BH76361FV [ROHM]

Video Drivers with Built-in Low Voltage operation Single Video Switchers; 与内置低电压操作单路视频切换器视频驱动程序
BH76361FV
型号: BH76361FV
厂家: ROHM    ROHM
描述:

Video Drivers with Built-in Low Voltage operation Single Video Switchers
与内置低电压操作单路视频切换器视频驱动程序

驱动
文件: 总33页 (文件大小:859K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High-performance video signal Switcher Series  
Video Drivers with Built-in  
Low Voltage operation Single Video Switchers  
High-performance System video Driver Series  
Video Drivers with Built-in  
Input Selection SW  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV  
High-performance video signal Switcher Series  
Wide Band  
Low Voltage operation Single Video Switchers  
No.09065EAT01  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
INDEX  
Video Drivers with Built-in  
Low Voltage operation Single Video Switchers  
BH76330FVM (3input 1output Video Switch)・・・・・・P2  
BH76331FVM (3input 1output Video Switch)・・・・・・P2  
BH76360FV (6input 1output Video Switch)・・・・・・P17  
BH76361FV (6input 1output Video Switch)・・・・・・P17  
Wide Band  
Low Voltage operation Single Video Switchers  
BH76332FVM (3input 1output Video Switch)・・・・・・P2  
BH76333FVM (3input 1output Video Switch)・・・・・・P2  
BH76362FV (6input 1output Video Switch)・・・・・・P17  
BH76363FV (6input 1output Video Switch)・・・・・・P17  
www.rohm.com  
2009.04 - Rev.A  
1/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Line-up of products with built-in video amplifier and video driver  
3-input, 1-output video switch  
BH76330FVM, BH76331FVM, BH76332FVM, BH76333FVM  
General  
BH76330FVM, BH76331FVM, BH76332FVM, and BH76333FVM are video signal switching ICs, each with three inputs and  
one circuit input, which feature wide dynamic range and frequency response. Since these ICs can be used with low voltage  
starting at VCC = 2.8 V, they are applicable not only in stationary devices but also in mobile devices.  
This product line-up supports a broad range of input signals, depending on whether or not a 6-dB video amplifier and video  
driver are included and what combination of sync tip clamp type and bias (resistor termination) type inputs are used.  
Features  
1) Able to use a wide range of power supply voltage, from 2.8 V to 5.5 V  
2) Wide output dynamic range  
3) Excellent frequency response  
(BH76330FVM and BH76331FVM: 100 kHz/10 MHz 0 dB [Typ.], BH76332FVM and BH76333FVM: 100 kHz/30  
MHz 0 dB [Typ.])  
4) No crosstalk between channels (Typ. -65 dB, f = 4.43 MHz)  
5) Built-in standby function, circuit current during standby is 0 µA (Typ.)  
6) Sync tip clamp input (BH76330FVM, BH76332FVM)  
7) Bias input (Zin = 150 k) (BH76331FVM, BH76333FVM)  
8) 6-dB amp and 75driver are built in (BH76330FVM, BH76331FVM)  
9) Enables two load drivers [when using output coupling capacitor] (BH76330FVM, BH76331FVM)  
10) Able to be used without output coupling capacitor (BH76330FVM)  
11) MSOP8 compact package  
Applications  
Input switching in car navigation systems, TVs, DVD systems, etc.  
Line-up  
BH76330FVM BH76331FVM BH76332FVM BH76333FVM  
2.8 V to 5.5 V  
Supply voltage  
Amp gain  
6 dB  
-0.1 dB  
Video driver  
Included  
Frequency response  
100 kHz/10 MHz, 0 dB (Typ.)  
100 kHz/30 MHz, 0 dB (Typ.)  
Sync tip  
clamp  
Bias  
Sync tip  
clamp  
Bias  
Input type  
(Zin = 150 k)  
(Zin = 150 k)  
Absolute maximum ratings (Ta = 25)  
Parameter  
Symbol  
Limits  
Unit  
V
Supply voltage  
VCC  
Pd  
7.0  
Power dissipation  
Input voltage range  
Operating temperature  
range  
470 1  
mW  
V
VIN  
0 to VCC+0.2  
-40 to +85  
Topr  
Storage temperature  
range  
-55 to +125  
Tstg  
*1 When used while Ta = 25, 4.7 mW is dissipated per 1℃  
Mounted on 70 mm x 70 mm x 1.6 mm glass epoxy board  
Operation range (Ta = 25)  
Parameter  
Symbol  
VCC  
Min.  
2.8  
Typ.  
5.0  
Max  
5.5  
Unit  
V
Supply voltage  
www.rohm.com  
2009.04 - Rev.A  
2/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Electrical characteristics 1 (unless otherwise specified, Ta = 25, VCC = 5 V)  
Typ.  
Parameter  
Symbol  
Unit  
Conditions  
76330  
17  
76331  
76332  
76333  
Circuit current 1  
Circuit current 2  
ICC1  
ICC2  
ICC3-1  
10  
11  
9
mA When no signal  
µA  
0.0  
During standby  
10  
During output of color bar signal  
During output of color bar signal  
(no C in output)  
Circuit current 3  
mA  
ICC3-2  
Maximum output level  
Voltage gain  
VOM  
GV  
GF1  
GF2  
4.6  
6.0  
0
3.8  
3.4  
Vpp f = 10 kHz, THD = 1%  
-0.1  
0
dB  
dB  
dB  
Vin = 1.0 Vpp, f = 100 kHz  
Vin = 1.0 Vpp, f = 10 MHz/100 kHz  
Vin = 1.0 Vpp, f = 30 MHz/100 kHz  
Frequency response  
Crosstalk between  
channels  
Mute attenuation  
CT  
-65  
-65  
1.2 Min  
0.45 Max  
50 Max  
dB  
Vin = 1.0 Vpp, f = 4.43 MHz  
MT  
VTHH  
VTHL  
ITHH  
Zin  
dB  
V
V
µA  
k  
%
Vin = 1.0 Vpp, f = 4.43 MHz  
High level threshold voltage  
Low level threshold voltage  
CTL pin = 2.0 V applied  
CTL pin switch level  
CTL pin inflow current  
Input impedance  
Differential gain  
150  
150  
DG  
DP-1  
0.3  
Vin = 1.0 Vpp  
Standard stair step signal  
Same condition as above  
(no C in output)  
Vin = 1.0 Vpp, bandwidth: 100 k to 6 MHz  
100% white video signal  
Vin = 1.0 Vpp, bandwidth: 100 to 500 kHz  
100% chroma voltage signal  
0.7  
0.3  
Differential phase  
deg.  
DP-2  
SNY  
0.0  
Y-related S/N  
+75  
+78  
dB  
dB  
C-related S/N [AM]  
C-related S/N [PM]  
SNCA  
SNCP  
+75  
+65  
Electrical characteristics 2 (unless otherwise specified, Ta = 25, VCC = 3 V)  
Typ.  
Parameter  
Symbol  
Unit  
Conditions  
76330  
76331  
76332  
76333  
Circuit current 1  
Circuit current 2  
ICC1  
ICC2  
ICC3-1  
8.5  
9.5  
8.0  
9.0  
mA When no signal  
µA During standby  
mA During output of color bar signal  
During output of color bar signal  
(no C in output)  
0.0  
Circuit current 3  
ICC3-2  
15.5  
2.7  
Maximum output level  
Voltage gain  
VOM  
GV  
GF1  
GF2  
2.8  
1.8  
1.9  
Vpp f = 10 kHz, THD = 1%  
6.0  
0
-0.1  
0
dB  
dB  
dB  
Vin = 1.0 Vpp, f = 100 kHz  
Vin = 1.0 Vpp, f = 10 MHz/100 kHz  
Vin = 1.0 Vpp, f = 30 MHz/100 kHz  
Frequency response  
Crosstalk between  
channels  
Mute attenuation  
CT  
-65  
-65  
1.2 Min  
0.45 Max  
50 Max  
dB  
Vin = 1.0 Vpp, f = 4.43 MHz  
MT  
VTHH  
VTHL  
ITHH  
Zin  
dB  
V
V
µA  
k  
%
Vin = 1.0 Vpp, f = 4.43 MHz  
High level threshold voltage  
Low level threshold voltage  
CTL pin = 2.0 V applied  
CTL pin switch level  
CTL pin inflow current  
Input impedance  
Differential gain  
150  
0.7  
150  
DG  
DP-1  
0.3  
0.3  
0.3  
Vin = 1.0 Vpp  
Standard stair step signal  
Same condition as above  
(no C in output)  
Vin = 1.0 Vpp, bandwidth: 100 k to 6 MHz  
100% white video signal  
Vin = 1.0 Vpp, bandwidth: 100 to 500 kHz  
100% chroma video signal  
1.0  
Differential phase  
deg.  
DP-2  
SNY  
0.5  
Y-related S/N  
+75  
+78  
dB  
C-related S/N [AM]  
C-related S/N [PM]  
SNCA  
SNCP  
+75  
+65  
dB  
dB  
(Note) Re: ICC3, VOM, GV, GF, CT, MT, DG, DP, SNY, SNCA, and SNCP parameters  
BH76330FVM and BH76331FVM: RL = 150  
BH76332FVM and BH76333FVM: RL = 10 k  
www.rohm.com  
2009.04 - Rev.A  
3/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Control pin settings  
CTL  
A
B
STBY  
IN1  
IN2  
L(OPEN) L(OPEN)  
L(OPEN)  
H
L(OPEN)  
H
H
H
IN3  
Block diagram  
Sync_Tip  
BIAS  
IN1  
GND  
8
IN1  
1
GND  
8
Clamp  
1
OUT  
7
OUT  
CTLA  
2
CTLA  
2
6dB  
6dB  
75Ω  
75Ω  
7
BIAS  
Sync_Tip  
Clamp  
VCC  
6
VCC  
6
IN2  
3
IN2  
3
logic  
logic  
Sync_Tip  
Clamp  
BIAS  
CTLB  
4
CTLB  
4
IN3  
5
IN3  
5
Fig.1 BH76330FV  
Fig.2 BH76331FV  
Sync_Tip  
Clamp  
BIAS  
IN1  
1
GND  
8
IN1  
1
GND  
8
OUT  
7
OUT  
7
CTLA  
2
CTLA  
2
0dB  
0dB  
BIAS  
Sync_Tip  
Clamp  
VCC  
6
VCC  
6
IN2  
3
IN2  
3
logic  
logic  
Sync_Tip  
Clamp  
BIAS  
CTLB  
4
CTLB  
4
IN3  
5
IN3  
5
Fig. 3 BH76332FV  
Fig. 4 BH76333FV  
www.rohm.com  
2009.04 - Rev.A  
4/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
I/O equivalent circuit diagrams  
Input pins  
Sync tip clamp input  
Bias input  
BH76330FVM/BH76332FVM  
BH76331FVM/BH76333FVM  
Pin No.  
Name  
Equivalent circuit  
Pin No.  
Name  
Equivalent circuit  
1
3
5
IN1  
IN2  
IN3  
1
3
5
IN1  
IN2  
IN3  
IN  
IN  
100Ω  
100Ω  
150kΩ  
Video signal input pin is used for bias type input. Input  
impedance is 150 k.  
DC potential  
Video signal input pin is used for sync tip clamp input.  
DC potential  
BH76330FVM: 1.5 V  
BH76332FVM: 1.0 V  
BH76331FVM: 3.1 V  
BH76333FVM: 2.5 V  
Control pins  
Pin No.  
Name  
Equivalent circuit  
200kΩ  
50kΩ  
2
4
CTLA  
CTLB  
CTL  
250kΩ  
200kΩ  
Switches operation mode [active or standby] and input  
pin.  
Threshold level is 0.45 V to 1.2 V.  
Output pin  
With video driver  
Without video driver  
BH76330FVM/BH76331FVM  
BH76332FVM/BH76333FVM  
Pin No.  
Name  
Equivalent circuit  
Pin No.  
Name  
OUT  
OUT  
7
OUT  
7
OUT  
3.0mA  
14kΩ  
Video signal output pin. Able to drive loads up to 75   
Video signal output pin.  
(dual drive).  
DC potential  
DC potential  
BH76330FVM: 0.16 V  
BH76331FVM: 2.5 V  
BH76332FVM: 0.3 V  
BH76333FVM: 1.8 V  
Note 1) The above DC potential is only when VCC = 5 V. This value is a reference value and is not guaranteed.  
Note 2) Numerical values shown in these figures are design values, and compliance to standards is not guaranteed.  
www.rohm.com  
2009.04 - Rev.A  
5/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Test Circuit Diagrams  
