BD9738KN-E2 [ROHM]

Switching Regulator, 1200kHz Switching Freq-Max, LEAD FREE, QFN-84;
BD9738KN-E2
型号: BD9738KN-E2
厂家: ROHM    ROHM
描述:

Switching Regulator, 1200kHz Switching Freq-Max, LEAD FREE, QFN-84

开关
文件: 总17页 (文件大小:878K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
For Digital Still Cameras  
FET Built-in Type System Switching  
Regulator ICs  
BD9734KN, BD9738KN, BD9739KN, BD9740KN  
zDescription  
These 7-channel switching regulators include built-in FETs and are designed for use in digital still cameras. They feature  
built-in power FETs and soft start functionality, reducing the number of external components.  
zFeatures  
1) Wide supply voltage range: 1.5 V to 11 V (BD9738KN)  
1.5 V to 10 V (BD9739KN, BD9740KN)  
2) High-precision reference voltage: ± 1%  
3) Built-in circuit to shut off output during an overload (timer-latch type)  
4) Capable of oscillating frequency externally.  
5) Built-in thermal shutdown circuit  
6) Standby mode current: 0 µA  
7) Built-in positive and negative regulators for CCD use (BD9734KN, BD9738KN)  
8) Built-in load switch circuit  
9) Step-up/step-down switchable  
10) Support for an inversion system that can output negative voltage (BD9739KN, BD9740KN)  
11) Support for constant-current LED drive for use in backlights (BD9734KN, BD9738KN, BD9739KN)  
12) Includes synchronous rectification-compatible channel  
zApplications  
Digital still cameras, portable DVD players, digital video cameras  
zProduct line-up  
Parameter  
Input voltage  
Reference voltage  
precision  
BD9734KN  
2.5 V to 8 V  
BD9738KN  
1.5 V to 11 V  
BD9739KN  
1.5 V to 10 V  
BD9740KN  
1.5 V to 10 V  
1 V ± 1%  
1 V ± 1%  
1 V ± 1%  
1 V ± 1%  
Operating  
frequency range  
Step-up  
100 k to 1.2 MHz 100 k to 1.2 MHz 100 k to 1.2 MHz 100 k to 1.2 MHz  
3CH  
1CH  
3CH  
1CH  
3CH  
2CH  
2CH  
1CH  
Step-down  
Step-up/step-down  
switchable  
3CH  
3CH  
1CH  
3CH  
Inversion  
4CH  
4CH  
1CH  
3CH  
1CH  
1CH  
Built-in FET  
Synchronous  
rectification  
4CH  
4CH  
3CH  
2CH  
Load switching  
2CH  
2CH  
3CH  
Operating  
temperature range  
Package  
-20°C to +85°C  
QFN84U  
-20°C to +85°C  
QFN84U  
-20°C to +85°C  
QFN64U  
-20°C to +85°C  
QFN48U  
Apr. 2005  
zAbsolute maximum ratings  
Range  
BD9739KN  
Parameter  
Symbol  
Unit  
BD9734KN  
-0.3 to +8.5  
-0.3 to +15  
-0.3 to +8.5  
-0.3 to +20  
-0.3 to +17  
-0.3 to +20  
-12 to +0.3  
-0.3 to +12  
BD9738KN  
-0.3 to +12  
-0.3 to +15  
-0.3 to +20  
-0.3 to +20  
-0.3 to +20  
-0.3 to +20  
-12 to +0.3  
-0.3 to +12  
BD9740KN  
-0.3 to +12  
-0.3 to +15  
-0.3 to +12  
-0.3 to +20  
Maximum supply  
voltage  
VBAT, VCC, PVCC  
PVCCH, PVCCL  
DRAIN*H, DRAIN*L  
OUT1B  
-0.3 to +12  
-0.3 to +15  
-0.3 to +12  
-0.3 to +20  
-0.3 to +17  
V
V
V
V
V
V
V
V
OUT2B  
VIN+  
VIN-  
SWOUT1, 4, PGIN1,  
PG2, 3  
-0.3 to +12  
SWIN*  
-0.3 to +20  
-0.3 to +20  
-0.3 to +20  
QFN64U  
550 *1-2  
V
mW  
Power dissipation Pd  
QFN84U  
QFN48U  
500 *1-3  
760 *2-3  
610 *1-1  
1200 *2-1  
1000 *2-2  
Operating  
temperature  
range  
Storage  
temperature  
range  
Topr  
-25 to +85  
°C  
°C  
°C  
Tstg  
-55 to +125  
+125  
Junction  
Tjmax  
temperature  
*1: IC without heat sink operation. Reduced 6.1 mW/°C (1-1), 5.5 mW/°C (1-2), or 5.0 mW/°C (1-3) when Ta 25°C.  
*2: When mounted on a PCB (70 mm ×70 mm ×1.6 mm [thickness], glass epoxy).  
Reduced 12.0 mW/°C (2-1), 10.0 mW/°C (2-2), or 7.6 mW/°C (2-3) when Ta 25°C.  
zRecommended Operating Ranges  
Range  
Parameter  
Symbol  
Unit  
BD9734KN  
2.5 to 8  
BD9738KN  
1.5 to 10  
1.5 to 10  
4.0 to 14  
BD9739KN  
1.5 to 10  
1.5 to 10  
4.0 to 14  
BD9740KN  
1.5 to 10  
2.8 to 10  
4.0 to 14  
Supply voltage  
VBAT  
V
V
V
VCC, PVCC  
PVCCL, PVCCH  
2.5 to 8  
4.0 to 14  
Range  
Typ.  
Parameter  
Symbol  
fOSC  
Unit  
Conditions  
Min.  
0.1  
Max.  
[Oscillator]  
Oscillating frequency  
[Driver block]  
1.2  
MHz  
8
10  
(BD9734KN)  
DRAIN pin input voltage  
VDRAIN  
IOFET1  
IOFET2  
V
N-channel FET output current  
(step-down)  
N-channel FET output current  
(step-up)  
700  
300  
mA  
mA  
LED channel output current  
Driver output current  
Driver peak current  
Startup NPN TR sink current  
[Positive/negative regulators]  
VIN+ pin input voltage  
VIN- pin input voltage  
Positive voltage REG output  
current  
IOLED  
IOUT  
IPEAK  
40  
30  
200  
500  
mA  
mA  
mA  
mA  
External FET drive circuit  
External FET drive circuit  
INPNSINK  
VVIN1  
VVIN2  
-10  
18  
V
V
IOREG1  
IOREG2  
50  
50  
mA  
mA  
Negative voltage REG output  
current  
[SW circuit ]  
SWOUT1 pin sink current  
PGOUT1 pin source current  
PG23 pin sink current  
ISWOUT1  
IPGOUT1  
IPG23  
10  
100  
1
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1
(BD9734KN, BD9738KN)  
(BD9739KN)  
SWOUT4 pin source current  
ISWOUT4  
50  
50  
50  
SWOUT6 pin source current  
SWOUT7 pin source current  
ISWOUT6  
