BD9755FV [ROHM]

Dual Switching Controller, 300kHz Switching Freq-Max, PDSO28, LEAD FREE, SSOP-28;
BD9755FV
型号: BD9755FV
厂家: ROHM    ROHM
描述:

Dual Switching Controller, 300kHz Switching Freq-Max, PDSO28, LEAD FREE, SSOP-28

光电二极管
文件: 总30页 (文件大小:1468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
Large Current External FET Controller Type Switching Regulator  
Step-down,  
High-efficiency  
Switching Regulators  
(Controller type)  
BD9011EKN , BD9011KV , BD9775FV  
BD9011EKN, BD9011KV  
Overview  
The BD9011EKN/KV is a 2-ch synchronous controller with rectification switching for enhanced power management efficiency.  
It supports a wide input range, enabling low power consumption ecodesign for an array of electronics.  
Features  
1) Wide input voltage range: 3.9V to 30V  
2) Precision voltage references: 0.8V±1%  
3) FET direct drive  
4) Rectification switching for increased efficiency  
5) Variable frequency: 250k to 550kHz (external synchronization to 550kHz)  
6) Built-in selected OFF latch and auto remove over current protection  
7) Built-in independent power up/power down sequencing control  
8) Make various application , step-down , step-up and step-up-down  
9) Small footprint packages: HQFN36V, VQFP48C  
Applications  
Car audio and navigation systems, CRTTVLCDTVPDPTVSTBDVDand PC systemsportable CD and DVD players,  
etc.  
Absolute Maximum Ratings (Ta=25)  
Parameter  
EXTVCC Voltage  
VCCCL1,2 Voltage  
CL1,2 Voltage  
Symbol  
EXTVCC  
VCCCL1,2  
CL1,2  
Parameter  
Symbol  
COMP1,2  
DET1,2  
Rating  
34 *1  
34 *1  
34  
Unit  
V
Rating  
VREG5  
Unit  
V
COMP1,2 Voltage  
DET1,2 Voltage  
RTSYNC Voltage  
V
V
RTSYNC  
SW1,2 Voltage  
BOOT1,2 Voltage  
SW1,2  
34 *1  
40 *1  
V
0.875 *2  
HQFN36V)  
W
BOOT1,2  
V
Power Dissipation  
Pd  
BOOT1,2-SW1,2  
Voltage  
BOOT1,2-SW1,2  
STB, EN1,2  
7 *1  
VCC  
7
V
V
V
1.1 *2  
VQFP48C)  
W
STB, EN1,2 Voltage  
Operating  
temperature  
VREG5,5A  
Topr  
VREG5,5A  
VREG33  
-40 to +105  
VREG33  
VREG5  
VREG5  
V
V
Storage temperature  
Junction temperature  
Tstg  
Tj  
-55 to +150  
+150  
SS1,2FB1,2  
SS1,2FB1,2  
*1 Regardless of the listed rating, do not exceed Pd in any circumstances.  
*2 Mounted on a 70mm x 70mm x 0.8mm glass-epoxy board. De-rated at 7.44mW/℃(HQFN36Vor 8.8mW/℃(VQFP48C)  
above 25.  
Sep. 2008  
Operating conditions (Ta=25)  
Parameter  
Symbol  
EXTVCC  
VCC  
Min.  
3.9 *1  
3.9 *1  
4.5  
Typ.  
12  
12  
5
Max.  
30  
Unit  
V
*2  
*2  
Input voltage 1  
Input voltage 2  
30  
V
BOOTSW voltage  
Carrier frequency  
BOOTSW  
OSC  
VREG5  
550  
550  
60  
V
250  
300  
-
kHz  
kHz  
Synchronous frequency  
Synchronous pulse duty  
Min OFF pulse  
SYNC  
OSC  
40  
-
Duty  
50  
100  
TMIN  
-
nsec  
This product is not designed to provide resistance against radiation.  
*1 After more than 4.5V, voltage range.  
*2 In case of using less than 6V, Short to VCC, EXTVCC and VREG5.  
Electrical characteristics (Unless otherwise specified, Ta=25VCC=12V STB=5V EN1,2=5V  
)
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
5
Max.  
10  
VIN bias current  
Shutdown mode current  
Error Amp Block]  
IIN  
-
-
mA  
IST  
0
10  
μA  
VSTB=0V  
VOB  
0.792  
0.784  
0.800  
0.800  
0.808  
0.816  
V
V
Feedback reference voltage  
Feedback reference voltage  
VOB+  
Ta=-40 to 105℃ ※  
(Ta=-40 to 105)  
Open circuit voltage gain  
VO input bias current  
Averr  
IVo+  
-
-
46  
-
-
dB  
1
μA  
FET Driver Block]  
HGhon  
HGlon  
LGhon  
LGlon  
-
-
-
-
1.5  
1.0  
1.5  
0.5  
-
-
-
-
Ω
Ω
Ω
Ω
HG high side ON resistance  
HG low side ON resistance  
LG high side ON resistance  
LG low side ON resistance  
Oscillator]  
Carrier frequency  
FOSC  
Fsync  
270  
-
300  
500  
330  
-
kHz  
kHz  
RT=100 kΩ  
Synchronous frequency  
Over Current Protection Block]  
CL threshold voltage  
RT=100 kΩ,SYNC=500kHz  
Vswth  
70  
67  
90  
90  
110  
113  
V  
V  
CL threshold voltage  
Ta=-40 to 105℃)  
Vswth+  
Ta=-40 to 105℃ ※  
VREG Block]  
VREG5 output voltage  
VREG33 reference voltage  
VREG5 threshold voltage  
VREG5 hysteresis voltage  
Soft start block]  
VREG5  
VREG33  
4.8  
3.0  
2.6  
50  
5
5.2  
3.6  
3.0  
200  
V
V
IREF=6mA  
3.3  
2.8  
100  
IREG=6mA  
VREG_UVLO  
DVREG_UVLO  
V
VREG:Sweep down  
VREG:Sweep up  
mV  
ISS  
6.5  
6
10  
10  
13.5  
14  
μA  
μA  
VSS=1V  
Charge current  
Charge current  
ISS+  
VSS=1V,Ta=-40 to 105℃ ※  
(Ta=-40 to 105)  
Note: Not all shipped products are subject to outgoing inspection.  
2/29  
Reference data (Unless otherwise specified, Ta=25)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5
4
3
2
1
0
5.0V  
3.3V  
25℃  
5.0V  
2.6V  
3.3V  
105℃  
-40℃  
1.8V  
1.2V  
Io=2A  
VIN=12V  
0
10  
20  
30  
6
9
12  
15  
18  
21  
24  
0
1
2
3
INPUT VOLTAGE : VIN[V]  
OUTPUT CURRENT:Io[A]  
INPUT VOLTAGE:VIN[V]  
Fig.1 Efficiency 1  
Fig.2 Efficiency 2  
Fig.3 Circuit current  
330  
320  
310  
300  
290  
280  
270  
0.816  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
0.784  
110  
RT=100kΩ  
100  
90  
80  
70  
60  
-40 -15  
10  
35  
60  
85 110  
-40 -15 10  
35  
60  
85 110  
-40  
-15  
10  
35  
60  
85  
110  
AMBIENT TEMPERATURE : Ta[℃]  
AMBIENT TEMPERATURE : Ta[℃]  
AMBIENT TEMPERATURE : Ta[℃]  
Fig.4 Reference voltage vs.  
temperature characteristics  
Fig.5 Over current detection vs.  
temperature characteristics  
Fig.6 Frequency vs.  
temperature characteristics  
5.25  
6
5
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.00  
4.75  
4.50  
4.25  
4.00  
3.75  
3.50  
3.25  
3.00  
VREG5  
CL  
=15mΩ  
R
5.0V  
4
3
3.3V  
LOFF=H  
2
1
0
VREG33  
LOFF=L  
-40  
-15  
10  
35  
60  
85  
110  
0
1
2
3
4
5
6
0
5
10  
15  
20  
25  
AMBIENT TEMPERATURE : Ta[℃]  
OUTPUT CURRENT: Io[A]  
INPUT VOLTAGE : VIN[V]  
Fig.7 Internal Reg vs.  
