BH7659FS-E2 [ROHM]

Consumer Circuit, BICMOS, PDSO32, ROHS COMPLIANT, SSOP-32;
BH7659FS-E2
型号: BH7659FS-E2
厂家: ROHM    ROHM
描述:

Consumer Circuit, BICMOS, PDSO32, ROHS COMPLIANT, SSOP-32

信息通信管理 光电二极管 商用集成电路
文件: 总17页 (文件大小:813K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
High-performance Video Signal Switchers  
Broadband Triple Circuits  
Video Signal Switchers  
BA7657S/F, BH7659FS  
Description  
The BA7657S, BA7657F, and BH7659FS are ICs that have been developed for use in PC monitors, HDTVs (high definition  
televisions), and other high-resolution display devices. In addition to their wide-range switching circuits for RGB signals,  
HD signals, and VD signals, the BA7657S and BA7657F feature a separation (BUNRI) circuit for the synchronization signal that  
is superposed on the G signal, while the BH7659FS features an on-chip switch for I2C bus signals (SDA and SCL).  
These ICs can be used to simplify the input block configuration in advanced display devices.  
Features  
1) Operates on 5 V single power supply.  
2) Built-in wide-range RGB signal switches.  
(BA7657S/F: fc = 230 MHz)  
(BH7659FS: fc = 250 MHz)  
3) Built-in switching circuit for HD signal and VD signal.  
4) Built-in separation (BUNRI) circuit for synchronization signal superposed on G signal. (BA7657S/F)  
5) Built-in switch for I2C bus signals (SDA and SCL). (BH7659FS)  
6) Built-in power saving function. (BH7659FS)  
Use  
PC monitors, Plasma displays, LCD monitors, and Other devices that use wide-range RGB signal switching.  
Lineup  
Parameter  
Circuit current (mA)  
BA7657S/F  
BH7659FS  
35  
25  
14  
Circuit current during low-power mode (mA)  
RGB signal SW block frequency  
characteristics (MHz)  
230  
250  
Synchronization signal SW block circuit  
configuration  
2 digital switching circuits  
4 CMOS analog switching circuits  
Synchronization signal separation circuit  
Package  
SDIP24/SOP24  
SSOP-A32  
Absolute Maximum RatingsTa=25℃)  
Parameter  
Symbol  
VCC  
Limits  
8.0  
Unit  
Supply voltage  
V
BA7657S  
1200  
Power  
dissipation  
BA7657F  
Pd  
550  
mW  
BH7659FS  
800  
Operating temperature  
Storage temperature  
Topr  
Tstg  
-25+75  
-55+125  
Deratings is done at 12mW/(BA7657S), 5.5mW/(BA7657F), 8mW/(BA7659FS) above Ta=25.  
Operating RangeTa=25℃)  
Parameter  
Symbol  
VCC  
Min.  
4.5  
Typ.  
5.0  
Max.  
5.5  
Unit  
V
Supply voltage  
This product is not designed for protection against radioactive rays.  
Aug.2008  
Electrical characteristics (1/2)  
BA7657S/F  
Unless otherwise noted, Ta=25, Vcc=5.0V)  
Parameter  
Symbol  
ICC  
Min.  
20  
Typ.  
35  
Max.  
50  
Unit  
mA  
Conditions  
Circuit current  
Analog SW block〉  
Maximum output level  
Voltage gain  
Vom  
GV  
2.8  
-1.0  
-0.2  
-0.2  
-0.5  
0
0
VP-P  
dB  
f=1kHz  
f=1MHz,VIN=1VP-P  
f=1MHz,VIN=1VP-P  
f=1MHz,VIN=1VP-P  
f=10MHz,VIN=1VP-P  
f=10MHz,VIN=1VP-P  
Input pin voltage gain differential  
Inter block voltage gain differential  
Input pin cross talk1  
Interblock crosstalk1  
Digital SW block〉  
“H” level input voltage  
“L” level input voltage  
“H” level input current  
“L” level input current  
Rise time  
GVl  
GVB  
0.2  
0.2  
-40  
-40  
dB  
0
dB  
CTI1  
CTB1  
-50  
-50  
dB  
dB  
VIH  
VIL  
IIH  
1.8  
1.2  
130  
V
V
80  
-3  
100  
-1  
μA  
μA  
ns  
ns  
ns  
ns  
V
VIN=5.0V  
VIN=0V  
IIL  
TR  
30  
30  
50  
30  
3.7  
0.2  
50  
50  
80  
50  
Fall time  
TF  
Rise delay time  
TRD  
TFD  
VOH  
VOL  
IOH  
IOL  
Fall delay time  
“H”  
“L”  
“H”  
“L”  
level output voltage  
level output voltage  
level output current  
level output current  
3.0  
0.4  
V
-400  
5
μA  
mA  
Synchronization signal separation block〉  
Minimum SYNC separation level  
VSMin.  
VOH  
VOL  
IOL  