ISWOUT7  
2/16  
zElectrical Characteristics (Unless otherwise specified, Ta = 25°C, VBAT = 3 V, VCC = 5 V, RT = 11 kohm, CT = 180 pF, STB1 to  
STB7 = 3 V)  
Parameter  
[Reference voltage, reference voltage for inversion]  
Range  
Typ.  
Symbol  
Unit  
Conditions  
Min.  
Max.  
Output voltage  
Line regulation  
Load regulation  
Output current when shorted  
[Internal regulator]  
VREF2  
DVLI  
DVLO  
IOS  
0.99  
1.0  
4.0  
1.0  
1
1.01  
12.5  
7.5  
V
mV  
mV  
mA  
VCC = 3.0 V to 9.5 V  
IREF = 10 µA to 100 µA  
VREF = 0 V  
0.2  
Output voltage REGA  
[Under voltage lockout circuit]  
Detection threshold voltage 1  
Hysteresis width 1  
Detection threshold voltage 2  
Hysteresis width 2  
VREGA  
2.4  
2.5  
2.6  
V
IREG = 1 mA  
VSTD1  
VST1  
VSTD2  
VST2  
VSTD3  
VST3  
3.45  
2.3  
3.6  
300  
2.4  
200  
2.0  
50  
3.75  
2.5  
V
mV  
V
mV  
V
PVCCL monitor  
VCC monitor  
VREGA monitor  
Detection threshold voltage 3  
Hysteresis width 3  
mV  
[Startup circuit block]  
Oscillating frequency  
fSTART  
VST1  
ISS1  
50  
2.5  
1.5  
1.1  
120  
220  
kHz  
V
(BD9734KN)  
VBAT pin monitor  
VSS1 = 0 V  
Operation start VBAT voltage  
Soft start charge current  
[Short protection circuit ]  
Timer threshold voltage  
2.2  
3.3  
µA  
VTC  
2.1  
0.5  
2
2.2  
1.0  
4
2.3  
1.5  
6
V
FB pin monitor  
VSCP = 0.1 V  
(BD9740KN)  
SCP pin source current  
ISCP  
µA  
0.45  
0.9  
0.50  
1.0  
22  
0.55  
1.1  
170  
SCP pin detection voltage  
VTSC  
VSSC  
V
(BD9740KN)  
SCP pin standby voltage  
[Triangular waveform oscillator]  
Oscillating frequency  
Frequency stability  
mV  
fOSC1  
Df  
450  
500  
0.3  
550  
2
kHz  
%
RT = 11 k, CT = 180 pF  
VCC = 3.0 V to 9.5 V  
RT pin voltage  
VRT  
0.78  
1.00  
1.22  
V
[Soft start 23 block] (BD9738KN, BD9739KN)  
Soft start charge current  
[Error amp]  
ISS23  
5
10  
15  
VSS23 = 0 V  
µA  
Low level output voltage  
High level output voltage  
Output sink current  
Output source current  
DTC pin upper resistance  
DTC pin lower resistance  
NON pin input range  
Non-inverted pin reference  
voltage  
VOL  
VOH  
IOI  
VREGA-0.3  
36  
1.3  
V
V
INV = 2 V  
INV = 0 V  
FB = 1.7 V, VINV = 1.1 V  
FB = 1.7 V, VINV = 0.9 V  
(BD9740KN)  
72  
72  
30  
95  
µA  
µA  
kΩ  
kΩ  
V
IOO  
36  
20  
65  
-0.3  
RDTCU  
RDTCD  
IRES  
40  
125  
1.5  
(BD9740KN)  
VNON7  
0.2  
V
[PWM comparator]  
VT0  
VT100  
DMAX1  
77  
1.49  
1.95  
85  
93  
V
V
%
0% duty  
100% duty  
VINV = 0.9 V, VSCP = 0 V  
Input threshold voltage  
MAX DUTY  
VINV = 0.9 V,  
VSCP, UDSEL = 0 V  
MAX DUTY (step-up operation)  
DMAX2  
77  
85  
93  
%
€ This IC is not designed to be radiation-resistant.  
3/16  
(Unless otherwise specified, Ta = 25°C, VBAT = 3 V, VCC= 5 V, RT = 11 kohm, CT = 180 pF, STB1 to STB7 = 3 V)  
Range  
Parameter  
[Output circuit]  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
Max.  
VCC  
-1.6  
VCC  
-0.8  
0.8  
High level output voltage  
Low level output voltage  
VSATH  
VSATL  
V
V
IO = 30 mA  
1.6  
IO = -30 mA  
PVCCH = 5 V  
(IO = 200 mA)  
(BD9740KN)  
PVCCL = 5 V  
(IO = 200 mA)  
(BD9740KN)  
PVCCL = 5 V  
(IO = 50 mA)  
High-side N-channel FET on  
resistance  
270  
300  
270  
300  
0.7  
500  
500  
500  
500  
1.4  
RONH  
mΩ  
Low-side N-channel FET on  
resistance  
RONL  
mΩ  
CH7 N-channel FET on  
resistance  
RONL7  
[Step-up/step-down selector ]  
UDSEL pin  
control voltage  
Step-down  
Step-up  
VUDDO  
VUDUP  
VCC × 0.7  
0
VCC  
VCC × 0.3  
V
V
[POWERGOOD ] (POWERGOOD1) (BD9734KN, BD9738KN)  
POWERGOOD1 detection  
voltage  
Detection voltage low  
high  
VTHPG1  
VTHPG1  
VSAT  
0.63  
0.7  
0.77  
300  
V
mV  
V
Hysteresis width  
100  
VPG1IN  
-0.3  
200  
VPG1IN  
-0.1  
0
Output voltage  
Leak current  
Discharge resistance  
IO = 80 mA, VPG1IN = 5 V  
STB1 = 0 V  
PG1  
ILEAK  
RDIS  
5
330  
µA  
82  
165  
[POWERGOOD] (POWERGOOD23) (BD9734KN)  
POWERGOOD23 detection  
voltage  
Hysteresis width  
Detection voltage low  
high  
VTHPG23  
0.72  
100  
1.8  
0.8  
200  
2.0  
200  
0.1  
0.88  
300  
2.2  
V
mV  
V
VTHPG23  
VTHDE  
Detection voltage low  
high  
DELAY pin detection voltage  
Hysteresis width  
VTHDE  
VSAT  
100  
300  
0.3  
mV  
V
IO = 100 µA,  
VINV3 = 1.1 V  
Output voltage  
PG23  
Leak current  
Output voltage  
ILEAK  
VSATD  
0
0.1  
5
0.3  
µA  
V
STB23 = 0 V  
IO = 100 µA, INV3 = 0 V  
DELAY  
[Positive/negative regulators] (BD9734KN, BD9738KN)  
Soft start charge current  
ISS2  
VTHON  
VTHOFF  
1.0  
2.0  
-0.3  
2.0  
3.0  
11  
0.3  
µA  
V
V
VSS2 = 0 V  
REG_ON pin  
ON  
OFF  
control voltage  
Control pin  
pull-down resistance  
RCONT  
250  
400  
700  
kΩ  
REG1  
(VIN+ = 16 V, R1A = 700 k, R1B = 50 k)  
VREF  
-0.05  
VREF  
+0.05  
Feedback voltage 1  
VNF1  
VREF  
V
Output voltage1  
VO1  
IMAX1  
ISCP1  
V1  
15  
50  
50  
80  
10  
V
IO = 10 mA  
Max. output current 1  
Output short current 1  