temperature characteristics  
Fig.8 Line regulation  
Fig.9 Load regulation  
6
50mV/div  
50mV/div  
5
4
3
2
1
0
V
OUT  
VOUT  
105℃  
25℃  
-40℃  
I
OUT  
1A/div  
1A/div  
I
OUT  
0
2
4
6
INPUT VOLTAGE:VEN[V]  
Fig.10 EN threshold voltage  
Fig.11 Load transient response 1  
Fig.12 Load transient response 2  
3/29  
Block diagram (Parentheses indicate VQFP48C pin numbers)  
SYNC  
16  
STB VCC  
10 32  
RT  
15  
EXTVCC  
22  
(41)  
(25) (7)  
(33) (34)  
5V Reg  
3.3V Reg  
24(44)  
31(5)  
VREG5  
5(19)  
VREG33  
LLM  
B.G  
SYNC  
OSC  
17(35)  
UVLO  
OCP  
TSD  
TSD  
2.7V  
33(8)  
VCCCL2  
VCCCL1  
30(3)  
29(2)  
28(1)  
34(10)  
35(11)  
36(12)  
CL2  
BOOT2  
OUTH2  
CL1  
OCP  
SW  
BOOT1  
OUTH1  
Set  
Set  
DRV  
DRV  
TSD  
Reset  
Reset  
27(48)  
1(13)  
4(17)  
3(15)  
SW1  
SW2  
SW  
VREG5  
TSD  
UVLO  
LOGIC  
LOGIC  
VREG5A  
OUTL1  
UVLO  
Q
Q
PWM  
COMP  
PWM  
COMP  
25(46)  
Slope  
UVLO  
Slope  
OUTL2  
Reset Set  
Reset  
Set  
2(14)  
DGND1  
26(47)  
21(39)  
19(37)  
DGND2  
FB2  
6(21)  
8(23)  
Err Amp  
FB1  
SS1  
Err Amp  
SS2  
0.8V  
0.8V  
20(38)  
COMP2  
7(22)  
COMP1  
Q
Reset  
Q
Set  
Set  
Reset  
Sequence DET  
Sequence DET  
0.56V  
0.56V  
18  
(36)  
14  
(31)  
12  
(27)  
11  
(26)  
13  
(29)  
9
(24)  
(30)  
DET2  
LOFF  
EN2 EN1 (GNDS) GND  
DET1  
Fig-13  
Pin configuration  
BD9011EKNHQFN36V)  
PIN function table  
Pin name  
Pin  
No.  
1
2
3
4
5
6
Function  
SW1  
DGND1  
OUTL1  
VREG5A  
VREG33  
FB1  
High side FET source pin 1  
Low side FET source pin 1  
Low side FET gate drive pin 1  
FET drive REG input  
Reference input REG output  
Error amp input 1  
27 26 25 24 23 22 21 20 19  
7
8
9
10  
11  
12  
13  
COMP1  
SS1  
DET1  
STB  
EN1  
EN2  
Error amp output 1  
Soft start setting pin 1  
FB detector output 1  
Standby ON/OFF pin  
Output 1ON/OFF pin  
28  
29  
30  
31  
32  
33  
34  
35  
36  
18  
17  
16  
15  
14  
OUTH2  
BOOT2  
CL2  
DET2  
LMM  
SYNC  
RT  
Output 2ON/OFFpin  
VCCCL2  
VCC  
GND  
Ground  
Over current protection OFF latch  
function ON/OFF pin  
Switching frequency setting pin  
External synchronous pulse input pin  
Built-in pull-down resistor pin  
FB detector output 2  
LOFF  
14  
LOFF  
13 GND  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
RT  
SYNC  
LLM  
DET2  
SS2  
COMP2  
FB2  
EXTVCC  
VCCCL1  
CL1  
12  
11  
10  
EN2  
EN1  
STB  
BOOT1  
OUTH1  
Soft start setting pin 2  
Error amp output 2  
Error amp input  
2
1
2
3
4
5
6
7
8
9
External power input pin  
N.C.  
FET drive REG output  
VREG5  
OUTL2  
DGND2  
SW2  
OUTH2  
BOOT2  
CL2  
VCCCL2  
VCC  
VCCCL1  
CL1  
Low side FET gate drive pin 2  
Low side FET source pin 2  
High side FET source pin 2  
Hi side FET gate drive pin 2  
OUTH2 driver power pin  
Over current detector setting pin 2  
Over current detection VCC2  
Input power pin  
Over current detection VCC1  
Over current detector setting pin 1  
OUTH1 driver power pin  
High side FET gate drive pin 1  
Fig-14  
BOOT1  
OUTH1  
4/29  
Pin configuration  
Pin function table  
Pin  
No.  
1
2
3
4
5
6
7
BD9011KVVQFP48C)  
Pin name  
Function  
OUTH2  
BOOT2  
CL2  
N.C  
VCCCL2  
N.C  
High side FET gate drive pin 2  
OUTH2 driver power pin  
Over current detection pin 2  
Non-connect (unused) pin  
Over current detection VCC2  
Non-connect (unused) pin  
Input power pin  
36 35 34 33 32 31 30 29 28 27 26 25  
VCC  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
SS2  
COMP2  
FB2  
DET1  
SS1  
8
9
VCCCL1  
N.C  
Over current detection CC1  
Non-connect (unused) pin  
Over current detection setting pin 1  
OUTH1 driver power pin  
High side FET gate drive pin 1  
High side FET source pin 1  
Low side FET source pin 1  
Low side FET gate drive pin 1  
Non-connect (unused) pin  
FET drive REG input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
CL1  
BOOT1  
OUTH1  
SW1  
COMP1  
FB1  
N.C  
DGND1  
OUTL1  
N.C  
EXTVCC  
N.C  
N.C  
VREG33  
N.C  
VREG5A  
N.C  
N.C  
Non-connect (unused) pin  
Reference input REG output  
Non-connect (unused) pin  
Error amp input 1  
VREG33  
N.C  
VREG5A  
VREG5  
N.C  
16 N.C  
FB1  
COMP1  
SS1  
Error amp output 1  
15  
14  
13  
OUTL1  
DGND1  
SW1  
OUTL2  
DGND2  
SW2  
Soft start setting pin 1  
DET1  
STB  
FB detector output 1  
Standby ON/OFF pin  
EN1  
Output 1 ON/OFF pin  
EN2  
Output 2 ON/OFF pin  
1
2
3
4
5
6
7
8
9
10 11 12  
N.C  
Non-connect (unused) pin  
Ground  
GND  
GNDS  
Sense ground  
Over current protection OFF latch  
function ON/OFF pin  
31  
LOFF  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
N.C  
RT  
Non-connect (unused) pin  
Switching frequency setting pin  
External synchronous pulse input pin  
Built-in pull-down resistor pin  
FB detector output 2  
Fig-15  
SYNC  
LLM  
DET2  
SS2  
Soft start setting pin 2  
COMP2  
FB2  
Error amp output 2  
Error amp input 2  
N.C  
Non-connect (unused) pin  
External power input pin  
Non-connect (unused) pin  
Non-connect (unused) pin  
FET drive REG output  
EXTVCC  
N.C  
N.C  
VREG5  
N.C  
Non-connect (unused) pin  
Low side FET gate drive pin 2  
Low side FET source pin 2  
High side FET source pin 2  
OUTL2  
DGND2  
SW2  
Block functional descriptions  
Error amp  
The error amp compares output feedback voltage to the 0.8V reference voltage and provides the comparison result as COMP voltage, which is  
used to determine the switching Duty. COMP voltage is limited to the SS voltage, since soft start at power up is based on SS pin voltage.  
Oscillator (OSC)  
Oscillation frequency is determined by the switching frequency pin (RT) in this block. The frequency can be set between 250kHz and 550kHz.  