Sync_Tip  
Clamp  
Sync_Tip  
IN1  
1
GND  
8
0.01μF  
IN1  
1
GND  
8
Clamp  
0.01μF  
50Ω  
50Ω  
OUT  
CTLA  
2
OUT  
7
CTLA  
2
75Ω  
A
0dB  
7
A
6dB  
75Ω  
Sync_Tip  
Clamp  
10μF  
Sync_Tip  
Clamp  
10μF  
V
V
V
V
10kΩ  
75Ω  
VCC  
IN2  
3
VCC  
IN2  
3
0.01μF  
0.01μF  
0.01μF  
0.01μF  
A
6
A
6
10μF  
50Ω  
logic  
10μF  
logic  
VCC  
50Ω  
VCC  
Sync_Tip  
Clamp  
50Ω  
Sync_Tip  
Clamp  
CTLB  
4
IN3  
5
CTLB  
4
IN3  
5
A
A
0.01μF  
0.01μF  
50Ω  
Fig. 5 BH76330FV/BH76331FV Test Circuit Diagram  
Fig. 6 BH76332FV/BH76333FV Test Circuit Diagram  
Test circuit diagrams are used for shipment inspections, and differ from application circuits.  
Application circuit examples  
When used without  
output capacitor  
VIDEO_OUT  
7
75Ω  
BIAS  
IN1  
1
GND  
8
VIDEO_IN  
Sync_Tip  
Clamp  
4.7μF  
IN1  
1
GND  
8
OUT  
7
VIDEO_IN  
CTLA  
2
0.1μF  
VIDEO_OUT  
6dB  
75Ω  
BIAS  
470μF  
75Ω  
OUT  
7
CTLA  
2
VCC  
6
IN2  
3
VIDEO_OUT  
6dB  
75Ω  
0.1μF  
Sync_Tip  
470μF  
75Ω  
VIDEO_IN  
Clamp  
4.7μF  
VCC  
logic  
IN2  
3
47μF  
VCC  
0.1μF  
BIAS  
CTLB  
4
IN3  
5
VIDEO_IN  
6
VIDEO_IN  
0.1μF  
logic  
47μF  
VCC  
Sync_Tip  
Clamp  
4.7μF  
CTLB  
4
IN3  
5
VIDEO_IN  
0.1μF  
Fig. 8  
BH76331FV  
Fig. 7  
BH76330FV  
Sync_Tip  
Clamp  
BIAS  
IN1  
1
GND  
8
IN1  
1
GND  
8
VIDEO_IN  
VIDEO_IN  
0.1μF  
4.7μF  
OUT  
7
CTLA  
2
OUT  
7
CTLA  
2
0dB  
VIDEO_OUT  
0dB  
VIDEO_OUT  
Sync_Tip  
Clamp  
BIAS  
VCC  
6
IN2  
3
VCC  
6
IN2  
3
0.1μF  
0.1μF  
VIDEO_IN  
VIDEO_IN  
0.1μF  
4.7μF  
logic  
47μF  
VCC  
logic  
47μF  
VCC  
Sync_Tip  
Clamp  
BIAS  
CTLB  
4
IN3  
5
CTLB  
4
IN3  
5
VIDEO_IN  
VIDEO_IN  
0.1μF  
4.7μF  
Fig. 9 BH76332FV  
Fig. 10  
BH76333FV  
See pages 6/16 to 10/16 for description of how to determine the capacity of I/O coupling capacitors.  
www.rohm.com  
2009.04 - Rev.A  
6/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Cautions for selection and use of application parts  
When using this IC by itself ①  
Capacity of input coupling  
Capacity of output coupling  
Input impedance  
Input type  
capacitor (recommended  
capacitor (recommended  
value)  
Zin  
value)  
0.1 µF  
4.7 µF  
Sync_Tip_Clamp  
Bias  
10 M  
150 k  
470 µF to 1000 µF  
Method for determining capacity of input coupling capacitor  
The HPF is comprised of an input coupling capacitor and the internal input impedance Zin of the IC. Since the fc value of this HPF is  
determined using the following equation (a), the above recommended capacity for the input capacitor is derived. Usually, the cutoff  
frequency fc is several Hz.  
fc = 1 / (2π × C × Zin)・・・・(a)  
When evaluating the sag characteristics and determining the capacity of the capacitor during video signal input, a horizontal stripe signal  
called "H bar" (shown in Fig. 10) is suitable, and this type of signal is used instead of a color bar signal to evaluate characteristics and  
determine capacity.  
Fig.11 Example of Screen with Obvious Sag (H-bar Signal)  
Method for determining capacity of output coupling capacitor  
The output pins of models with a 75driver [BH76330FVM and BH76331FVM] have an HPF comprised of an output coupling capacitor and  
load resistance RL (= 150). When fc is set to approximately 1 Hz or 2 Hz, the capacity of the output coupling capacitor needs to be  
approximately 470 µF to 1000 µF.  
As for models without the 75driver, an HPF is similarly comprised using the capacity of the output coupling capacitor and the input  
impedance of the IC connected at the next stage, and the capacitance required for the output coupling capacitor should be estimated using  
equation (a).  
When this IC is used as a standalone device ②  
In models that include a 75driver [BH76330FVM and BH76331FVM], up to two monitors (loads) can be connected (a connection example  
is shown in Fig. 12). When there are multiple loads, the number of output coupling capacitors must be increased or a larger capacitance  
must be used, based on the table shown below.  
(470×2)μF  
470μF  
75Ω  
monitor  
monitor  
OUT  
OUT  
7
7
75Ω  
75Ω  
75Ω  
monitor  
470μF  
75Ω  
monitor  
75Ω  
75Ω  
75Ω  
Fig. 12 (a) Application Circuit Example 1 (Two Drives)  
Fig. 12 (b) Application Circuit Example 2 (Two Drives)  
Application circuit example  
Fig. 12 (a)  
No. of output capacitors  
Capacitance per output capacitor (recommended values)  
470 µF to 1000 µF (same as with one drive)  
(No. of drive × 470 µF to 1000) uF  
No. of drives required  
1
Fig. 12 (b)  
When this IC is used as a standalone device ③  
The BH76330FVM is the only model that can be used without an output coupling capacitor.  
This use method not only enables reductions in board space and part-related costs, but it is able to improve the sag characteristics by  
improving low-range frequency response. However, when the output coupling capacitor is omitted, a direct current flows to the connected  
set, so the specifications of the connected set should be noted carefully before starting use.  
Note also that only one load can be connected when the output coupling capacitor is omitted.  
monitor  
Voltage at output 0.16V  
OUT  
7
When this voltage load resistance is applied,  
0 2V  
75Ω  
75Ω  
a direct current is generated.  
BH76330FV  
Fig.13 Application Example without Output Coupling Capacitor  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
7/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
When using several of these ICs ①  
When several of these ICs are used, it enables applications in which separate images are output to the car navigation system's front and  
rear monitors.  
Clamp  
/Bias  
Clamp  
/Bias  
IN1  
1
IN1  
1
VIDEO IN  
VIDEO IN  
VIDEO IN  
Clamp  
/Bias  
Clamp  
/Bias  
470μF  
470μF  
IN2  
3
Front monitor  
IN2  
3
Rear monitor  
7
OUT  
7
OUT  
75Ω  
75Ω  
75Ω  
75Ω  
Clamp  
/Bias  
Clamp  
/Bias  
IN3  
5
IN3  
5
Fig.14 Application Example when Using Several ICs  
When several ICs are used at the same time, the number of parallel connections of input impedance equals the number of ICs being used,  
which reduces the input impedance. This also raises the fc value of the HPF formed at the input pin block, so the capacitance of the input  
coupling capacitor must be increased according to equation (a). The recommended values for calculation results are listed in the table  
below.  
When a clamp is used as the input type, the original input impedance becomes much greater, and if two or three are used at the same time  
there is no need to change the capacitance of the input coupling capacitor.  
Capacitance of input  
Number of ICs  
used  
Total  
Input type  
Input impedance per IC  
coupling capacitor  
input impedance  
(recommended values)  
2
3
2
3
Approx. 5 M  
Approx. 3 M  
75 k  
0.1 µF  
0.1 µF  
Sync_Tip_Clamp  
Bias  
Approx. 10 M  
150 k  
6.8 µF~  
10 µF~  
50 k  
When using several of these ICs ②  
When three bias input type models (BH76331FVM or BH76333FVM) are used in parallel, they can be used for RGB signal switching  
applications. Likewise, when one clamp input type model (BH76330FVM or BH76332FVM) is connected in parallel with two bias input type  
models (a total of three ICs used in parallel), they can be used for component signal switching applications. The same method can be used  
to determine the capacitance of I/O coupling capacitors of these applications.  
Clamp  
Bias  
IN1  
IN1  
1
VIDEO IN[Py1]  
BH76331FV  
BH76330FV  
VIDEO IN[R1]  
1
or BH76333FV  
or BH76332FV  
0.1uF  
4.7μF  
Clamp  
Clamp  
Bias  
Bias  
OUT  
7
IN2  
3
IN2  
3
OUT  
7
VIDEO IN[Py2]  
VIDEO IN[Py3]  
VIDEO IN[R2]  
VIDEO IN[R3]  
0.1uF  
0.1uF  
4.7μF  
4.7μF  
Py_OUT  
R_OUT  
IN3  
5
IN3  
5
Bias  
Bias  
IN1  
1
BH76331FV  
or BH76333FV  
IN1  
1
VIDEO IN[Pb1]  
BH76331FV  
VIDEO IN[G1]  
or BH76333FV  
4.7uF  
4.7μF  
Bias  
Bias  
Bias  
Bias  
OUT  
7
IN2  
3
IN2  
3
VIDEO IN[Pb2]  
VIDEO IN[Pb3]  
OUT  
7
VIDEO IN[G2]  
VIDEO IN[G3]  
4.7uF  
4.7uF  
Pb_OUT  
4.7μF  
4.7μF  
G_OUT  
IN3  
5
IN3  
5
Bias  
Bias  
BH76331FV  
BH76331FV  
or BH76333FV  
IN1  
1
IN1  
1
VIDEO IN[Pr1]  
VIDEO IN[B1]  
or BH76333FV  
4.7uF  
4.7μF  
Bias  
Bias  
Bias  
Bias  
OUT  
7
IN2  
3
IN2  
3
VIDEO IN[Pr2]  
VIDEO IN[Pr3]  
OUT  
7
VIDEO IN[B2]  
VIDEO IN[B3]  
4.7μF  
4.7μF  
4.7uF  
4.7uF  
Pr_OUT  
B_OUT  
IN3  
5
IN3  
5
SW select  
SW select  
Fig. 15 (a). RGB Signal Switching Application Example  
(using three bias input type models in parallel)  
Fig. 15 (b). Component Signal Switching Application Example  
(using one clamp input type model and two bias input  
type models in parallel)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
8/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Cautions for use  
1. The numerical values and data shown here are typical design values, not guaranteed values.  
2. The application circuit examples show recommended circuits, but characteristics should be checked carefully before using  
these circuits. If any external part constants are modified before use, factors such as variation in all external parts and  
ROHM LSI ICs, including not only static characteristics but also transient characteristics, should be fully considered to set  
an ample margin.  
3. Absolute maximum ratings  
If the absolute maximum ratings for applied voltage and/or operation temperature are exceeded, LSI damage may result.  