I/O differential voltage 1  
Load stability 1  
mA  
mA  
mV  
mV  
VO = 0 V  
160  
50  
VIN+ = 14 V, IO = 10 mA  
IO = 0.1 mA to 10 mA  
f = 120 Hz,  
VOL1  
Ripple rejection 1  
RR1  
40  
dB  
VRR = -20 dBV, IO = 1 mA  
Discharge resistance 1  
RDIS1  
103  
207  
414  
REG2  
(VIN- = -8.5 V, R2A = 100 k, R2B = 50 k)  
Feedback voltage 2  
Output voltage 2  
Max. output current 2  
I/O differential voltage 2  
Load stability 2  
VNF2  
VO2  
IMAX2  
V2  
-0.05  
0
-7.5  
80  
50  
10  
0.05  
100  
50  
V
V
mA  
mV  
mV  
IO = 10 mA  
VIN- = -6.5 V, IO = 10 mA  
IO = 0.1 mA to 10 mA  
f = 120 Hz,  
VOL2  
Ripple rejection 2  
RR2  
50  
dB  
VRR = -20 dBV, IO = 1 mA  
Discharge resistance 2  
RDIS2  
55  
110  
220  
€This IC is not designed to be radiation-resistant.  
4/16  
(Unless otherwise specified, Ta = 25°C, VBAT = 3 V, VCC = 5 V, RT = 11 kohm, CT = 180 pF, STB1 to STB7 = 3 V)  
Range  
Parameter  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
Max.  
[Power on switching block] (BD9734KN, BD9738KN, BD9739KN)  
Output voltage  
Leak current  
SWOUT4 Output voltage  
Leak current  
VSAT  
ILEAK  
VSAT  
ILEAK  
0.1  
0
0.1  
0.3  
5
0.3  
5
V
µA  
V
IO = 1 mA  
SWOUT1  
STB = 0 V  
IO = 100 µA  
STB = 0 V  
IO = 20 mA  
VSWIN = 5 V  
STB = 0 V  
IO = 10 mA  
VSWIN = 10 V  
STB = 0 V  
0
VSWIN6  
-0.1  
µA  
VSWIN6  
-0.3  
VSWIN7  
-0.3  
SWOUT  
4, 6  
Output voltage  
Leak current  
VSAT  
ILEAK  
VSAT  
ILEAK  
5
V
µA  
V
0
VSWIN7  
-0.1  
SWOUT7 Output voltage  
5
Leak current  
0
µA  
[Soft start block] (BD9740KN)  
VCC = PVCC = 5 V  
PVCCH = 5.0 V  
STB 03 V  
Soft start time of CH4  
TSS1  
1.8  
3.6  
6.0  
msec  
VCC = PVCC = 5 V,  
STB = 3 V  
INV4 = 01.2 V  
VCC = PVCC = 5 V  
PVCCH = 5.0 V  
Soft start time of CH2, 3  
TSS2  
VPG4  
1.8  
3.6  
6.0  
msec  
V
CH2, CH3 soft start  
INV4 threshold voltage at start  
0.72  
0.80  
0.88  
[STB1 to STB7]  
ON  
STB pin control voltage  
OFF  
STB pin pull-down resistance  
[Circuit current]  
VSTBH  
VSTBL  
RSTB  
2.0  
-0.3  
250  
400  
11  
0.3  
700  
V
V
kΩ  
STB  
STB  
Standby current 1  
(VBAT pin sink current)  
Standby current 2  
(VCC, PVCC pin sink current)  
Circuit current at startup  
(VBAT pin sink current)  
Circuit current 1  
(VBAT pin sink current)  
Circuit current 2  
ISTB1  
ISTB2  
IST  
5
µA  
µA  
STB1 to STB7 = 0 V  
STB1 to STB7 = 0 V  
5
CT = 1.7 V  
VCC = 0 V  
30  
100  
5
100  
300  
15  
mA  
µA  
ICC1  
ICC2  
CT = 1.7 V  
CT = 1.7 V  
INV = 2.5 V  
mA  
(VCC, PVCC pin sink current)  
€This IC is not designed to be radiation-resistant.  
zPVCCH and PVCCL input voltages  
PVCCH  
Synchronous rectification channels with built-in FETs include N-channel FETs for  
both the high-side and low-side. The driver block's power source is supplied to the  
PVCCL pin for the low-side and the PVCCH pin for the high-side. (For the  
BD9740KN, both sides are supplied to the PVCCH pin.)  
PVCCL  
In order to turn the FET on, a potential of at least 4 V must be supplied to the PVCCL  
pin, and a potential of at least (DRAINH pin voltage + 4 V) must be supplied to the  
PVCCH pin.  
DRAINH  
DRAINL  
Note:  
Vo  
The breakdown voltage for the PVCCL and PVCCH pins is 15 V. For applications  
whose architecture allows the possibility of voltages exceeding 15 V, add a zener  
diode or other component to provide overvoltage protection.  
PGND  
Shorting the DRAINH pin with the ground while a charge remains in the output  
capacitor may cause unexpected current flow, resulting in damage to the IC. Add an  
external protective diode for applications where this possibility exists.  
Fig. 1 Synchronous Rectification  
Channel with Built-In FET  
5/16  
zBlock Diagram and Application Circuit (1) BD9734KN  
Connect a capacitor to prevent oscillation to  
the VREGA pin. (See page 10.)  
Connect  
a capacitor to prevent  
For more information  
about setting the SCP pin,  
see page 11.  
oscillation to the VREF pin. (See  
page 10.)  
Apply the PVCCH pin  
voltage with an external  
charge pump. (See page 5.)  
Connect a capacitor for  
setting the soft start  
time. (See page 11.)  
For more information about  
POWERGOOD, see page 11.  
For more information about  
the CCD REG, see page 12.  
Connect a resistor if you  
wish to reduce the maximum  
duty. (See page 12.)  
Connect a resistor for  
setting the output  
voltage. (See page 12.)  
Set the operating  
frequency with the  
RT and CT pins.  
(See page 11.)  
Set whether CH2, CH4, and  
CH5 will be used as step-up or  
step-down. (See page 10.)  
This pin is used as the  
on/off control pin.  
(See page 10.)  
The soft start times for  
CH2 to CH7 are fixed  
internally. (See page 12.)  
Fig. 2 BD9734KN Application Circuit  
6/16  
zBlock Diagram and Application Circuit (2) BD9738KN  
Connect a capacitor to prevent  
to the VREF pin. (See page 10.)  
For more information  
about setting the SCP pin,  
See page 11.  
