period  
of time. And BCLK frequency keeps between the  
Releasing constant frequency speed more than maximum  
condition 60ms. Refer to P.58 to P. 61.  
Normal  
operation  
(Note 20) The ERRORX pin is Nch open-drain output. The ERRORX output pin should be pulled-up by external resistor.  
(Note 21) Once LSI is latched, the circuit will not be released automatically even after the abnormal condition has been removed.  
The following procedure is available for recovery.  
To let LSI return from latch state, set MUTEX pin to Low once for more than PWM stop time and then return it back to high.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
29/79  
TSZ22111 15 001  
BM28723AMUV  
13 Protection Function - continued  
13.1 Output Short Protection (Short to the Power Supply)  
This LSI has the output short protection circuit that mutes the PWM output when the PWM output is short-circuited to the  
power supply unintentionally.  
Detecting condition - It will detect when MUTEX pin is set high and the current that flows in the PWM output pin  
becomes over 10A (Typ) more than 0.3μs (Typ). The PWM output immediately transition to the  
state of High-Z_low if detected, and LSI does the latch.  
Releasing method - Set MUTEX pin to low once for more than PWM stop time (Refer to P.19) and then return it back  
to high.  
Short to VCC  
Release from short to VCC  
OUT1P (25pin)  
OUT1N (21pin)  
OUT2P (20pin)  
OUT2N (16pin)  
t
Normal operation after released  
from Latch state.  
PWM outIC latches  
with High-Z_low.  
Over current  
10A(Typ)  
t
PWM stop time  
ERRORX (13pin)  
t
t
0.3µs(Typ)  
MUTEX(30pin)  
Latch release  
Figure 45. Output Short Protection (Short to the power supply) Sequence  
13.2 Output Short Protection (Short to GND)  
This LSI has the output short protection circuit that mutes the PWM output when the PWM output is short-circuited to  
GND unintentionally.  
Detecting condition - It will detect when MUTEX pin is set high and the current that flows in the PWM output pin  
becomes over 10A (Typ) more than 0.4μs (Typ). If Output short protection is detected, the  
PWM output immediately transition to the state of High-Z_low, and LSI latches the stop state.  
Releasing method - Set MUTEX pin to low once for more than PWM stop time (Refer to P.19) and then return it back  
to high.  
Short to GND  
Release from short to GND  
OUT1P (25pin)  
OUT1N (21pin)  
OUT2P (20pin)  
OUT2N (16pin)  
t
Normal operation after released  
from latch state.  
PWM out: IC latches with High -  
Z_low state.  
Over current  
10A(Typ)  
t
PWM stop time  
ERRORX (13pin)  
t
0.4µs(Typ)  
MUTEX30pin)  
Latch release  
t
Figure 46. Output Short Protection (Short to GND) Sequence  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
30/79  
TSZ22111 15 001  
BM28723AMUV  
13 Protection Function continued  
13.3 DC Voltage Protection for Speaker  
When the DC voltage is applied to the speaker unintentionally, the embedded DC Voltage Protection circuit mute the  
PWM output circuit for preventing the speaker from destruction.  
Detecting condition - It will detect when MUTEX pin is set to high and PWM output Duty ratio=0% or 100% over  
42ms (fs=48kHz). The PWM output immediately transition to the state of High-Z_low if detected,  
and LSI does the latch.  
Releasing method - Set MUTEX pin to low once for more than PWM stop time (Refer to P.19) and then return it back  
to high.  
Abnormal state release  
PWM out locked duty=100% abnormal state.  
OUT1P (25pin)  
OUT1N (21pin)  
OUT2P (20pin)  
OUT2N (16pin)  
PWM out: IC latches with High -Z_low state  
t
.
Normal operation after released latch state  
Speaker  
BTL Output  
(After LC Filter)  
t
Soft start  
Protection starts by a DC  
voltage having been  
applied to a speaker  
more than 42ms  
PWM stop time  
ERRORX(13pin)  
t
MUTEX(30pin)  
Latch release  
t
Figure 47. DC Voltage Protection in the Speaker Sequence  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
31/79  
TSZ22111 15 001  
BM28723AMUV  
13 Protection Function continued  
13.4 High Temperature Protection  
This LSI has the high temperature protection circuit that prevents from thermal runaway under an abnormal state for  
the temperature of the chip to exceed Tj=150°C(Min).  
Detecting condition - It will detect when MUTEX pin is set to high and the temperature of the chip becomes 150°C  
(Min) or more. The speaker output immediately transitions to the state of High-Z_low.  
Releasing condition - It will release when MUTEX pin is set to high and the temperature of the chip becomes 120°C  
(Min) or less. If this protection is released, the PWM output pin return to output PWM signal  
state (Auto recovery).  
Temparature of  
IC chip junction ()  
150 °C(Min)  
120°C(Min)  
t
OUT1P (25pin)  
OUT1N (21pin)  
OUT2P (20pin)  
OUT2N (16pin)  
PWM out: High-Z_low  
t
Speaker  
BTL output  
(After LC filter)  
t
ERRORX (13pin)  
t
Figure 48. High Temperature Protection Sequence  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
32/79  
TSZ22111 15 001  
31.Aug.2018 Rev.001  
BM28723AMUV  
13 Protection Function continued  
13.5 Under Voltage Protection  
This LSI has under voltage protection circuit that makes PWM output mutes when extreme drop of the power supply  
voltage is detected.  
Detecting condition - It will detect when MUTEX pin is set to high and the power supply voltage becomes lower than  
7.0V (Typ). The speaker output immediately transitions to the state of High-Z_low when  
detected.  
Releasing condition - It will be released when MUTEX pin is set to high and the power supply voltage becomes  
more than 7.5V (Typ). If this protection is released, the PWM output pin return to output PWM  
signal state (Auto recovery).  
VCCP1 (24pin)  
VCCP2 (17pin)  
7.5V(Typ)  
7.0V(Typ)  
t
OUT1P (25pin)  
OUT1N (21pin)  
OUT2P (20pin)  
OUT2N (16pin)  
PWM output : High-Z_low  
t
Speaker  
BTL output  
(After LC filter)  
t
ERROR(13pin)  
t
Figure 49. Under Voltage Protection Sequence  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
33/79  
TSZ22111 15 001  
31.Aug.2018 Rev.001  
BM28723AMUV  
13 Protection Function continued  
13.6 Clock Stop Protection  
This LSI has the clock stop protection circuit that makes PWM output mutes when the BCLK and LRCLK frequency of  
the digital audio signal are stopped or become high frequency or become low frequency more than given period.  
Detecting condition - If BCLK frequency is stop or high or low, LRCLK frequency is stop.  
The speaker output immediately transitions to the state of High-Z_low when detected.  
Releasing condition - If BCLK and LRCLK are normal input over 60ms (Max) and more.  
After 60ms (Max) from releasing, the PWM output pin return to output PWM signal state after  
soft start (Auto recovery).  
High/Low frequency or stop  
Normal input  
BCLK  
LRCLK  
60ms(Max)  
60ms(Max)  
Internal  
Error  
flag  
t
OUT1P  
OUT1N  
PWM output : High-Z_low  
OUT2P  
OUT2N  
t
Soft start time  
Speaker  
BTL output  
(After LC filter)  
t
Figure 50. Clock Stop Protection Sequence  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
34/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function - continued  
14 Digital Sound Processing (DSP)  
The digital sound processing (DSP) part of BM28723AMUV is composed of special hardware which is optimal for TV and  
Mini/Micro Component System. BM28723AMUV does the following processing using this special DSP.  
Pre-Scaler, Channel mixer, 12 Band BQ, Fine Master Volume, 3 Band DRC, Fine Post-scaler,  
DC Cut HPF, Hard Clipper  
ThoutlinansignfloothDSpart  
Data width:  
Machine cycle:  
Multiplier:  
32 bit (DATA RAM)  
20.3ns (1024fS, fs=48kHz)  
32x24 56 bit  
Data  
RAM  
In  
MUX  
Adder:  
Data RAM:  
56+56 56 bit  
512x32 bit  
0
Coef  
RAM  
Coefficient RAM:  
Sampling frequency:  
512x24 bit  
fs=32k, 44.1k, 48kHz  
MUX  
Decorder  
ADD  
Acc  
Out  
I2S  
LJ  
RJ  
Fine  
post  
scaler/  
ch  
Fine  
Pre  
Scaler  
Chanel  
Mixer  
DC cut  
HPF  
Hard  
Clipper  
3Band  
DRC  
Post  
Scaler  
12Band  
/ch BQ  
Input1  
Main  
Master  
Volum  
e/ch  
Figure 51  
Digital signal from 16bit to 24bit is inputted to the DSP but extends 8bit (+48dB) as the overflow margin to the MSB side.  
When the processing is over this range, it will be clip processing inside DSP. Note that in case of commonly used second  
IIR-type (BQ) filter is the digital filter, output of the internal multiplier and adder will consume a lot of overflow margin.  
The output of multipliers and the adder might exceed +48dB by the  
coefficient of a1, a2, b0, b1, and b2. In that case, data becomes  
saturation output. Therefore, the output of the filter cannot obtain  
the aimed characteristic.  
X[n]  
Y[n]  
b0  
b1  
b2  
Z-1  
Z-1  
Z-1  
X[n-1]  
a1  
a2  
Y[n-1]  
Z-1  
X[n-2]  
Y[n-2]  
-1 is multiplied by the coefficient of a1 and a2.  
Considering efficiency of calculation at DSP.  
Direct form 1  
Figure 5
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
35/79  
TSZ22111 15 001  
BM28723AMUV  
14 Digital Sound Processing (DSP) - continued  
The management of audio data and coefficient data is as follows by each block.  
Decimal point  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
Extension bit Data[22:0]  
Decimal point  
9
1
8
0
7
6
5
4
3
2
1
0
S
Audio data  
Data of DSP part  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
S
EXT. bit  
Coefficient data[20:0] for BQ etc.  
Coefficient data of DSP part  
Coefficient data  
Figure 53  
14.1 Bypass  
There are commands to bypass selected DSP functions. This bypass can be set even the setting values are remained for  
each function; therefore, it is easy to check ON/OFF of the sound effect.  
There are three bypass options, which are 12Band BQ, 3Band DRC or the whole DSP except Hard Clipper.  
I2S  
LJ  
RJ  
Fine  
Master  
Volum  
e/ch  
Fine  
post  
scaler/  
ch  
12Ban  
d
/ch BQ  
Pre  
Scaler  
Chanel  
Mixer  
Post  
Scaler  
DC cut  
HPF  
3Band  
DRC SW2  
Hard  
Clipper  
Input1  
Main  
SW3  
SW1  
Figure 54  
Default=0x0  
Select Address  
0x02[2:0]  
bit  
2
Explanation of Operation  
Bypass of 12 Band BQ (SW1) 0: Normal 1: Bypass  
Bypass of 3 Band DRC (SW2) 0: Normal 1: Bypass  
1
Bypass of DSP (SW3)  
(Except Hard Clipper)  
0: Normal 1: Bypass  
0
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
36/79  
TSZ22111 15 001  
BM28723AMUV  
14 Digital Sound Processing (DSP) - continued  
14.2 Pre-Scaler  
To overflow when the level sometimes is full scale entry in case of the digital signal which is inputted to the sound DSP and  
does surround and equalizer processing, it adjusts an entry gain with Pre-Scaler. The adjustable-range can be set from  
+48dB to -79dB with the 0.5dB step. (Lch/Rch dependent control)  
Pre-Scaler does not have the soft transition function.  
Default=0x60  
Select Address  
0x16[7:0]  
Explanation of Operation  
Value  
0x00  
0x01  
Gain  
+48dB  
+47.5dB  
0x60  
0x61  
0x62  
0dB  
-0.5dB  
-1dB  
0xFE  
0xFF  
-79dB  
-  
14.3 Channel SetuwitPhasInversioFunction ChanneMixe
This function mixes the sound on the left channel and the right channel of the digital signal which was inputted to the DSP.  
Here, it changes stereo signal to monaural. In addition, the phase-inversion, the mute on each channel can be set.  
Channel Mixer  
L
L
±1  
Lch  
(L+R)/2  
1/2  
Input  
I2S  
LJ  
RJ  
L-R  
Pre-  
Scaler  
-
R
R
±1  
Rch  
Mute  
0
Figure 55  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
37/79  
TSZ22111 15 001  
BM28723AMUV  
14.3 Channel SetuwitPhasInversioFunction ChanneMixe1- continued  
DSP Input: The data inputted into Lch of DSP is inverted.  
Default=0x0  
Select Address  
0x17[7]  
Value  
Explanation of Operation  
0x0  
Normal  
Invert  
0x1  
DSP Input: The data inputted into Lch of DSP is mixed.  
Default=0x1  
Select Address  
0x17[6:4]  
Value  
Explanation of Operation  
0x0  
Mute  
0x1  
0x2  
0x3  
0x4  
Lch data input  
Rch data input  
(Lch+Rch)/2 data input  
Lch-Rch data input  
DSP input: The data inputted into Rch of DSP is inverted.  
Default=0x0  
Select Address  
0x17[3]  
Value  
Explanation of Operation  
0x0  
Normal  
Invert  
0x1  
DSP Input: The data inputted into Rch of DSP is mixed.  
Default=0x2  
Select Address  
0x17[2:0]  
Value  
Explanation of Operation  
0x0  
Mute  
0x1  
0x2  
0x3  
0x4  
Lch data input  
Rch data input  
(Lch+Rch)/2 data input  
Lch-Rch data input  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
38/79  
TSZ22111 15 001  
BM28723AMUV  
14 Digital Sound Processing (DSP) - continued  
14.4 Bi-quad Type Filter  
This LSI has the following blocks that have a feature of the Bi-quad type filter:  
12 Band BQ, Crossover filter of 3Band DRC block and BQ of the soft transition.  
The shapes that can be used are peaking filter, low shelf filter, high shelf filter, low pass filter, high pass filter, all path filter  
and notch filter.  
Setting the coefficient of the digital filter (b0, b1, b2, a1, a2) in the LSI by transmitting to the coefficient RAM via command.  
12 Band BQ have the soft transition function. Note that the detailed order of the parameter setting refers to the following  
BQ setting method.  
Select of BQ independent or dependent setting  
Default=0x0  
Select Address  
0x60[4]  
Value  
0x0  
Explanation of Operation  
L/R dependent setting  
0x1  
L/R independent setting  
0x60[4] setting note.  
Reset all the Bi-quad type filters when you change the setting of 0x60[4].  
The Bi-quad type filters for which the re-setting is necessary are 18 BQs of BQ1-12, DRC1,DRC2 and DRC3 (Each DRC  
has 2 band).  
Select the destination of BQ soft transition  
Default=0x00  
Select Address  
Explanation of Operation  
0x51[4:0]  
Destination  
12BAND(1)  
12BAND(2)  
12BAND(3)  
12BAND(4)  
12BAND(5)  
12BAND(6)  
12BAND(7)  
12BAND(8)  
12BAND(9)  
12BAND(10)  
Destination  
12BAND(11)  
12BAND(12)  
Value  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
Value  
0x0A  
0x0B  
Select of soft transition  
Default=0x0  
Select Address  
0x53[6]  
Value  
0x0  
Explanation of Operation  
Use soft transition  
0x1  
Not use soft transition  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
39/79  
TSZ22111 15 001  
BM28723AMUV  
14.4 Bi-quad Type Filter continued  
Select the destination channel of soft transition  
Default=0x0  
Select Address  
0x53[5:4]  
Value  
Explanation of Operation  
Lch and Rch  
0x0  
0x1  
0x2  
0x3  
Lch  
Rch  
Don't use  
Setting of soft transition time  
Default=0x3  
Select Address  
0x53[3:2]  
Value  
0x0  
Explanation of Operation  
Explanation of Operation  
Explanation of Operation  
2.7ms  
0x1  
0x2  
0x3  
5.3ms  
10.7ms  
21.3ms  
Setting of transition filter wait time  
Default=0x0  
Select Address  
0x53[1:0]  
Value  
0x0  
2.7ms  
0x1  
0x2  
0x3  
5.3ms  
10.7ms  
21.3ms  
Setting of soft transition start  
Default=0x0  
Select Address  
0x58[0]  
Value  
0x0  
Stop the soft transition operation  
Start the soft transition operation (After the transition is completed, it  
becomes 0x0 by the automatic operation)  
0x1  
This register is write only.  
Read-out soft transition status  
Read only  
Select Address  
Explanation of Operation  
0x59[0]  
0x1 is read at the time of executing soft transition  
0x0 is read at the time of except executing soft transition  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
40/79  
TSZ22111 15 001  
BM28723AMUV  
14 Digital Sound Processing (DSP) - continue
14.5 Volume Settin
Volume is from +24dB to -103dB, and can be selected by the step of 0.125dB. And it is also possible to be set to -infinity  
dB. L/R independent or L/R dependent can be selected by 0x10[7]. At the time of switching of Volume, soft transition is  
executed. Soft transition duration is optional with the command.  
It becomes the following formula at the transition from AdB to BdB. C is soft transition duration selected by 0x15[7:6]  
command.  
A
B
20  
  
