BD9833KV_11 [ROHM]

Silicon Monolithic Integrated Circuit; 硅单片集成电路
BD9833KV_11
型号: BD9833KV_11
厂家: ROHM    ROHM
描述:

Silicon Monolithic Integrated Circuit
硅单片集成电路

文件: 总5页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1/4  
STRUCTURE  
TYPE  
Silicon Monolithic Integrated Circuit  
8 Channel Switching Regulator Controller and 1 Series Regulator for DVC  
PRODUCT SERIES  
FEATURES  
BD9833KV  
8 DC/DC controller,1 Series Regulator  
DC/DC controller: FET direct driver (Pch driver:7ch, Nch driver:1ch)  
Series Regulator: Variable output voltage  
stable with Ceramic Output Capacitor  
Package: VQFP48C(0.5mm pitch)  
Absolute maximum ratings Ta=25℃)  
Parameter  
Symbol  
VCC,VIN2345,VIN6789  
VIN1  
Limits  
12  
Units  
V
Power Supply Voltage1  
Power Supply Voltage2  
12  
V
600(*1)  
950(*2)  
mW  
mW  
Power Dissipation  
Pd  
-25+85  
Operating Temperature  
Storage Temperature  
Topr  
Tstg  
-55+125  
(*1) Without external heat sink, the power dissipation degrades by 6.0mW/above 25.  
(*2) Power dissipation degrades by 9.5mW/above 25, when mounted on a PCB (70.0mm×70.0mm×1.6mm).  
Recommended operating conditionsTa=-25+75℃)  
Parameter  
Symbol  
Spec.  
Units  
V
4.010  
2.810  
VCC,VIN2345,VIN6789  
VIN1  
Power Supply Voltage  
Oscillator Frequency  
100kHz1.2MHz  
fosc  
Status of this document  
REV.B  
2/4  
Electrical characteristicsTa=25℃,VCC=7V, VIN1=7V STB=3V, unless otherwise specified)  
Spec.  
Units  
Parameter  
Symbol  
Conditions.  
Min.  
Typ.  
Max  
DC/DC controller  
Reference Voltage】  
Reference Voltage  
Line Regulation  
Vref  
2.475  
-
2.500  
-
2.525  
10  
V
Vcc=4.0V10V  
DVLi  
mV  
Iref=-0.1mA~  
-1.0mA  
Load Regulation  
DVLo  
Ios  
-
-
10  
-5  
mV  
mA  
Short-Circuit Output Current  
-40  
-12  
Vref=0V  
Load Regulation】  
Short-Circuit Output  
Current1(VCC)  
Vstd1  
3.55  
3.65  
3.75  
V
VCC monitor  
Sweep down  
ΔVst1  
Hysteresis width (VCC)  
Threshold Voltage 2(VREF)  
Soft start】  
0.6  
2.2  
0.11  
2.3  
0.16  
2.4  
V
V
Vstd2  
VREF monitor  
Soft standby voltage  
Input Source Current  
Protection Circuit】  
Vsso1  
-
10  
100  
-0.5  
mV  
μA  
ISOFT1  
-2.0  
-1.0  
CH2,3,4,5,6,7,  
INV VoltageL”  
detect  
INV Threshold Voltage  
Vscpth  
0.65  
0.75  
0.85  
V
μA  
V
SCP Output Current  
Iscp  
Vtsc  
Vssc  
-3.0  
1.4  
-
-2.0  
1.5  
10  
-1.5  
1.6  
VSCP=0.75V  
SCP Threshold Voltage  
SCP Standby Voltage  
Triangular wave oscillator】  
100  
mV  
Oscillator Frequency  
Frequency Stability (Vcc)  
RT Output Voltage  
fosc  
Df  
580  
-
680  
0.3  
780  
2
kHz  
%
RT=11kohm,CT=180pF  
VCC=4.010V  
VRT  
0.95  
1.00  
1.05  
V
DC/DC controller  
Reference Voltage】  
CH2,3,4,5,6,7  
CH8,9  
Vthea  
VOFST  
Ibias1  
Ibias2  
Ibias3  
AV  
0.980  
-
1.00  
-
1.020  
10  
150  
-
V
Reference Voltage  
Line Regulation  
mV  
nA  
nA  
nA  
dB  
CH2,3,4,5,6,7 INV pin  
CH8,9 INV pin  
CH8,9 NON pin  
-150  
-170  
-170  
50  
0
Load Regulation  
-40  
-40  
65  
Short-Circuit Output Current  
-
DC Design  
Guarantee  
80  
Load Regulation】  
AV=0dB  
Design Guarantee  
Short-Circuit Output  
Current1(VCC)  
BW  
0.5  
1
2
MHz  
Vfbh  
Vref  
-0.1  
-
Hysteresis width (VCC)  
-
-
V
Threshold Voltage 2(VREF)  
Vfbl  
Isink1  
-
0.1  
3.9  
V
Soft start】  
1.3  
3.4  
-240  
-280  
0
2.6  
6.7  
-150  
-190  
-
mA  
mA  
μA  
μA  
V
Soft standby voltage  
Input Source Current  
Protection Circuit】  
Isink2  
10  
Isource1  
Isource2  
VCM  
-90  
-130  
VCC-2  
INV Threshold Voltage  
PWM Comparator】  
Vt0  
1.730  
2.090  
1.820  
2.180  
1.910  
2.270  
V
V
DUTY0%  
Input Threshold Voltage  
2,3,4,5,6,7,8,9  
Vt100  
DUTY100%  
FET Driver】  
RonHI1  
RonLO1  
Isink1  
Isource1  
7
6
14  
12  
21  
Ω
Ω
mA  
mA  
VG2,3,4,5,6,7,8,9 VG=H”  
VG2,3,4,5,6,7,8,9 VG=L”  
VG2,3,4,5,6,7,8,9 VG=L”  
VG2,3,4,5,6,7,8,9 VG=H”  
ON Resistance  
18  
70  
170  
-160  
250  
-80  
Current Ability  
-240  
Control】  
STB Threshold Voltage  
STB Input Current  
STB5,6 Threshold Voltage  
STB5,6 Input Current  
Circuit Current】  
Vstb  
Istb  
1.0  