Connect a capacitor to prevent to the  
VREGA pin. (See page 10.)  
Apply the PVCCH pin  
voltage with an external  
charge pump. (See page 5.)  
Connect a  
capacitor for  
setting the soft  
start time. (See  
pages 11& 12.)  
For more information about  
the CCD REG, see page 12.  
Connect a resistor if you  
wish to reduce maximum  
duty. (See page 12.)  
Connect a resistor for  
setting the output  
voltage. (See page 12.)  
Set whether CH2, CH4, and  
CH5 will be used as step-up or  
step-down. (see page 10).  
This pin is used as the  
on/off control pin.  
(See page 10.)  
The soft start times for  
CH2 to CH7 are fixed  
internally. (See page 12.)  
Set the operating  
frequency with the RT and  
CT pins. (See page 11.)  
Fig. 3 BD9738KN Application Circuit  
7/16  
zBlock Diagram and Application Circuit (3) BD9739KN  
Connect a capacitor to prevent  
oscillation to the VREF pin. (See  
page 10.)  
For more information about  
setting the SCP pin, see page 11.  
Connect a capacitor to prevent  
oscillation to the VREGA pin.  
(See page 10.)  
Apply the PVCCH pin  
voltage with an external  
charge pump. (See page 5.)  
Connect a  
capacitor for  
setting the soft  
start time. (See  
pages 11& 12.)  
Connect a  
capacitor for soft  
start at DTC pin.  
(See page 12 )  
Connect a resistor  
for setting the  
output voltage.  
(See page 12.)  
Set the operating  
frequency with the  
RT and CT pins.  
The soft start times for  
CH4, 6, 7 are fixed  
internally. (See page 12.)  
Set whether CH1 and CH5  
This pin is used as the on/off  
control pin. (See page 10.)  
will be used as step-up,  
step-down or inversion.  
(See page 10.)  
(See page 11.)  
Fig. 4 BD9739KN Application Circuit  
8/16  
zBlock Diagram and Application Circuit (4) BD9740KN  
Connect  
a
capacitor to prevent  
For more information  
about setting the SCP pin,  
see page 11.  
Connect a capacitor to prevent oscillation to  
the VREGA pin. (See page 10.)  
oscillation to the VREF pin. (See  
page 10.)  
Connect a  
capacitor for  
setting the soft  
start time. (See  
page 11.)  
The soft start times for  
CH2 to CH4 are fixed  
internally. (See page 12.)  
Apply the PVCCH pin voltage  
with an external charge pump.  
(See page 5.)  
Connect a  
capacitor for soft  
start at DTC pin.  
(See page 12.)  
Connect a resistor  
for setting the  
output voltage.  
(See page 12.)  
Set the operating  
frequency with the RT and  
CT pins. (See page 11.)  
This pin is used as the  
on/off control pin.  
(See page 10.)  
Set whether CH1, CH2, and  
CH3 will be used as step-up or  
step-down. (See page 10.)  
Fig. 5 BD9740KN Application Circuit  
9/16  
zBD9734KN Pin No.  
Pin No.  
83  
84  
Pin name  
Pin No.  
3
8, 9, 10, 11, 19, 20  
6, 7, 12, 13, 17, 18  
Pin name  
OUT1B  
DRAIN1, 2, 3H  
DRAIN1, 2, 3L  
MAIN4  
SUB4  
VREF  
DTC 5, 6  
Pin No.  
36,57  
44  
43  
42  
Pin name  
SS1, 2  
RT  
CT  
SCP  
SYNC_DTC  
UDSEL2, 4, 5  
MODE  
Pin No.  
63  
2
67, 81  
1
21  
Pin name  
VINMINUS  
PG1IN  
SWIN6, 7  
PG1OUT  
PG23  
VBAT1  
VBAT2  
VCC  
39  
70  
80  
79  
PVCC  
PVCCH  
PVCCL  
73  
71  
38  
45  
78, 77, 76  
29  
59  
60  
OUTPLUS  
NFPLUS  
4, 5, 14, 15, 16, 72 PGND1, 23, 4  
64, 65  
34, 33, 30, 51,  
54, 55, 50  
35, 32, 31, 52, 53, 56  
48, 49  
STB 1, 23, 4, 5,  
6, 7  
DELAY  
REG_ON  
VINPLUS  
46  
GND  
FB1 to FB7  
22, 23, 24, 25, 26, 27  
62  
OUTMINUS  
40  
69, 68  
75  
VREGA  
OUT5,6  
OUT7B  
INV1 to INV6  
INV7I, V  
41  
28  
58  
61  
NFMINUS  
SWOUT 1, 4, 6, 7  
37, 74, 66, 82  
47  
NON7  
zBD9738KN Pin No.  
Pin No.  
83  
84  
Pin name  
Pin No.  
Pin name  
OUT1B  
DRAIN1, 2, 3H  
DRAIN1, 2, 3L  
MAIN4  
SUB4  
VREF  
DTC 5, 6  
Pin No.  
47  
36, 57  
44  
43  
42  
Pin name  
NON7  
SS1, 2  
RT  
CT  
SCP  
SYNC_DTC  
UDSEL2, 4, 5  
MODE  
Pin No.  
58  
63  
2
67, 81  
1
59  
60  
Pin name  
VINPLUS  
VINMINUS  
PG1IN  
SWIN6, 7  
PG1OUT  
VBAT1  
VBAT2  
VCC  
3
8, 9, 10, 11, 19, 20  
6, 7, 12, 13, 17, 18  
73  
39  
70  
80  
79  
PVCC  
PVCCH  
PVCCL  
71  
38  
64, 65  
45  
OUTPLUS  
NFPLUS  
4, 5, 14, 15, 16, 72 PGND1, 23, 4  
78, 77, 76  
29  
46  
40  
69, 68  
75  
GND  
34, 33, 30, 51,  
54, 55, 50  
35, 32, 31, 52, 53, 56  
48, 49  
62  
OUTMINUS  
NFMINUS  
SWOUT1, 4, 6, 7  
N.C  
FB1 to FB7  
VREGA  
OUT5,6  
OUT7B  
22, 23, 24, 25, 26, 27 STB1, 23, 4, 5, 6, 7  
61  
37, 74, 66, 82  
21  
INV1 to INV6  
INV7I, V  
41  
28  
SS23  
REG_ON  
zBD9739KN Pin No.  
Pin No.  
Pin name  
VBAT  
VCC  
PVCC  
PVCCH  
PVCCL  
Pin No.  
60  
4, 5, 12, 13  
6, 7, 10, 11  
Pin name  
OUT1B  
DRAIN2, 3H  
DRAIN2, 3L  
OUT1M  
OUT1S  
VREF  
DTC5  
Pin No.  
44, 36  
28  
25  
34  
33  
32  
Pin name  
NON5, 7  
SS1  
SS23  
RT  
61  
29  
54  
14  
59  
55  
56  
35  
43  
CT  
SCP  
8, 9, 57  
42  
30  
51, 52, 53  
58  
PGND23, PGND  
GND  
1, 64  
UDSEL1, 5  
STB 1, 23, 4, 5, 6, 7  
SWIN4, 6, 7  
SWOUT1, 4, 6, 7  
VREGA  
OUT4,5,6  
OUT7B  