20  
10 10  
C  
Transition time =  
[ms]  
Setting of soft transition time  
Default=0x0  
Select Address  
Value  
0x0  
Explanation of Operation  
0x15[7:6]  
21.3ms  
42.7ms  
85.3ms  
Don't use  
0x1  
0x2  
0x3  
Lch/dependent volume setting  
Default=0xFF  
Select Address  
0x11[7:0]  
Explanation of Operation  
Value  
0x00  
0x01  
Gain  
+24dB  
+23.5dB  
0x30  
0x31  
0x32  
0dB  
-0.5dB  
-1dB  
0xFE  
0xFF  
-103dB  
-  
Fine volume setting function becomes effective by sending the following command.  
When using this command, it is possible to set a volume in 0.125dB step.  
When L/R dependent volume setting, 0x11[7:0] is enable.  
When L/R independent volume setting, 0x11[7:0] is the volume setting of Lch.  
Lch/dependent fine volume setting  
It is possible to use with the 0.5dB step in changing only 0x11[7:0] when 0x10[1:0]=0x0.  
Default=0x0  
Select Address  
0x10[1:0]  
Value  
0x0  
Explanation of Operation  
0dB  
0x1  
0x2  
0x3  
-0.125dB  
-0.25dB  
-0.375dB  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
41/79  
TSZ22111 15 001  
BM28723AMUV  
14.5 Volume Setting - continue
The Lch/Rch independent volume setting and the dependent volume setting can be selected by 0x10[7] command.  
When Lch/Rch independent volume set, the volume setting of Lch is the setting of 0x10[1:0] and 0x11, and the volume  
setting of Rch is the settings of 0x10[5:4] and 0x12.  
Setting of Lch/Rch independent volume  
Default=0x0  
Select Address  
0x10[7]  
Value  
0x0  
Explanation of Operation  
Lch/Rch dependent volume setting  
Lch/Rch independent volume setting  
0x1  
Setting of volume (Setting of Rch volume, It is enable only to set an independent volume. )  
Default=0xFF  
Select Address  
0x12[7:0]  
Explanation of Operation  
Value  
0x00  
0x01  
Gain  
+24dB  
+23.5dB  
0x30  
0x31  
0x32  
0dB  
-0.5dB  
-1dB  
0xFE  
0xFF  
-103dB  
-  
Fine volume setting function becomes effective by sending the following command.  
When using this command, it is possible to set a volume in 0.125dB step.  
Setting of fine volume (Setting of Rch fine volume, It is enable only to set an independent volume. )  
It is possible to use with the 0.5dB step in changing only 0x12[7:0] when 0x10[5:4]=0.  
Default=0x0  
Select Address  
0x10[5:4]  
Value  
0x0  
Explanation of Operation  
0dB  
0x1  
0x2  
0x3  
-0.125dB  
-0.25dB  
-0.375dB  
It is possible to use with the 0.125dB step in setting both 0x10[1:0] and 0x11[7:0].  
In case of 0x10[1:0]=0x0, it becomes the set value of 0x11[7:0].  
In case of 0x10[1:0]=0x1, it becomes the -0.125dB set value of 0x11[7:0].  
In case of 0x10[1:0]=0x2, it becomes the -0.25dB set value of 0x11[7:0].  
In case of 0x10[1:0]=0x3, it becomes the -0.375dB set value of 0x11[7:0].  
Since the transfer of 0x11 fixes it in any case, the soft transition can be beforehand begun in the set value for the direct  
following of the purpose in setting 0x11 after setting in 0x10.  
0x10[5:4] is the same function as 0x10[1:0], 0x12 is the same function as 0x11 when Lch/Rch independently set for Rch.  
0x11  
0x100x11  
0x11  
0x100x11  
Volume  
Volume  
When use 0.5dB steps  
When use 0.125dB steps  
Figure 56  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
42/79  
TSZ22111 15 001  
BM28723AMUV  
14 Digital Sound Processing (DSP) - continue
14.6 3 Band DRC  
This DRC is used in order to prevent speaker protection and the clip output of a large audio signal.  
There are three kinds of DRC (DRC1, DRC2, and DRC3) , and no clip can be output to each three BAND.  
DRC1, DRC2 and DRC3 can set up two threshold levels. Moreover, it is possible to also change one slope.  
3 Band DRC block diagram  
Cross over  
AGC_TH1, Slope α  
Filters  
DRC4  
DRC3  
HPF  
Input  
Output  
AGC_TH1, Slope α  
DRC1  
LPF  
AGC_TH1, Slope α  
DRC2  
APF  
Figure 57  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
43/79  
TSZ22111 15 001  
BM28723AMUV  
14.6 3 Band DRC - continue
DRC transition figure  
Input  
A_TIME  
AGC_TH  
Volume  
Level  
Output  
AGC_TH  
R_TIME  
R_TIME  
A_RATE  
R_RATE  
A_TIME  
In here A_TIME is the time for detecting time before gain starts to decrease. And A_RATE decides the slope of gain  
compression.  
On the other hand, R_TIME is the time for detecting before starting to release gain operation. And R_RATE decides slope  
of release gain.  
Figure 58  
DRC1, DRC2, DRC3 can be set 2 types of threshold (AGC_TH1 and AGC_TH2) as shown below. If output is in between  
AGC_TH1 and AGC_TH2, a slant for output gain can be made. If input become bigger and output over AGC_TH2, output  
gain doesn’t have slant and become constant level. Slope setting (α) is calculated by AGC_TH1, AGC_TH2 and the value  
of input gain to DRC block for reaching AGC_TH2 (xdB).  
The operation between AGC_TH1 and AGC_TH2 is named as DRC1slope and DRC2slope and DRC3slope  
.
And the operation over AGC_TH2 is named as DRC1comp and DRC2comp and DRC3comp  
.
Each operation can be set ON/OFF, A_TIME, A_RATE, R_TIME, R_RATE respectively.  
For example, DRC1 do not have slope curve when setting DRC1slope OFF and DRC1comp ON.  
DRC4 can be set only AGC_TH2 therefore DRC4 do not have slope function.  
DRC input-and-output gain characteristics  
[dB]  
VO  
The formula which asks for Slope α is described below.  
α changes into 8bit Hex data of the complement of 2 the value  
α =0x00  
calculated by calculation.  
102y0 102x0  
α
AGC_TH2  
y=-6dB  
   
128  
10TH 102x0  
20  
AGC_TH1  
-12dB  
α =0x80  
TH is AGC_TH1. x is input level. y is output level.  
Ex) It asks for α at the time of AGC_TH1 = -12dB, x = 0dB y = -6dB  
106 10200  
Slope function Compressor  
Area Area  
20  
   