Therefore, do not apply voltage or use in a temperature that exceeds these absolute maximum ratings. If it is possible that  
absolute maximum ratings will be exceeded, use a physical safety device such as a fuse and make sure that no conditions  
that might exceed the absolute maximum ratings will be applied to the LSI IC.  
4. GND potential  
Regardless of the operation mode, the voltage of the GND pin should be at least the minimum voltage. Actually check  
whether or not the voltage at each pin, including transient phenomena, is less than the GND pin voltage.  
5. Thermal design  
The thermal design should be done using an ample margin that takes into consideration the allowable dissipation under  
actual use conditions.  
6. Shorts between pins and mounting errors  
When mounting LSI ICs onto the circuit board, make sure each LSI's orientation and position is correct. The ICs may  
become damaged if they are not mounted correctly when the power is turned on. Similarly, damage may also result if a  
short occurs, such as when a foreign object is positioned between pins in an IC, or between a pin and a power supply or  
GND connection.  
7. Operation in strong electromagnetic field  
When used within a strong electromagnetic field, evaluate carefully to avoid the risk of operation faults.  
8. Place the power supply's decoupling capacitor as close as possible to the VCC pin (PIN 6) and GND pin (PIN 8).  
9. With a clamp input type model (BH76330FVM or BH76332FVM), if any unused input pins are left open they will oscillate, so  
unused input pins should instead be connected to GND via a capacitor or else directly connected to VCC.  
10. With models that do not include a 75driver (BH76332FVM or BH76333FVM), in some cases the capacitance added to the  
set board may cause the peak frequency response to occur at a high frequency. To lower the peak frequency, connect in  
series resistors having resistance of several dozen to several hundred as close as possible to the output pin.  
Output pin  
OUT  
7
Resistors (several dozen  
to  
Ω
several hundred ) to lower peak  
Ω
frequency  
Fig.16 Positions where Resistors are Inserted to Lower Peak Frequency Response in BH76332FV or BH76333FV  
11. Frequency response in models that do not include a 75-driver (BH76332FVM and BH76333FVM) was measured as 100  
kH/30 MHz: 0 dB (Typ.) in the application circuit examples (shown in Fig. 9 and Fig. 10), and when resistance of about 1 or  
2 kis applied from the IC's output pin to GND, this frequency response can be improved (the lower limit of the applied  
resistance should be 1 k). In such cases, gain is reduced, since the output voltage is divided by the added resistance  
and the output resistance of the IC.  
-0.10  
-0.12  
-0.14  
-0.16  
-0.18  
-0.20  
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
OUT  
7
R=1kΩ  
3mA  
R=2kΩ  
No resistance  
Resistance to improve frequency  
response (R: 1-2 kΩ)  
0.5  
1
1.5  
Resistance added to output pin [k]  
2
2.5  
1M  
10M  
Frequency [Hz]  
100M  
1000M  
(b) Frequency response changes when resistance is inserted  
Input amplitude: 1 Vpp, Output load resistance: 10 k  
Other constants are as in application examples (Figs. 9 & 10)  
(c) Voltage gain fluctuation when resistance is inserted  
[f = 100 kHz]  
(Voltage gain without inserted resistance: -0.11 dB)  
(a) Resistor insertion points  
Fig.17 Result of Resistance Inserted to Improve BH76332FVM/BH76333FVM Frequency Response  
www.rohm.com  
2009.04 - Rev.A  
9/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
12. With clamp input type models (BH76330FVM and BH76332FVM), if the termination impedance of the video input pin  
becomes higher, sync contractions or oscillation-related problems may occur. Evaluate temperature and other  
characteristics carefully and use at 1 kor less.  
6
5
4
3
2
1
0
0
1k  
2k  
Input termination resistance Rin [Ω]  
3k  
Fig. 18. Relation between Input Pin Termination Impedance and Amount of Sync Contraction  
Evaluation board pattern diagram and circuit diagram  
Fig. 19. Evaluation Board Circuit Diagram  
Fig. 20. Evaluation Board Pattern Diagram  
Recommended value  
Parts list  
Symbol  
Function  
Comments  
R1  
C1  
R3  
C3  
R5  
C5  
Input terminating resistor  
75   
Input coupling  
capacitor  
See pages 6/16 to 7/16 to determine  
B characteristics recommended  
R71  
C7  
Output resistor  
Output coupling  
capacitor  
75   
See pages 6/16 to 7/16 to determine  
B characteristics recommended  
C01  
C02  
10 µF  
Decoupling capacitor  
B characteristics recommended  
0.1 µF  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
10/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Reference data (1) BH76330FVM/BH76331FVM [unless otherwise specified, output capacitance C: 470 µF, RL = 150   
BH76330FV  
Ta=25℃  
BH76330FV  
VCC=5V  
BH76331FV  
Ta=25℃  
BH76331FV  
VCC=5V  
20  
15  
10  
5
20  
15  
10  
5
20  
15  
0  
5
20  
15  
10  
5
Output capacitance C: 470 µF  
No output capacitance  
0
0
0
0
2
3
4
5
6
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
Supply Voltage [V]  
Ambient Temperature []  
Supply Voltage [V]  
Ambient Temperature []  
Fig. 21 ICC1 vs. Supply Voltage  
Fig. 22 ICC1 vs. Ambient Temperature  
Fig. 23 ICC1 vs. Supply Voltage  
Fig.24 ICC1 vs. Ambient Temperature  
BH76330/31FV  
Ta=25℃  
BH76330/31FV  
VCC=5V  
BH76330FV  
Ta=25℃  
BH76360FV  
VCC=3V  
2.0  
1.5  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
2.0  
1.5  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
1.0  
0.5  
0.5  
0.0  
0.0  
-0.5  
-0.5  
2
3
4
5
6
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
Supply Voltage [V]  
Supply Voltage [V]  
Ambient Temperature []  
Ambient Temperature []  
Fig.25 ICC2 vs. Supply Voltage  
Fig.26 ICC2 vs. Ambient Temperature  
Fig.27 Vom vs. Supply Voltage  
Fig.28 Vom vs. Ambient Temperature  
VCC=3V  
BH76331FV  
BH76331FV  
BH76330FV  
BH76330FV  
Ta=25℃  
Ta=25℃  
VCC=5V  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
6.0  
5.0  
4.0  
3.0  
2.0  
2
3
4
5
6
2
3
4
5
6
-50  
0
50  
100  
-50  
0
50  
perature []  
100  
Supply Voltage [V]  
Supply Voltage [V]  
Ambie  
nt  
Te  
m
Ambient Temperature []  
Fig.30 Vom vs. Ambient Temperature  
Fig.32  
GV vs. Ambient Temperature  
Fig.29 Vom vs. Supply Voltage  
Fig.31  
GV vs. Supply Voltage  
BH76331FV  
BH76331FV  
VCC=5V  
BH76330FV  
BH76330FV  
Ta=25℃  
Ta=25℃  
VCC=5V  
1.0  
0.5  
1.0  
0.5  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
2
3
4
5
6
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
Ambient Temperature []  
Supply Voltage [V]  
Supply Voltage [V]  
Ambient Temperature []  
Fig.33  
G
V vs. Supply Voltage  
Fig.34 GV vs. Ambient Temperature  
Fig.35 GF vs. Supply Voltage  
Fig.36 GF vs. Ambient Temperature  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
11/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
BH76330FV  
VCC=5V, Ta=25℃  
BH76331FV  
BH76331FV  
BH76331FV  
Ta=25℃  
VCC=5V  
VCC=5V, Ta=25℃  
1.0  
0.5  
1.0  
0.5  
5
0
5
0
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
-5  
-5  
-10  
-15  
-10  
-15  
1M  
10M  
Frequency[Hz]  
100M  
1M  
10M  
Frequency[Hz]  
100M  
2
3
4
5
6
-50  
0
50  
100  
Ambient Temperature []  
Supply Voltage [V]  
Fig.37 GF vs. Supply Voltage  
Fig.38 GF vs. Ambient Temperature  
Fig. 39 Frequency Response  
Fig. 40 Frequency Response  
Ta=25℃  
Ta=25℃  
VCC=5V  
BH76330/31FV  
BH76330/31FV  
BH76330/31FV  
BH76330/31FV  
VCC=5V  
-70  
-72  
-74  
-76  
-78  
-80  
-65  
-67  
-69  
-71  
-73  
-75  
-70  
-72  
-74  
-76  
-78  
-80  
-65  
-67  
-69  
-71  
-73  
-75  
-50  
0
50  
100  
2
3
4
5
6
2
3
4
5
6
-50  
0
50  
100  
Ambient Temperature []  
SupplyVoltage[V]  
Ambient Temperature []  
Supply Voltage [V]  
Fig.44 MT(wrost) vs. Ambient Temperature  
Fig.41 CT(worst) vs. Supply Voltage  
Fig.42 CT(worst) vs. Ambient Temperature  
Fig.43 MT(worst) vs. Supply Voltage  
BH76330/31FV VCC=5V, Ta=25℃  
CTL_A0[V]  
BH76330/31FV  
BH76330FV  
BH76330FV  
VCC=5V  
VCC=5V  
Ta=25℃  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
0
-50  
0
50  
100  
-50  
0
50  
100  
2
3
4
5
6
0
0.5  
CT  
1
1.5  
e [V]  
2
Ambient Temperature []  
Supply Voltage [V]  
Ambient Temperature []  
L
_B
p
in
v
olt  
ag  
Fig.47 DG vs. Supply Voltage  
Fig.48 DG vs. Ambient Temperature  
Fig.46  
ITHH vs. Ambient Temperature  
Fig. 45 CTLb pin voltage vs Circuit Current  
(CLT threshold )  
(Voltage applied to CTL pin = 2V)  
BH76331FV  
BH76331FV  
VCC=5V  
Ta=25℃  
Ta=25℃  
BH76330FV  
BH76330FV  
VCC=5V  
2.0  
1.5  
2.0  
1.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
Output capacitance C: 470 µF  
Output capacitance C: 470 µF  
No output capacitance  
No output capacitance  
1.0  
0.5  
0.0  
1.0  
0.5  
0.0  
2
3
4
5
6
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
Supply Voltage [V]  
Ambient Temperature []  
Supply Voltage [V]  
Ambient Temperature []  
Fig.52 DP vs. Ambient Temperature  
Fig.50 DG vs. Ambient Temperature  
Fig.51 DP vs. Supply Voltage  
Fig.49 DG vs. Supply Voltage  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
12/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
BH76331FV  
BH76330/31FV  
BH76331FV  
Ta=25℃  
Ta=25℃  
VCC=5V  
BH76330/31FV  
VCC=5V  
2.0  
1.5  
80  
78  
76  
74  
72  
70  
80  
78  
76  
74  
72  
70  
2.0  
1.5  
1.0  
0.5  
0.0  
1.0  
0.5  
0.0  
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
2
3
4
5
6
Supply Voltage [V]  