26, 24, 21, 47, 46, 41, 39  
27, 23, 22, 48, 45, 40  
37, 38  
FB1 to FB7  
INV1 to INV6  
INV7I, INV7V  
15, 16, 17, 18, 19, 20  
50, 2, 62  
31, 49, 3, 63  
zBD9740KN Pin No.  
Pin No.  
Pin name  
VBAT  
VCC  
Pin No.  
44  
43  
Pin name  
MAIN2  
SUB2  
Pin No.  
30, 37  
17  
Pin name  
NON6, NON7  
SS1  
4
21  
46  
PVCC  
5
OUT1B  
23  
RT  
10  
42  
6, 7  
31  
22  
PVCCH  
PGND  
PGND4  
GND  
VREGA  
OUT1,3,5,6,7  
9
8
20  
DRAIN4H  
DRAIN4L  
VREF  
DTC5 to DTC7  
FB1 to FB7  
INV1 to 5, 7  
24  
25  
1
2
CT  
SCP  
UDSEL12  
UDSEL3  
STB1, 234, 56, 7  
3, 38, 39  
16, 18, 27, 28, 32, 35, 36  
15, 19, 26, 29, 33, 34  
11, 12, 13, 14  
40, 41, 45, 47, 48  
zExplanation of block diagram and how to set peripheral IC components  
1. Voltage reference (VREF)  
VREF is the reference voltage source of 1.0V output voltage.  
Connect a capacitor to prevent oscillation. Set the capacitance from 1.0 µF to 10 µF.  
2. REGA  
REGA and REGD are regulators with output voltages of 2.5 V. REGA is used as the power supply for the IC's internal blocks.  
Connect a capacitor to prevent oscillation. Set the capacitance from 4.7 µ to 10 µF.  
3. UDSEL  
Put VCC to the UDSEL pin ,step-down mode is enable, and put 0V or open step-up mode is enable.  
When using the startup circuit, set the pin to step-up mode.  
Because the pin uses COMS inverter input, you must connect the pin to either GND or VCC to prevent undefined input.  
4. On/off logic  
The voltage applied to the STB pins can be controlled whether each channel is on or off.  
CH1, CH4, and CH5 can be controlled independently, while CH2 and CH3 can be controlled simultaneously.  
Applying a voltage of over 2 V turns on the corresponding channel(s), while leaving the pin open or applying 0 V turns off the  
corresponding channel(s).  
Turning off all channels causes the IC to be a standby state.  
Each pin is connected to GND by 400 kpull-down resistor.  
10/16  
5. Setting the short protection detection time  
The detection time can be set with the capacitance connected to the SCP pin.  
When the detection time is reached, the latch circuit operates, turning off output for all channels.  
To reset the latch circuit, turn all STB pins off and then back on.  
Detection time (sec) = CSCP × VTSC / ISCP  
(CSCP: capacitance; VTSC: SCP pin detection voltage, ISCP: SCP pin source current)  
*Set the capacitance connected to the SCP pin from 0.001 µF to 2.2 µF.  
6. Setting the oscillating frequency  
The oscillating frequency can be set with the resistance value connected to the RT pin and the capacitance value connected  
to the CT pin.  
Oscillating frequency = VRT / (CT × RT)  
(Unit: Hz)  
*Set the resistance connected to the RT pin from 4.7 kto 30 k(BD9730KV/BD9731KV), or from 10 kto 30 kΩ  
(BD9733KN).  
*Set the capacitance connected to the CT pin from 100 pF to 10,000 pF.  
(VRT: RT pin voltage; CT: OSC timing capacitance; RT: OSC timing resistance)  
1000  
1000  
100pF  
180pF  
11k  
20k  
30kΩ  
330pF  
100  
100  
100  
100  
10  
1000  
RT pin RESISTANCE[k]  
CT pin CAPACITANCE [pF]  
Fig. 6 Oscillating Frequency Versus RT Pin Resistance  
Fig. 7 Oscillating Frequency Versus CT Pin Capacitance  
7. POWERGOOD (BD9734KN)  
(1) POWERGOOD1  
POWERGOOD1 is a switch circuit with a built-in N-channel FET. The MODE pin and REGON pin provide on/off  
control.  
Setting the MODE pin to high turns the FET on.  
Setting the REGON pin to low while the MODE pin is high causes CCDREG output to be discharged.  
Setting the MODE pin to low turns the FET off and discharges PG1OUT.  
(2) POWERGOOD23  
This switch circuit is synchronized to CH3 output and includes a delay function. When the INV3 pin reaches a  
voltage of approximately 0.8 V, the capacitor connected to the DELAY pin begins to charge. Once the pin reaches  
approximately 2.0 V, the PG4 pin turns on.  
*Set the capacitance and resistance connected to the DELAY pin from 100 pF to 1 µF and from 100 kto 400 k.  
*The resistor should be connected to VREGA.  
8. Startup channel soft-start operation  
The startup channel's soft start can be controlled with the capacitance connected to the SS1 pin.  
Times can be determined with the following equation:  
Startup time (sec) = (VSS / ISS) × CSS  
(VSS = SS pin voltage [= 0.7 V], ISS = soft start charge current [= approximately 2.0 µA]; CSS = capacitor capacitance)  
Example: When CSS = 0.01 µF, startup time = 0.7 / (2.0 ×10-6) × (0.01 × 10-6) = 3.5 ms  
*Set the capacitance connected to the SS1 pin from 0.001 µF to 2.2 µF.  
STBY1  
(Startup block repeat  
oscillation prohibited)  
Approximately 1.0  
Approximately 0.7  
V
VCC output voltage waveform  
V
(Startup block Main)  
VCC  
Approximately  
0.5  
V
SS1  
OSC  
FB  
VREGA  
VCC  
VREF=1.0  
V
VREGA  
SS pin voltage  
waveform  
OUT1B  
Startup OSC  
(approximately 100 kHz)  
DRAIN1L  
Fig. 8 Startup Channel Startup Waveform (Reference Data)  
Fig. 9 Timing Chart  