128  
102102 10200  
85 .266  
VOinf  
0x55  
0x55calculated is setto command0x29, 0x31 or 0x39.  
-12dB  
x=0dB  
VIinf  
VI  
Figure 59  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
44/79  
TSZ22111 15 001  
BM28723AMUV  
14.6 3 Band DRC - continued  
Volume Curve  
Volume  
Level  
Linear  
Curve  
Linear  
Curve  
Exponential  
Curve  
Exponential  
Curve  
AGC_TH  
A_RATE  
R_RATE  
Time  
Figure 60  
DRC1slope ON/OFF setting  
OFF is through output.  
Default=0x1  
Select Address  
0x20[7]  
Value  
0x0  
Explanation of Operation  
Explanation of Operation  
Explanation of Operation  
OFF  
0x1  
ON  
DRC1comp ON/OFF setting  
OFF is through output.  
Default=0x1  
Select Address  
0x20[6]  
Value  
0x0  
OFF  
ON  
0x1  
DRC2slope ON/OFF setting  
OFF is through output.  
Default=0x1  
Select Address  
0x20[5]  
Value  
0x0  
OFF  
ON  
0x1  
DRC2comp ON/OFF setting  
OFF is through output.  
Default=0x1  
Select Address  
0x20[4]  
Value  
0x0  
Explanation of Operation  
OFF  
ON  
0x1  
DRC3slope ON/OFF setting  
OFF is through output.  
Default=0x1  
Select Address  
0x20[3]  
Value  
0x0  
Explanation of Operation  
OFF  
ON  
0x1  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
45/79  
TSZ22111 15 001  
BM28723AMUV  
14.6 3 Band DRC - continue
DRC3comp ON/OFF setting  
OFF is through output.  
Default=0x1  
Select Address  
0x20[2]  
Value  
0x0  
Explanation of Operation  
OFF  
ON  
0x1  
DRC4 ON/OFF setting  
OFF is through output.  
Default=0x0  
Select Address  
0x3F[4]  
Value  
0x0  
Explanation of Operation  
Explanation of Operation  
Explanation of Operation  
OFF  
ON  
0x1  
The volume curve at the time of an attack (A_RATE) is selected.  
Default=0x1  
Select Address  
0x21[7]  
Value  
0x0  
Linear curve  
0x1  
Exponential curve  
The volume curve at the time of a release (R_RATE) is selected.  
Default=0x1  
Select Address  
0x21[6]  
Value  
0x0  
Linear curve  
0x1  
Exponential curve  
Initial setting of DRC cross over filter is 1 Band.  
To set the crossover filter (HPF, LPF and APF) which divides the frequency band of 3 Band DRC, therefore, it is referred to  
the 14.4 Bi-quad Type Filter.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
46/79  
TSZ22111 15 001  
BM28723AMUV  
14.6 3 Band DRC - continue
Slope (α) setting of DRC1slope, DRC2slope, and DRC3slope  
Each DRC can be set individually.  
Default=0x80  
Select Address  
Explanation of Operation  
[dB]  
VO  
The formula which asks for Slope α is described below.  
changes into 8bit Hex data of the complement of 2 the value  
calculated by calculation.  
DRC1slope 0x29[7:0]  
α =0x00  
α
DRC2slope 0x31[7:0]  
y
x
α
1020 1020  
DRC3slope 0x39[7:0]  
AGC_TH2  
y=-6dB  
   
128  
x
TH  
10 20 1020  
AGC_TH1  
-12dB  
α =0x80  
TH is AGC_TH1. x is input level. y is output level.  
Ex) It asks for α at the time of AGC_TH1 = -12dB, x = 0dB y = -6dB  
6  
0
Slope function Compressor  
Area Area  
1020 10  
20
   