Ambient Temperature []  
Ambient Temperature []  
Supply Voltage [V]  
Fig.56 SNY vs. Ambient Temperature  
Fig.53 DP vs. Supply Voltage  
Fig.54 DP vs. Ambient Temperature  
Fig.55 SNY vs. Supply Voltage  
BH76330/31FV  
BH76330/31FV  
Ta=25℃  
Ta=25℃  
BH76330/31FV  
VCC=5V  
BH76330/31FV  
VCC=5V  
80  
78  
76  
80  
78  
76  
74  
72  
70  
70  
69  
68  
67  
66  
65  
70  
69  
68  
67  
66  
65  
74  
72  
70  
-50  
0
50  
100  
-50  
0
50  
100  
2
3
4
5
6
2
3
4
5
6
Ambient Temperature []  
Ambient Temperature []  
Supply Voltage [V]  
Supply Voltage [V]  
Fig.57 SNCA vs. Supply Voltage  
Fig.58 SNCA vs. Ambient Temperature  
Fig.60 SNCP vs. Ambient Temperature  
Fig.59 SNCP vs. Supply Voltage  
Reference data (2) BH76332FVM/BH76333FVM [unless otherwise specified, output capacitance C: 470 µF, RL = 10 k]  
BH76332FV  
Ta=25℃  
BH76332FV  
BH76333FV  
Ta=25℃  
BH76333FV  
VCC=5V  
VCC=5V  
20  
15  
10  
5
20  
15  
10  
5
20  
15  
10  
5
20  
15  
10  
5
0
0
0
0
-50  
0
50  
100  
2
3
4
5
6
2
3
4
5
6
-50  
0
50  
100  
Ambient Temperature []  
Supply Voltage [V]  
Fig.62 ICC1 vs. Ambient Temperature  
Supply Voltage [V]  
Ambient Temperature []  
Fig.61 ICC1 vs. Supply Voltage  
Fig.63 ICC1 vs. Supply Voltage  
Fig.64 ICC1 vs. Ambient Temperature  
BH76332/33FV  
Ta=25℃  
BH76332FV  
Ta=25℃  
BH76332FV  
BH76332/33FV  
VCC=5V  
VCC=3V  
5.0  
4.0  
3.0  
2.0  
1.0  
2.0  
1.5  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0.5  
0.0  
0.0  
-0.5  
-0.5  
2
3
4
5
6
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
Supply Voltage[V]  
Ambient Temperature []  
Supply Voltage [V]  
Ambient Temperature []  
Fig.65 ICC2 vs. Supply Voltage  
Fig.68 Vom vs. Ambient Temperature  
Fig.66 ICC2 vs. Ambient Temperature  
Fig.67 Vom vs. Supply Voltage  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
13/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
VCC=3V  
BH76333FV  
BH76333FV  
BH76332FV  
BH76332FV  
Ta=25℃  
Ta=25℃  
VCC=5V  
0.4  
0.2  
0.4  
0.2  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
0.0  
-0.2  
-0.4  
-0.6  
-0.2  
-0.4  
-0.6  
2
3
4
5
6
-50  
0
50  
100  
-50  
0
50  
100  
2
3
4
5
6
Supply Voltage [V]  
Ambient Temperature []  
Supply Voltage [V]  
Ambient Temperature []  
Fig.70 Vom vs. Ambient Temperature  
Fig.72  
GV vs. Ambient Temperature  
Fig.71  
GV vs. Supply Voltage  
Fig.69 Vom vs. Supply Voltage  
VCC=5V  
BH76332FV  
Ta=25℃  
BH76332FV  
BH76333FV  
BH76333FV  
VCC=5V  
Ta=25℃  
0.4  
0.2  
1.0  
1.0  
0.5  
0.0  
0.4  
0.5  
0.0  
0.2  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.2  
-0.4  
-0.6  
-0.2  
-0.4  
-0.6  
2
3
4
5
6
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
Supply Voltage [V]  
Ambient Temperature []  
Supply Voltage [V]  
Ambient Temperature []  
Fig.73 GV vs. Supply Voltage  
Fig.74 GV vs. Ambient Temperature  
Fig.75 GF vs. Supply Voltage  
Fig.76 GF vs. Ambient Temperature  
BH76332FV  
VCC=5V  
BH76333FV  
BH76333FV  
BH76333FV  
VCC=5V ,Ta=25℃  
VCC=5V ,Ta=25℃  
Ta=25℃  
1.0  
0.5  
2
1
1.0  
0.5  
2
1
0
0
0.0  
0.0  
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
-50  
0
50  
100  
2
3
4
5
6
1M  
10M  
Frequency[Hz]  
100M  
1M  
10M  
Frequency[Hz]  
100M  
Supply Voltage [V]  
Ambient Temperature []  
Fig.78 GF vs. Ambient Temperature  
Fig.77 GF vs. Supply Voltage  
Fig. 79 Frequency Response  
Fig. 80 Frequency Response  
VCC=5V  
VCC=5V  
BH76332/33FV  
BH76332/33FV  
BH76332/33FV  
BH76332/33FV  
Ta=25℃  
Ta=25℃  
-65  
-67  
-69  
-71  
-73  
-75  
-65  
-67  
-69  
-71  
-73  
-75  
-70  
-72  
-74  
-76  
-78  
-80  
-70  
-72  
-74  
-76  
-78  
-80  
2
3
4
5
6
-50  
0
50  
100  
-50  
0
50  
100  
2
3
4
5
6
Supply Voltage [V]  
Ambient Temperature []  
Amb  
ie  
nt  
Te  
m
p
erature []  
Supply Voltage [V]  
Fig.84 MT(wrost) vs. Ambient Temperature  
Fig.81 CT(worst) vs. Supply Voltage  
Fig.82 CT(worst) vs. Ambient Temperature  
Fig.83 MT(worst) vs. Supply Voltage  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
14/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
BH76332/33FV  
VCC=5V, Ta=25℃  
VCC=5V  
BH76332FV  
BH76332/33FV  
BH76332FV  
VCC=5V  
Ta=25℃  
70  
60  
50  
40  
30  
20  
10  
0
2.0  
1.5  
1.0  
0.5  
0.0  
20  
15  
10  
5
2.0  
1.5  
1.0  
0.5  
0.0  
CTL_A0[V]  
0
-50  
0
50  
100  
0
0.5  
1
1.5  
2
2
3
4
5
6
-50  
0
50  
100  
Ambient Temperature []  
Supply Voltage [V]  
CTL_B pin voltage [V]  
Ambient Temperature []  
Fig.87 DG vs. Supply Voltage  
Fig.88 DG vs. Ambient Temperature  
Fig.86  
ITHH vs. Ambient Temperature  
Fig.85 CTLb pin voltage vs Circuit Current  
(CLT threshold )  
(Voltage applied to CTL pin = 2V)  
BH76333FV  
BH76333FV  
VCC=5V  
BH76332FV  
BH76332FV  
VCC=5V  
Ta=25℃  
Ta=25℃  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
2
3
4
5
6
Ambient Temperature []  
Supply Voltage [V]  
Supply Voltage [V]  
Ambient Temperature []  
Fig.92 DP vs. Ambient Temperature  
Fig.90 DG vs. Ambient Temperature  
Fig.91 DP vs. Supply Voltage  
Fig.89 DG vs. Supply Voltage  
BH76333FV  
VCC=5V  
BH76333FV  
VCC=5V  
BH76332/33FV  
BH76332/33FV  
Ta=25℃  
Ta=25℃  
2.0  
1.5  
2.0  
1.5  
80  
78  
76  
74  
72  
70  
80  
78  
76  
74  
72  
70  
1.0  
0.5  
0.0  
1.0  
0.5  
0.0  
-50  
0
50  
100  
-50  
0
50  
100  
2
3
4
5
6
2
3
4
5
6
Supply Voltage [V]  
Supply Voltage [V]  
Ambient Temperature []  
Ambient Temperature []  
Fig.96 SNY vs. Ambient Temperature  
Fig.93 DP vs. Supply Voltage  
Fig.94 DP vs. Ambient Temperature  
Fig.95 SNY vs. Supply Voltage  
VCC=5V  
VCC=5V  
BH76332/33FV  
BH76332/33FV  
BH76332/33FV  
BH76332/33FV  
Ta=25℃  
Ta=25℃  
80  
78  
76  
80  
78  
76  
74  
72  
70  
70  
69  
68  
67  
66  
65  
70  
69  
68  
67  
66  
65  
74  
72  
70  
-50  
0
50  
100  
-50  
0
50  
100  
2
3
4
5
6
2
3
4
5
6
Supply Voltage [V]  
Supply Voltage [V]  
Ambient Temperature []  
Ambient Temperature []  
Fig.97 SNCA vs. Supply Voltage  
Fig.98 SNCA vs. Ambient Temperature  
Fig.100 SNCP vs. Ambient Temperature  
Fig.99 SNCP vs. Supply Voltage  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
15/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
External dimensions and label codes  
Max 3.25 (include . BURR)  
7 6 3  
3
0
Model  
Code  
76330  
76331  
76332  
76333  
BH76330FV  
BH76331FV  
BH76332FV  
BH76333FV  
Lot. No.  
MSOP8 (unit: mm )  
Fig. 101 External Dimensions of BH7633xFVM Series Package  
When used with 6-input, 1-output video switch BH7636xFV  
Fig. 14 above shows an application example in which two of these ICs are used. When the similar IC models BH7636xFV  
and BH7633xFVM are used at the same time, the type of configuration shown below can be combined. In such cases,  
input coupling capacitors can be used, as in the application example in Fig. 14.  
※1  
BH76360FV  
Clamp  
IIN1  
2
External input  
※2  
Front  
Clamp  
Clamp  
IIN2  
4
monitor  
TV  
16  
OUT  
75Ω  
75Ω  
IIN3  
6
1
2
Input coupling capacitor can be used with  
this.  
DVD  
Clamp  
IIN4  
8
Navigation  
screen  
Output coupling capacitors can be omitted  
when using BH76330FVM or BH76360FV,  
and this helps reduce the number of parts.  
Clamp  
Clamp  
IIN5  
9
Rear camera  
3
IIN6  
11  
Any inputs that are not used should be  
connected directly to VCC or shorted with  
GND via a capacitor.  
※3  
BH76330FVM  
IIN1  
1
Clamp  
※2  
IIN2  
3
Clamp  
Clamp  
Rear  
monitor  
16  
OUT  
75Ω  
75Ω  
IIN3  
5
Fig. 102 Application Example in which BH76330FVM and BH76360FV Are Used Concurrently  
For details of BH7636xFV, see the BH7636xFV Series Application Notes.  
www.rohm.com  
2009.04 - Rev.A  
16/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Line-up of products with built-in video amplifier and video driver  
6-input, 1-output video switch  
BH76360FV, BH76361FV, BH76362FV, BH76363FV  
General  
BH76360FV, BH76361FV, BH76362FV, and BH76363FV are video signal switching ICs, each with six inputs and one circuit  
input, which feature wide dynamic range and frequency response. Since these ICs can be used with low voltage starting at  
VCC = 2.8 V, they are applicable not only in stationary devices but also in mobile devices.  
This product line-up supports a broad range of input signals, depending on whether or not a 6-dB video amplifier and video  
driver are included and what combination of sync tip clamp type and bias (resistor termination) type inputs are used.  
Features  
1)  
Able to use a wide range of power supply voltage, from 2.8 V to 5.5 V  
Wide output dynamic range  
2)  
3)  
Excellent frequency response  
(BH76360FV, BH76361FV100kHz/10MHz 0dB[Typ.]BH76362FV, BH76363FV100kHz/30MHz 0dB[Typ.])  
No crosstalk between channels (Typ.-65dB, f=4.43MHz)  
Built-in mute function (Typ.-65dB, f=4.43MHz)  
4)  
5)  
6)  
7)  
8)  
9)  
Built-in standby function, circuit current during standby is 0 µA (Typ.)  
Sync tip clamp input BH76360FV, BH76362FV)  
Bias input (Zin=150kΩ) BH76361FV, BH76363FV)  
6-dB amp and 75driver are built in BH76360FV, BH76361FV)  
10) Enables two load drivers [when using output coupling capacitor]BH76360FV, BH76361FV)  
11) Able to be used without output coupling capacitor (BH76360FV)  
12) SSOP-B16 compact package  
Applications  
Input switching in car navigation systems, TVs, DVD systems, etc.  
Line-up  
BH76360FV  
BH76361FV  
BH76362FV  
BH76363FV  
Supply voltage  
Amp gain  
2.8 V to 5.5 V  
6dB  
-0.1dB  
Video driver  
Included  
Frequency response  
100kHz/10MHz 0dB (Typ.)  