SLOPE  
The SLOPE block uses the clock produced by the oscillator to generate a triangular wave, and sends the wave to the PWM comparator.  
PWM COMP  
The PWM comparator determines switching Duty by comparing the COMP voltage, output from the error amp, with the triangular wave from the  
SLOPE block. Switching duty is limited to a percentage of the internal maximum duty, and thus cannot be 100% of the maximum.  
Reference voltage (5Vreg33Vreg)  
This block generates the internal reference voltages: 5V and 3.3V.  
External synchronization (SYNC)  
Determines the switching frequency, based on the external pulse applied.  
Over current protection (OCP)  
Over current protection is activated when the VCCCL-CL voltage reaches or exceeds 90mV. When over current protection is active, Duty is low,  
and output voltage also decreases. When LOFF=L, the output voltage has fallen to 70% or below and output is latched OFF. The OFF latch  
mode ends when the latch is set to STB, EN.  
Sequence control (Sequence DET)  
Compares FB voltage with reference voltage (0.56V) and outputs the result as DET.  
Protection circuits (UVLO/TSD)  
The UVLO lock out function is activated when VREG falls to about 2.8V, while TSD turns outputs OFF when the chip temperature reaches or  
exceeds 150. Output is restored when temperature falls back below the threshold value.  
5/29  
Application circuit example (Parentheses indicate VQFP48C pin numbers)  
VIN(12V)  
100uF  
15mΩ  
15mΩ  
10  
Ω
0.33  
uF  
100Ω  
100Ω  
SP8K2  
SP8K2  
1nF  
1nF  
RB160  
VA-40  
RB160  
VA-40  
29  
(2)  
28  
(1)  
36  
35  
34  
33  
(8)  
32  
(7)  
31  
30  
(3)  
(12)  
(11)  
(10)  
(5)  
(SLF12565TDK)  
Vo(5V/3A) 10uH  
(SLF12565TDK)  
0.1  
uF  
OUTH1  
SW1  
OUTH2  
27(48)  
SW2  
0.1  
uF  
10uH  
Vo(3.3V/3A)  
1
(13)  
(14)  
RB051  
L-40  
RB051  
L-40  
2
DGND1  
OUTL1  
DGND2 26(47)  
3
4
(15)  
(17)  
25(46)  
OUTL2  
68kΩ  
13kΩ  
220uF  
(OS コン)  
220uF  
(OS コン)  
47kΩ  
24(44)  
VREG5A  
VREG33  
FB1  
VREG5  
1uF  
1uF  
23  
5
6
(19)  
(21)  
1uF  
EXTVCC 22(41)  
0.33uF  
21(39)  
7
8
(22)  
(23)  
FB2  
COMP1  
SS1  
15000pF 39kΩ  
15kΩ  
COMP2  
20(38)  
0.1uF  
39kΩ  
15000pF  
9
(24)  
SS2 19(37)  
DET1  
STB  
0.1uF  
DET2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
(25)  
(26)  
(27)  
(29)  
(31)  
(33)  
(34)  
(35)  
(36)  
100kΩ  
Fig-16AStep-DownCout=OS Capacitor)  
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics.  
Please verify and confirm using practical applications.  
VIN(12V)  
100uF  
23m  
1nF  
23m  
Ω
Ω
10  
Ω
0.33  
uF  
100Ω  
100Ω  
SP8K2  
SP8K2  
1nF  
RB160  
VA-40  
RB160  
VA-40  
29  
(2)  
28  
(1)  
36  
35  
34  
33  
(8)  
32  
(7)  
31  
30  
(3)  
(12)  
(11  
)
(10)  
(5)  
(SLF10145TDK)  
(SLF10145TDK)  
Vo(1.8V/2A)  
0.1  
uF  
OUTH1  
SW1  
OUTH2  
27(48)  
SW2  
0.1  
uF  
10uH  
Vo(2.5V/2A)  
10uH  
1
(13)  
(14)  
RB051  
L-40  
RB051  
L-40  
2
DGND1  
OUTL1  
DGND2 26(47)  
3300pF  
150  
43  
3
(15)  
(17)  
25(46)  
OUTL2  
15kΩ  
12kΩ  
1000pF  
510  
kΩ  
30uF  
(C2012JB  
0J106K  
30uF  
4
24(44)  
23  
Ω
VREG5A  
VREG33  
FB1  
VREG5  
(C2012JB  
0J106K  
TDK)  
1uF  
1uF  
Ω
5
6
7
8
(19)  
TDK)  
1uF  
(21)  
EXTVCC 22(41)  
0.33uF  
330pF  
21(39)  
(22)  
(23)  
FB2  
COMP1  
SS1  
330pF  
10000pF 1kΩ  
0.1uF  
20k  
Ω
COMP2  
20(38)  
3.3kΩ 3300pF  
9
(24)  
SS2 19(37)  
DET1  
STB  
0.1uF  
DET2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
(25)  
(26)  
(27)  
(29)  
(31)  
(33)  
(34)  
(35)  
(36)  
100kΩ  
Fig-16BStep-DownCout=Ceramic Capacitor)  
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics.  
Please verify and confirm using practical applications.  
6/29  
VIN(12V)  
100uF  
10mΩ  
10mΩ  
10  
Ω
REGSPICTM  
L1  
27uH  
(SLF12565TDK)  
0.33  
uF  
100Ω  
100Ω  
Vo(24V/1A)  
RB051L-40  
RSS  
SP8K2  
1nF  
1nF  
RB160  
VA-40  
29  
(2)  
28  
(1)  
36  
35  
34  
33  
(8)  
32  
(7)  
31  
30  
(3)  
(SLF12565TDK)  
L2  
Co1  
(12)  
OUTH1  
SW1  
(11  
)
(10)  
(5)  
065N03  
0.1  
uF  
1uF  
OUTH2  
27(48)  
SW2  
27uH Do3  
Vo(12V/1A)  
91  
220uF  
1000pF  
1
(13)  
(14)  
680  
k
Ω
2
DGND1  
OUTL1  
DGND2 26(47)  
Co2  
3
(15)  
(17)  
25(46)  
OUTL2  
5.1k  
Ω
3300pF  
k
Ω
220  
uF  
RB051  
L-40  
4
24(44)  
VREG5A  
VREG33  
FB1  
VREG5  
1uF  
1uF  
1uF  
10k  
Ω
23  
5
6
7
8
(19)  
(21)  
(41)  
EXTVCC 22  
0.33uF  
1000pF  
23.5k  
Ω
21(39)  
(22)  
(23)  
FB2  
COMP1  
SS1  
1000pF  
22000pF 10kΩ  
0.1uF  
6.2k  
Ω
COMP2  
20(38)  
4.7kΩ 22000pF  
9
(24)  
SS2 19(37)  
DET2  
DET1  
STB  
0.1uF  
10  
(25)  
11  
(26)  
12  
(27)  
13  
(29)  
14  
(31)  
15  
(33)  
16  
(34)  
17  
(35)  
18  
(36)  
REGSPICTM is  
Trade Mark of RHOM  
100k  
Ω
Fig-16CStep-DownLow Input Voltage)  
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics.  
Please verify and confirm using practical applications.  