-50  
4.5  
2
5.0  
0.2  
50  
mVP-P  
V
“H”  
“L”  
“L”  
level output voltage  
level output voltage  
level output current  
0.5  
V
mA  
ns  
Rise time  
TR  
80  
130  
80  
Fall time  
TF  
30  
ns  
Rise delay time  
Fall delay time  
Control block〉  
TRD  
TFD  
100  
100  
150  
150  
ns  
ns  
“H”  
“L”  
“H”  
“L”  
level input voltage  
VIH  
VIL  
IIH  
1.8  
80  
-3  
1.2  
130  
V
level input voltage  
level input current  
level input current  
V
100  
-1  
μA  
μA  
IIL  
2/16  
Electrical characteristics (2/2)  
BA7657S/F  
Guaranteed design parameters  
Parameter  
Unless otherwise noted, Ta=25, Vcc=5.0V)  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Conditions  
Analog SW block〉  
Input pin cross talk 2  
CTI2  
CTB2  
Gf  
-6  
-1  
-30  
-30  
-3  
-15  
-15  
-1  
dB  
dB  
dB  
dB  
f=230kHz, VIN=1VP-P  
Interblock cross talk 2  
Frequency characteristic  
Input pin frequency differential  
f=230MHz,VIN=1VP-P  
f=1MHz/230MHz, VIN=1VP-P  
f=1MHz/100MHz, VIN=1VP-P  
Gfl  
0
+1  
Interblock frequency  
GfB  
-1  
0
+1  
dB  
f=1MHz/100MHz, VIN=1VP-P  
characteristic differential  
SYNC separation block〉  
SYNC separation frequency  
SYNC separation pulse width 1  
SYNC separation pulse width 2  
SYNC separation pulse width 3  
SYNC separation level 1  
fH-R  
pwH1  
pwH2  
pwH3  
VS1  
200  
3.0  
0.5  
0.3  
300  
100  
60  
kHz  
μS  
μS  
μS  
μS  
μS  
μS  
Input waveform 1  
Input waveform 2 fH=20kHz  
Input waveform 2 fH=100kHz  
Input waveform 2 fH=200kHz  
Input waveform 3 fH=20kHz  
Input waveform 3 fH=100kHz  
Input waveform 3 fH=200kHz  
SYNC separation level 2  
VS2  
SYNC separation level 3  
VS3  
Input waveform〉  
1 VS and pwH are variable. VS and pwH are inter-related. See the characteristics diagram.  
2 VS = 130 mW and pwH are variable.  
3 pwH = 1 µs and VS are variable.  
Period of horizontal synchronization signal  
DUTY 25%  
(1H)  
Vr=0.7V  
Vs=130mV  
pwH=1μs  
3/16  
Block diagram  
BA7657S/F  
Fig.1  
4/16  
Pin descriptions (1/2)  
BA7657S/F  
Reference  
potential  
Pin No.  
Pin name  
Equivalent circuit  
Function  
1
3
Red1 Input  
Green1 Input  
Blue1 Input  
Red2 Input  
Green2 Input  
Blue2 Input  
Vcc  
2-channel switching of R,  
G, and B signals.  
Select between:  
3.7V  
when selected  
0V  
5
6.8k  
100  
CTL: H input1  
7
input2  
CTL: L  
21k  
when not  
selected  
9
1k  
11  
Vcc  
50  
15  
19  
21  
Blue output  
Green output  
Red output  
Output pins for RGB signals.  
Insert resistance from 100 to  
300 near the pins to  
suppress f peaks at high  
frequencies.  
2.0V  
5
mA  
400  
Vcc  
35k  
CTL pins  
H1.8V  
L1.2V  
Select between:  
CTL: H input1  
1k  
16  
Control  
input2  
CTL: L  
50k  
15k  
12  
13  
23  
24  
VD1 input  
VD2 input  
HD2 input  
HD1 input  
2-channel switching of VD  
and HD signals.  
H1.8V  
L1.2V  
Select between:  
CTL: H input1  
input2  
CTL: L  
Output pins for vertical  
synchronization signal (VD)  
And horizontal  
14  
22  
VD output  
HD output  
VOH3.0V  
VOL10.5V  
synchronization signal (HD).  
5/16  
Pin descriptions (2/2)  
BA7657S/F  
Reference  
potential  
Pin No.  
Pin name  
Equivalent circuit  
Function  
Composite Video  
input  
Input pin for composite signal  
(Sync on Green).  
18  
2.5V  
This pin is used to detect  
whether or not the HD signal is  
being input.  
HD Sync  
2
When the HD signal is being  
input, the synchronization  
signal separation circuit is  
stopped.  
Signal detector  
Synchronization signal output  
pin  
Composite sync  
output  
17  
20  
Synchronization separation is  
performed for the input signal  
from pin 18 if the HD signal is  
not being input.  
Insert a decoupling capacitor  
near the pin.  
VCC  
5V  
4
6
8
Use as large a GND pattern  