128  
0
12  
10 20 1020  
α
= 85.266 0x55  
VOinf  
0x55calculated is setto command0x29, 0x31 or 0x39.  
-12dB  
x=0dB  
VIinf  
VI  
AGC_TH1 setting of DRC1slope, DRC2slope, and DRC3slope  
Please set this value is smaller than the value of AGC_TH2.  
Each DRC can be set individually.  
Default=0x40  
Select Address  
Explanation of Operation  
DRC1slope 0x28[6:0]  
DRC2slope 0x30[6:0]  
DRC3slope 0x38[6:0]  
Threshold  
Value  
0x00  
-32dB  
0x3F  
0x40  
0x41  
-0.5dB  
0dB  
+0.5dB  
0x58  
+12dB  
AGC_TH2 setting of DRC1comp, DRC2comp, DRC3comp, and DRC4  
Each DRC can be set individually.  
Default=0x40  
Select Address  
Explanation of Operation  
DRC1comp 0x2C[6:0]  
DRC2comp 0x34[6:0]  
DRC3comp 0x3C[6:0]  
Threshold  
Value  
0x00  
-32dB  
DRC4  
0x40[6:0]  
0x3F  
0x40  
0x41  
-0.5dB  
0dB  
+0.5dB  
0x58  
+12dB  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
47/79  
TSZ22111 15 001  
BM28723AMUV  
14.6 3 Band DRC - continue
A_RATE setting of DRC1slope, DRC2slope, DRC3slope, DRC1comp, DRC2comp, DRC3comp, DRC4  
(Transition time setting for attack function)  
Each DRC can be set individually.  
Default=0x3  
Select Address  
Explanation of Operation  
DRC1slope 0x2A[6:4]  
DRC2slope 0x32[6:4]  
DRC3slope 0x3A[6:4]  
DRC1comp 0x2E[6:4]  
DRC2comp 0x36[6:4]  
DRC3comp 0x3D[6:4]  
Value  
0x0  
0x1  
0x2  
0x3  
A_RATE  
1ms  
2ms  
3ms  
4ms  
Value  
0x4  
0x5  
0x6  
0x7  
A_RATE  
5ms  
10ms  
20ms  
40ms  
DRC4  
0x41[6:4]  
R_RATE setting of DRC1slope, DRC2slope, DRC3slope, DRC1comp, DRC2comp, DRC3comp, DRC4  
(Transition time setting for release function)  
Each DRC can be set individually.  
Default=0xB  
Select Address  
Explanation of Operation  
DRC1slope 0x2A[3:0]  
DRC2slope 0x32[3:0]  
DRC3slope 0x3A[3:0]  
DRC1comp 0x2E[3:0]  
DRC2comp 0x36[3:0]  
DRC3comp 0x3D[3:0]  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
R_RATE  
0.125s  
0.1825s  
0.25s  
0.5s  
Value  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
R_RATE  
2s  
2.5s  
3s  
4s  
0.75s  
1s  
5s  
6s  
DRC4  
0x41[3:0]  
1.25s  
1.5s  
7s  
8s  
A_TIME setting of DRC1slope, DRC2slope, DRC3slope, DRC1comp, DRC2comp, DRC3comp, DRC4  
(Detection time setting for attack function)  
Each DRC can be set individually.  
Default=0x1  
Select Address  
Explanation of Operation  
DRC1slope 0x2B[7:4]  
DRC2slope 0x33[7:4]  
DRC3slope 0x3B[7:4]  
DRC1comp 0x2F[7:4]  
DRC2comp 0x37[7:4]  
DRC3comp 0x3E[7:4]  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
A_TIME  
0ms  
Value  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
A_TIME  
6ms  
0.5ms  
1ms  
7ms  
8ms  
1.5ms  
2ms  
9ms  
10ms  
20ms  
30ms  
40ms  
3ms  
DRC4  
0x42[7:4]  
4ms  
5ms  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
48/79  
TSZ22111 15 001  
BM28723AMUV  
14.6 3 Band DRC - continue
R_TIME setting of DRC1slope, DRC2slope, DRC3slope, DRC1comp, DRC2comp, DRC3comp, DRC4  
(Detection time setting for release function)  
Each DRC can be set individually.  
Default=0x3  
Select Address  
Explanation of Operation  
DRC1slope 0x2B[2:0]  
DRC2slope 0x33[2:0]  
DRC3slope 0x3B[2:0]  
DRC1comp 0x2F[2:0]  
DRC2comp 0x37[2:0]  
DRC3comp 0x3E[2:0]  
Value  
0x0  
0x1  
0x2  
0x3  
R_TIME  
Value  
0x4  
0x5  
0x6  
0x7  
R_TIME  
100ms  
200ms  
300ms  
400ms  
5ms  
10ms  
25ms  
50ms  
DRC4  
0x42[2:0]  
14.7 Post-scaler  
Post-scaler is used to adjust the gain of post DSP processing data.  
The adjustable-range can be set from +48dB to -79dB with the 0.5dB step. (Lch/Rch dependent control)  
Pre-Scaler does not have a soft transition function.  
Default=0x60  
Select Address  
0x13[7:0]  
Explanation of Operation  
Value  
0x00  
0x01  
Gain  
+48dB  
+47.5dB  
0x60  
0x61  
0x62  
0dB  
-0.5dB  
-1dB  
0xFE  
0xFF  
-79dB  
-∞  
14.8 Fine Post-scaler  
This function block is located after Post-scaler. An adjustable range can be set up from +0.7dB to 0.8dB at 0.1dB step.  
Fine Post-scaler does not have a soft transition function.  
(Independent control of Lch/Rch.)  
Default=0x8  
Select Address  
Lch 0x14[7:4]  
Rch 0x14[3:0]  
Explanation of Operation  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Gain  
Value  
0x8  
Gain  
-0.8dB  
-0.7dB  
-0.6dB  
-0.5dB  
-0.4dB  
-0.3dB  
-0.2dB  
-0.1dB  
0dB  
0x9  
+0.1dB  
+0.2dB  
+0.3dB  
+0.4dB  
+0.5dB  
+0.6dB  
+0.7dB  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
49/79  
TSZ22111 15 001  
BM28723AMUV  
14 Digital Sound Processing (DSP) - continued  
14.9 Hard Clipper  
Measure the rated output power (practical maximum output power) of TV or any audio products at the 10% of Total  
Harmonic Distortion (THD+N). It can be made to clip with any output amplitude by using a clipper function. For example,  
the rated output of 10W or 5W can be gained using the amplifier of 15W output.  
Hard clip  
Clip level0dB  
Clip level-3dB  
+3dB  
0dB  
+3dB  
0dB  
+3dB  
0dB  
-3dB  
-6dB  
-3dB  
-6dB  
-3dB  
-6dB  
Figure 61  
Clipper setting  
Default=0x1  
Select Address  
0x1A[0]  
Value  
0x0  
Explanation of Operation  
Not use Clipper function  
Use Clipper function  
0x1  
Clip level selection  
Default=0xE1  
Select Address  
0x1B[7:0]  
Explanation of Operation  
Value  
0x00  
0x01  
Gain  
-22.5dB  
-22.4dB  
0xE0  
0xE1  
-0.1dB  
0dB  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
50/79  
TSZ22111 15 001  
BM28723AMUV  
14 Digital Sound Processing (DSP) - continued  
14.10 DC Cut 1st order HPF  
DC offset element of the digital signal from audio DSP is cut by this HPF.  
The cutoff frequency fc of HPF uses the 1Hz filter, and the degree uses the first-order filter.  
Default=0x1  
Select Address  
0x18[0]  
Value  
0x0  
Explanation of Operation  
Not use DC Cut HPF  
Use DC Cut HPF  
0x1  
14.11 RAM Clear  
The data RAM of DSP and coefficient RAM are cleared.  
40μs or more is required until all the data is cleared.  
After RAM Clear state keeps 40µs or more, change the mode RAM Clear to Normal.  
Clear of the data RAM  
Default=0x1  
Select Address  
0x01[7]  
Value  
0x0  
Explanation of Operation  
Explanation of Operation  
Normal  
0x1  
Clear operation  
Clear of coefficient RAM  
Default=0x1  
Select Address  
0x01[6]  
Value  
0x0  
Normal  
0x1  
Clear operation  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
51/79  
TSZ22111 15 001  
BM28723AMUV  
14 Digital Sound Processing (DSP) - continued  
14.12 Audio Output Level Meter  
It is possible to output the peak level of the PCM data inputted into a PWM processor.  
A peak value can be read using the 2-wire command interface as 16 bit data of an absolute value.  
The interval holding a peak value can be selected from six steps (50ms step) from 50ms to 300ms.  
A peak hold result can be selected from L channel, R channel, and a monaural channel {(Lch+Rch)/2}.  
Audio Output Level Meter block diagram  
I2S  
DSP  
Peak Hold  
(Lch)  
Peak Hold  
(Rch)  
0.5  
Selector  
0x75 METER_LOAD [1:0]  
Level Output Register  
0x76, 0x77 OUT_LEVEL [15:0]  
Figure 62  
Setting of the peak level hold time interval of Audio Output Level Meter  
Default=0x00  
Select Address  
0x74[2:0]  
Explanation of Operation  
Hold time  
50ms  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
100ms  
150ms  
200ms  
250ms  
300ms  
Specify the read-target signal of Audio Level Meter.  
A value will be taken into a read-only register if a setting value is written in.  
In order to update this register value, it is necessary to write in a setting value again.  
Write only  
Select Address  
0x75[1:0]  
Value  
0x0  
Explanation of Operation  
The peak level of L channel  
0x1  
0x2  
The peak level of R channel  
The peak level of monaural channel {(Lch+Rch)/2}  
Read-back of Audio Output Level  
0x76 (upper 8 bits) and a 0x77 (lower 8 bits) commands are read for the maximum within the period appointed by the  
command 0x74 using the 2-wire interface.  
(Example)  
When 0xFFFF is read, mean 1.0 (0dBFS).  
When 0x8000 is read, mean 0.5 (-6dBFS).  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
52/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function - continued  
15 Setting and Reading Method of BQ  
It explains a detailed sequence of the setting method and the reading method of BQ separately for usage.  
15.1 BQ coefficient setting  
BQ consists of Bi-quad filter as follows. Each coefficient b0, b1, b2, a1, and a2 of BQ can be written directly.  
It is S2.21 format, and setting range is -4≤x<+4.  
Moreover, the coefficient address is shown in Table 1.  
The output of multipliers and the adder might exceed +48dB by the  
coefficient of a1, a2, b0, b1, and b2. In that case, data becomes  
saturation output. Therefore, the output of the filter cannot obtain  
the aimed characteristic.  
X[n]  
Y[n]  
b0  
b1  
b2  
Z-1  
Z-1  
Z-1  
X[n-1]  
a1  
a2  
Y[n-1]  
Z-1  
X[n-2]  
Y[n-2]  
-1 is multiplied by the coefficient of a1 and a2.  
Considering efficiency of calculation at DSP.  
Direct form 1  
Figure 63  
15.2 Writing sequence (Set in numerical order)  
1. Address setting (0x61) Refer to Table 1.  
2. 24bit coefficient upper [23:16] bit setting (0x62[7:0])  
3. 24bit coefficient middle [15:8] bit setting (0x63[7:0])  
4. 24bit coefficient lower [7:0] bit setting (0x64[7:0])  
5. The writing of coefficients is performed. (0x65[0]=0x1)  
Caution 1: After completion of writing coefficients this register is cleared automatically.  
It is not necessary to write 0x65[0]=0x0. Coefficient writing takes about 100μs.  
Caution 2: 100μs should not change an address setup and 24-bit coefficient setup after coefficient write-in execution.  
(ex) When 0x3DEDE7 is written, same L/Rch, 12band BQ1 b0  
1. 0x61=0x00 (12band BQ1 b0 is appointed)  
2. 0x62=0x3D (Upper [23:16] is setting)  
3. 0x63=0xED (Middle [15:8] is setting)  
4. 0x64=0xE7 (Lower [7:0] is setting)  
5. 0x65=0x01 (Coefficient transfer)  
6. 100μs or more wait  
15.3 Read-back sequence (Set in numerical order)  
1. Address setting (0x61) Refer to Table 1.  
2. Setting of a read-back register address (0xD0) Refer to P.22 5 Reading of Data”  
3. Read-back of the 24bit coefficient upper [23:16] bit (0x66[7:0])  
4. Read-back of the 24bit coefficient middle [15:8] bit (0x67[7:0])  
5. Read-back of the 24bit coefficient lower [7:0] bit (0x68[7:0])  
15.4 When the coefficient of BQ is set up directly and a soft transition is performed  
1. Set BQ coefficient to soft transition addresses. The addresses are 0x50 to 0x54. Please refer to Table1.  
Since in the case of 0x60[4]=0x1 (Enable L/R independent setting) and 0x53[5:4]=0x0 a soft transition is carried out  
and it is set to LR simultaneously, please write a coefficient in both LR address.  
In the case of 0x53[5:4]=0x1, coefficient is set to only Lch address.  
In the case of 0x53[5:4]=0x2, coefficient is set to only Rch address.  
2. Select BQ Band that is performed soft transition by setting 0x51[4:0] address.  
(Refer to chapter 14.4 Bi-quad Type Filter)  
3. 0x58[0]=0x1, Start soft transition (After the completion of soft transition this register is automatically cleared 0x0.)  
4. Wait soft transition completion, or read command 0x59[0], and wait until it 0x59[0] cleared (0x0).  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
53/79  
TSZ22111 15 001  
BM28723AMUV  
15 Setting and Reading Method of BQ- continued  
Table1. Specified Coefficient  
0x61[6:0]  
Value  
0x61[6:0]  
Value  
0x61[6:0]  
Value  
Select Coefficient  
Select Coefficient  
Select Coefficient  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
12BandBQ1 b0  
12BandBQ1 b1  
12BandBQ1 b2  
12BandBQ1 a1  
12BandBQ1 a2  
12BandBQ2 b0  
12BandBQ2 b1  
12BandBQ2 b2  
12BandBQ2 a1  
12BandBQ2 a2  
12BandBQ3 b0  
12BandBQ3 b1  
12BandBQ3 b2  
12BandBQ3 a1  
12BandBQ3 a2  
12BandBQ4 b0  
12BandBQ4 b1  
12BandBQ4 b2  
12BandBQ4 a1  
12BandBQ4 a2  
12BandBQ5 b0  
12BandBQ5 b1  
12BandBQ5 b2  
12BandBQ5 a1  
12BandBQ5 a2  
12BandBQ6 b0  
12BandBQ6 b1  
12BandBQ6 b2  