VIN(5V)  
100uF  
23m  
1nF  
23m  
Ω
Ω
10  
Ω
0.33  
uF  
100  
35  
100  
Ω
Ω
SP8K2  
SP8K2  
1nF  
RB160  
VA-40  
RB160  
VA-40  
29  
(2)  
28  
(1)  
36  
(12)  
34  
33  
(8)  
32  
(7)  
31  
(5)  
30  
(3)  
0.1uF  
(11  
)
(10)  
(SLF10145TDK)  
Vo(1.8V/2A)  
(SLF10145 TDK)  
0.1uF  
OUTH1  
SW1  
OUTH2  
27(48)  
SW2  
6.8uH  
Vo(2.5V/2A)  
6.8uH  
1
(13)  
RB051  
L-40  
RB051  
L-40  
2
(14)  
DGND1  
OUTL1  
26(47)  
25(46)  
DGND2  
OUTL2  
VREG5  
3300pF  
100  
43  
kΩ  
3
(15)  
(17)  
15kΩ  
12kΩ  
1000pF  
300Ω  
30uF  
(セラコン)  
30uF  
(セラコン)  
4
24(44)  
23  
Ω
VREG5A  
VREG33  
FB1  
1uF  
1uF  
5
6
7
8
(19)  
1uF  
(21)  
22(41)  
21(39)  
EXTVCC  
FB2  
0.33uF  
33pF  
100pF  
(22)  
(23)  
COMP1  
SS1  
4700pF 3.3kΩ  
20kΩ  
COMP2  
20(38)  
0.1uF  
10kΩ 2200pF  
9
(24)  
SS2 19(37)  
DET1  
STB  
0.1uF  
DET2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
(25)  
(26)  
(27)  
(29)  
(31)  
(33)  
(34)  
(35)  
(36)  
100k  
Ω
Fig-16DStep-Upand Step-Up-Down)  
There are many factors(The PCB board layout, Output Current, etc.)that can affect the DCDC characteristics.  
Please verify and confirm using practical applications.  
7/29  
Application component selection  
(1) Setting the output L value  
The coil value significantly influences the output ripple current.  
Thus, as seen in equation (5), the larger the coil, and the higher  
the switching frequency, the lower the drop in ripple current.  
ΔI  
L
VCC-VOUT×VOUT  
Fig-17  
ΔIL =  
[A]・・5)  
L×VCC×f  
VCC  
I
L
The optimal output ripple current setting is 30% of maximum current.  
VOUT  
Co  
ΔIL = 0.3×IOUTmax.[A]・・6)  
L
VCC-VOUT×VOUT  
L =  
[H]7)  
ΔIL×VCC×f  
Fig-18  
Output ripple current  
(ΔILoutput ripple current fswitching frequency)  
Outputting a current in excess of the coil current rating will cause magnetic saturation of the coil and decrease  
efficiency.  
Please establish sufficient margin to ensure that peak current does not exceed the coil current rating.  
Use low resistance (DCR, ACR) coils to minimize coil loss and increase efficiency.  
(2) Setting the output capacitor Co value  
Select the output capacitor with the highest value for ripple voltage (VPP) tolerance and maximum drop voltage  
(at rapid load change). The following equation is used to determine the output ripple voltage.  
ΔI  
L
Vo  
1
f
Step down ΔVPP = ΔI  
L
× RESR  
+
×
×
[V]  
Note: fswitching frequency  
Co  
Vcc  
Be sure to keep the output Co setting within the allowable ripple voltage range.  
Please allow sufficient output voltage margin in establishing the capacitor rating. Note that low-ESR capacitors enable  
lower output ripple voltage.  
Also, to meet the requirement for setting the output startup time parameter within the soft start time range, please factor  
in the conditions described in the capacitance equation (9) for output capacitors, below.  
TSS × (Limit – IOUT)  
Tsssoft start time  
Co ≦  
・・・ (9)  
VOUT  
ILimitover current detection value2/16reference  
Note: less than optimal capacitance values may cause problems at startup.  
(3) Input capacitor selection  
VIN  
The input capacitor serves to lower the output impedance of the power  
source connected to the input pin (VCC). Increased power supply output  
impedance can cause input voltage (VCC) instability, and may negatively  
impact oscillation and ripple rejection characteristics. Therefore, be  
certain to establish an input capacitor in close proximity to the VCC and  
GND pins. Select a low-ESR capacitor with the required ripple current  
capacity and the capability to withstand temperature changes without  
wide tolerance fluctuations. The ripple current IRMSS is determined  
using equation (10).  
Cin  
L
VOUT  
Co  
IRMS = IOUT ×  
[A]10)  
VOUTVCC - VOUT)  
VCC  
Also, be certain to ascertain the operating temperature, load range and  
MOSFET conditions for the application in which the capacitor will be used,  
since capacitor performance is heavily dependent on the application’s  
input power characteristics, substrate wiring and MOSFET gate drain  
capacity.  
Fig-19  
Input capacitor  
8/29  
(4) Feedback resistor design  
Please refer to the following equation in determining the proper feedback resistance. The recommended setting is in a range  
between 10kΩ and 330kΩ. Resistance less than 10kΩ risks decreased power efficiency, while setting the resistance value  
higher than 330kΩ will result in an internal error amp input bias current of 0.2uA increasing the offset voltage.  
Vo  
Internal ref. 0.8V  
R8 +R9  
Vo =  
× 0.8 [V] ・・11)  
R8  
R9  
R9  
FB  
Fig-20  
(5) Setting switching frequency  
The triangular wave switching frequency can be set by connecting a resistor to the RT 15(33) pin. The RT sets the frequency  
by adjusting the charge/discharge current in relation to the internal capacitor. Refer to the figure below in determining proper  
RT resistance, noting that the recommended resistance setting is between 50kΩ and 130kΩ. Settings outside this range  
may render the switching function inoperable, and proper operation of the controller overall cannot be guaranteed when  
unsupported resistance values are used.  
550  
500  
450  
400  
350  
300  
250  
50  
60  
70  
80  
90  
100  
110  
120  
130  
RT [ kΩ]  
Fig-21 RT vs. switching frequency  
(6) Setting the soft start delay  
The soft start function is necessary to prevent an inrush of coil current and output voltage overshoot at startup. The figure  
below shows the relation between soft start delay time and capacitance, which can be calculated using equation (12) at right.  
10  
1
0.8V(typ.)×CSS  
TSS =  
[sec]・・・(12)  
ISS(10μA Typ.)  
0.1  
0.01  
0.001  
0.01  
0.1  
SS CAPACITANCE[uF]  
Fig-22 SS capacitance vs. delay time  
Recommended capacitance values are between 0.01uF and 0.1uF. Capacitance lower than 0.01uF may generate output  
overshoots. Please use high accuracy components (such as X5R) when implementing sequential startups involving other  
power sources. Be sure to test the actual devices and applications to be used, since the soft start time varies, depending on  
input voltage, output voltage and capacitance, coils and other characteristics.  
9/29  
(7) Setting over current detection values  
The current limit valueILimitis determined by the resistance of the RCL established between CL and VCCCL.  
VIN  
Over current detection point  
VCCCL  
CL  
IL  
RCL  
I
L
Vo  
90m  
RCL  
ILimit =  
[A]・・・(13)  
L
Fig-23  
Fig-24  
There are 2 current limit function (ON/OFF control type and OFF latch type) toggled by LOFF pin.  
LOFF=L (0<LOFF<1V): Off Latch Type Current Limit  
The output becomes OFF and latched when SS=H and, current limit operation, and the output voltage is less than or equal  
to 70% of Vo. The OFF latch is deactivated by re-inputting EN signal or VCC control input (switch OFF and ON once more).  
LOFF=H (1<LOFF<VREG5): ON/OFF Control Type Current Limit  
When the current goes beyond the threshold value, the current can be limited by reducing the ON Duty Cycle. When the load  
goes back to the normal operation, the output voltage also becomes back on to the specific level.  
The current limit value  
Vo  
LOFF=L  
OFF Latch  
Vo×70%  
LOFF=H  
Fig-25  
Io  
(8) Method for determining phase compensation  
Conditions for application stability  
Feedback stability conditions are as follows:  
When gain is 1 (0dB) and phase shift is 150° or less (i.e., phase margin is at least 30°):  
a dual-output high-frequency step-down switching regulator is required  
Additionally, in DC/DC applications, sampling is based on the switching frequency; therefore, overall GBW may be set at no  
more than 1/10 the switching frequency. In summary, target characteristics for application stability are:  
Phase shift of 150° or less (i.e., phase margin of 30° or more) with gain of 1 (0dB)  
GBW (i.e., gain 0dB frequency) no more than 1/10 the switching frequency.  
Stability conditions mandate a relatively higher switching frequency, in order to limit GBW enough to increase response.  
The key to achieving successful stabilization using phase compensation is to cancel the secondary phase margin/delay  
(-180°) generated by LC resonance, by employing a dual phase lead. In short, adding two phase leads stabilizes the  
application.  