area as possible.  
GND  
0V  
6/16  
Description of operations  
BA7657S/F  
1) Analog SW block  
Two channels of RGB signals can be switched.  
IN1 can be selected when high-level voltage is applied to  
the CTL pin, and IN2 can be selected when low level  
voltage is applied.  
I/O relations  
Input  
Output  
HD VD Sync on Green HD VD Composite Sync  
2) Digital SW block  
This block switches between two channels of HD and VD  
synchronization signals.  
HD and VD synchronization signals are output for IN1 when  
high-level voltage is applied to the CTL pin, and these signals  
are output for IN2 when a low-level voltage is applied to the  
CTL pin.  
3) Synchronization signal separation block  
This block separates composite signals (Sync on Green) and synchronization signals and outputs positive-electrode  
composite synchronization signals.  
When an HD signal is being input, the synchronization signal detector operates and stops the synchronization signal  
separation circuit. A low-level output voltage is used for output.  
The time at which the synchronization signal separation circuit will be stopped can be set using external time constants  
for the circuit detection pin.  
Application circuit  
BA7657S/F  
Fig.2  
7/16  
Reference data  
BA7657S/F  
BA7657 S/F  
BA7657S/F  
4.5  
Analog SW block  
Vcc=5V  
Vcc=5V  
Analog SW block  
Vcc=5V  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-100 -50  
0
50  
Ta(℃  
100 150 200  
Fig.3 Frequency characteristic  
Fig.4 Interchannel crosstalk  
BA7657S/F  
Fig.5 Input/output delay time  
vs. Temperature  
BA7657S/F  
50  
10  
Vcc=6V  
9
8
Duty25%  
40  
7
Vcc=5V  
6
50mV  
5
30  
Vcc=4V  
130mV  
4
3
280mV  
20  
10  
2
1
0
20 40 60 80 100 120 140 160 180 200  
-50  
0
50  
100  
FREQUENCY : [kHz]  
Fig.6 Minimum SYNC  
separation characteristic  
Ta  
(℃)  
Fig.7 Quiescent current vs. Temperature  
8/16  
Electrical characteristics  
BH7659FS  
Unless otherwise noted, Ta=25, Vcc=5.0V)  
Parameter  
Entire device〉  
Circuit current  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Conditions  
ICC  
15  
7
25  
14  
35  
22  
mA  
mA  
Circuit current during power  
IPSV  
PS=”H”  
save  
R,G,B video SW〉  
Voltage gain  
GV  
-1.0  
-0.5  
-0.5  
2.6  
-0.5  
0
0
dB  
dB  
f=10MHz  
f=10MHz  
f=10MHz  
f=1kHz  
Interchannel relative gain  
Interblock relative gain  
Output dynamic range  
C-MOS analog SW〉  
On-resistance  
GVC  
GVB  
VOM  
0.5  
0.5  
0
dB  
VP-P  
RON  
200  
20  
400  
40  
Ω
Ω
VIN=2.5V  
VIN=2.5V  
Interchannel ON resistance  
differential  
RON  
Interchannel cross talk  
Transmission delay time  
Control block〉  
“H” level voltage  
CT  
tD  
-70  
20  
-55  
dB  
ns  
f=150kHz  
RL=100Ω,CL=50pF  
VH  
VL  
3.5  
V
V
“L” level voltage  
1.5  
Guaranteed design parameters  
BH7659FS  
Unless otherwise noted, Ta=25, Vcc=5.0V)  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Conditions  
R/G/B video SW〉  
Frequency characteristics 1  
Frequency characteristics 2  
Interchannel relative frequency  
characteristics  
f1  
f2  
-3.0  
-6.0  
-0.5  
0
-3  
0
+1.0  
-1.0  
0.5  
dB  
dB  
dB  
f=50MHz  
f=250MHz  
f=50MHz  
fC  
Interblock relative frequency  
characteristics  
fB  
-0.5  
0
0.5  
dB  
f=50MHz  
Interchannel cross talk 1  
Interchannel cross talk 2  
Interblock cross talk 1  
Interblock cross talk 2  
CTC1  
CTC2  
CTB1  
CTB2  
-50  
-30  
-50  
-30  
-35  
-15  
-35  
-15  
dB  
dB  
dB  
dB  
f=50kHz  
f=250MHz  
f=50MHz  
f=250MHz  
9/16  
Block diagram  
BH7659FS  
RINA  
RGND  
GINA  
RVCC  
ROUT  
32  
31  
30  
29  
A
B
GVCC  
GOUT  
A
GGND  
BINA  
BGND  
RINB  
B
A
28 BVCC  
27  
BOUT  
B
HDOUT  
26  
A
B
POWER  
SAVE  
25  
PSH  
HDINA  
GINB  
VDD  
24 HDINB  
10  
11  
12  