100kHz/30MHz 0dB (Typ.)  
Sync tip  
clamp  
Bias  
Sync tip  
clamp  
Bias  
Input type  
(Zin = 150 k)  
(Zin = 150 k)  
Absolute maximum ratings (Ta = 25)  
Parameter  
Symbol  
Limits  
Unit  
V
Supply voltage  
VCC  
Pd  
7.0  
Power dissipation  
Input voltage range  
Operating temperature  
range  
450 1  
mW  
V
VIN  
0 to VCC+0.2  
-40 to +85  
Topr  
Storage temperature  
range  
-55 to +125  
Tstg  
*1 When used while Ta = 25, 4.7 mW is dissipated per 1℃  
Mounted on 70 mm x 70 mm x 1.6 mm glass epoxy board  
Operation range (Ta = 25)  
Parameter  
Symbol  
VCC  
Min.  
2.8  
Typ.  
5.0  
Max  
5.5  
Unit  
V
Supply voltage  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
17/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Electrical characteristics 1 (unless otherwise specified, Ta=25℃、VCC=5V)  
Typ.  
Parameter  
Symbol  
Unit  
Conditions  
76360  
19  
76361  
76362  
76363  
Circuit current 1  
Circuit current 2  
ICC1  
ICC2  
12  
13  
11  
12  
mA When no signal  
uA  
0.0  
During standby  
ICC3-1  
During output of color bar signal  
During output of color bar signal  
(no C in output)  
Circuit current 3  
mA  
ICC3-2  
Maximum output level  
Voltage gain  
VOM  
GV  
4.6  
6.0  
0
3.8  
3.4  
Vpp f=10kHz, THD=1%  
-0.1  
0
dB  
dB  
dB  
Vin=1.0Vpp, f=100kHz  
Vin=1.0Vpp, f=10MHz/100kHz  
Vin=1.0Vpp, f=30MHz/100kHz  
GF1  
GF2  
Frequency response  
Crosstalk between  
channels  
CT  
-65  
-65  
dB  
Vin=1.0Vpp, f=4.43MHz  
Mute attenuation  
MT  
VTHH  
VTHL  
ITHH  
Zin  
dB  
V
V
uA  
kΩ  
%
Vin=1.0Vpp, f=4.43MHz  
High Level threshold voltage  
Low Level threshold voltage  
CTL pin = 2.0 V applied  
1.2 Min  
0.45 Max  
50 Max  
CTL pin switch level  
CTL pin inflow current  
Input impedance  
Differential gain  
150  
150  
DG  
0.3  
Vin=1.0Vpp  
Standard stair step signal  
Same condition as above (no C in output)  
Vin = 1.0 Vpp, bandwidth: 100 k to 6 MHz  
100% white video signal  
DP-1  
DP-2  
0.7  
0.3  
Differential phase  
Y-related S/N  
deg.  
dB  
0.0  
SNY  
+75  
+78  
C-related S/N [AM]  
C-related S/N [PM]  
SNCA  
SNCP  
+75  
+65  
Vin = 1.0 Vpp, bandwidth: 100 to 500 kHz  
100% chroma voltage signal  
dB  
Electrical characteristics 2 (unless otherwise specified, Ta = 25, VCC = 3 V)  
Typ.  
Parameter  
Symbol  
Unit  
Conditions  
76360  
76361  
76362  
76363  
Circuit current 1  
Circuit current 2  
ICC1  
ICC2  
10  
0.0  
mA When no signal  
uA During standby  
ICC3-1  
11  
10  
mA During output of color bar signal  
During output of color bar signal  
(no C in output)  
Circuit current 3  
ICC3-2  
17  
Maximum output level  
Voltage gain  
VOM  
GV  
2.7  
2.8  
1.8  
1.9  
Vpp f=10kHz, THD=1%  
6.0  
0
-0.1  
0
dB  
dB  
dB  
Vin=1.0Vpp, f=100kHz  
Vin=1.0Vpp, f=10MHz/100kHz  
Vin=1.0Vpp, f=30MHz/100kHz  
GF1  
GF2  
Frequency response  
Crosstalk between  
channels  
CT  
-65  
-65  
dB  
Vin=1.0Vpp, f=4.43MHz  
Mute attenuation  
MT  
VTHH  
VTHL  
ITHH  
Zin  
dB  
V
V
uA  
kΩ  
%
Vin=1.0Vpp, f=4.43MHz  
High Level threshold voltage  
Low Level threshold voltage  
CTL pin = 2.0 V applied  
1.2 Min  
0.45 Max  
50 Max  
CTL pin switch level  
CTL pin inflow current  
Input impedance  
Differential gain  
150  
150  
DG  
0.3  
Vin=1.0Vpp  
Standard stair step signal  
Same condition as above (no C in output)  
Vin = 1.0 Vpp, bandwidth: 100 k to 6 MHz  
100% white video signal  
DP-1  
DP-2  
1.0  
0.3  
Differential phase  
Y-related S/N  
deg.  
dB  
0.5  
SNY  
+75  
+78  
C-related S/N [AM]  
C-related S/N [PM]  
SNCA  
SNCP  
+75  
+65  
dB  
dB  
Vin = 1.0 Vpp, bandwidth: 100 to 500 kHz  
100% chroma video signal  
(Note) Re: ICC3, VOM, GV, GF, CT, MT, DG, DP, SNY, SNCA, SNCP parameters  
BH76360FV, BH76361FV: RL = 150   
BH76362FV, BH76363FV: RL = 10 k  
www.rohm.com  
2009.04 - Rev.A  
18/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Control pin settings  
CTLA  
CTLB  
L(OPEN)  
L(OPEN)  
H
CTLC  
L(OPEN)  
L(OPEN)  
L(OPEN)  
L(OPEN)  
H
CTLD  
IN1  
IN2  
L(OPEN)  
H
H
H
IN3  
L(OPEN)  
H
IN4  
H
H
H
IN5  
L(OPEN)  
L(OPEN)  
L(OPEN)  
H
H
IN6  
H
H
H
H
MUTE  
STBY  
H
L(OPEN)  
L(OPEN) or H either is possible  
Block diagram  
IN4  
GND  
IN3  
GND  
IN2  
VCC  
IN1  
PVCC  
IN4  
GND  
IN3  
GND  
IN2  
VCC  
IN1  
PVCC  
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
Sync_Tip  
Clamp  
Sync_Tip  
Clamp  
Sync_Tip  
Clamp  
Sync_Tip  
Clamp  
BIAS  
BIAS  
BIAS  
BIAS  
6dB  
75Ω  
6dB  
75Ω  
logic  
logic  
Sync_Tip  
Clamp  
Sync_Tip  
Clamp  
BIAS  
BIAS  
9
IN5  
10  
CTLA  
11  
IN6  
12  
CTLB  
13  
CTLC  
14  
CTLD  
15  
PGND  
16  
OUT  
9
IN5  
10  
CTLA  
11  
IN6  
12  
CTLB  
13  
CTLC  
14  
CTLD  
15  
PGND  
16  
OUT  
Fig.1 BH76360FV  
Fig.2 BH76361FV  
IN4  
GND  
IN3  
GND  
IN2  
VCC  
IN1  
PVCC  
IN4  
GND  
IN3  
GND  
IN2  
VCC  
IN1  
PVCC  
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
Sync_Tip  
Clamp  
Sync_Tip  
Clamp  
Sync_Tip  
Clamp  
Sync_Tip  
Clamp  
BIAS  
BIAS  
BIAS  
BIAS  
0dB  
0dB  
logic  
logic  
Sync_Tip  
Clamp  
Sync_Tip  
Clamp  
BIAS  
BIAS  
9
10  
11  
12  
13  
14  
15  
16  
9
10  
11  
12  
13  
14  
15  
16  
IN5  
IN5  
CTLB  
CTLC  
CTLD  
PGND  
OUT  
CTLB  
CTLC  
CTLD  
PGND  
OUT  
CTLA  
IN6  
CTLA  
IN6  
Fig.3 BH76362FV  
Fig.4 BH76363FV  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
19/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
I/O equivalent circuit diagrams  
Input pins  
Sync tip clamp input  
Bias input  
BH76360FV / BH76362FV  
BH76361FV / BH76363FV  
PIN No.  
Name  
Equivalent circuit  
PIN No.  
Name  
Equivalent circuit  
2
4
6
8
9
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
2
4
6
8
9
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN  
IN  
100Ω  
100Ω  
150kΩ  
11  
11  
Video signal input pin is used for bias type input. Input  
impedance is 150 k.  
DC potential  
Video signal input pin is used for sync tip clamp input.  
DC potential  
BH76360FV1.5V  
BH76362FV1.0V  
BH76361FV3.1V  
BH76363FV2.5V  
Control pins  
PIN No.  
Name  
Equivalent circuit  
200kΩ  
10  
12  
13  
14  
CTLA  
CTLB  
CTLC  
CTLD  
50kΩ  
CTL  
250kΩ  
200kΩ  
Switches operation mode [active or standby] and input  
pin.  
Threshold level is 0.45 V to 1.2 V.  
Output pin  
With video driver  
Without video driver  
BH76360FV / BH76361FV  
BH76362FV / BH76363FV  
PIN No.  
Name  
Equivalent circuit  
PIN No.  
Name  
OUT  
OUT  
16  
OUT  
16  
OUT  
3.0mA  
14kΩ  
Video signal output pin. Able to drive loads up to 75   
Video signal output pin.  
(dual drive).  
DC potential  
DC potential  
BH76360FV0.16V  
BH76361FV2.5V  
BH76362FV0.3V  
BH76363FV1.8V  
Note 1) The above DC potential is only when VCC = 5 V. This value is a reference value and is not guaranteed.  
Note 2) Numerical values shown in these figures are design values, and compliance to standards is not guaranteed.  
www.rohm.com  
2009.04 - Rev.A  
20/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Test Circuit Diagrams  
10μF 0.01μF  
A
10μF 0.01μF  
A
PVCC  
1
OUT  
16  
PVCC  
1
OUT  
75Ω  
10μF  
VCC  
VCC  
16  
10μF  
75Ω  
V
V
V
V
Clamp/  
Bias  
Clamp/  
Bias  
10kΩ  
IN1  
2
PGND  
15  
IN1  
2
PGND  
15  
0.01μF  
0.01μF  
50Ω  
75Ω  
6dB  
50Ω  
CTLD  
14  
CTLD  
14  
VCC  
3
VCC  
3
0dB  
A
A
Clamp/  
Bias  
Clamp/  
Bias  
IN2  
4
IN2  
4
CTLC  
13  
CTLC  
13  
0.01μF  
0.01μF  
50Ω  
A
A
A
A
50Ω  
CTLB  
12  
GND  
5
CTLB  
12  
GND  
5
logic  
Clamp/  
logic  
Clamp/  
Bias  
Clamp/  
Bias  
Clamp/  
Bias  
IN3  
6
IN6  
11  
IN3  
6
IN6  
11  
Bias  
0.01μF  
0.01μF  
50Ω  
0.01μF  
0.01μF  
50Ω  
50Ω  
50Ω  
GND  
7
CTLA  
10  
GND  
7
CTLA  
10  
A
A
Clamp/  
Bias  
Clamp/  
Bias  
Clamp/  
Bias  
Clamp/  
Bias  
IN4  
8
IN4  
8
IN5  
9
IN5  
9
0.01μF  
0.01μF  
50Ω  
0.01μF  
50Ω  
0.01μF  
50Ω  
50Ω  
Fig.5 BH76360FV/BH76361FV Test Circuit Diagram  
Fig.6 BH76362FV/BH76363FV Test Circuit Diagram  
Test circuit diagrams are used for shipment inspections, and differ from application circuits.  
Application circuit examples  
出力コンデンサレス  
で使用する場合  
OUT  
16  
75Ω  
VIDEO_OUT  
VIDEO_OUT  
10μF 0.1μF  
10μF 0.1μF  
470μF  
75Ω  
VCC  
PVCC  
1
OUT  
16  
470μF  
VCC  
PVCC  
1
OUT  
16  
VIDEO_OUT  
75Ω  
Sync_Tip  
Clamp  
BIAS  
IN1  
2
PGND  
15  
IN1  
2
PGND  
15  
VIDEO_IN  
VIDEO_IN  
4.7μF  
0.1μF  
75Ω  
6dB  
75Ω  
6dB  
CTLD  
14  
VCC  
3
CTLD  
14  
VCC  
3
Sync_Tip  
IN2 Clamp  
BIAS  
IN2  
4
CTLC  
13  
CTLC  
13  
VIDEO_IN  
VIDEO_IN  
VIDEO_IN  
VIDEO_IN  
4
4.7μF  
0.1μF  
GND  
5
CTLB  
12  
CTLB  
12  
GND  
5
logic  
BIAS  
logic  
Sync_Tip  
Clamp  
Sync_Tip  
Clamp  
BIAS  
IN3  
6
IN6  
11  
4.7μF  
IN3  
6
IN6  
11  
0.1μF  
VIDEO_IN  
VIDEO_IN  
VIDEO_IN  
4.7μF  
0.1μF  
GND  
7
CTLA  
10  
GND  
7
CTLA  
10  
Sync_Tip  
Clamp  
Sync_Tip  
Clamp  
BIAS  
BIAS  
IN4  
8
4.7μF  
IN5  
9
0.1μF  
IN4  
8
IN5  
9
VIDEO_IN  
VIDEO_IN  
VIDEO_IN  
4.7μF  
0.1μF  
Fig.8  
BH76361FV  
Fig.7  
BH76360FV  
10μF 0.1μF  
10μF 0.1μF  
VCC  
PVCC  
1
OUT  
16  
VCC  
PVCC  
1
OUT  
16  
VIDEO_OUT  
VIDEO_OUT  
Sync_Tip  
Clamp  
BIAS  
IN1  
2
PGND  
15  
IN1  
2
PGND  
15  
VIDEO_IN  
VIDEO_IN  
0.1μF  
4.7μF  
CTLD  
14  
VCC  
3
CTLD  
14  
VCC  
3
0dB  
0dB  
Sync_Tip  
IN2 Clamp  
BIAS  
CTLC  
13  
IN2  
4
CTLC  
13  
VIDEO_IN  
4
VIDEO_IN  
0.1μF  
4.7μF  
CTLB  
12  
GND  
5
GND  
5
CTLB  
12  
logic  
logic  
Sync_Tip  
Clamp  
Sync_Tip  
Clamp  
BIAS  
BIAS  
IN3  
6
IN6  
11  
0.1μF  