GBW (the frequency at gain 1) is determined by the phase compensation capacitor connected to the error amp. Thus, a larger  
capacitor will serve to lower GBW if desired.  
General use integrator (low-pass filter) Integrator open loop characteristics  
(a)  
-20dB/decade  
GBW(b)  
1
A
point (a) fa =  
1.25[Hz]  
[Hz]  
Gain  
[dB]
COMP  
2πRCA  
Feedback  
A
R
0
0
1
point (b) fa = GBW  
FB  
2πRC  
Phase  
[deg]  
-90°  
Phase margin  
-90  
C
-180°  
-180  
Fig-26  
Fig-27  
The error amp is provided with phase compensation similar to that depicted in figures and above and thus serves  
as the system’s low-pass filter.  
In DC/DC converter applications, R is established parallel to the feedback resistance.  
10/29  
When electrolytic or other high-ESR output capacitors are used:  
Phase compensation is relatively simple for applications employing high-ESR output capacitors (on the order of several  
Ω). In DC/DC converter applications, where LC resonance circuits are always incorporated, the phase margin at these  
locations is -180°. However, wherever ESR is present, a 90° phase lead is generated, limiting the net phase margin to -90°  
in the presence of ESR. Since the desired phase margin is in a range less than 150°, this is a highly advantageous  
approach in terms of the phase margin. However, it also has the drawback of increasing output voltage ripple components.  
LC resonance circuit  
ESR connected  
Vcc  
Vcc  
Vo  
Vo  
L
L
1
ESR  
R
C
C
Fig-28  
Fig-29  
resonance point1  
fr =  
[Hz]Resonance Point  
fr =  
[Hz]  
2π√LC  
2π√LC  
1
Resonance point phase margin -180°  
fESR  
=
[Hz] :Zero  
2πRESR  
C
-90°:Pole  
Since ESR changes the phase characteristics, only one phase lead need be provided for high-ESR applications. Please choose  
one of the following methods to add the phase lead.  
Add C to feedback resistor  
Vo  
Add R3 to aggregator  
Vo  
C2  
A
R3  
C2  
C1  
R1  
R1  
FB  
FB  
COMP  
COMP  
A
R2  
R2  
Fig-30  
Fig-31  
1
1
Phase lead fz =  
[Hz]  
Phase lead fz =  
[Hz]  
2πC1R1  
2πC2R3  
Set the phase lead frequency close to the LC resonance frequency in order to cancel the LC resonance.  
When using ceramic, OS-CON, or other low-ESR capacitors for the output capacitor:  
Where low-ESR (on the order of tens of mΩ) output capacitors are employed, a two phase-lead insertion scheme is  
required, but this is different from the approach described in figure ~, since in this case the LC resonance gives rise  
to a 180° phase margin/delay. Here, a phase compensation method such as that shown in figure below can be  
implemented.  
Phase compensation provided by secondary (dual) phase lead  
Vo  
1
Phase lead fz1 =  
Phase lead fz2 =  
[Hz]  
[Hz]  
R3  
FB  
C2  
C1  
2πR1C1  
1
2πR3C2  
R1  
R2  
A
COMP  
1
LC resonance frequency fr =  
[Hz]  
2π√LC  
Fig-32  
Once the phase-lead frequency is determined, it should be set close to the LC resonance frequency.  
This technique simplifies the phase topology of the DCDC Converter. Therefore, it might need a certain amount  
of trial-and-error process. There are many factors(The PCB board layout, Output Current, etc.)that can affect  
the DCDC characteristics. Please verify and confirm using practical applications.  
11/29  
9MOSFET selection  
VCC  
FET uses Nch MOS  
VDSVcc  
V
DS  
DS  
I
L
VGSM1BOOT-SW interval voltage  
VGSM2VREG5  
Vo  
VGSM1  
Allowable currentvoltage current + ripple current  
Should be at least the over current protection value  
Select a low ON-resistance MOSFET for highest efficiency  
V
VGSM2  
Fig-33  
10Schottky barrier diode selection  
VCC  
Reverse voltage VRVcc  
Allowable currentvoltage current + ripple current  
Should be at least the over current protection value  
Select a low forward voltage, fast recovery diode for highest  
efficiency  
Vo  
The shoot-through may happen when the input parasitic  
capacitance of FET is extremely big or the Duty ratio is less  
than or equal to 10%. Less than or equal to 1000pF input  
parasitic capacitance is recommended. Please confirm  
operation on the actual application since this character is  
affected by PCB layout and components.  
V
R
Fig-34  
11Sequence function  
Circuit diagram  
Timing chart  
When EN1 stays ”H” and EN2 returns to ”H”, DET1 is in  
open state; thus SS2 is asserted, and Vo2 output starts.  
With EN1, 2 at ”H” level, when EN1 goes ”L”,  
If Vo2 is 76% of the voltage setting or higher, DET2 goes  
Vo1 turns OFF, but Vo2 output continues.  
open and SS1 is asserted, starting Vo1 output.  
VREG5  
VCC VREG5  
EN1  
EN2  
OUTH1 BOOT1 VCC BOOT2 OUTH2  
Vo2  
Vo1  
DET2  
SS1  
SW1  
SW2  
OUTL1  
OUTL2  
DGND2  
FB2  
DGND1  
FB1  
FB1  
0.61V  
COMP1  
COMP2  
Vo1  
over 76%  
SS1  
SS2  
DET1  
SS2  
DET2  
DET1  
STB EN1 EN2 GND  
0.61V  
FB2  
Vo2  
0.56V  
0.56V  
over 70%  
under 70%  
over 76%  
A
With EN1,2 at “H” level, if  
Vo1 starts at 76% or more of  
voltage setting, DET goes  
open and SS1 is asserted,  
starting Vo2 output.  
With EN2 set ”L”, if Vo2  
A
Same as “A” at left  
goes below 70% the voltage  
setting, DET2 shorts and SS1  
is asserted, turning Vo1 OFF  
Fig-35  
Fig-36  
12/29  
Input/Output equivalent circuits (Items in parentheses apply to VQFP48C)  
1(13)27(48)PINSW1SW22(14)26(47)PINDGND1DGND2)  
29(2)35(11)PINBOOT2BOOT13(15)25(46)PINOUTL1OUTL214(31)PINLOFF)  
28(1)36(15)PINOUTH1OUTH224(44) VREG5 / 4(17)VREG5A  
VREG5  
BOOT  
OUTH  
SW  
OUTL  
LOFF  
172.2k  
100k  
DGND  
135.8k  
300k  
8(23)19(37)PINSS1SS2)  
16(34)PINSYNC)  
6(21)21(39)PINFB1FB2)  
VREG5  
/ VREG5A  
VREG5  
/ VREG5A  
VREG5  
5k  
2k  
50k  
1k  
SYNC  
SS  
FB  
250k  
1P  
2.5k  
100k  
10(25)11(26)12(27)PIN  
STBEN1EN2)  
9(24)18(36)PINDET1DET2)  
15(33)PINRT)  
VCC  
VREG5  
/ VREG5A  
VREG5  
STB  
EN  
10k  
172.2k  
135.8k  
100k  
RT  
DET  
30(3)34(10)PINCL2CL1)  
17(35)PINLLM)  
7(22)20(38)PINCOMP1COMP2)  
31(5)33(8)PINVCCCL2VCCCL1)  
VCC  
VREG5  
VREG5A  
/ VREG5A  
VCCCL  
5k  
20Ω  
VCC  
LLM  
COMP  
5kΩ  
5P  
308k  
5kΩ  
CL  
1k  
22(41)PINEXTVCC)  
24(44)PINVREG5)  
5(19)PINVREG33)  
4(17)DINVREG5A)  
VCC  
VCC  
VCC  
VREG5A  
EXTVCC  
VCC  
150k  
150k  
VREG5A  
VREG33  
746.32k  
VREG5  
746.32k  
255k  
469.06k  
13/29  
Operation notes  
1Absolute maximum ratings  
Exceeding the absolute maximum ratings for supply voltage, operating temperature or other parameters can damage or  
destroy the IC. When this occurs, it is impossible to identify the source of the damage as a short circuit, open circuit, etc.  