-
1.5  
-
2.0  
30  
V
μA  
V
STB=3V  
Vstb5,6  
Istb5,6  
1.0  
-
1.5  
-
2.0  
30  
μA  
STB5,6=3V  
STB=0V  
Standby Current  
Iccs  
Icc  
-
1
0
5
5
μA  
mA  
Circuit Current on Driving  
10  
Series Regulator】  
R1=200K,R2=100KRefer to below  
figure  
Output Voltage  
Vo1  
2.94  
3.00  
3.06  
V
Reference Voltage  
VFB1  
Io1  
0.98  
300  
1.00  
-
1.02  
-
V
Output Current Ability  
The Difference between Input voltage and  
output voltage  
mA  
VIN1=VOUT1x0.97,  
IOUT1=20mA  
DV1  
70  
-
120  
4
250  
10  
mV  
mV  
mV  
VIN1=4V to10V  
IOUT1=100mA  
Line Regulation11  
Line Regulation12  
DVLi11  
DVLi12  
VIN1=3.5V to10V  
IOUT1=10mA  
-
4
10  
Load Regulation1  
DVLo1  
DVLo2  
Ios1  
IVIN1  
COUT  
-
-
10  
30  
30  
90  
mV  
mV  
IOUT1=1mA to 100mA  
IOUT1=1mA to 300mA  
VOUT1=0V  
Load Regulation2  
Short-Circuit Output Current  
Circuit Current  
-140  
40  
-70  
80  
-35  
160  
mA  
μA  
μF  
IOUT1=0mA  
VOUT1 pin Connect Capacitor  
2.2  
REV. B  
3/4  
Package Dimensions  
Pin Description  
番号  
端子名  
INV5  
FB5  
機能  
Error Amp inverted inputCH5)  
1
Error Amp output (CH5)  
2
Error Amp inverted inputCH6)  
Error Amp output (CH6)  
3
INV6  
FB6  
4
Error Amp inverted inputCH7)  
Error Amp output (CH7)  
5
INV7  
FB7  
6
Error Amp non-inverted inputCH8)  
Error Amp inverted inputCH8)  
Error Amp output (CH8)  
7
NON8  
INV8  
FB8  
8
9
Error Amp non-inverted inputCH9)  
Error Amp inverted inputCH9)  
Error Amp output (CH9)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
NON9  
INV9  
FB9  
FET Driver Output (CH9)  
VG9  
FET Driver Output (CH8)  
VG8  
Power supply for the output circuit (CH6,7,8,9)  
Power Ground for the output circuit (CH6,7,8,9)  
FET Driver Output (CH7)  
VIN6789  
PGND6789  
VG7  
VQFP48C Unit:mm)  
FET Driver Output (CH6)  
VG6  
FET Driver Output (CH5)  
Block Diagram  
VG5  
FET Driver Output (CH4)  
VG4  
Power supply for the output circuit (CH2,3,4,5)  
Power Ground for the output circuit (CH2,3,4,5)  
FET Driver Output (CH3)  
VIN2345  
PGND2345  
VG3  
FET Driver Output (CH2)  
VG2  
Error Amp output (CH2)  
FB2  
Error Amp inverted inputCH2)  
Error Amp output (CH3)  
INV2  
FB3  
Error Amp inverted inputCH3)  
SW for CH29HiOperating  
Ground  
INV3  
STB  
GND  
Error Amp output (CH4)  
FB4  
Error Amp inverted inputCH4)  
SW for CH5HiOperating  
SW for CH6HiOperating  
SW for CH1HiOperating  
Series Regulator Output  
INV4  
STB5  
STB6  
STB1  
VOUT1  
VIN1  
FB1  
Power supply for Series Regulator  
Amp inverted input  
Non-Connected pin  
N.C.  
SCP  
A capacitor is placed to set up the delay time of the SCP  
Soft start/This pin connects to a capacitor to  
set up the start-up time  
SOFT  
VREF  
VCC  
Reference Voltage Output pin  
Power supply for DC/DC  
A capacitor is to set up the triangular-wave frequency  
A resistor is to set up the triangular-wave frequency  
Dead time control pin for CH5  
CT  
RT  
DTC5  
DTC6  
DTC7  
Dead time control pin for CH6  
Dead time control pin for CH7.And this pin connects to a  
capacitor to set up the start-up time.  
REV. B  
4/4  
Operation Notes  
1) Absolute maximum ratings  
Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may result in IC deterioration or  
damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical  
safety measure such as a fuse should be implemented when use of the IC in a special mode where the absolute maximum ratings may be  
exceeded is anticipated.  
2) GND potential  
Ensure a minimum GND pin potential in all operating conditions. In addition, ensure that no pins other than the GND pin carry a voltage lower than  
or equal to the GND pin, including during actual transient phenomena.  
3) Thermal design  
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.  
4) Inter-pin shorts and mounting errors  
Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting may result in damage to the IC. Shorts  
between output pins or between output pins and the power supply and GND pin caused by the presence of a foreign object may result in damage to  
the IC.  