12BandBQ6 a1  
12BandBQ6 a2  
12BandBQ7 b0  
12BandBQ7 b1  
12BandBQ7 b2  
12BandBQ7 a1  
12BandBQ7 a2  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
12BandBQ8 b0  
12BandBQ8 b1  
12BandBQ8 b2  
12BandBQ8 a1  
12BandBQ8 a2  
12BandBQ9 b0  
12BandBQ9 b1  
12BandBQ9 b2  
12BandBQ9 a1  
12BandBQ9 a2  
12BandBQ10 b0  
12BandBQ10 b1  
12BandBQ10 b2  
12BandBQ10 a1  
12BandBQ10 a2  
12BandBQ11 b0  
12BandBQ11 b1  
12BandBQ11 b2  
12BandBQ11 a1  
12BandBQ11 a2  
12BandBQ12 b0  
12BandBQ12 b1  
12BandBQ12 b2  
12BandBQ12 a1  
12BandBQ12 a2  
DRC1_1 b0  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
DRC2_1 b0  
DRC2_1 b1  
DRC2_1 b2  
DRC2_1 a1  
DRC2_1 a2  
DRC2_2 b0  
DRC2_2 b1  
DRC2_2 b2  
DRC2_2 a1  
DRC2_2 a2  
Smooth BQ b0  
Smooth BQ b1  
Smooth BQ b2  
Smooth BQ a1  
Smooth BQ a2  
DRC3_1 b0  
DRC3_1 b1  
DRC3_1 b2  
DRC3_1 a1  
DRC3_1 a2  
DRC3_2 b0  
DRC3_2 b1  
DRC3_2 b2  
DRC3_2 a1  
DRC3_2 a2  
DRC1_1 b1  
DRC1_1 b2  
DRC1_1 a1  
DRC1_1 a2  
DRC1_2 b0  
DRC1_2 b1  
DRC1_2 b2  
DRC1_2 a1  
DRC1_2 a2  
Caution: When L/R independent, Lch: 0x61[7]=0x0, Rch: 0x61[7]=0x1.When L/R dependent, 0x61[7] is not reflected.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
54/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function - continued  
16 Mute Function by MUTEX Pin  
BM28723AMUV can mute output by setting the MUTEX pin to Low.  
Transition time setting at the time of mute is as follows.  
Soft transition mute time setting  
The transition time when changing to a mute state is selected.  
The soft transition time at the time of mute release is 10.7ms fixed.  
Default=0x3  
Select Address  
0x15[1:0]  
Value  
0x0  
Explanation of Operation  
10.7ms (fs=48kHz)  
21.4ms (fs=48kHz)  
42.7ms (fs=48kHz)  
85.4ms (fs=48kHz)  
0x1  
0x2  
0x3  
0x15[1:0] Mute time setting  
It is only operated to mute by MUTEX terminal.  
XdB  
Mute state  
Audio output data  
TA  
TB  
0x15[1:0] setting  
Value  
0x0  
TA  
TB  
10.7ms  
21.4ms  
42.7ms  
85.4ms  
10.7ms  
10.7ms  
10.7ms  
10.7ms  
0x1  
0x2  
0x3  
Figure 64  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
55/79  
TSZ22111 15 001  
BM28723AMUV  
16 Mute Function by MUTEX Pin- continued  
Soft start delay time setting  
It is the delay time from detecting mute release to begin soft start actually.  
Default=0x0  
Select Address  
Value  
0x0  
Explanation of Operation  
0ms  
0x15[5:4]  
0x1  
0x2  
0x3  
100ms  
200ms  
300ms  
Operation of Soft start delay 0x15[5:4]  
MUTEX  
Value  
0x0  
TM  
Audio output data  
0ms  
0x1  
100ms  
200ms  
300ms  
0x2  
TM  
0x3  
Figure 65  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
56/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function  
17 Small Signal Input Detecting Function  
There is a function which detects the audio data input of a non-signal or a small signal. This function is used in order to reduce  
the standby power consumption of an audio set.  
If the signal below a setting detection level continues in both L channel and R channel, a small signal detection flag will  
become High. A detection result can be read from command 0x72[0].  
The point which acts as a monitor of the small signal becomes input data of audio DSP block.  
I2S  
DSP  
Peak Detector  
(Lch)  
Peak Detector  
(Rch)  
Counter  
Flag  
0x72 [0]  
NOSIG_DET_FLAG  
Figure 66. Block Diagram of Small Signal Input Detecting  
Detection level setting  
Default=0x00  
Select Address  
0x70[4:0]  
Explanation of Operation  
Level  
-103dB  
-93dB  
-91dB  
-87dB  
-84dB  
-80dB  
-79dB  
-78dB  
Level  
-77dB  
-76dB  
-75dB  
-74dB  
-73dB  
-72dB  
-71dB  
-70dB  
Level  
-69dB  
-68dB  
-67dB  
-66dB  
-65dB  
-64dB  
-62dB  
-60dB  
Value  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
Value  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
Value  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
Detection time setting  
Default=0x0  
Select Address  
0x71[1:0]  
Value  
0x0  
Explanation of Operation  
42.7ms  
85.4ms  
170.7ms  
341.4ms  
0x1  
0x2  
0x3  
Caution: Sampling frequency is value of fS=48kHz. In the case of fS=44.1kHz, it will be about 1.09 times the setting value.  
Detection flag read-back (Read Only)  
Select Address  
0x72[0]  
Value  
0x0  
Explanation of Operation  
Not detecting  
Detecting  
0x1  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
57/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function - continued  
18 Clock Stop Detection and detection of high speed and low speed or detection of out of sync  
18.1 Clock Stop Detection  
BM28723AMUV generates internal clock using for audio data processing from inputted several clocks.  
By stopping these clock sources, the clocks that is used for audio data processing also stop (Or if that clock does not reach  
the frequency speed needed).  
Therefore, the detection circuit is needed to avoid that situation.  
State of BCLK and LRCLK are detected by using internal clock.  
If valid flag is detected, output is muted (Immediate mute).  
Internal  
frequency  
generator  
Judge  
OK/NG  
Clock stop  
detecion  
circuit  
BCLK  
Register Read  
& Output Stop  
LRCLK  
Figure 67  
Each clock stop is detected when inputted clock stop during the time that is set by command. Detection result can be read  
back by command.  
In addition, once stop flag is detected, these flags cannot be cleared until clear command is send even though the clock  
speed becomes normal.  
LRCLK stop detection time  
Default=0x2  
Select Address  
LRCLK 0x07[2:0]  
Value  
0x0  
Explanation of Operation  
10μs to 20μs  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
20μs to 40μs  
50μs to 100μs  
100μs to 200μs  
200μs to 400μs  
300μs to 600μs  
400μs to 800μs  
500μs to 1000μs  
Caution: Detection time has the above-mentioned variation within the limits  
BCLK stop detection time  
Default=0x0  
Select Address  
BCLK 0x08[6:4]  
Value  
0x0  
Explanation of Operation  
10μs to 20μs  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
20μs to 40μs  
50μs to 100μs  
100μs to 200μs  
200μs to 400μs  
300μs to 600μs  
400μs to 800μs  
500μs to 1000μs  
Caution: Detection time has the above-mentioned variation within the limits.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
58/79  
TSZ22111 15 001  
BM28723AMUV  
18.1 Clock Stop Detection - continued  
Stop detection flag read back register (Read Only)  
Select Address  
0x09[5]  
Value  
Explanation of Operation  
0x0  
Normal  
0x1  
0x0  
0x1  
Detection of LRCLK stop flag  
Normal  
0x09[4]  
Detection of BCLK stop flag  
Stop detection flag clear register (Write Only)  
Select Address  
0x09[1]  
Explanation of Operation  
LRCLK stop detection flag is cleared by writing 0x1.  
BCLK stop detection flag is cleared by writing 0x1.  
0x09[0]  
Caution: When using Auto recovery from clock error function (P.62) , the above-mentioned flag is cleared automatically.  
LRCLK stop flag valid or invalid selection  
Default=0x1  
Select Address  
0x07[3]  
Value  
0x0  
Explanation of Operation  
Explanation of Operation  
Valid  
0x1  
Invalid  
BCLK stop flag valid or invalid selection  
Default=0x0  
Select Address  
0x08[7]  
Value  
0x0  
Valid  
0x1  
Invalid  
18.2 Out of sync Detection  
As for out of sync detecting function, it detects as out of sync error when it counts between the rising edges of LRCLK with  
internal clock (49.152MHz), and it shifts more than the definite value, and whether PLL is normally locked is judged.  
Input Sampling Frequency  
32kHz, 44.1kHz, 48kHz  
1023  
Count value (Start of counting from 0)  
As for the detection result, reading from the register is possible. As a result of the judgment as out of sync once, it is not  
cleared until a clear command is transmitted even if the state of the clock returns normally. Moreover, out of sync count  
setting is also possible, and if the error is detected more than the number of times set by the command, the flag (0x06[1])  
becomes 0x1.  
Out of sync flag reading register (Read Only)  
Select Address  
0x06[1]  
Value  
Explanation of Operation  
0x0  
Normal  
Synchronous blank detects  
0x1  
Out of sync flag clear register (Write Only)  
Select Address  
0x06[0]  
Explanation of Operation  
When 0x1 is written, the out of sync flag is cleared.  
Caution: When using Auto recovery from clock error function (P.62), the above-mentioned flag is cleared automatically.  
Out of sync count setting  
Default=0x2  
Select Address  
0x06[6:4]  
Explanation of Operation  
Set more than 0x1 (Set 0x1 to 0x7).  
When the actual detection count of out of sync exceeds the setting,  
Select Address 0x07[1] becomes 0x1.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
59/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function - continued  
18.3 BCLK High or Low Speed Detection function  
BCLK high or low speed detection function counts the period of BCLK rising edge by using internal clock (12MHz to 25MHz) ,  
and if the count value go beyond a constant value, it judge that abnormal speed of clock is occurred such as BCLK speed  
become high or low.  
When using a BCLK speed detection, speed failure detection can be more correctly performed by making a command set  
reflect about an input sampling rate.  
When you validate sampling rate setting, be sure to set up the sampling rate inputted with 0x0C [1:0] command. A high  
speed and the low speed detection flag can set up validity and the invalidity respectively. If valid flag is detected, output is  
muted (immediate mute).  
Valid or invalid frequency value setting up by 0x0C[1:0] command.  
Default=0x0  
Select Address  
0x0A[3]  
Value  
Explanation of Operation  
0x0  
Valid  
0x1  
Invalid  
Setting of input sampling rate  
Default=0x0  
Select Address  
0x0C[1:0]  
Value  
0x0  
Explanation of Operation  
48kHz  
44.1kHz  
32kHz  
0x1  
0x2  
The setting of constraints of a high speed or a low speed detection condition  
Default=0x0  
Select Address  
Value  
Explanation of Operation  
0x0A[2]  
0x0  
±10%  
It can check detection result by reading back.  
The result judged that is once unusual is not cleared until it transmits a clear command, even if the condition of a clock  
returns to normal. It is possible to set the number of judging count of high speed flag detection and low speed flag detection  
by the command. If the error more than the predetermined number is detected, the flag (0x0A[1], 0x0B[1]) becomes 0x1.  
BCLK high speed flag (Read Only)  
Select Address  
0x0A[1]  
Value  
0x0  
Explanation of Operation  
Normal  
High speed detection flag  
0x1  
BCLK low speed flag (Read Only)  
Select Address  
Value  
0x0  
Explanation of Operation  
0x0B[1]  
Normal  
Low speed detection flag  
0x1  
High speed detection clears register (Write Only)  
Select Address  
0x0A[0]  
Explanation of Operation  
If 0x1 writes in, a high speed detection flag will be cleared.  
Caution: When using Auto recovery from clock error function (P.62) , the above-mentioned flag is cleared automatically.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
60/79  
TSZ22111 15 001  
BM28723AMUV  
18.3 BCLK High or Low Speed Detection function - continued  
Low speed detection clear register (Write Only)  
Select Address  
0x0B[0]  
Explanation of Operation  
If 0x1 is written, a low speed detection flag will be cleared.  
Caution: When using Auto recovery from clock error function (P.62) , the above-mentioned flag is cleared automatically.  
A constraint of the count of judging with high speed flag detection  
Default=0x2  
Select Address  
Explanation of Operation  
Set over 0x1. (0x1 to 0x7 are set up) it become 0x0A[1]=0x1 if the BCLK high  
speed condition more than the count of setting up is detected continuously.  
0x0A[6:4]  
A constraint of the count of judging with low speed flag detection  
Default=0x2  
Select Address  
Explanation of Operation  
0x0B[6:4]  