11/16  
9. SWOUT1 pin (BD9734KN/BD9738KN/BD9739KN)  
To prevent current from VOUT1 to the feedback resistor during standby operation, connect the ground side of CH1's  
feedback resistor to SWOUT1.  
10. Soft start operation depending on SS pins (BD9738KN, BD9739KN)  
Soft start operation for CH2 and CH3 can be controlled by the capacitance connected to the SS23 pins.  
Times can be determined with the following equation:  
VREGA  
Approximately  
VREGA  
Startup time (sec) = (VSS / ISS) × CSS23  
(VSS: SS pin voltage [= 1.0 V]; ISS: soft start charge current [= approximately 10 µA]; CSS:  
capacitance)  
R1  
30 k  
RA  
DTC  
*Startup of CH2 begins when CH3 output reaches approximately 70%.  
*Set the capacitance connected to each SS23 pin from 0.005 µF to 1.0 µF.  
RB  
Approximately  
R2  
93 kΩ  
BD9734KN  
11. Setting MAX DUTY  
Fig. 10 DTC External Setting  
Circuit (BD9734KN)  
The DTC voltage is determined by the internal R1 and R2 resistance values. The DTC voltage  
can be changed by connecting resistance values that are from 1 to 2 digits smaller than the  
internal R1 (30 k) and R2 (93 k) resistors to the RA and RB pins.  
*The resistors connected to the RA and RB pins should be at least 5 k.Avoid shorting the VREGA and DTC pins.  
*When VCC falls to 2.8 V or below, a protection circuit will operate to limit MAX DUTY in order to prevent the IC from  
malfunctioning when VREGA (the internal circuit power supply) drops.  
12. Soft start operation triggered by the DTC pin  
Soft start operation can be set by connecting a capacitor to the DTC pin.  
Setting the STBY pin to high will cause the capacitor connected to the DTC pin to be charged by the internal pull-up resistor.  
Startup will begin when this voltage reaches the minimum voltage of the CT pin's triangular waveform.  
*Set the capacitance connected to each DTC pin to 10 µF or less.  
13. Internal soft start operation  
Soft start times are set internally for CH2 to CH7 (BD9734KN); CH4 to CH7 (BD9738KN); CH4, CH6, and CH7  
(BD9739KN); and CH2 to CH4 (BD9740KN).  
BD9734KN  
BD9738KN  
BD9739KN  
BD9740KN  
CH2: 1.5 ms, CH3 to CH7: 0.5 ms  
CH4 to CH7: 3.0 ms  
CH4, 6, 7: 2.7 ms  
CH2 to CH4: 3.6 ms (Soft start operation of CH2 and CH3 is delayed until CH4 reaches approximately  
80%.)  
14. Configuring the CCD REG (BD9734KN, BD9738KN)  
(1) Setting the output voltage  
Set the output voltage for the positive-side REG with the resistance between the OUT+ pin and the NF+ pin, and  
between the NF+ pin and the ground.  
The reference voltage is 1 V. Set the output voltage for the negative-side REG with the resistance between the OUT  
pin and the NF- pin, and between the NF- pin and the OUT- pin. The reference voltage is 0 V.  
(2) Setting the soft start  
The positive-side REG soft start can be controlled with the capacitance CSS of the capacitor connected to the SS2 pin.  
Startup time (sec) = (VSS / ISS) × CSS  
(VSS = SS2 pin voltage [= 1.0 V]; ISS = soft start charge current [= approximately 2.0 µA])  
The negative-side REG starts up at the same time as the positive-side REG.  
*Set the capacitance connected to the SS2 pin from 0.001 µF to 2.2 µF.  
(3) Output capacitors  
Connect a capacitor for stopping oscillation to each regulator.  
*Set the capacitance from 1.0 µF to 22 µF.  
15. Setting the error amp feedback resistance  
(1) Feedback resistance order (BD9734KN, BD9738KN, BD9739KN, BD9740KN)  
Error amp differential input is formed by a PNP transistor, with the base current of this input flowing into the lower  
voltage divider resistor. In the worst case, this current may reach 0.2 µA. For this reason, when the resistance of the  
lower resistor is increased, the base current may cause an error in the output voltage. For example, resistance values  
of 40 k, 20 k, and 10 kresult in errors of 1%, 0.5%, and 0.25%, respectively. Refer to these values when setting  
the resistance value.  
12/16  
(2) Setting the inverted channel (BD9739KN, BD9740KN)  
For the BD9739KN, connect the CH5 error amp reference voltage (INV5) to the ground.  
For the BD9740KN, the CH6 error amp reference voltage is grounded internally.  
*It is recommended to use a 10 kresistor between VREF and CH5 output. Use a resistance value from 5 kto  
20 k.  
zI/O Equivalent Circuit Diagrams  
INV2 to INV6, INV7 V  
(error amp inverted input)  
INV1  
DTC5 to DTC7  
(dead time control)  
(error amp inverted input)  
VREGA  
VREGA  
VREGA  
VCC  
VCC  
DTC5  
DTC6  
DTC7  
VCC  
VCC  
INV2 to INV6,  
INV7V  
INV1  
RT (triangular waveform timing  
resistor connection)  
SS1 (startup channel soft start  
capacitor connection pin)  
INV7I (error amp inverted input)  
NON7 (error amp non-inverted input)  
VREGA  
VCC  
VBAT  
VCC  
VCC  
VCC  
INV7I  
RT  
SS1  
VREF  
NON7  
CT (triangular waveform timing  
capacitance connection)  
SCP (timer latch time setting  
capacitor connection pin)  
VREGA (REGA output)  