Therefore, if any special mode is being considered with values expected to exceed absolute maximum ratings, consider  
taking physical safety measures to protect the circuits, such as adding fuses.  
2GND electric potential  
Keep the GND terminal potential at the lowest (minimum) potential under any operating condition.  
3Thermal design  
Be sure that the thermal design allows sufficient margin for power dissipation (Pd) under actual operating conditions.  
4Inter-pin shorts and mounting errors  
Use caution when positioning the IC for mounting on printed surface boards. Connection errors may result in damage or  
destruction of the IC. The IC can also be damaged when foreign substances short output pins together, or cause shorts  
between the power supply and GND.  
5Operation in strong electromagnetic fields  
Use caution when operating in the presence of strong electromagnetic fields, as this may cause the IC to malfunction.  
6Testing on application boards  
Connecting a capacitor to a low impedance pin for testing on an application board may subject the IC to stress. Be sure to  
discharge the capacitors after every test process or step. Always turn the IC power supply off before connecting it to or  
removing it from any of the apparatus used during the testing process. In addition, ground the IC during all steps in the  
assembly process, and take similar antistatic precautions when transporting or storing the IC.  
7) The output FET  
The shoot-through may happen when the input parasitic capacitance of FET is extremely big or the Duty ratio is less than  
or equal to 10%. Less than or equal to 1000pF input parasitic capacitance is recommended. Please confirm operation on  
the actual application since this character is affected by PCB layout and components.  
8This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated.  
P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode  
or transistor. Relations between each potential may form as shown in the example below, where a resistor and transistor  
are connected to a pin:  
With the resistor, when GNDPin A, and with the transistor (NPN), when GNDPin B:  
The P-N junction operates as a parasitic diode  
With the transistor (NPN), when GNDPin B:  
The P-N junction operates as a parasitic transistor by interacting with the N layers of elements in proximity to the  
parasitic diode described above.  
Parasitic diodes inevitably occur in the structure of the IC. Their operation can result in mutual interference between circuits,  
and can cause malfunctions, and, in turn, physical damage or destruction. Therefore, do not employ any of the methods  
under which parasitic diodes can operate, such as applying a voltage to an input pin lower than the (P substrate) GND.  
Resistor  
TransistorNPN)  
(PINA)  
(PINB)  
B
C
E
(PINB)  
(PINA)  
C
E
B
P
P
P+  
P+  
P+  
P+  
N
N
N
N
P
N
GND  
Parasitic element  
GND  
P substrate  
GND  
Parasitic element  
Parasitic element or transistor  
Fig-39  
Parasitic element or transistor  
Fig-38  
Fig-37  
9GND wiring pattern  
Fig-40  
When both a small-signal GND and high current GND are present, single-point grounding (at the set standard point) is  
recommended, in order to separate the small-signal and high current patterns, and to be sure voltage changes stemming  
from the wiring resistance and high current do not cause any voltage change in the small-signal GND. In the same way, care  
must be taken to avoid wiring pattern fluctuations in any connected external component GND.  
14/29  
10In some application and process testing, Vcc and pin potential may be reversed, possibly causing internal circuit or element  
damage. For example, when the external capacitor is charged, the electric charge can cause a Vcc short circuit to the GND.  
In order to avoid these problems, limiting output pin capacitance to 100μF or less and inserting a Vcc series countercurrent  
prevention diode or bypass diode between the various pins and the Vcc is recommended.  
Bypass diode  
Countercurrent prevention diode  
Vcc  
Pin  
Fig-41  
11Thermal shutdown (TSD)  
This IC is provided with a built-in thermal shutdown (TSD) circuit, which is designed to prevent thermal damage to or  
destruction of the IC. Normal operation should be within the power dissipation parameter, but if the IC should run beyond  
allowable Pd for a continued period, junction temperature (Tj) will rise, thus activating the TSD circuit, and turning all output  
pins OFF. When Tj again falls below the TSD threshold, circuits are automatically restored to normal operation. Note that  
the TSD circuit is only asserted beyond the absolute maximum rating. Therefore, under no circumstances should the TSD  
be used in set design or for any purpose other than protecting the IC against overheating  
12The SW pin  
When the SW pin is connected in an application, its coil counter-electromotive force may give rise to a single electric  
potential. When setting up the application, make sure that the SW pin never exceeds the absolute maximum value.  
Connecting a resistor of several Ω will reduce the electric potential. (See Fig. 43)  
Vcc  
BOOT  
OUTH  
R
SW  
Vo  
Fig-42  
OUTL  
DGND  
13Dropout operation  
When input voltage falls below approximately output voltage / 0.9 (varying depending on operating frequency) the ON  
interval on the OUTL side MOS is lost, making boost applications and wrap operation impossible. If a small differential  
between input and output voltage is envisioned for a prospective application, connect the load such that the SW voltage  
drops to the GND level. Managing this load requires discharging the SW line capacitance (SW pin capacitance: approx.  
500pF; OUTL side MOS D-S capacitance; Schottky capacitance). Supported loads can be calculated using the equation  
below.  
Output voltage × SW line capacitance  
ILOAD =  
25n  
Note that SW line capacitance is lower with smaller loads, and more stable operation is attained when low voltage bias  
circuits are configured as in the example below (Fig. 44). However, the degree to which line capacitance is reduced or  
operational stability is attained will vary depending on the board layout and components. Therefore, be certain to confirm  
the effectiveness of these design factors in actual operation before entering mass production.  
Vcc  
Vcc  
VREG  
OUT  
Vo  
SW  
OUT  
Fig-43  
15/29  
Power dissipation vs. temperature characteristics  
PD(W)  
HQFN36V  
VQFP48C  
PD(W)  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.875W  
1.1W  
0.75W  
0.56W  
0
25 50 75 100 125 150  
AMBIENT TEMPERATORE:Ta [℃]  
0
25 50 75 100 125 150  
AMBIENT TEMPERATORE:Ta [℃]  
①:Stand-alone IC  
①:Stand-alone IC  
②:Mounted on Rohm standard board  
70mm x 70mm x 1.6mm glass-epoxy board )  
②:Mounted on Rohm standard board  
70mm×70mm×1.6mm glass-epoxy board)  
Part order number  
B
D
9
0
1
1
K
V
E
2
ROHM part  
code  
Type/No.  
Package type  
KV VQFP48C  
EKN HQFN36V  
Tape and Reel Information  
E2 : Embossed carrier tape  
HQFN36V  
<Dimension>  
<Tape and Reel information>  
Embossed carrier tape(with dry pack)  
Tape  
2500pcs  
E2  
Quantity  
Direction  
of feed  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
Direction of feed  
1pin  
Reel  
Unit:mm)  
When you order , please order in times the amount of package quantity.  
VQFP48C  
<Dimension>  
< Packing information >  
Embossed carrier tape  
Tape  
1500pcs  
Quantity  
Direction  
of feed  
E2  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
Direction of feed  
1Pin  
Reel  
Unit:mm)  
When you order , please order in times the amount of package quantity.  
16/29  
BD9775FV (1channel synchronous rectification configuration)  
Description  
BD9775FV is Switching Controller with synchronous rectification(BD9775FV is 1channel synchronous rectification) and wide  
input range. It can contribute to ecological design(lower power consumption) for most of electronic equipments.  