Set over 0x1. (0x1 to 0x7 are set up) it become 0x0B[1]=0x1 if the BCLK low  
speed condition more than the count of setting up is detected continuously.  
High speed detection flag valid or invalid  
Default=0x0  
Select Address  
0x0A[7]  
Value  
0x0  
Explanation of Operation  
Valid  
0x1  
Invalid  
Low speed detection flag valid or invalid  
Default=0x0  
Select Address  
0x0B[7]  
Value  
0x0  
Explanation of Operation  
Valid  
0x1  
Invalid  
The frequency range of BCLK by which high speed detection or low speed detection is carried out is as follows.  
Low Speed Detection  
Lowest Frequency  
(MHz)  
High Speed Detection  
Highest Frequency  
(MHz)  
Setting1  
Setting2  
48kHz (0x0C[1:0]=0x0)  
44.1kHz (0x0C[1:0]=0x1)  
32kHz (0x0C[1:0]=0x2)  
48kHz (0x0C[1:0]=0x0)  
44.1kHz (0x0C[1:0]=0x1)  
32kHz (0x0C[1:0]=0x2)  
48kHz (0x0C[1:0]=0x0)  
44.1kHz (0x0C[1:0]=0x1)  
32kHz (0x0C[1:0]=0x2)  
1.28  
1.21  
0.88  
0.96  
0.91  
0.66  
0.64  
0.60  
0.44  
7.13  
6.55  
4.76  
5.35  
4.92  
3.57  
3.56  
3.28  
2.38  
64fs BCLK (0x03[5:4]=0x0)  
48fs BCLK (0x03[5:4]=0x1)  
32fs BCLK (0x03[5:4]=0x2)  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
61/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function continued  
19 Auto Recovery of Clock Error Function  
Establishment of Clock stop detection flag or BCLK high speed detection flag or BCLK low speed detection flag makes PWM  
output mute (Immediate mute).  
In that case, if the Auto Recovery of Clock Error Function is enabled, when it returns to a normal input, a mute condition will  
be cancelled automatically.  
When Auto Recovery of Clock Error Function is cancelled, it is necessary to control a series of operations called a mute-on  
and flag clear command transmission, an internal RAM data clear and mute release from an external microcomputer. Since  
it is invalid immediately after a wake-up, 0x0D[6]=0x1 is set up before mute release, and it is recommended to enable this  
function.  
Valid or invalid auto recover from clock error  
Default=0x0  
Select Address  
0x0D[6]  
Value  
Explanation of Operation  
0x0  
Invalid  
Valid  
0x1  
Each error flag can be read from the following addresses. When 0x1 is read from a read address, the error flag establishes.  
Moreover, a flag is not cleared until it writes 0x0 in the target address, even if error status will be canceled, once a flag leaves.  
Error flag read register  
Select Address  
0x0E[6]  
Explanation of Operation  
Synchronous error flag  
0x0E[4]  
0x0E[3]  
0x0E[2]  
0x0E[1]  
LRCLK stop flag  
BCLK stop flag  
BCLK high speed detection flag  
BCLK low speed detection flag  
20 The Wake-up Procedure of Power-up  
It has to start power-up in the following procedures.  
0x**=0x** means writing data to register. (For example) 0x10=0x00 It means writing data 0x00 to select address 0x10.  
1. Power-up (VCCP1, VCCP2, DVDD)  
Input BCLK and LRCLK  
Wait over 10ms  
Input stable BCLK and LRCLK in the specification  
Wait over 1ms  
2. Release reset (RSTX=High)  
Wait over 1ms  
3. 0x0C=0x00  
: Sampling rate setting  
(Set 48kHz: 0x00, 44.1kHz: 0x01, 32kHz: 0x02 to 0x0C address)  
: Clock initialization  
4. 0xE9=0x10  
Wait over 100ms  
5. 0x01=0x00: Set RAM clear OFF  
6. 0x0D=0x40  
: Valid auto recover from clock error  
7. 0x0E=0x00: Clear error flag  
8. 0x92=0x1D  
: PWM setting1  
9. 0x93=0x1B: PWM setting2  
10. 0x94=0x0F  
11. 0x95=0x11  
12. 0x90=0x40  
13. 0xF4=0x14  
14. 0xF3=0x03  
15. 0xF2=0x02  
16. 0xF8=0x01  
Wait over 10ms  
: PWM setting3  
: PWM setting4  
: PWM setting5  
: Protect function initialization  
: Driver Gain setting (0x03: 26dB, 0x0B: 32dB)  
: Stereo application setting (0x02: Stereo, 0x0A: Monaural)  
: 0xF4, 0xF3, 0xF2 setting value is fixed  
17. Set up DSP function such as volume, BQ, DRC, and Pre-Scaler etc.  
18. MUTEX=High : Release mute  
(Order from 8 to 12 and 17 can be interchanged.)  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
62/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function - continued  
21 The Operating Procedure in a Status with an Unstable Clock  
In the period there is the possibility that inputted I2S, BCLK, LRCLK and SDATA, may become unstable, set MUTEX=Low to  
mute output.  
BCLK,LRCLK unstable period  
BCLK,LRCLK  
AUDIODATA  
PWM stop time  
MUTEX  
Refer to 7The Wake-up Procedure of Power-upof P.62  
More than 1ms  
RSTX  
OUTxx  
PWM STOP  
A
B
C
D
E F  
G
Figure 68. The Operating Procedure in a Status with an Unstable Clock  
Caution: When clock stop was detected, mute release procedure will follow the clock stop error release sequence.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
63/79  
TSZ22111 15 001  
BM28723AMUV  
Description of Function continue
22 I2S Data Output Selec
Capable of output I2S format digital audio data from SDATAO (pin12).  
That signal synchronizes to inputted LRCK and BCK signal.  
And enable to select output SDATA signal as shown below.  
The Point of selected data is shown below diagram.  
Whatever output is selected, hard clip is processed.  
SDATAO output select  
Default=0x0  
Select Address  
0x78[6:4]  
Value  
0x0  
Explanation of Operation  
DSP output (Point1)  
DSP input (Point2)  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Pre-Scaler output (Point3)  
Mixer output (Point4)  
12Band BQ output (Point5)  
Fine master volume output (Point6)  
Don't use  
Fine Post-Scaler output (Point7)  
I2S  
LJ  
RJ  
Fine  
post  
scaler/  
ch  
Fine  
Master  
Volume  
/ch  
Pre  
Chanel  
Mixer  
DC cut  
HPF  
Hard  
Clipper  
3Band  
DRC  
Post  
Scaler  
12Band  
/ch BQ  
Input1  
Main  
Scaler  
Point7  
Point1  
Point2 Point3 Point4 Point5 Point6  
Figure 69  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
64/79  
TSZ22111 15 001  
BM28723AMUV  
Register Map  
Address  
0x01  
Initial Value  
Recommended value  
0x00(Note 22)  
Description  
Function  
0xE0  
RAM clear  
Bypass  
RAM clear setting  
0x02  
0x03  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x00  
0x00  
0x02  
0x20  
0x8A  
0x00  
-
Select bypass blocks  
0x02  
Digital audio input 1  
I2S input format setting  
0x20  
Synchronous error 2  
Synchronous error setting  
LRCLK stop detection setting  
BCLK stop detection setting  
Read/Clear stop detection  
0x8A  
LRCLK,BCLK stop detection 1  
LRCLK,BCLK stop detection 2  
LRCLK,BCLK stop detection 3  
0x00  
Read/Write Only  
0x20  
0x20  
0x20  
BCLK Measurement of velocity 1 BCLK fast detection setting  
BCLK Measurement of velocity 2 BCLK slow detection setting  
0x20  
0x00 (48kHz sampling)  
0x0C  
0x00  
Sampling frequency setting  
Sampling frequency setting  
(Note 22)  
0x0D  
0x0E  
0x00  
0x40(Note 22)  
0x00(Note 22)  
Auto return 1  
Auto return 2  
Auto return setting  
Auto return monitor  
Read Only  
Fine volume setting/  
Independent volume setting  
Lch/dependent Volume setting  
(0dB: 0x30)  
Rch volume setting  
(0dB: 0x30)  
0x10  
0x11  
0x12  
0x13  
0x00  
0xFF  
0xFF  
0x60  
0x00  
0xFF  
0xFF  
0x60  
Volume, Balance, Post-scaler 1  
Volume, Balance, Post-scaler 2  
Volume, Balance, Post-scaler 3  
Volume, Balance, Post-scaler 4  
Post-scaler setting  
(0dB: 0x60)  
0x14  
0x15  
0x88  
0x03  
0x88  
0x00  
Volume, Balance, Post-scaler 5  
Mute function  
L/R fine postscaler setting  
Mute transition time setting  
Pre-Scaler setting  
(0dB: 0x60)  
0x16  
0x60  
0x60  
Pre-Scaler  
0x17  
0x18  
0x1A  
0x1B  
0x20  
0x21  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2E  
0x2F  
0x12  
0x01  
0x01  
0xE1  
0xFC  
0xC0  
0x40  
0x80  
0x3B  
0x13  
0x40  
0x3B  
0x13  
0x12  
0x01  
0x01  
0xE1  
0xFC  
0xC0  
0x40  
0x80  
0x3B  
0x13  
0x40  
0x3B  
0x13  
Channel mixer  
Channel mixer setting  
DC cut HPF setting  
DC Cut HPF  
Hard Clipper 1  
Hard Clipper setting  
Hard Clipper 2  
Hard Clip level setting  
DRC select setting  
DRC common 1  
DRC common 2  
Transition form setting  
Threshold setting  
AGC_TH1 setting of DRC1  
Slope (α) setting of DRC1  
RATE setting of DRC1  
TIME setting of DRC1  
AGC_TH2 setting of DRC1  
RATE setting of DRC1  
TIME setting of DRC1  
Slope setting  
A_RATE and R_RATE setting  
A_TIME and R_TIME setting  
Threshold setting  
A_RATE and R_RATE setting  
A_TIME and R_TIME setting  
(Note 22) It must be set at the time of start-up. Refer to P.62 20. The wake-up Procedure of power-up.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
65/79  
TSZ22111 15 001  
BM28723AMUV  
Register Map - continued  
Address Initial Value Recommended value  
Description  
Function  
Threshold setting  
0x30  
0x31  
0x32  
0x33  
0x34  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x51  
0x53  
0x40  
0x80  
0x3B  
0x13  
0x40  
0x3B  
0x13  
0x40  
0x80  
0x3B  
0x13  
0x40  
0x3B  
0x13  
0x00  
0x40  
0x3B  
0x13  
0x00  
0x0C  
0x40  
0x80  
0x3B  
0x13  
0x40  
0x3B  
0x13  
0x40  
0x80  
0x3B  
0x13  
0x40  
0x3B  
0x13  
0x00  
0x40  
0x3B  
0x13  
0x00  
0x0C  
AGC_TH1 setting of DRC2  
Slope (α) setting of DRC2  
RATE setting of DRC2  
TIME setting of DRC2  
AGC_TH2 setting of DRC2  
RATE setting of DRC2  
TIME setting of DRC2  
AGC_TH1 setting of DRC3  
Slope (α) setting of DRC3  
RATE setting of DRC3  
TIME setting of DRC3  
AGC_TH2 setting of DRC3  
RATE setting of DRC3  
TIME setting of DRC3  
DRC4 ON  
Slope setting  
A_RATE and R_RATE setting  
A_TIME and R_TIME setting  
Threshold setting  
A_RATE and R_RATE setting  
A_TIME and R_TIME setting  
Threshold setting  
Slope setting  
A_RATE and R_RATE setting  
A_TIME and R_TIME setting  
Threshold setting  
A_RATE and R_RATE setting  
A_TIME and R_TIME setting  
ON/OFF setting  
AGC_TH2 setting of DRC4  
RATE setting of DRC4  
TIME setting of DRC4  
Bi-quad type filter1  
Threshold setting  
A_RATE and R_RATE setting  
A_TIME and R_TIME setting  
Select of BQ soft transition Band  
Setting of transition time and wait time  
Bi-quad type filter2  
Soft transition start, 0x0: Stop 0x1:  
Start  
0x58  
0x59  
0x60  
Write Only  
Read Only  
0x00  
-
Bi-quad type filter3  
-
Bi-quad type filter4  
Soft transition flag  
Select of BQ independence or  
synchronous setting  
0x00  
The coefficient is written directly. 1  
0x61  
0x62  
0x63  
0x64  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
The coefficient is written directly. 2 Coefficient address bit7 to bit0  
The coefficient is written directly. 3 Coefficient data bit23 to bit16  
The coefficient is written directly. 4 Coefficient data bit15 to bit8  
The coefficient is written directly. 5 Coefficient data bit7 to bit0  
The writing of coefficients is  
The coefficient is written directly. 6  
performed  
0x65  
Write Only  
-
0x66  
0x67  
0x68  
0x70  
0x71  
0x72  
Read Only  
Read Only  
Read Only  
0x00  
-
The coefficient is written directly. 7 Coefficient reading bit23 to bit16  
The coefficient is written directly. 8 Coefficient reading bit15 to bit8  
The coefficient is written directly. 9 Coefficient reading bit7 to bit0  
-
-
0x00  
0x00  
-
Small signal detection1  
Small signal detection2  
Small signal detection3  
Small signal detection level setting  
Small signal detection time setting  
Small signal detection flag read-back  
0x00  
Read Only  
Setting of the peak level hold time  
interval  
0x74  
0x75  
0x76  
0x00  
0x00  
Level meter1  
Level meter2  
Level meter3  
Write Only  
Read Only  
-
-
0x0: Lch 0x1: Rch 0x2: (Lch+Rch) /2  
Level reading  
(16bit high position 8bit)  
Level reading  
(16bit subordinate position 8bit)  
0x77  
0x78  
Read Only  
0x02  
-
Level meter4  
SDATAO  
0x02  
SDATAO select  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
66/79  
TSZ22111 15 001  
BM28723AMUV  
Register Map - continued  
Address Initial Value Recommended value  
Description  
Function  
0x90  
0x92  
0x93  
0x94  
0x95  
0xE9  
0xF2  
0xF3  
0xF4  
0x00  
0x00  
0x01  
0x04  
0x05  
0x01  
0x02  
0x03  
0x04  
0x40(Note 22)  
0x1D(Note 22)  
0x1B(Note 22)  
0x0F(Note 22)  