VREGA  
VCC  
VREGA  
VCC  
VCC  
VCC  
VREGA  
VCC  
VCC  
SCP  
CT  
VREF (reference voltage output)  
VCC  
DELAY (POWERGOOD  
time constant setting pin)  
UDSEL (step-up/step-down select input)  
VCC  
VCC  
VCC  
VCC  
VCC  
UDSEL1 to  
UDSEL 5  
DELAY  
VREF  
13/16  
7CH (power transistor drain output)  
STBY1 to STBY7 (CH1 to CH7 on/off control)  
REGON (CCD REG control input)  
MODE (CCD sequence control pin)  
VCC  
OUT7B  
STBY1 to  
STBY7  
VCC  
REGON  
MODE  
PGND4  
Fig. 11 I/O Equivalent Circuit Diagrams (1)  
SYNC_DTC (synchronous  
rectification delay time setting pin)  
SWIN (load switch input pin)  
SWOUT (load switch output pin)  
FB (error amp output)  
VCC  
SWIN4, 6, 7  
SWOUT4, 6, 7  
VCC VREGA  
SYNC_DT  
FB1 to FB7  
MAIN4 (CH4 main output)  
SUB4 (CH4 sub output)  
OUT5 (power transistor connection)  
DRAIN1, 2, 3H  
(power MOS drain for CH1, CH2, and CH3)  
DRAIN1, 2, 3L  
PG1IN (POWERGOOD 1 input)  
PG1OUT (POWERGOOD  
switch 1 output)  
(power MOS drain for CH1, CH2, and CH3)  
PGND1, 23 (output step ground)  
VCC  
PG1OUT  
PG1IN  
DRAIN1,2,3  
PVCCH  
PVCC  
DRAIN1,2,  
VCC  
VCC  
MAIN4  
SUB4  
OUT5  
PGND1,2  
OUT6 (power transistor connection)  
PVCC (power supply input)  
PGND4 (power ground)  
VCC  
VBAT2 (battery input [driver block])  
OUT1B (CH1 power transistor collector output)  
PGND4  
VCC  
VBAT2  
OUT1B  
SWOUT1, 4 (load switch output pin)  
PG23 (POWERGOOD switch 23 output)  
PVCC  
VCC  
SWOUT1, 4  
PG23  
OUT6  
VCC  
NFMINUS  
PGND4  
(CCD REG feedback pin - side)  
OUTMINUS  
(CCD REG output pin - side)  
VINMINUS  
VINPLUS  
(CCD REG input pin + side)  
OUTPLUS  
(CCD REG output pin + side)  
NFPLUS  
(CCD REG feedback pin + side)  
SS2 (soft start capacitor  
connection pin)  
(CCD REG input pin - side)  
VCC  
VREGA  
VCC  
NFMINUS  
VCC  
VINPLUS  
SS2  
OUTMINUS  
VCC  
OUTPLU  
NFPLUS  
VINMINUS  
Fig. 12 I/O Equivalent Circuit Diagrams (2)  
14/16  
zPrecautions  
1) Absolute maximum ratings  
Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may result in IC damage.  
Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical  
safety measure such as a fuse should be implemented when use of the IC in a special mode where the absolute maximum ratings may  
be exceeded is anticipated.  
2) Connecting the power supply connector backward  
Connecting the power supply connector backwards may result in damage to the IC. Insert external diodes between the power supply and  
the IC's power supply pins as well as the motor coil to protect against damage from backward connections.  
3) Power supply lines  
Regenerated current may flow as a result of the motor's back electromotive force. Insert capacitors between the power supply and ground  
pins to serve as a route for regenerated current.  
4) GND potential  
Ensure a minimum GND pin potential in all operating conditions.  
5) Thermal design  
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.  
6) Inter-pin shorts and mounting errors  
Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting may result in damage to the  
IC. Shorts between output pins or between output pins and the power supply and GND pin caused by the presence of a foreign object  
may result in damage to the IC.  
7) Operation in a strong electromagnetic field  
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.  
8) ASO  
When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.  
9) Thermal shutdown circuit (TSD circuit)  
The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed only to shut  
the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not continue to use the  
IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed.  
10) Capacitors connected between output and ground pins  
When a large capacitor is connected between the output and ground pins and for some reason the VCC falls to 0 V or becomes shorted  
with the ground pin, the current stored in the capacitor may flow to the output pin, resulting in damage to the IC. Set capacitors connected  
between the output and ground pins to values that fall within the recommended range.  
11) Testing on application boards  
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always  
discharge capacitors after each process or step. Ground the IC during assembly steps as an antistatic measure, and use similar caution  
when transporting or storing the IC. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during  
the inspection process.  
12) IC pin input  
This monolithic IC contains P+ isolation and PCB layers between adjacent elements in order to keep them isolated. P/N junctions are  
formed at the intersection of these P layers with the N layers of other elements to create a variety of parasitic elements.  
For example, when a resistor and transistor are connected to pins as shown in Fig. 13,  
{the P/N junction functions as a parasitic diode when GND > (Pin A) for the resistor or GND > (Pin B) for the transistor (NPN).  