Features (BD9775FV)  
1) 2channel Step-Down DC/DC FET driver  
2) Synchronous rectification for channel 2  
3) Able to synchronize to an external clock signal  
4) Over Current Protection (OCP) by monitoring VDS of P channel FET  
5) Short Circuit Protection (SCP) by delay time and latch method  
6) Under Voltage Lock Out (UVLO)  
7) Thermal Shut Down (TSD)  
8) Package : SSOP-B28  
Applications (BD9775FV)  
Car navigation system, Car Audio, Display, Flat TV  
Absolute maximum ratings (Ta=25)(BD9775FV)  
Parameter  
Symbol  
Vcc  
Limits  
Units  
V
Supply Voltage (VCC to GND)  
VREF to GND Voltage  
36  
Vref  
7
V
VREGA to GND Voltage  
VREGB to VCC Voltage  
OUT1, OUT2H to VCC Voltage  
OUT2L to GND Voltage  
Power Dissipation  
Vrega  
Vregb  
Vouth  
Voutl  
Pd  
7
V
7
7
V
V
7
V
640(*1)  
-40 to +85  
-55 to +125  
+125  
mW  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
Topr  
Tstg  
Tjmax  
(*1) Without heat sink, reduce to 6.4mW when Ta=25or above  
Pd is 850mW mounted on 70x70x1.6mm, and reduce to 8.5mW/above 25.  
17/29  
Recommended operating conditionsTa=-25 to +75℃)(BD9775FV)  
Limits  
TYP  
-
Parameter  
Symbol  
Units  
MIN  
6.0  
30  
MAX  
30.0  
300  
56  
Supply Voltage  
Oscillating Frequency  
Timing Resistance  
Timing Capacitance  
VCC  
osc  
RT  
V
100  
27  
KHz  
KΩ  
pF  
10  
CT  
100  
470  
4700  
Electrical characteristics Ta=25℃,VCC=13.2V, fosc=100kHz, CTL1=3V, CTL2=3V(BD9775FV)  
Limits  
Unit  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Whole Device】  
μA  
Stand-by Current  
Iccst  
Icc  
5
7
CTL1,CTL2=0V  
FB1,FB2=0V  
Circuit Current  
2.5  
4.2  
mA  
Reference Voltage】  
VREF Output Voltage  
Vref  
DVli  
DVlo  
Ios  
2.97  
3.00  
3.03  
10  
V
Io=-1mA  
Line Regulation  
mV  
mV  
mA  
Vcc=7 to 18V,Io=-1mA  
Io=-0.1mA to -2mA  
Load Regulation  
Short Output Current  
10  
-60  
-22  
-5  
Internal Voltage Regulator】  
VREGA Output Voltage  
VREGB Output Voltage  
Vrega  
4.5  
5.0  
5.5  
VCC-4.5  
2.2  
V
V
V
Switching with COUT=5000pF  
Switching with COUT=5000pF  
VREGB to GND Voltage  
Vregb  
VCC-5.5 VCC-5.0  
VREGB Dropout Voltage  
Oscillator】  
Vdregb  
1.8  
RT=27kΩ,CT=470pF  
Oscillating Frequency  
fosc  
90  
100  
110  
2
kHz  
%
Frequency Tolerance  
Dfosc  
Vcc=7 to 18V  
Synchronized Frequency】  
osc2  
1.2  
-1  
1.6  
1
Synchronized Frequency  
FIN Threshold Voltage  
120  
1.4  
kHz  
V
FIN=120kHz  
VFIN=1.4V  
Vthfin  
IFIN  
μA  
FIN Input Current  
Error Amplifier】  
Threshold Voltage  
Vthea  
Ibias  
0.98  
-1  
1.00  
1.02  
1
V
μA  
dB  
INV Input Bias Current  
Voltage Gain  
Av  
70  
DC  
Band Width  
Bw  
2.0  
2.4  
MHz  
V
Av=0dB  
Maximum Output Voltage  
Minimum Output Voltage  
Output Sink Current  
Vfbh  
2.2  
2.6  
0.1  
5.2  
-70  
-85  
INV=0.5V  
INV=1.5V  
FB1,2 Terminal  
FB1 Terminal  
FB2 Terminal  
Vfbl  
V
Isink  
0.5  
-170  
-200  
2
mA  
μA  
μA  
Isource1  
Isource2  
-110  
-130  
Output Source Current  
18/29  
Limits  
Typ.  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Max.  
PWM Comparator】  
Threshold Voltage at 0%  
Vth0  
Vth100  
Idtc  
0.88  
1.88  
-1  
0.98  
1.98  
1.08  
2.08  
1
V
V
FB Voltage  
FB Voltage  
Threshold Voltage  
at 100%  
μA  
DTC Input Bias Current  
FET Driver】  
Sink Current  
Isink  
Isource  
RonN  
RonP  
Tr  
20  
-510  
7.0  
0.7  
36  
-320  
11.0  
1.4  
58  
-180  
17.8  
2.2  
mA  
mA  
Ω
VDS=0.4V  
Source Current  
VDS=0.4V  
OUT1,2H,2L : L  
ON Resistance  
Ω
OUT1,2H,2L : H  
Rise Time  
20  
nsec  
nsec  
Switching with COUT=5000pF  
Switching with COUT=5000pF  
Fall Time  
Tf  
100  
Driver’s Duty Cycle of  
Synchronous  
RSYNC=30KΩ,  
ΔDuty  
42  
45  
48  
%
V
50% of main driver’s duty cycle  
Rectification  
Rsync=30KΩ,FB=1.5V  
SYNC Terminal Voltage  
Vsync  
1.45  
1.55  
1.65  
Over Current Protection (OCP)】  
RCL=21kΩ, the output tern off after  
detected 8 cycle  
VCC-0.24  
VCC-0.21  
VCC-0.18  
VS Threshold Voltage  
VS Input Current  
Vths  
V
10  
μA  
μA  
μA  
IVSH  
IVSL  
Icl  
-1  
-1  
9
1
1
VS1,VS2=PBU  
VS1,VS2=0V  
CL Input Current  
11  
Stand-by】  
Threshold Voltage  
CL Input Current  
Vctl  
Ictl  
1.0  
6
1.5  
15  
2.0  
30  
V
μA  
CTL1,CTL2=3V  
Short Circuit Protection SCP】  
Timer Start Voltage  
Threshold Voltage  
Stand-by Voltage  
Source current  
Vtime  
Vthscp  
Vstscp  
Isoscp  
0.6  
1.92  
0.7  
2.00  
10  
0.8  
2.08  
100  
-1.5  
V
V
INV Voltage  
SCP Voltage  
SCP Voltage  
SCP=1.0V  
mV  
μA  
-4.0  
-2.5  
Under Voltage Lock Out UVLO】  
Threshold Voltage  
Hysteresis  
Vuvlo  
5.6  
5.7  
0.1  
5.8  
V
V
Vcc sweep down  
DVuvlo  
0.05  
0.15  
Voltage Range  
19/29  
Pin Description  
PinNo/PinName (BD9775FV)  
1
2
28  
27  
FB1  
VS1  
CL1  
Pin  
No.  