SCLIO  
23  
22  
A
BINB  
..  
SCLIOA  
..  
21  
20  
19  
B
CTL  
13  
14  
CTL  
SCLIOB  
SDAIOA  
A
A
VDINA  
VDINB  
B
B
SDAIOB  
SDAIO  
15  
16  
18  
17  
VDOUT  
Fig.8  
10/16  
Pin descriptions (1/2)  
BH7659FS  
Reference  
potential  
Pin No.  
Pin name  
Equivalent circuit  
Function  
R chroma signal input pin A  
(RINA)  
G chroma signal input pin A  
(GINA)  
B chroma signal input pin A  
(BINA)  
V
CC  
1
3
5
RGB signals are switched in  
two channels.  
3.5V  
when  
When selected by SW,  
the DC potential is  
selected  
0V  
3.7V  
R chroma signal input pin B  
(RINB)  
G chroma signal input pin B  
(GINB)  
10k  
approximately 3.5V, and when  
not selected, the DC potential  
is about 0 V.  
7
9
when not  
selected  
2k  
B chroma signal input pin B  
11  
(BINB)  
VCC  
B chroma signal input pin  
(BOUT)  
27  
29  
31  
Power save function is used  
when PSH pin is set to high  
level.  
G chroma signal input pin  
(GOUT)  
1.85V  
2k  
500  
R chroma signal input pin  
(ROUT)  
VCC  
PSH Pin  
8
Power save input pin  
(PSH)  
Power save off 1.5V  
Power save on 3.5V  
3.25V  
0V  
13  
Control input pin  
(CTL)  
CTL Pin  
Input A3.5V  
Input B1.5V  
50k  
11/16  
Pin descriptions (2/2)  
BH7659FS  
Reference  
potential  
Pin No.  
Pin name  
Equivalent circuit  
Function  
VD signal input pin A  
(VDINA)  
VD signal input pin B  
(VDINB)  
VD signal output pin  
(VDOUT)  
14  
15  
16  
VDD  
SDA signal output pin  
(SDAIO)  
SDA signal input pin B  
(SDAIOB)  
SDA signal input pin A  
(SDAIOA)  
17  
18  
19  
IN  
OUT  
VD, HD, SDA, and SCL are  
switched in two channels.  
Bidirectional access (I/O) is  
enabled by the CMOS analog  
SW.  
0V  
20  
22  
23  
24  
25  
26  
SCL signal input pin B  
(SCLIOB)  
SCL signal input pin A  
(SCLIOA)  
SCL signal output pin  
(SCLIO)  
HD signal input pin B  
(HDINB)  
HD signal input pin A  
(HDINA)  
HD signal output pin  
(HDOUT)  
This is the GND pin for the R  
video SW block.  
R GND pin  
(RGND)  
2
4
0V  
0V  
0V  
5V  
5V  
5V  
5V  
This is the GND pin for the B  
video SW block.  
G GND pin  
(GGND)  
This is the GND pin for the G  
video SW block , C-MOS SW  
block.  
B GND pin  
(BGND)  
6
This is the VDD pin for the  
C-MOS SW block.  
C-MOS supply voltage pin  
(VDD)  
10  
28  
30  
32  
This is the Vcc pin for the B  
video SW block  
B supply voltage pin  
(BVCC)  
This is the Vcc pin for the G  
video SW block  
G supply voltage pin  
(GVCC)  
This is the Vcc pin for the R  
video SW block  
R supply voltage pin  
(RVCC)  
12/16  
Description of operations  
BH7659FS  
1) Analog SW block  
R, G, and B chroma signals are switched in two channels.  
INA is selected by applying a high-level voltage to the CTL pin, and INB is selected by applying a low-level voltage.  
When the power save pin (pin 8) is set to high level, the current to the SW block's output transistors is reduced to lower  
the circuit current.  
Even during low power mode, signal switching can be performed normally as long as there is no drop in frequency  
characteristics.  
2) CMOS analog SW block  
SDA and SDC signals are switched via an I2C bus to handle two channels of HD and VD synchronization signals, and to  
exchange information bidirectionally between a computer and a monitor.  
The switching circuits used by this IC handle are configured as CMOS analog switches in order to handle I2C BUS  
signals and to transmit input and output signals bidirectionally. (ON resistance: Ron 200 typ.)  
Application circuit  
BH7659FS  
Input A  
R
VCC  
C1  
C2  
V
CC  
R2  
32  
1
2
+
+
+
A
R1  
C1  
C2  
G
B
31  
R
G
B
Ro  
R
G
B
OUT  
OUT  
OUT  
VCC  
C1  
C2  
B
A
VD  
V
CC  
R2  
R4  
R4  
R4  
R4  
5. 1  
5. 1  
5. 1  
5. 1  
30  
3
R1  
SDA  