{Similarly, when GND > (Pin B) for the transistor (NPN), the parasitic diode described above combines with the N layer of other  
adjacent elements to operate as a parasitic NPN transistor.  
The formation of parasitic elements as a result of the relationships of the potentials of different pins is an inevitable result of the IC's  
architecture. The operation of parasitic elements can cause interference with circuit operation as well as IC malfunction and damage. For  
these reasons, it is necessary to use caution so that the IC is not used in a way that will trigger the operation of parasitic elements, such  
as by the application of voltages lower than the GND (PCB) voltage to input pins.  
13) Ground wiring patterns  
Power supply and ground wiring should reflect consideration of the need to lower common impedance and minimize ripple as much as  
possible (by making wiring as short and thick as possible or rejecting ripple by incorporating inductance and capacitance).  
14) STB pin voltage  
Set the STB pin voltage to 0.3 V or lower when setting channels to a standby state, or to 2.0 V or higher when setting channels to an  
operational state. Do not fix the STB pin voltage to values higher than 0.3 V and lower than 2.0 V or lengthen transition times. Doing so  
may cause the IC to malfunction or result in damage.  
15) Use a common supply voltage for both the driver block and the main block.  
The IC is not compatible with applications requiring the driver block to be used while applying user-selected voltages.  
16) Setting the MAX DUTY  
MAX DUTY limitations may not operate when using the IC at high frequencies. When using the IC in such applications, allow for sufficient  
margins when setting external components.  
Transistor (NPN)  
B
C
Resistor  
(Pin B)  
(Pin B)  
(Pin A)  
E
C
E
B
GND  
N
P+  
P+  
P+  
P+  
P
P
N
GND  
Other Adjacent  
Elements  
N
Parasitic  
elements  
N
N
N
N
(Pin A)  
PCB  
Parasitic elements  
PCB  
Parasitic elements  
GND  
Parasitic elements  
GND  
Fig. 13 Example of Simple Bipolar IC Architecture  
15/16  
zSelecting a Model Name When Ordering  
B
D
9
7
3
4
K
N
E
2
Taping type  
E2 = Reel-wound embossed taping  
ROHM model  
name  
Package type  
KN = UQFN  
Part number  
9734, 9738  
9739, 9740  
UQFN64  
UQFN48  
<Dimension>  
<Dimension>  
7.2 ± 0.1  
7.0 ± 0.1  
8.2± 0.1  
8.0± 0.1  
+0.1  
-0.3  
0.6  
(0  
(1.1)  
(1.4)  
48  
33  
36  
25  
49  
64  
32  
17  
4
37  
24  
(0  
.35)  
.55)  
3-(0  
.45)  
.20)  
(0  
48  
13  
1
16  
0.4  
0.20± 0.05  
(0.20)  
1
12  
0.20 ± 0.05  
0.05  
M
0.4  
0.05  
(0.6+00..31  
)
0.05  
0.05  
(Unit:mm)  
(Unit:mm)  
UQFN84  
<Dimension>  
<Tape and Reel information>  
10.2 ± 0.1  
10.0 ± 0.1  
Embossed carrier tape(with dry pack)  
Tape  
(1.1)  
63  
43  
2500pcs  
E2  
Quantity  
64  
42  
22  
Direction  
of feed  
4
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
(0.4)  
84  
1
(0.20)  
21  
0.4  
0.20± 0.05  
0.05  
M
(0.6+00..31  
)
0.05  
Direction of feed  
1pin  
Reel  
(Unit:mm)  
When you order , please order in times the amount of package quantity.  
The contents described herein are correct as of October, 2005  
The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD.  
Any part of this application note must not be duplicated or copied without our permission.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding  
upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any  
warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such  
infringement, or arising from or connected with or related to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other  
proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.  
The products described herein utilize silicon as the main material.  
The products described herein are not designed to be X ray proof.  
Published by  
Application Engineering Group  
Catalog NO.05N343Be '05.10 ROHM C 2000 TSU  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2008 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

BD9739KN

7-Channel Switching Regulator Controller for Digital Camera
ROHM

BD9739KN-E2

System Switching Regulator ICs with Built-in FET (10V)
ROHM

BD9739KN_10

System Switching Regulator ICs with Built-in FET (10V)
ROHM

BD9740KN

7-Channel Switching Regulator Controller for Digital Camera
ROHM

BD9740KN-E2

System Switching Regulator ICs with Built-in FET (10V)
ROHM

BD9745EKN

Silicon Monolithic Integrated Circuit
ROHM

BD9749MWV

Silicon Monolithic Integrated Circuit
ROHM

BD975

TRANSISTOR | BJT | DARLINGTON | NPN | 45V V(BR)CEO | 1A I(C) | TO-202
ETC

BD9755FV

Dual Switching Controller, 300kHz Switching Freq-Max, PDSO28, LEAD FREE, SSOP-28
ROHM

BD9755FV-E2

Dual Switching Controller, 300kHz Switching Freq-Max, PDSO28, LEAD FREE, SSOP-28
ROHM

BD9756AMWV

Silicon Monolithic Integrated Circuit
ROHM

BD9757MWV

Silicon Monolithic Integrated Circuit
ROHM