0x11(Note 22)  
PWM setting 5  
PWM initialization  
PWM delay  
PWM setting 1  
PWM setting 2  
PWM setting 3  
PWM setting 4  
PWM delay  
PWM delay  
PWM delay  
0x10 (normal) (Note 22) DSP clock setting  
0x02 (Stereo) (Note 22) Stereo/Mono  
DSP clock initialization  
DC voltage protection setting for Stereo / Mono  
Driver Gain setting (26dB or 32dB)  
0x03 (26dB) (Note 22)  
0x14 (Note 22)  
Driver Gain  
Protection initialization Protection initialization  
The decision of 0xF2,  
Decided by sending 0x01  
0xF3 and 0xF4  
0xF8  
0x00  
0x01(Note 22)  
(Note 22) It must be set at the time of start-up. Refer to P.62 “20. The wake-up Procedure of power-up”.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
67/79  
TSZ22111 15 001  
BM28723AMUV  
Application Circuit Example1 (Stereo BTL output, RL=8Ω, VCCP1, VCCP2≤22V)  
μ-con  
L25  
10μH  
GNDP1  
DVDD DVDD  
10μ F  
C27  
3.3μ F  
C26  
10kΩ  
R32  
10kΩ  
R31  
32  
31  
30  
29  
28  
27  
26  
25  
REG_G BSP1P OUT1P  
NC  
0.47μ F  
SP ch1  
(Lch)  
C25A  
I2C BUS  
Address  
Select  
REG_G  
DVDD  
VSS  
GNDP1  
VCCP1  
Control  
I/F  
1
2
3
4
5
6
7
8
2 wire I/F  
24  
23  
22  
21  
20  
19  
18  
17  
ADDR  
VCCP1  
10μ F  
C24  
Driver  
FET 1P  
0.47μF  
C21A  
BCLK  
BCLK  
LRCLK  
SDATA  
R2 0Ω  
GNDP1  
GNDP1  
BSP1N  
I2S/LJ/RJ  
I/F  
LRCLK  
Driver  
FET 1N  
Digital  
Audio  
Source  
R3 0Ω  
3.3μ F  
C22  
10μH  
L21  
SDATA  
8 Times  
Over-  
Sampling  
Digital  
Filter  
OUT1N  
OUT2P  
R40Ω  
PWM  
Modulator  
Audio  
DSP  
TEST1  
VSS  
L20  
10μH  
C19  
3.3μF  
C6B  
0.027μF  
R6  
Driver  
FET 2P  
1.5kΩ  
PLL  
BSP2P  
PLL  
VSS  
C6A  
C7  
GNDP2  
2700pF  
REG15  
VSS  
REG15  
C20A  
0.47μF  
Driver  
FET 2N  
1μF  
GNDP2  
VCCP2  
C17  
10μ F  
Protection  
VSS  
LRCLK  
VCCP2  
DGND  
GNDP2  
BCLK  
SP ch2  
(Rch)  
DVDD  
C16A  
0.47μF  
TEST2  
TEST3 SDATAO  
BSP2N OUT2N  
15 16  
NC  
14  
9
10  
11  
12  
13  
C15  
3.3μF  
0Ω  
R12  
R13  
VSS  
VSS  
1μF  
L16  
C10  
DVDD(3.3V)  
10μH  
μ-con  
VSS  
10kΩ  
DVDD  
SDATAO  
ERRORX  
Figure 70  
Parts  
Qty  
Parts No.  
Description  
Inductor  
4
1
2
4
1
1
1
L16, L20, L21, L25  
10μH / 3.8A / (±20%)  
R6  
R31, R32  
R2, R3, R4, R12  
R13  
1.5kΩ / 1/16W / F(±1%)  
10kΩ / 1/16W / J(±5%)  
0Ω / 1/10W / J(±5%)  
Resistor  
10kΩ / 1/16W / J(±5%)  
2700pF / 6.3V / B(±10%)  
0.027μF / 6.3V / B(±10%)  
C6A  
C6B  
C16A, C20A,  
C21A, C25A  
4
2
4
0.47μF / 50V / B(±10%)  
10μF / 35V / B(±10%)  
3.3μF / 16V / B(±10%)  
Capacitor  
C17, C24  
C15, C19,  
C22, C26  
2
1
C7, C10  
C27  
1.0μF / 10V / B(±10%)  
10μF / 16V / B(±10%)  
Caution 1: If the impedance characteristics of the speakers at high-frequency range increase rapidly, the LSI might not have stable operation in the resonance  
frequency range of the LC filter. Therefore, consider adding damping-circuit, etc., depending on the impedance of the speaker.  
Caution 2: Though this LSI has a short protection function, when short to VCC or GND after the LC filter, over-current occurs during short protection function  
operation. Be careful about over/undershoot which exceeds the maximum standard ratings because back electromotive force of the inductor will occur  
which sometimes leads to LSI destruction.  
The Inductor must be used to the coil with large margin of rated DC current (saturation current). When the short-circuit of the speaker output (after the  
LC filter) to VCC or GND occurs when the coil with small rated DC current is used, LSI destruction might be caused. Because the coil causes the magnetic  
saturation behavior, it instantaneously passes the heavy-current to LSI.  
Caution 3: Overshoot of output PWM differs according to the board or coupling capacitor of VCC, and etc. Check to ensure that it is lower than absolute maximum  
ratings.  
If it exceeds the absolute maximum ratings, snubber circuit must need to be added.  
Caution 4: When it is used at VCCP1, VCCP2>22V, snubber circuit must need to be added, and must change LC filter value to suppress the influence of the LCR  
resonance.  
Caution 5: This circuit constant is value with ROHM evaluation board, and adjustment of the constant may be necessary for the application board. Must carry out  
enough evaluations.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
68/79  
TSZ22111 15 001  
31.Aug.2018 Rev.001  
BM28723AMUV  
Application Circuit Example2 (Stereo BTL output, RL=8Ω, 22V<VCCP1, VCCP2≤24V)  
μ-con  
L25  
15μH  
GNDP1  
DVDD DVDD  
10μF  
C27  
3.3μF  
C26  
10kΩ  
R31  
10kΩ  
R32  
680pF  
C25B  
32  
31  
30  
29  
28  
27  
26  
25  
REG_G BSP1P OUT1P  
NC  
5.6Ω  
R25  
0.47μF  
SP ch1  
(Lch)  
C25A  
I2C BUS  
Address  
Select  
REG_G  
DVDD  
VSS  
GNDP1  
VCCP1  
Control  
I/F  
1
2
3
4
5
6
7
8
2 wire I/F  
24  
23  
22  
21  
20  
19  
18  
17  
ADDR  
VCCP1  
10μF  
C24  
Driver  
FET 1P  
0.47μF  
C21A  
BCLK  
5.6Ω  
BCLK  
LRCLK  
SDATA  
R2 0Ω  
R21  
GNDP1  
BSP1N  
GNDP1  
680pF  
I2S/LJ/RJ  
I/F  
C21B  
LRCLK  
Driver  
FET 1N  
Digital  
Audio  
Source  
R3 0Ω  
3.3μF  
C22  
15μH  
L21  
SDATA  
8 Times  
Over-  
Sampling  
Digital  
Filter  
OUT1N  
OUT2P  
R40Ω  
PWM  
Modulator  
Audio  
DSP  
TEST1  
VSS  
R6  
L20  
15μH  
C19  
3.3μF  
C6B  
0.027μF  
Driver  
FET 2P  
1.5kΩ  
PLL  
BSP2P  
PLL  
C20B  
VSS  
C6A  
2700pF  
680pF  
C7  
GNDP2  
R20  
5.6Ω  
REG15  
VSS  
REG15  
C20A  
0.47μF  
Driver  
FET 2N  
1μF  
GNDP2  
VCCP2  
C17  
10μF  
Protection  
VSS  
LRCLK  
VCCP2  
DGND  
GNDP2  
BCLK  
SP ch2  
(Rch)  
DVDD  
C16A  
0.47μF  
TEST2  
TEST3SDATAO  
R16  
5.6Ω  
BSP2N OUT2N  
15 16  
NC  
14  
9
10  
11  
12  
13  
C16B  
680pF  
C15  
3.3μF  
0Ω  
R12  
R13  
VSS  
VSS  
1μF  
C10  
VSS  
L16  
DVDD(3.3V)  
15μH  
μ-con  
10kΩ  
DVDD  
SDATAO  
ERRORX  
Figure 71  
Parts  
Qty  
4
Parts No.  
Description  
Inductor  
L16, L20, L21, L25  
15μH / 2.9A / (±20%)  
1.5kΩ / 1/16W / F(±1%)  
10kΩ / 1/16W / J(±5%)  
0Ω / 1/10W / J(±5%)  
1
R6  
R31, R32  
R2, R3, R4, R12  
R16, R20, R21, R25  
R13  
2
Resistor  
4
4
5.6Ω / 1/4W / J(±5%)  
10kΩ / 1/16W / J(±5%)  
2700pF / 6.3V / B(±10%)  
0.027μF / 6.3V / B(±10%)  
1
1
C6A  
1
C6B  
C16B, C20B,  
C21B, C25B  
C16A, C20A,  
C21A, C25A  
4
680pF / 50V / CH(±5%)  
4
2
4
0.47μF / 50V / B(±10%)  
10μF / 35V / B(±10%)  
3.3μF / 16V / B(±10%)  
Capacitor  
C17, C24  
C15, C19,  
C22, C26  
2
1
C7, C10  
C27  
1.0μF / 10V / B(±10%)  
10μF / 16V / B(±10%)  
Caution 1: If the impedance characteristics of the speakers at high-frequency range increase rapidly, the LSI might not have stable operation in the resonance  
frequency range of the LC filter. Therefore, consider adding damping-circuit, etc., depending on the impedance of the speaker.  
Caution 2: Though this LSI has a short protection function, when short to VCC or GND after the LC filter, over-current occurs during short protection function  
operation. Be careful about over/undershoot which exceeds the maximum standard ratings because back electromotive force of the inductor will occur  
which sometimes leads to LSI destruction.  
The Inductor must be used to the coil with large margin of rated DC current (saturation current). When the short-circuit of the speaker output (after the  
LC filter) to VCC or GND occurs when the coil with small rated DC current is used, LSI destruction might be caused. Because the coil causes the magnetic  
saturation behavior, it instantaneously passes the heavy-current to LSI.  
Caution 3: Overshoot of output PWM differs according to the board or coupling capacitor of VCC, and etc. Check to ensure that it is lower than absolute maximum  
ratings.  
If it exceeds the absolute maximum ratings, snubber circuit must need to be added.  
Caution 4: When it is used at VCCP1, VCCP2>22V, snubber circuit must need to be added, and must change LC filter value to suppress the influence of the LCR  
resonance.  
Caution 5: This circuit constant is value with ROHM evaluation board, and adjustment of the constant may be necessary for the application board. Must carry out  
enough evaluations.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
69/79  
TSZ22111 15 001  
31.Aug.2018 Rev.001  
BM28723AMUV  
(Note 23)  
Application Circuit Example3 (Monaural BTL output  
, RL=4Ω, VCCP1, VCCP2≤14V)  
μ-con  
L25  
10μH  
GNDP1  
DVDD DVDD  
10μF 3.3μF  
C27  
10kΩ  
R32  
10kΩ  
R31  
C26  
32  
31  
30  
29  
28  
NC  
27  
26  
25  
REG_G BSP1P OUT1P  
1μF  
C25A  
SP ch1  
(Lch)  
I2C BUS  
Address  
Select  
REG_G  
DVDD  
VSS  
GNDP1  
VCCP1  
Control  
I/F  
1
2
3
4
5
6
7
8
2 wire I/F  
24  
23  
22  
21  
20  
19  
18  
17  
ADDR  
VCCP1  
10μF  
C24  
Driver  
FET 1P  
1μF  
C21A  
BCLK  
BCLK  
LRCLK  
SDATA  
R2 0Ω  
GNDP1  
BSP1N  
GNDP1  
I2S/LJ/RJ  
I/F  
LRCLK  
Driver  
FET 1N  
Digital  
Audio  
Source  
R3 0Ω  
3.3μF  
C22  
10μH  
L21  
SDATA  
8 Times  
Over-  
Sampling  
Digital  
Filter  
OUT1N  
OUT2P  
R40Ω  
PWM  
Modulator  
Audio  
DSP  
TEST1  
VSS  
R6  
C6B  
0.027μF  
Driver  
FET 2P  
1.5kΩ  
PLL  
BSP2P  
PLL  
VSS  
C6A  
C7  
GNDP2  
2700pF  
REG15  
VSS  
REG15  
Driver  
FET 2N  
1μF  
GNDP2  
VCCP2  
Protection  
VSS  
LRCLK  
DGND  
BCLK  
DVDD  
TEST2  
TEST3SDATAO  
BSP2N OUT2N  
15 16  
NC  
14  
9
10  
11  
12  
13  
0Ω  
R12  
R13  
VSS  
VSS  
1μF  
C10  
DVDD(3.3V)  
μ-con  
VSS  
10kΩ  
DVDD  
SDATAO  
ERRORX  
Figure 72  
Description  
Parts  
Qty  
Parts No.  
Inductor  
2
1
2
4
1
1
1
2
1
2
2
1
L21, L25  
R6  
10μH / 3.8A / (±20%)  
1.5kΩ / 1/16W / F(±1%)  
10kΩ / 1/16W / J(±5%)  
0Ω / 1/10W / J(±5%)  
10kΩ / 1/16W / J(±5%)  
R31, R32  
R2, R3, R4, R12  
R13  
Resistor  
C6A  
2700pF / 6.3V / B(±10%)  
0.027μF / 6.3V / B(±10%)  
1.0μF / 50V / B(±10%)  
10μF / 35V / B(±10%)  
3.3μF / 16V / B(±10%)  
1.0μF / 10V / B(±10%)  
10μF / 16V / B(±10%)  
C6B  
C21A, C25A  
C24  
Capacitor  
C22, C26  
C7, C10  
C27  
Caution 1: If the impedance characteristics of the speakers at high-frequency range increase rapidly, the LSI might not have stable operation in the resonance  
frequency range of the LC filter. Therefore, consider adding damping-circuit, etc., depending on the impedance of the speaker.  
Caution 2: Though this LSI has a short protection function, when short to VCC or GND after the LC filter, over-current occurs during short protection function operation.  
Be careful about over/undershoot which exceeds the maximum standard ratings because back electromotive force of the inductor will occur which  
sometimes leads to LSI destruction.  
The Inductor must be used to the coil with large margin of rated DC current (saturation current). When the short-circuit of the speaker output (after the LC  
filter) to VCC or GND occurs when the coil with small rated DC current is used, LSI destruction might be caused. Because the coil causes the magnetic  
saturation behavior, it instantaneously passes the heavy-current to LSI.  
Caution 3: Overshoot of output PWM differs according to the board or coupling capacitor of VCC, and etc. Check to ensure that it is lower than absolute maximum  
ratings. If it exceeds the absolute maximum ratings, snubber circuit must need to be added.  
Caution 4: This circuit constant is value with ROHM evaluation board, and adjustment of the constant may be necessary for the application board. Must carry out  
enough evaluations.  
(Note 23) Register setting of 0xF2=0x0A and 0xF8=0x01 is necessary at the time of start-up (in state of MUTEX=Low).  
(Refer to “Monaural output setting”.)  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
70/79  
TSZ22111 15 001  
31.Aug.2018 Rev.001  
BM28723AMUV  
Selection of Components Externally Connected  
1 Output LC Filter Circuit  
An output filter is required to eliminate radio-frequency components exceeding the audio-frequency region supplied to a load  
(speaker). Because this LSI uses sampling frequency 384kHz (fS=48kHz) in the output PWM signals, the high-frequency  
components must be appropriately removed.  