IN3  
6
IN6  
11  
4.7μF  
VIDEO_IN  
VIDEO_IN  
VIDEO_IN  
VIDEO_IN  
0.1μF  
4.7μF  
GND  
7
CTLA  
10  
GND  
7
CTLA  
10  
Sync_Tip  
Clamp  
Sync_Tip  
Clamp  
BIAS  
BIAS  
0.1μF  
IN4  
8
IN5  
9
IN4  
8
4.7μF  
IN5  
9
VIDEO_IN  
VIDEO_IN  
VIDEO_IN  
VIDEO_IN  
0.1μF  
4.7μF  
Fig.9  
BH76362FV  
Fig.10  
BH76363FV  
See pages 6/16 to 10/16 for description of how to determine the capacity of I/O coupling capacitors.  
www.rohm.com  
2009.04 - Rev.A  
21/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Cautions for selection and use of application parts  
When using this IC by itself ①  
Input impedance  
Capacity of input coupling  
Capacity of output coupling  
Input type  
Zin  
capacitor (recommended value)  
capacitor (recommended value)  
Sync_Tip_Clamp  
Bias  
10MΩ  
150kΩ  
0.1uF  
4.7uF  
470uF~1000uF  
Method for determining capacity of input coupling capacitor  
The HPF is comprised of an input coupling capacitor and the internal input impedance Zin of the IC. Since the fc value of this HPF is  
determined using the following equation (a), the above recommended capacity for the input capacitor is derived. Usually, the cutoff  
frequency fc is several Hz.  
fc = 1 / (2π × C × Zin)・・・・(a)  
When evaluating the sag characteristics and determining the capacity of the capacitor during video signal input, a horizontal stripe signal  
called "H bar" (shown in Fig. 10) is suitable, and this type of signal is used instead of a color bar signal to evaluate characteristics and  
determine capacity.  
Fig.11 Example of Screen with Obvious Sag (H-bar Signal)  
Method for determining capacity of output coupling capacitor  
The output pins of models with a 75driver [BH76360FV and BH76361FV] have an HPF comprised of an output coupling capacitor and  
load resistance RL (= 150). When fc is set to approximately 1 Hz or 2 Hz, the capacity of the output coupling capacitor needs to be  
approximately 470 µF to 1000 µF.  
As for models without the 75driver, an HPF is similarly comprised using the capacity of the output coupling capacitor and the input  
impedance of the IC connected at the next stage, and the capacitance required for the output coupling capacitor should be estimated using  
equation (a).  
When this IC is used as a standalone device ②  
In models that include a 75driver [BH76360FV and BH76361FV], up to two monitors (loads) can be connected (a connection example is  
shown in Fig. 12). When there are multiple loads, the number of output coupling capacitors must be increased or a larger capacitance must  
be used, based on the table shown below.  
(470×2)μF  
470μF  
75Ω  
monitor  
monitor  
OUT  
OUT  
16  
16  
75Ω  
75Ω  
75Ω  
monitor  
470μF  
75Ω  
monitor  
75Ω  
75Ω  
75Ω  
Fig. 12 (a) Application Circuit Example 1 (Two Drives)  
Fig. 12 (b) Application Circuit Example 2 (Two Drives)  
Application circuit example  
Fig12(a)  
No. of output capacitors  
Capacitance per output capacitor (recommended values)  
470 µF to 1000 µF (same as with one drive)  
(No. of drive × 470 µF to 1000) uF  
No. of drives required  
1
Fig12(b)  
When this IC is used as a standalone device ③  
The BH76360FV is the only model that can be used without an output coupling capacitor.  
This use method not only enables reductions in board space and part-related costs, but it is able to improve the sag characteristics by  
improving low-range frequency response. However, when the output coupling capacitor is omitted, a direct current flows to the connected  
set, so the specifications of the connected set should be noted carefully before starting use.  
Note also that only one load can be connected when the output coupling capacitor is omitted.  
monitor  
Voltage at output 0.16V  
OUT  
16  
When this voltage load resistance is applied,  
75Ω  
75Ω  
a direct current is generated.  
BH76360FV  
Fig.13 Application Example without Output Coupling Capacitor  
www.rohm.com  
2009.04 - Rev.A  
22/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
When using several of these ICs ①  
When several of these ICs are used, it enables applications in which separate images are output to the car navigation system's front and  
rear monitors.  
Clamp  
/Bias  
Clamp  
/Bias  
IN1  
2
IN1  
2
VIDEO IN  
VIDEO IN  
VIDEO IN  
Clamp  
/Bias  
Clamp  
/Bias  
470μF  
470μF  
IN2  
4
IN2  
4
Front monitor  
Rear monitor  
16  
OUT  
16  
OUT  
75Ω  
75Ω  
75Ω  
75Ω  
Clamp  
/Bias  
Clamp  
/Bias  
IN3  
6
IN3  
6
Fig.14 Application Example when Using Several ICs  
When several ICs are used at the same time, the number of parallel connections of input impedance equals the number of ICs being used,  
which reduces the input impedance. This also raises the fc value of the HPF formed at the input pin block, so the capacitance of the input  
coupling capacitor must be increased according to equation (a). The recommended values for calculation results are listed in the table  
below.  
When a clamp is used as the input type, the original input impedance becomes much greater, and if two or three are used at the same  
time there is no need to change the capacitance of the input coupling capacitor.  
Capacitance of input  
Number of ICs  
used  
Total  
Input type  
Input impedance per IC  
coupling capacitor  
(recommended values)  
0.1uF  
input impedance  
2
3
2
3
Approx. 5 M  
Approx. 3 M  
75kΩ  
Sync_Tip_Clamp  
Bias  
Approx. 10 M  
150kΩ  
0.1uF  
6.8uF~  
50kΩ  
10uF~  
When using several of these ICs ②  
When three bias input type models (BH76361FV or BH76363FV) are used in parallel, they can be used for RGB signal switching  
applications. Likewise, when one clamp input type model (BH76360FV or BH76362FV) is connected in parallel with two bias input type  
models (a total of three ICs used in parallel), they can be used for component signal switching applications. The same method can be used  
to determine the capacitance of I/O coupling capacitors of these applications.  
Clamp  
Bias  
IN1  
IN1  
2
VIDEO IN[Py1]  
BH76361FV  
or BH76363FV  
BH76360FV  
VIDEO IN[R1]  
2
or BH76362FV  
0.1uF  
4.7μF  
Clamp  
Clamp  
Bias  
Bias  
OUT  
16  
IN2  
4
IN2  
4
VIDEO IN[Py2]  
VIDEO IN[Py3]  
OUT  
16  
VIDEO IN[R2]  
VIDEO IN[R3]  
0.1uF  
0.1uF  
4.7μF  
4.7μF  
Py_OUT  
R_OUT  
IN3  
6
IN3  
6
Bias  
Bias  
IN1  
2
BH76361FV  
or BH76363FV  
IN1  
2
VIDEO IN[Pb1]  
BH76361FV  
VIDEO IN[G1]  
or BH76363FV  
4.7uF  
4.7μF  
Bias  
Bias  
Bias  
Bias  
OUT  
16  
IN2  
4
IN2  
4
VIDEO IN[Pb2]  
VIDEO IN[Pb3]  
OUT  
16  
VIDEO IN[G2]  
VIDEO IN[G3]  
4.7uF  
4.7uF  
Pb_OUT  
4.7μF  
4.7μF  
G_OUT  
IN3  
6
IN3  
6
Bias  
Bias  
BH76361FV  
BH76361FV  
or BH76363FV  
IN1  
2
IN1  
2
VIDEO IN[Pr1]  
VIDEO IN[B1]  
or BH76363FV  
4.7uF  
4.7μF  
Bias  
Bias  
Bias  
Bias  
OUT  
16  
IN2  
4
IN2  
4
VIDEO IN[Pr2]  
VIDEO IN[Pr3]  
OUT  
16  
VIDEO IN[B2]  
VIDEO IN[B3]  
4.7μF  
4.7μF  
4.7uF  
4.7uF  
Pr_OUT  
B_OUT  
IN3  
6
IN3  
6
SW セレクト  
SW セレクト  
Fig. 15 (b). Component Signal Switching Application Example  
(using one clamp input type model and two bias input  
type models in parallel)  
Fig. 15 (a). RGB Signal Switching Application Example  
(using three bias input type models in parallel)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
23/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Cautions for use  
1. The numerical values and data shown here are typical design values, not guaranteed values.  
2. The application circuit examples show recommended circuits, but characteristics should be checked carefully before using  
these circuits. If any external part constants are modified before use, factors such as variation in all external parts and  
ROHM LSI ICs, including not only static characteristics but also transient characteristics, should be fully considered to set  
an ample margin.  
3. Absolute maximum ratings  
If the absolute maximum ratings for applied voltage and/or operation temperature are exceeded, LSI damage may result.  
Therefore, do not apply voltage or use in a temperature that exceeds these absolute maximum ratings. If it is possible that  
absolute maximum ratings will be exceeded, use a physical safety device such as a fuse and make sure that no conditions  
that might exceed the absolute maximum ratings will be applied to the LSI IC.  
4. GND potential  
Regardless of the operation mode, the voltage of the GND pin should be at least the minimum voltage. Actually check  
whether or not the voltage at each pin, including transient phenomena, is less than the GND pin voltage.  
5. Thermal design  
The thermal design should be done using an ample margin that takes into consideration the allowable dissipation under  
actual use conditions.  
6. Shorts between pins and mounting errors  
When mounting LSI ICs onto the circuit board, make sure each LSI's orientation and position is correct. The ICs may  
become damaged if they are not mounted correctly when the power is turned on. Similarly, damage may also result if a  
short occurs, such as when a foreign object is positioned between pins in an IC, or between a pin and a power supply or  
GND connection.  
7. Operation in strong electromagnetic field  
When used within a strong electromagnetic field, evaluate carefully to avoid the risk of operation faults.  
8. Place the power supply's decoupling capacitor as close as possible to the VCC pin (PIN 1,PIN3) and GND pin (PIN 5, PIN7,  
PIN15).  