C1  
C2  
29  
4
Ro  
SCA  
HD  
VCC  
B
A
C1  
C2  
V
CC  
R2  
28  
5
R1  
C1  
C2  
27  
6
Ro  
V
CC  
Input B  
B
C1  
C2  
R2  
HD OUT  
R
26  
7
R3  
R3  
R3  
R3  
R3  
R1  
G
B
R4  
C3  
A
B
POWER  
SAVE  
PS:H  
25  
8
C1  
C2  
VCC  
VD  
R4  
5. 1  
24  
9
R2  
R1  
CC  
V
SDA  
SCL IO  
R4  
R4  
R4  
5. 1  
5. 1  
23  
10  
11  
12  
13  
14  
15  
16  
+
C1  
C2  
R1  
SCA  
HD  
VCC  
C1  
R2  
A
22  
C2  
5. 1  
N. C.  
N. C. 21  
CTL  
IN A: H  
IN B: L  
R4  
C3  
B
A
B
CTL  
20  
19  
18  
17  
R3  
R3  
A
B
R3  
R3  
R3  
R3  
R3  
SDA IO  
VD OUT  
Fig.9  
13/16  
Reference data  
30BH7659FS  
BH7659 FS  
BH7659FS  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
10  
0
Vcc=5V  
Normal Mode  
Vcc=5V  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
Power Save  
Normal Mode  
Power Save  
0
1
2
3
4
5
6
7
8
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY : f (MHz)  
Vcc (V)  
FREQUENCY: f(MHz)  
Fig.10 Circuit current vs. Supply voltage  
Fig.11 interchannel crosstalk  
Fig.12 Frequency characteristics  
Cautions on use (1/2)  
[BA7657S/F, BH7659FS]  
1) Numbers and data in entries are representative design values and are not guaranteed values of the items.  
2) Although we are confident in recommending the sample application circuits, carefully check their characteristics further when  
using them. When modifying externally attached component constants before use, determine them so that they have  
sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only for static  
characteristics but also including transient characteristics.  
3) Absolute maximum ratings  
If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged.  
Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in which absolute  
maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the  
conditions under which absolute maximum ratings are exceeded to the LSI.  
4) GND potential  
Make the GND pin voltage such that it is the lowest voltage even when operating below it. Actually confirm that the voltage  
of each pin does not become a lower voltage than the GND pin, including transient phenomena.  
5) Thermal design  
Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual  
states of use.  
6) Shorts between pins and misinstallation  
When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is  
misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign  
substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.  
7) Operation in strong magnetic fields  
Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.  
[BA7657S/F]  
8) External resistance for analog SW block  
The frequency characteristics of analog switches vary according to the output load capacity.  
Set an external resistance value of R0 to keep frequency characteristics as flat as possible.  
9) Polarity of input coupling capacitor  
When this IC is switched, variation is approximately 3.7 V when the input pin's DC voltage has been selected, but is 0 V  
when the input pin's DC voltage has not been selected.  
Therefore, the input coupling capacitor's polarity should be set so as to avoid applying a reverse voltage to capacitors,  
whether the input pin's DC voltage has been selected or not.  
10) High-frequency characteristics of input coupling capacitor  
Since this IC handles signals at very high frequencies, when using an electrolytic capacitor as a coupling capacitor for  
input, be sure to insert high-frequency oriented ceramic capacitors (approximately 0.01 µF) in parallel.  
11) Layout of target board  
Since this IC handles signals at very high frequencies, be sure to insert the power supply pin's decoupling capacitor close to  
the IC's power supply pin. Also, use as large a GND pattern as possible.  
12) Switching speed  