5) Operation in a strong electromagnetic field  
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.  
6) Thermal shutdown circuit (TSD circuit)  
This IC incorporates a built-in thermal shutdown circuit (TSD circuit). The TSD circuit is designed only to shut the IC off to prevent runaway thermal  
operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of the thermal shutdown  
circuit is assumed.  
7) Testing on application boards  
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge  
capacitors after each process or step. Ground the IC during assembly steps as an antistatic measure, and use similar caution when transporting or  
storing the IC. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process.  
8) Common impedance  
Power supply and ground wiring should reflect consideration of the need to lower common impedance and minimize ripple as much as possible (by  
making wiring as short and thick as possible or rejecting ripple by incorporating inductance and capacitance).  
9) Applications with modes that reverse VCC and pin potentials may cause damage to internal IC circuits.  
For example, such damage might occur when VCC is shorted with the GND pin while an external capacitor is charged. It is recommended  
to insert a diode for preventing back current flow in series with VCC or bypass diodes between VCC and each pin.  
Bypass diode  
Back current prevention diode  
VCC  
Output Pin  
10) Timing resistor  
Timing resistor connected between RT and GND, has to be placed near RT terminal (45pin). With the connection must be as short as  
possible.  
11) IC pin input  
This monolithic IC contains P+ isolation and PCB layers between adjacent elements in order to keep them isolated.  
P/N junctions are formed at the intersection of these P layers with the N layers of other elements to create a variety of parasitic elements.  
For example, when a resistor and transistor are connected to pins as shown in follow chart,  
the P/N junction functions as a parasitic diode when GND > (Pin A) for the resistor or GND > (Pin B) for the transistor (NPN).  
Similarly, when GND > (Pin B) for the transistor (NPN), the parasitic diode described above combines with the N layer of other  
adjacent elements to operate as a parasitic NPN transistor.  
The formation of parasitic elements as a result of the relationships of the potentials of different pins is an inevitable result of the IC's  
architecture. The operation of parasitic elements can cause interference with circuit operation as well as IC malfunction and damage. For  
these reasons, it is necessary to use caution so that the IC is not used in a way that will trigger the operation of parasitic elements, such as  
by the application of voltages lower than the GND (PCB) voltage to input and output pins.  
Resistance  
Transistor (NPN)  
(PinA)  
(PinA)  
(PinB)  
Parasitic diode  
G N D  
G N D  
(PinB)  
P substrate  
P substrate  
G N D  
G N D  
Parasitic diode  
Parasitic elementals  
G N D  
Other adiacent components  
Parasitic diode  
REV. B  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BD9838MWV

Switching Controller, Current-mode, 550kHz Switching Freq-Max, 7 X 7 MM, UQFN-56
ROHM

BD9839MWV

Silicon Monolithic Integrated Circuit
ROHM

BD9842FV-E2

Dual Switching Controller, Voltage-mode, 0.002A, 1500kHz Switching Freq-Max, PDSO20, SSOP-20
ROHM

BD9845FV

Single/Dual-output High-frequency Step-down Switching Regulator(Controller type)
ROHM

BD9845FV-E2

Single/Dual-output High-frequency Step-down Switching Regulator(Controller type)
ROHM

BD9845FV_11

Single/Dual-output High-frequency Step-down Switching Regulator(Controller type)
ROHM

BD9846FV

Silicon Monolithic Integrated Circuit
ROHM

BD9846FV-E2

Switching Regulator/Controller, Voltage-mode, 0.002A, 117kHz Switching Freq-Max, PDSO20
ROHM

BD9848FV

Silicon Monolithic Integrated Circuit
ROHM

BD9848FV-E2

Switching Regulator/Controller, Voltage-mode, 117kHz Switching Freq-Max, PDSO20
ROHM

BD9850FVM

1ch switching regulator controller
ROHM

BD9850FVM-TR

暂无描述
ROHM