9. With a clamp input type model (BH76360FV or BH76362FV), if any unused input pins are left open they will oscillate, so  
unused input pins should instead be connected to GND via a capacitor or else directly connected to VCC.  
10. With models that do not include a 75driver (BH76362FV or BH76363FV), in some cases the capacitance added to the set  
board may cause the peak frequency response to occur at a high frequency. To lower the peak frequency, connect in  
series resistors having resistance of several dozen to several hundred as close as possible to the output pin.  
Output pin  
OUT  
16  
Resistors (several dozen  
Ω
to  
several hundredΩ) to lower peak  
frequency  
Fig.16 Positions where Resistors are Inserted to Lower Peak Frequency Response in BH76362FV or BH76363FV  
11. Frequency response in models that do not include a 75-driver (BH76362FV and BH76363FV) was measured as 100  
kH/30 MHz: 0 dB (Typ.) in the application circuit examples (shown in Fig. 9 and Fig. 10), and when resistance of about 1 or  
2 kis applied from the IC's output pin to GND, this frequency response can be improved (the lower limit of the applied  
resistance should be 1 k). In such cases, gain is reduced, since the output voltage is divided by the added resistance  
and the output resistance of the IC.  
1
-0.10  
-0.12  
-0.14  
-0.16  
-0.18  
-0.20  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
OUT  
16  
R=1kΩ  
R=2kΩ  
No resistance  
3mA  
Resistance to improve frequency  
response (R: 1-2 k  
)
Ω
1M  
10M  
100M  
1000M  
0.5  
1
1.5  
to  
2
2.5  
周波数[Hz]  
Frequency [Hz]  
Resista  
nc  
e
ad  
de  
d
ou  
tp  
ut[k  
p
Ω
in  
]
[k]  
(b) Frequency response changes when resistance is inserted  
Input amplitude: 1 Vpp, Output load resistance: 10 kΩ  
Other constants are as in application examples (Figs. 9 & 10)  
(c) Voltage gain fluctuation when resistance is inserted  
[f = 100 kHz]  
(Voltage gain without inserted resistance: -0.11 dB)  
(a) Resistor insertion points  
Fig.17 Result of Resistance Inserted to Improve BH76362FV/BH76363FV Frequency Response  
www.rohm.com  
2009.04 - Rev.A  
24/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
12. With clamp input type models (BH76360FV and BH76362FV), if the termination impedance of the video input pin becomes  
higher, sync contractions or oscillation-related problems may occur. Evaluate temperature and other characteristics  
carefully and use at 1 kor less.  
6
5
4
3
2
1
0
0
1k  
2k  
Input termination resistance Rin [Ω]  
3k  
入力終端抵抗Rin[Ω]  
Fig. 18. Relation between Input Pin Termination Impedance and Amount of Sync Contraction  
Evaluation board pattern diagram and circuit diagram  
GND GND GND GND GND  
VCC  
C01  
47u  
C02 0.1u  
H161  
R161  
75  
C16  
OUT  
OUT  
RCA  
OUT-RCA  
1
2
16  
15  
14  
13  
12  
11  
10  
9
470u  
H163  
H162  
H164  
IN1  
C2  
IN1-RCA  
IN1  
RCA  
R162  
150  
R164  
75  
R2  
75  
R163  
150  
CTLD  
CTLD  
SW14  
SW13  
SW12  
SW10  
3
C04  
0.1u  
CTLC  
CTLB  
CTLA  
+
C03  
47u  
IN2  
C4  
IN2-RCA  
IN2  
CTLC  
CTLB  
RCA  
A-13AP  
4
5
6
7
8
BH7636xFV  
R4  
75  
IN3  
C6  
IN6  
C11  
IN6  
IN6-RCA  
IN3-RCA  
IN3  
RCA  
RCA  
R6  
75  
R11  
75  
CTLA  
IN4  
C8  
IN5  
C9  
IN4-RCA  
IN4  
IN5  
IN5-RCA  
RCA  
RCA  
R8  
75  
R9  
75  
Fig.19  
Evaluation Board Circuit Diagram  
SW10  
CTLA  
SW12  
CTLB  
SW13  
CTLC  
SW14  
GND  
H
L
H
L
H
L
H
L
GND  
OUT  
IN6  
CTLD  
OUT  
R11  
C11  
OUT-RCA  
CTLC CTLA  
CTLD CTLB  
IN6-RCA  
H164  
H162  
H163  
IN5  
R9  
C9  
R163  
IN5-RCA  
R162  
R164  
BH76360~5FV  
IN3  
IN1  
IN2  
IN4  
GND  
GND  
VCC  
GND  
Fig.20  
Evaluation Board Pattern Diagram  
Parts list  
Symbol  
R2  
Function  
Recommended value  
Comments  
R4  
R9  
C4  
C9  
R6  
Input terminating resistor  
75Ω  
R8  
R11  
C6  
C2  
Input coupling  
capacitor  
See pages 6/16 to 7/16 to determine  
75Ω  
B characteristics recommended  
C8  
C11  
R161  
Output resistor  
Output coupling  
capacitor  
C16  
See pages 6/16 to 7/16 to determine  
B characteristics recommended  
C01(C03)  
C02(C04)  
10uF  
Decoupling capacitor  
B characteristics recommended  
0.1uF  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
25/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Reference data (1) BH76360FV / BH76361FV [unless otherwise specified, output capacitance C: 470 µF, RL = 150 ]  
BH76360FV  
Ta=25℃  
BH76360FV  
VCC=5V  
BH76361FV  
Ta=25℃  
BH76361FV  
VCC=5V  
20  
15  
10  
5
20  
15  
10  
5
20  
15  
10  
5
20  
15  
10  
5
.
Output capacitance C: 470 µF  
Output capacitance C: 470 µF  
No output capacitance  
No output capacitance  
0
0
0
0
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
2
3
4
5
6
Ambient Temperature []  
Ambient Temperature []  
Supply Voltage [V]  
Supply Voltage [V]  
Fig.21 ICC1 vs. Supply Voltage  
Fig.22 ICC1 vs. Ambient Temperature  
Fig.23 ICC1 vs. Supply Voltage  
Fig.24 ICC1 vs. Ambient Temperature  
BH76360/61FV  
Ta=25℃  
BH76360/61FV  
VCC=5V  
BH76360FV  
Ta=25℃  
BH76360FV  
VCC=3V  
6.0  
5.0  
4.0  
3.0  
2.0  
2.0  
1.5  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
2.0  
1.5  
1.0  
1.0  
0.5  
0.5  
0.0  
0.0  
-0.5  
-0.5  
2
3
4
5
6
2
3
4
5
6
-50  
0
50  
100  
-50  
0
50  
100  
Supply Voltage [V]  
Ambient Temperature []  
Supply Voltage [V]  
Ambient Temperature []  
Fig.25 ICC2 vs. Supply Voltage  
Fig.28 Vom vs. Ambient Temperature  
Fig.26 ICC2 vs. Ambient Temperature  
Fig.27 Vom vs. Supply Voltage  
VCC=3V  
BH76361FV  
BH76361FV  
BH76360FV  
BH76360FV  
Ta=25℃  
Ta=25℃  
VCC=5V  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
6.0  
5.0  
4.0  
3.0  
2.0  
2
3
4
5
6
2
3
4
5
6
-50  
0
50  
100  
-50  
0
50  
100  
Ambient Temperature []  
Supply Voltage [V]  
Ambient Temperature []  
Supply Voltage [V]  
Fig.29 Vom vs. Supply Voltage  
Fig.30 Vom vs. Ambient Temperature  
Fig.32 GV vs. Ambient Temperature  
Fig.31 GV vs. Supply Voltage  
BH76361FV  
BH76361FV  
VCC=5V  
BH76360FV  
BH76360FV  
VCC=5V  
Ta=25℃  
Ta=25℃  
1.0  
0.5  
1.0  
0.5  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
2
3
4
5
6
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
Ambient Temperature []  
Ambient Temperature []  
Supply Voltage [V]  
Supply Voltage [V]  
Fig.33 GV vs. Supply Voltage  
Fig.34 GV vs. Ambient Temperature  
Fig.35 GF vs. Supply Voltage  
Fig.36 GF vs. Ambient Temperature  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
26/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
BH76360FV  
VCC=5V, Ta=25℃  
BH76361FV  
BH76361FV  
BH76361FV  
Ta=25℃  
VCC=5V  
VCC=5V, Ta=25℃  
1.0  
0.5  
1.0  
0.5  
5
0
5
0
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
-5  
-5  
-10  
-15  
-10  
-15  
1M  
10M  
Frequency[Hz]  
100M  
1M  
10M  
Frequency[Hz]  
100M  
2
3
4
5
6
-50  
0
50  
100  
Ambient Temperature []  
Supply Voltage [V]  
Fig.37 GF vs. Supply Voltage  
Fig.38 GF vs. Ambient Temperature  
Fig.39 Frequency Response  
Fig. 40 Frequency Response  
Ta=25℃  
Ta=25℃  
VCC=5V  
BH76360/61FV  
BH76360/61FV  
BH76360/61FV  
BH76360/61FV  
VCC=5V  
-70  
-72  
-74  
-76  
-78  
-80  
-65  
-70  
-72  
-74  
-76  
-78  
-80  
-65  
-67  
-69  
-71  
-73  
-75  
-67  
-69  
-71  
-73  
-75  
-50  
0
50  
100  
2
3
4
5
6
2
3
4
5
6
-50  
0
50  
100  
Ambient Temperature []  
SupplyVoltage[V]  
Ambient Temperature []  
Supply Voltage [V]  
Fig.44 MT(wrost) vs. Ambient Temperature  
Fig.41 CT(worst) vs. Supply Voltage  
Fig.42 CT(worst) vs. Ambient Temperature  
Fig.43 MT(worst) vs. Supply Voltage  
BH76360/61FV VCC=5V, Ta=25℃  
BH76360/61FV  
BH76360FV  
BH76360FV  
VCC=5V  
VCC=5V  
Ta=25℃  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
0
-50  
0
50  
100  
0
0.5  
CT  
1
1.5  
e [V]  
2
2
3
4
5
6
-50  
0
50  
100  
Ambient Temperature []  
Ambient Temperature []  
Supply Voltage [V]  
L
_D
p
i
n v  
olt  
ag  
Fig.47 DG vs. Supply Voltage  
Fig.48 DG vs. Ambient Temperature  
Fig.46 ITHH vs. Ambient Temperature  
(Voltage applied to CTL pin = 2V)  
Fig. 45 CTLd pin voltage vs Circuit Current  
(CLT threshold )  
BH76361FV  
BH76361FV  
VCC=5V  
Ta=25℃  
Ta=25℃  
BH76360FV  
BH76360FV  
VCC=5V  
2.0  
1.5  
1.0  
0.5  
0.0  
2
1.5  
1
2.0  
1.5  
1.0  
0.5  
0.0  
2
1.5  
1
Output capacitance C: 470 µF  
No output capacitance  
Output capacitance C: 470 µF  
No output capacitance  
0.5  
0
0.5  
0
-50  
0
50  
100  
-50  
0
50  
100  
2
3
4
電源電圧[V]  
5
6
2
3
4
5
6
Ambient Temperature []  
Supply Voltage [V]  
Ambient Temperature []  
Supply Voltage [V]  
Fig.52 DP vs. Ambient Temperature  
Fig.50 DG vs. Ambient Temperature  
Fig.51 DP vs. Supply Voltage  
Fig.49 DG vs. Supply Voltage  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
27/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
BH76361FV  
BH76360/61FV  
BH76361FV  
Ta=25℃  
Ta=25℃  
VCC=5V  
BH76360/61FV  
VCC=5V  
80  
78  
76  
74  
72  
70  
2
1.5  
1
80  
78  
76  
74  
72  
70  
2
1.5  
1
0.5  
0
0.5  
0
-50  
0
50  
100  
-50  
0
50  
100  
2
3
4
5
6
2
3
4
5
6
Ambient Temperature []  
Supply Voltage [V]  
Supply Voltage [V]  
Ambient Temperature []  
]  
Fig.56 SNY vs. Ambient Temperature  
Fig.53 DP vs. Supply Voltage  
Fig.54 DP vs. Ambient Temperature  
Fig.55 SNY vs. Supply Voltage  
BH76360/61FV  
BH76360/61FV  
Ta=25℃  
Ta=25℃  
BH76360/61FV  
VCC=5V  
BH76360/61FV  
VCC=5V  
80  
78  
76  
80  
78  
76  
74  
72  
70  
70  
69  
68  
67  
66  
65  
70  
69  
68  
67  
66  
65  
74  
72  
70  
-50  
0
50  
100  