This section takes an example of an LC type LPF shown below, in which coil L and capacitor Cg compose a differential filter  
with an attenuation property of -12dB/oct.  
L
OUT1P  
OUT2P  
Cg  
RL  
Cg  
OUT1N  
OUT2N  
L
Figure 73. Output LC Filter  
Following presents output LC filter constants with typical load impedances.  
RL  
L
Cg  
Note  
4Ω  
10μH  
10μH  
15μH  
10μH  
15μH  
1μF  
VCCP1, VCCP214V  
VCCP1, VCCP222V  
VCCP1, VCCP2>22V  
VCCP1, VCCP222V  
VCCP1, VCCP2>22V  
0.68μF  
0.47μF  
0.47μF  
0.47μF  
6Ω  
8Ω  
Use coils with a low direct-current resistance and a sufficient margin of allowable currents. In addition, select a closed  
magnetic circuit type product in normal cases to prevent unwanted emission. A high direct-current resistance causes power  
losses.  
When the short-circuit of the speaker output (After the LC filter) to VCC or GND occurs when the coil with small rated DC  
current is used, LSI destruction might be caused. Because thecoil causes the magnetic saturation behavior, it instantaneously  
passes the heavy-current to LSI.  
When using at VCCP1, VCCP2>22V, the coil of the rated DC current: 7.2A or more will be recommended.  
And, fCL (LC resonance frequency) of the LC filter should be lowered and decrease the influence of LC resonance.  
Use capacitors with low equivalent series resistance and good impedance characteristics at high frequency ranges.  
Also, select the parts with the margin of the ratings enough.  
2 The Value of the LC Filter Circuit Computed Equation  
The output LC filter circuit of BM28723AMUV is as it is shown in Figure 74. The LC filter circuit of Figure 74 is thought to  
substitute it like Figure 75 on the occasion of the computation of the value of the LC filter circuit.  
L
OUT1P  
OUT2P  
L
OUT1P  
Cg  
Cg  
OUT1N  
OUT2P  
OUT2N  
R=RL/2  
RL  
Cg  
OUT1N  
OUT2N  
L
Figure 74. Output LC Filter 1  
Figure 75. Output LC Filter 2  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
71/79  
TSZ22111 15 001  
BM28723AMUV  
2 The Value of the LC Filter Circuit Computed Equation - continued  
The transfer function H(s) of the LC filter circuit of Figure 75. becomes the following.  
1
LC  
ω2  
g
H
s
1
1
LC  
ω
s 2  
s
s 2  
s   
ω2  
Cg  
R
g
Q
The ω and Q become the followings here.  
1
LC  
1
ω2  
ω
2πfCL  
fCL   
g
2π LC  
g
C
L
g
1
2
C
L
g
Q
R
RL  
Therefore, L and Cg become the followings.  
1
ω2C  
RL  
4πfCLQ  
Q
Q
L
Cg  
g
ωR πfCLRL  
The RL and L should be made known, and fCL is set up, and Cg is decided.  
3 The Settlement of the Inductance Value of the Coil  
A standard for selection of the L value of a coil to use is to take the following consideration except for the factor such as a low  
cost, miniaturization and thin.  
1.When the inductance value was made small  
Circuit electric currents increase without a signal. Efficiency in the low output power gets bad.  
Direct current resistance value of the coil becomes small.  
Therefore, maximum output power becomes bigger.  
Rated DC current and Temperature rise current of the coil become high.  
2.When the inductance value was made large  
Circuit electric current is decrease without a signal. Efficiency in the low output power improves.  
Direct current resistance value of the coil becomes big.  
Therefore, maximum output power becomes smaller.  
Rated DC current and Temperature rise current of the coil becomes low.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
72/79  
TSZ22111 15 001  
31.Aug.2018 Rev.001  
BM28723AMUV  
Selection of Components Externally Connected - continued  
4 Snubber Circuit Constant  
When overshoot of PWM Output exceeds absolute maximum rating, and when VCCP1, VCCP2>22V, or when overshoot of PWM  
output negatively affects EMI, or when ringing deteriorates the audio characteristic of the PWM output, snubber circuit is used  
as shown below.  
1. Measure the ringing resonance frequency f1 of PWM output waveform (when rising) by using low capacitance Probe  
(e.g. FET probe) at the OUT pin. (Figure 76)  
Shorten GND lead of FET probe and monitor as near as possible to output pin.  
2. Measure the resonance frequency f2 of the ringing as the snubber-circuit Rsnb=0Ω  
(capacitor is connected to GND)  
Adjust the value of the capacitor C until it becomes half of f1 (2f2=f1).  
The value of C that becomes (2f2=f1) is 3 times of the parasitic capacity Cp that a ringing is formed. (C=3Cp)  
3. Parasitic inductance Lp is calculated using the next formula.  
1
Lp  
2ππ1 2C p  
4. The characteristics impedance Z of resonance is calculated from the parasitic capacity Cp and the parasitic inductance Lp  
using the next formula.  
Lp  
Z
C p  
5. Set snubber circuit Rsnb same as the character impedance Z.  
Set snubber circuit Csnb 4 to 10 times of the parasitic capacity Cp (Csnb=4Cp to 10Cp).  
If Csnb value is set large, switching current will possibly increase.  
Therefore, please decide it by the trade-off with the characteristic.  
VCCP1  
VCCP2  
Snubber  
LC Filter  
Ringing resonance  
frequency  
Driver  
OUT1N  
OUT1P  
OUT2N  
OUT2P  
Csnb  
Rsnb  
5ns/div  
GNDP1  
GNDP2  
Figure 76. PWM Output Waveform  
Figure 77. Snubber Schematic  
(Measure of spike resonance frequency)  
Following presents Snubber filter constants with the recommendation value at 22V<VCCP1, VCCP2≤24V, RL=8Ω,  
Po=10W+10W, ROHM 4 layer board(Note 12).  
Csnb  
Rsnb  
680pF 50V CH (±5%)  
5.6Ω 1/4W J (±5%)  
Following presents Snubber filter constants with the recommendation value at VCCP1, VCCP2≤22V, RL=8Ω,  
Po=10W+10W, ROHM 4 layer board(Note 12).  
Csnb  
Rsnb  
470pF 50V CH (±5%)  
0Ω or 5.6Ω 1/8W J (±5%)  
(Note 12) 100mmx100mmx1.6mm FR4 4-layer glass epoxy board Cu Thickness 35μm/70μm/70μm/35μm For Application Evaluation Board  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
73/79  
TSZ22111 15 001  
BM28723AMUV  
Selection of Components Externally Connected - continued  
5 Operating Condition with the Application Component  
Limit  
Parameter  
Parts No.  
C17, C24  
C27  
Unit  
µF  
µF  
µF  
µF  
µF  
Conditions  
B characteristics  
Ceramic type capacitor  
recommended  
B characteristics, 16V  
Ceramic type capacitor  
recommended  
B characteristics, 10V  
Ceramic type capacitor  
recommended  
B characteristics, 16V  
Ceramic type capacitor  
recommended  
B characteristics, 16V  
Ceramic type capacitor  
recommended  
Min  
Typ  
Max  
-
Coupling Capacitor for Power  
Supply  
1(Note 24)  
10  
Capacitor for REG_G  
Capacitor for REG15  
1(Note 24)  
10  
1.0  
3.3  
4.7  
13.5(Note 26)  
1.35(Note 26)  
4.5(Note 26)  
C7  
0.4(Note 24)  
2.0(Note 24)  
(Note 25)  
C15, C19,  
C22, C26  
Capacitor for BSP  
2.0(Note 24)  
6.3(Note 26)  
(Note 25)  
(Note 27)  
(Note 24) Should use the capacity of the capacitor not to be less than a minimum in consideration of temperature characteristics and dc-bias characteristics.  
(Note 25) Minimum value to guarantee Speaker output operating range (20Hz to 20kHz, sin wave, THD+N ≤ 10%)  
(Note 26) Use it within this rating. (Capacitance±10%, Capacitance change ratio±22%)  
(Note 27) Influence it at the RSTX → MUTEX Wait time (TWAIT: Refer to P.27) at the time of the Power Supply Start-up. Use it within this rating.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
74/79  
TSZ22111 15 001  
31.Aug.2018 Rev.001  
BM28723AMUV  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the LSI. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the LSI’s power  
supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. However,  
pins that drive inductive loads (e.g. motor driver outputs, DC-DC converter outputs) may inevitably go below ground  
due to back EMF or electromotive force. In such cases, the user should make sure that such voltages going below  
ground will not cause the LSI and the system to malfunction by examining carefully all relevant factors and conditions  
such as motor characteristics, supply voltage, operating frequency and PCB wiring to name a few.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the LSI can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
6. Inrush Current  
When power is first supplied to the LSI, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the LSI has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7. Testing on Application Boards  
When testing the LSI on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the LSI to stress. Always discharge capacitors completely after each process or step. The LSI’s power supply  
should always be turned OFF completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the LSI during assembly and use similar precautions during  
transport and storage.  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
75/79  
TSZ22111 15 001  
31.Aug.2018 Rev.001  
Daattaasshheeeett  
BM28723AMUV  
Operational Notes – continued  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the LSI on the PCB. Incorrect mounting may result in  
damaging the LSI. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an LSI are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the LSI. So, unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
10. Regarding the Input Pin of the LSI  
This LSI contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N  
junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode  
or transistor. For example (refer to figure below):  
When ground > Pin A and ground > Pin B, the P-N junction operates as a parasitic diode.  
When ground > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the LSI. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the ground voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor( NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
N
P+  
N
P+  
P
P+  
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
ground  
P Substrate  
ground  
P Substrate  
ground  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
ground  
Figure 78. Example of LSI structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This LSI has a built-in thermal shutdown circuit that prevents heat damage to the LSI. Normal operation should always  
be within the LSI’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls  
below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the LSI from  
heat damage.  
13. Over Current Protection Circuit (OCP)  
This LSI incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the LSI should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
76/79  
BM28723AMUV  
Ordering Information  
2
3
A M U  
V
B M 2  
8
7
-
E 2  
Part Number  
Package  
MUV:  
Packaging and forming specification  
E2: Embossed tape and reel  
VQFN032V5050  
The tape of BM28723AMUV-E2 is a dry pack.  
Marking Diagram  
VQFN032V5050 (TOP VIEW)  
Part Number Marking  
2 8 7 2 3 A  
LOT Number  
Pin 1 Mark  
Figure 79  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
77/79  
TSZ22111 15 001  
BM28723AMUV  
Physical Dimension and Packing Information  
Package Name  
VQFN032V5050  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
78/79  
TSZ22111 15 001  
BM28723AMUV  
Revision History  
Date  
Revision  
001  
Changes  
31.Aug.2018  
New release  
www.rohm.com  
TSZ02201-0C1C0E900720-1-2  
31.Aug.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
79/79  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM28723MUV-DE2

Audio Amplifier,
ROHM

BM28B-PUDSS-TFC

2.0mm pitch/Disconnectable Crimp style connectors
ETC

BM28B0.6-40DP/2-0.35V(51)

Board Stacking Connector,
HRS

BM29B0.6-2DS/2-0.35V(51)

CONN RCPT .35MM 2SGNL + 2PWR SMD
HRS

BM29F04-12AC

Flash, 512KX8, 120ns, PQCC32
WINBOND

BM29F04-12AI

Flash, 512KX8, 120ns, PQCC32
WINBOND

BM29F04-12NC

Flash, 512KX8, 120ns, PDIP32
WINBOND

BM29F04-12NI

Flash, 512KX8, 120ns, PDIP32
WINBOND

BM29F04-12TC

Flash, 512KX8, 120ns, PDSO32
WINBOND

BM29F04-15AC

Flash, 512KX8, 150ns, PQCC32
WINBOND

BM29F04-15AI

Flash, 512KX8, 150ns, PQCC32
WINBOND

BM29F04-15NC

Flash, 512KX8, 150ns, PDIP32
WINBOND