Since this IC changes the DC voltage of input pins when switching, some time is required for switching.  
The amount of switching time can be determined by time constants that are in turn determined by the capacity of the  
coupling capacitor connected to the input pin, and the IC's internal input resistance.  
When using the recommended input coupling capacitor whose capacitance is 47 µF, the switching time is approximately 0.5  
seconds.  
14/16  
Cautions on use (2/2)  
[BH7659FS]  
13) External resistance for analog SW block  
The frequency characteristics of analog switches vary according to the output load capacity.  
Set an external resistance value of R0 to keep frequency characteristics as flat as possible.  
14) Polarity of input coupling capacitor  
When this IC is switched, variation is approximately 3.5 V when the input pin's DC voltage has been selected, but is 0 V  
when the input pin's DC voltage has not been selected. Therefore, the input coupling capacitor's polarity should be set so  
as to avoid applying a reverse voltage to capacitors, whether the input pin's DC voltage has been selected or not.  
15) High frequency characteristics of input coupling capacitor  
Since this IC handles signals at very high frequencies, when using an electrolytic capacitor as a coupling capacitor for  
input, be sure to insert high-frequency oriented ceramic capacitors (approximately 0.01 µF) in parallel.  
16) Layout of target board  
Since this IC handles signals at very high frequencies, be sure to insert the power supply pin's decoupling capacitor close to  
the IC's power supply pin. Also, use as large a GND pattern as possible.  
Selection of order type  
6 5 7  
B A 7  
S
2
E
Tape and Reel information  
Part. No.  
BA7657S  
BA7657F  
BH7659FS  
BA7657S ・・・ None(Tube)  
BA7657F ・・・ E2(Embossed carrier tape)  
BH7659FS ・・・ E2(Embossed carrier tape)  
SOP24  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
2000pcs  
15.0 0.2  
E2  
Direction  
of feed  
24  
13  
12  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
0.15 0.1  
0.1  
0.4 0.1  
1.27  
1Pin  
Direction of feed  
Reel  
(Unit:mm)  
When you order , please order in times the amount of package quantity.  
15/16  
SDIP24  
<Dimension>  
<Packing information>  
Container  
Quantity  
Tube  
22.9 0.3  
1000pcs  
24  
1
13  
12  
Direction of products is fixed in a container tube.  
Direction  
of feed  
7.62  
0° ∼ 15°  
1.778  
0.5 0.1  
(Unit:mm)  
When you order , please order in times the amount of package quantity.  
SSOP-A32  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
2000pcs  
13.6 0.2  
Direction  
of feed  
E2  
32  
17  
16  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
0.15 0.1  
0.1  
0.8  
0.36 0.1  
Direction of feed  
1pin  
Reel  
When you order , please order in times the amount of package quantity.  
Unit:mm)  
Catalog No.08T293A '08.8 ROHM ©  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2008 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

BH7659FS/S

Multimedia LSIs
ETC

BH7659S

Input selector for high resolution displays
ROHM

BH76706GU

Low voltage operation video driver with LPF
ROHM

BH7673G

Silicon Monolithic Integrated Circuit
ROHM

BH7673G-TR

Consumer Circuit, PDSO5, ROHS COMPLIANT, SSOP-5
ROHM

BH76806FVM

Low voltage operation video driver with LPF
ROHM

BH76806FVM-TR

Video Amplifier, 1 Channel(s), 1 Func, PDSO8, ROHS COMPLIANT, MSOP-8
ROHM

BH76806FVM_09

Output Capacitor-less Video Drivers
ROHM

BH76809FVM

Low voltage operation video driver with LPF
ROHM

BH76809FVM-TR

Video Amplifier, 1 Channel(s), 1 Func, PDSO8, ROHS COMPLIANT, MSOP-8
ROHM

BH76812FVM

Low voltage operation video driver with LPF
ROHM

BH76812FVM-TR

Output Capacitor-less Video Drivers
ROHM