-50  
0
50  
100  
2
3
4
5
6
2
3
4
5
6
Ambient Temperature []  
Ambient Temperature []  
Supply Voltage [V]  
Supply Voltage [V]  
Fig.57 SNCA vs. Supply Voltage  
Fig.58 SNCA vs. Ambient Temperature  
Fig.60 SNCP vs. Ambient Temperature  
Fig.59 SNCP vs. Supply Voltage  
Reference data (2) BH76362FV/BH76363FV [unless otherwise specified, output capacitance C: 470 µF, RL = 10 k]  
BH76362FV  
Ta=25℃  
BH76362FV  
BH76363FV  
Ta=25℃  
BH76363FV  
VCC=5V  
VCC=5V  
0  
5  
0  
5
20  
15  
10  
5
20  
15  
10  
5
20  
15  
10  
5
0
0
0
0
2
3
4
5
6
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
atu  
100  
[]  
Supply Voltage [V]  
]  
Ambient Temperature []  
Supply Voltage [V]  
Ambie  
nt  
Te  
m
pe  
r
re []  
Fig.61 ICC1 vs. Supply Voltage  
Fig.62 ICC1 vs. Ambient Temperature  
Fig.63 ICC1 vs. Supply Voltage  
Fig.64 ICC1 vs. Ambient Temperature  
BH76362/63FV  
Ta=25℃  
BH76362FV  
Ta=25℃  
BH76362FV  
BH76362/63FV  
VCC=5V  
VCC=3V  
5.0  
4.0  
3.0  
2.0  
1.0  
2.0  
1.5  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0.5  
0.0  
0.0  
-0.5  
-0.5  
2
3
4
5
6
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
Supply Voltage [V]  
Ambient Temperature []  
Supply Voltage [V]  
Ambient Temperature []  
Fig.65 ICC2 vs. Supply Voltage  
Fig.68 Vom vs. Ambient Temperature  
Fig.66 ICC2 vs. Ambient Temperature  
Fig.67 Vom vs. Supply Voltage  
www.rohm.com  
2009.04 - Rev.A  
28/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
VCC=3V  
BH76363FV  
BH76363FV  
BH76362FV  
BH76362FV  
Ta=25℃  
Ta=25℃  
VCC=5V  
0.4  
0.2  
0.4  
0.2  
0.0  
5.0  
4.0  
3.0  
2.0  
1.0  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
0.0  
-0.2  
-0.4  
-0.6  
-0.2  
-0.4  
-0.6  
2
3
4
5
6
-50  
0
50  
100  
-50  
0
50  
100  
2
3
4
5
6
Supply Voltage [V]  
Ambient Temperature []  
Supply Voltage [V]  
Ambient Temperature []  
Fig.70 Vom vs. Ambient Temperature  
Fig.72  
GV vs. Ambient Temperature  
Fig.71 GV vs. Supply Voltage  
Fig.69 Vom vs. Supply Voltage  
VCC=5V  
BH76362FV  
Ta=25℃  
BH76362FV  
BH76363FV  
BH76363FV  
VCC=5V  
Ta=25℃  
0.4  
0.2  
1.0  
1.0  
0.5  
0.0  
0.4  
0.5  
0.0  
0.2  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.2  
-0.4  
-0.6  
-0.2  
-0.4  
-0.6  
2
3
4
5
6
-50  
0
50  
100  
2
3
4
5
6
-50  
0
50  
100  
Supply Voltage [V]  
Ambient Temperature []  
Supply Voltage [V]  
Ambient Temperature []  
Fig.73 GV vs. Supply Voltage  
Fig.74 GV vs. Ambient Temperature  
Fig.75 GF vs. Supply Voltage  
Fig.76 GF vs. Ambient Temperature  
BH76362FV  
VCC=5V  
BH76363FV  
BH76363FV  
BH76363FV  
VCC=5V ,Ta=25℃  
VCC=5V ,Ta=25℃  
Ta=25℃  
1.0  
0.5  
2
1
1.0  
0.5  
2
1
0
0
0.0  
0.0  
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
-50  
0
50  
100  
2
3
4
5
6
1M  
10M  
Frequency[Hz]  
100M  
1M  
10M  
Frequency[Hz]  
100M  
Supply Voltage [V]  
Ambient Temperature []  
Fig.78 GF vs. Ambient Temperature  
Fig.77 GF vs. Supply Voltage  
Fig. 79 Frequency Response  
Fig. 80 Frequency Response  
VCC=5V  
VCC=5V  
BH76362/63FV  
BH76362/63FV  
BH76362/63FV  
BH76362/63FV  
Ta=25℃  
Ta=25℃  
-65  
-67  
-69  
-71  
-73  
-75  
-65  
-67  
-69  
-71  
-73  
-75  
-70  
-72  
-74  
-76  
-78  
-80  
-70  
-72  
-74  
-76  
-78  
-80  
2
3
4
5
6
-50  
0
50  
100  
-50  
0
50  
100  
2
3
4
5
6
Supply Voltage [V]  
Ambient Temperature []  
Amb  
ie  
nt  
Te  
m
p
erature []  
Supply Voltage [V]  
Fig.84 MT(wrost) vs. Ambient Temperature  
Fig.81 CT(worst) vs. Supply Voltage  
Fig.82 CT(worst) vs. Ambient Temperature  
Fig.83 MT(worst) vs. Supply Voltage  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
29/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
BH76362/63FV  
VCC=5V, Ta=25℃  
VCC=5V  
BH76362FV  
BH76362/63FV  
BH76362FV  
VCC=5V  
Ta=25℃  
2
.5  
1
70  
60  
50  
40  
30  
20  
10  
0
2.0  
1.5  
1.0  
0.5  
0.0  
20  
15  
10  
5
.5  
0
0
-50  
0
50  
100  
2
3
4
5
6
0
0.5  
1
1.5  
2
-50  
0
50  
100  
Ambient Temperature []  
Supply Voltage [V]  
CTL_D pin voltage [V]  
Ambient Temperature []  
Fig.87 DG vs. Supply Voltage  
Fig.88 DG vs. Ambient Temperature  
Fig.86 ITHH vs. Ambient Temperature  
(Voltage applied to CTL pin = 2V)  
Fig.85 CTLd pin voltage vs Circuit Current  
(CLT threshold )  
BH76363FV  
BH76363FV  
VCC=5V  
BH76362FV  
BH76362FV  
VCC=5V  
Ta=25℃  
Ta=25℃  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
2
3
4
5
6
2
3
4
5
6
-50  
0
50  
100  
-50  
0
50  
100  
Supply Voltage [V]  
Supply Voltage [V]  
Ambient Temperature []  
Ambient Temperature []  
Fig.92 DP vs. Ambient Temperature  
Fig.90 DG vs. Ambient Temperature  
Fig.91 DP vs. Supply Voltage  
Fig.89 DG vs. Supply Voltage  
BH76363FV  
VCC=5V  
BH76363FV  
VCC=5V  
BH76362/63FV  
BH76362/63FV  
Ta=25℃  
Ta=25℃  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
80  
78  
76  
74  
72  
70  
80  
78  
76  
74  
72  
70  
2
3
4
5
6
-50  
0
50  
100  
-50  
0
50  
100  
2
3
4
5
6
Supply Voltage [V]  
Supply Voltage [V]  
Ambient Temperature []  
Ambient Temperature []  
Fig.96 SNY vs. Ambient Temperature  
Fig.93 DP vs. Supply Voltage  
Fig.94 DP vs. Ambient Temperature  
Fig.95 SNY vs. Supply Voltage  
VCC=5V  
VCC=5V  
BH76362/63FV  
BH76362/63FV  
BH76362/63FV  
BH76362/63FV  
Ta=25℃  
Ta=25℃  
80  
78  
76  
80  
78  
76  
74  
72  
70  
70  
69  
68  
67  
66  
65  
70  
69  
68  
67  
66  
65  
74  
72  
70  
-50  
0
50  
100  
-50  
0
50  
100  
2
3
4
5
6
2
3
4
5
6
Supply Voltage [V]  
Supply Voltage [V]  
Ambient Temperature []  
Ambient Temperature []  
Fig.97 SNCA vs. Supply Voltage  
Fig.98 SNCA vs. Ambient Temperature  
Fig.100 SNCP vs. Ambient Temperature  
Fig.99 SNCP vs. Supply Voltage  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
30/32  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
External dimensions and label codes  
76360  
Model  
Code  
76360  
76361  
76362  
76363  
Lot.No.  
BH76360FV  
BH76361FV  
BH76362FV  
BH76363FV  
SSOP-B16 (unit: mm )  
Fig.101 External Dimensions of BH7636xFV Series Package  
When used with 3-input, 1-output video switch BH7633xFVM  
Fig. 14 above shows an application example in which two of these ICs are used. When the similar IC models BH7633xFVM  
and BH7636xFV are used at the same time, the type of configuration shown below can be combined. In such cases, input  
coupling capacitors can be used, as in the application example in Fig. 14.  
※1  
BH76360FV  
Clamp  
IIN1  
2
External input  
※2  
IIN2 Clamp  
4
Front  
monitor  
TV  
16  
OUT  
75Ω  
75Ω  
Clamp  
IIN3  
6
1
2
Input coupling capacitor can be used with  
this.  
DVD  
Clamp  
IIN4  
8
Navigation  
screen  
Output coupling capacitors can be omitted  
when using BH76330FVM or BH76360FV,  
and this helps reduce the number of parts.  
IIN5 Clamp  
9
Rear camera  
3
Clamp  
IIN6  
11  
Any inputs that are not used should be  
connected directly to VCC or shorted with  
GND via a capacitor.  
※3  
BH76330FVM  
IIN1  
1
Clamp  
※2  
Rear  
IIN2  
3
Clamp  
Clamp  
Rear  
monitor  
16  
OUT  
75Ω  
75Ω  
IIN3  
5
Fig.102 Application Example in which BH76330FVM and BH76360FV Are Used Concurrently  
For details of BH7633xFVM, see the BH7633xFVM Series Application Notes.  
www.rohm.com  
2009.04 - Rev.A  
31/32  
© 2009 ROHM Co., Ltd. All rights reserved.  
BH76330FVM, BH76331FVM, BH76360FV, BH76361FV,  
BH76332FVM, BH76333FVM, BH76362FV, BH76363FV  
Technical Note  
Selection of order type  
0 F V M  
T R  
H
3 3  
B
7 6  
Part No.  
Tape and Reel information  
TR  
BH76330FVM  
BH76332FVM  
BH76331FVM  
BH76360FV  
BH76361FV  
BH76333FVM  
BH76362FV  
BH76363FV  
E2  
MSOP8  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
3000pcs  
TR  
2.9 0.1  
Direction  
of feed  
8
5
(The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
4
+0.05  
0.03  
0.145  
0.475  
+0.05  
0.22 0.04  
M
0.08  
X X  
X
X X  
X
X X  
X
X X  
X
X X  
X
0.65  
0.08 S  
X
X
X
X
X
X X  
X
X X  
X
X X  
X
X X  
X
X X  
X
Direction of feed  
1Pin  
Reel  
(Unit:mm)  
When you order , please order in times the amount of package quantity.  
SSOP-B16  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
5.0 0.2  
Direction  
of feed  
E2  
16  
9
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
8
0.15 0.1  
0.1  
0.22 0.1  
0.65  
Direction of feed  
1pin  
Reel  
When you order , please order in times the amount of package quantity.  
Unit:mm)  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
2009.04 - Rev.A  
32/32  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller,  
fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of  
any of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2009 ROHM Co., Ltd. All rights reserved.  
R0039  
A

相关型号:

BH76362FV

Video Drivers with Built-in Low Voltage operation Single Video Switchers
ROHM

BH76363FV

Video Drivers with Built-in Low Voltage operation Single Video Switchers
ROHM

BH76363FV-E2

Audio/Video Switch, PDSO16,
ROHM

BH7636S

Video Switch for Canal+
ETC

BH7641FV

Silicon Monolithic Integrated Circuit
ROHM

BH7645KS2

Silicon Monolithic Integrated Circuit
ROHM

BH7649KS2

Video?Audio Signal Switchers for Car Navigation Car DVD Player
ROHM

BH7657F-E2

Consumer Circuit, PDSO24, ROHS COMPLIANT, SOP-24
ROHM

BH7657FS-E2

Consumer Circuit, PDSO32, ROHS COMPLIANT, SSOP-32
ROHM

BH7659F-E2

Consumer Circuit, PDSO24, ROHS COMPLIANT, SOP-24
ROHM

BH7659FS

Input selector for high resolution displays
ROHM

BH7659FS-E2

Consumer Circuit, BICMOS, PDSO32, ROHS COMPLIANT, SSOP-32
ROHM