Pin  
Name  
(BD9775FV)  
INV1  
Description  
3
4
5
6
26  
25  
24  
23  
RT  
CT  
Fin  
PVCC1  
OUT1  
Error amplifier output pinChannel 1)  
1
2
FB1  
Error amplifier negative input pinChannel 1)  
INV1  
VREGB  
Oscillator frequency adjustment pin  
connected resistor  
3
4
RT  
CT  
GND  
OUT2H  
PVCC2  
CL2  
Oscillator frequency adjustment pin  
connected capacitor  
7
8
9
22  
21  
20  
VREF  
DTC1  
DTC2  
INV2  
FB2  
5
6
7
FIN  
GND  
VREF  
Oscillator synchronization pulse signal input pin  
Low-noise ground  
VS2  
10  
11  
12  
19  
18  
SCP  
Reference voltage output pin  
VREGA  
OUT2L  
Maximum duty and soft start adjustment  
pinChannel 1)  
8
9
DTC1  
DTC2  
CTL1  
CTL2  
VCC  
17  
16  
Maximum duty and soft start adjustment  
pinChannel 2)  
13  
14  
PGND  
SYNC  
15  
Error amplifier negative input pinChannel 2)  
Error amplifier output pinChannel 2)  
Enable/stand-by control inputChannel 1)  
Enable/stand-by control inputChannel 2)  
Main power supply pin  
10  
11  
12  
13  
14  
15  
INV2  
FB2  
CTL1  
CTL2  
VCC  
Block Diagram (BD9775FV)  
SYNC  
Synchronous rectification timing adjustable pin  
Power ground (connected low-side gate driver  
and digital ground)  
16  
PGND  
Low-side ( synchronous rectifier ) gate driver  
output pinChannel 2)  
17  
18  
19  
OUT2L  
VREGA Connected capacitor for internal regulator  
Delay time of short circuit protection adjustment  
pin connected capacitor  
SCP  
Over current detection voltage monitor pin  
VS2  
20  
21  
22  
connected FET drain, Channel 2)  
Over current detection voltage adjustment pin  
CL2  
connected capacitor and resistorChannel 2)  
High-side gate driver power supply  
inputChannel 2)  
PVCC2  
High-side gate driver output pinChannel 2)  
VREGB Connected capacitor for internal regulator  
23  
24  
25  
OUT2H  
High-side gate driver output pinChannel 1)  
OUT1  
High-side gate driver power supply  
inputChannel 1)  
26  
27  
28  
PVCC1  
Over current detection voltage adjustment pin  
connected capacitor and resistorChannel 1)  
CL1  
VS1  
Over current detection voltage monitor pin  
connected FET drain, Channel 1)  
FUNCTION EXPLANATION (BD9775FV)  
1.DC/DC Converter  
Reference Voltage  
Stable voltage of compensated temperature, is generated from the power supply voltage (VCC). The reference voltage is 3.0V,  
the accuracy is ±1. Place a capacitor with low ESR (several decades mΩ) between VREF and GND.  
Internal Regulator A VREGA)  
5V is generated the power supply voltage. The voltage is for the driver of the synchronous rectification’s MOSFET. Place a  
capacitor with low ESR (several decades mΩ) between VREGA and PGND.  
20/29  
Internal regulator B VREGB)  
(VCC-5V) is generated from the power supply voltage. The voltage is for the driver of the main MOSFET switch.  
Place a capacitor with low ESR (several decades mΩ) between VREGB and PVCC.  
Oscillator  
Placing a resistor and a capacitor to RT and CT, respectively, generates two triangle waves for both cannels, and each wave  
is opposite phase. The waves are input to the PWM comparators for CH1 and CH2. Also, the oscillating frequency can be  
slightly adjusted (less than 20%) by putting external clock pulse into Fin pin, which is higher frequency than the fixed one.  
Error Amplifier  
It amplifies the difference, between the establish output voltage and the actual output one detected at INV. And amplified  
voltage comes out from FB. The comparing voltage is 1.0V and the accuracy is ±2%. The phase can be compensated  
externally by placing a resistor and a capacitor between INV and FB.  
PWM Comparator  
It converts the output voltage from error amplifier into PWM waveform, then output to MOSFET driver.  
MOSFET Driver  
The main drivers (OUT1, OUT2H) are for P-channel MOSFETs, and the driver (OUT2L) for synchronous rectification is for  
N-channel MOSFET. The values of output voltage are clamp to VREGB, VREGA, respectively. All drivers’ output  
configurations are push-pull type. In addition, the output current capability is 36mA for the sink current and 320mA  
(Vds=0.4V) for the source current.  
2.Channel Control  
Each output can be individually turned on or off with CTL1 and CTL2. When the CTL is “H” (more than 1.5V), it becomes  
turned on.  
3.Protection  
Over Current ProtectionOCP)  
When detected over current (detecting drop voltage of the main MOSFET’s ON resistance), the MOSFET switch becomes  
turned off, and the energy on DTC pin is discharged. After discharged, the output restarts automatically. The level of the  
OCP detection threshold can be set by the resistance, which is connected between VCC and CL.  
Short Circuit ProtectionSCP)  
When either output goes down and the voltage on INV pin gets lower than 0.7V, a capacitor placed on SCP is started to  
charge.  
When the SCP pin becomes more than 2.0V, the main MOSFET switches of both outputs are turned off; then, the outputs are  
latched. While they are latched, the IC can be reset by restarting VCC or CTL, or discharging SCP.  
Under Voltage Lock OutUVLO)  
Due to avoiding malfunctions when the IC is started up or the power supply voltage is rapidly disconnected, the main  
MOSFET switches become off and DTC is discharged when the supply voltage is less than 5.7V. Also, when the output is  
latched because of SCP function, the latch becomes reset. Due to preventing malfunctions in the case the power supply  
voltage fluctuate at near UVLO threshold, there is 0.1V hysteresis between the detection and reset voltage of UVLO  
threshold.  
Thermal Shut DownTSD)  
Due to preventing breakdown of the IC by heating up, the main MOSFET switches become off and DTC pin is discharged by  
detecting over temperature of the chip. Due to preventing malfunctions in the case temperature fluctuate at near TSD  
threshold, there is hysteresis between TSD on and off.  
21/29  
SETTING UP INFOMATION (BD9775FV)  
1)Simultaneously OFF Duty of MOSFETs for Synchronous Rectification  
The simultaneously OFF duty of both main MOSFET switch and synchronous rectification MOSFET is determined by  
resistance (Rsync) between SYNC and GND. See Fig. 4.  
In Synchronous Rectification, insert RFB2-GND (RFB2-GND3×Rsync) between FB2 and GND, because it is possible to  
reduce overshoot(sea fig.2). RFB2-GND decide following formula.  
40  
T=-40℃  
T= 25℃  
T=105℃  
35  
30  
25  
20  
15  
10  
5
fosc=100kHz  
Δduty=(t1+t2)/t×100 (%)  
t
t1  
t2  
OUT2H  
OUT2L  
0
0
20  
40  
60  
80  
100  
Rsync (kΩ)  
Fig.2  
Resistance at FB2-GND setup condition  
Threshold Voltage at100%  
< 3xRsync(MIN)  
RFB2-GND  
<
Vsync  
-Output Source Current at FB2  
2.08  
3×Rsync(MAX)  
< 3xRsync(MIN)  
< RFB2-GND  
0.4908  
+80.7x10-6  
Rsync(MAX)  
Rsync(MAX)MAX dispersion range at Rsync  
Rsync(MIN)MIN dispersion range at Rsync  
FB2  
SYNC  
RFB2-GND  
Rsync  
Short SYNC to VREF if the synchronous rectification function is not needed.  
VREF  
SYNC  
Without Synchronous RectificationDon’t insert RFB2-GND  
22/29  
2) Oscillator Synchronization by External Pulse Signal  
At the operation the oscillator is externally synchronized, input the synchronization signal into Fin in addition to connect a  
resistor and a capacitor at RT and CT, respectively.  
Input the external clock pulse on Fin, which is higher frequency than the fixed one. However, the frequency variation  
should be less than 20%.  
Also, the duty cycle of the pulse should be set from 10% to 90%.  
Fin  
Fixed with RT and CT  
CT  
Synchronized  
CT Waveform during Synchronized with External Pulse  
Short Fin to GND if the function of external synchronization is not needed.  
Fin  
Without Synchronization Signal  
3)Setting the Over Current Threshold Level  
The OCP detection levelIocpis determined by the ON resistance (RON) of the main MOSFET switch and the resistance  
(Rcl) which is placed between CL and VCC.  
Rcl  
Iocp =  
×10-5 [A] typ.)  
RON  
To prevent a malfunction caused by noise, place a capacitorCclparallel to Rcl.  
If OCP function is not needed, short VS to VCC, and short CL to GND.  
VCC  
Rcl  
CL  
VS  
CL  
VS  
Ccl  
VCC  
To Main MOSFET Drain  
With OCP  
Without OCP  
CL, VS Pin Connection  
23/29  
4)Setting the Time for Short Circuit Protection  
The time (tscp) from output short to latch activation is determined by the capacitor, Cscp, connected SCP pin.  
tscp=  
7.96  
×
105  
×
Cscp  
[sec]  
typ.)  
Short SCP to GND if SCP function is not being used.  
SCP  
Without SCP  
5)Single Channel Operation  
This device can be used as a single output. The connection is as follows;  
DTC,FB,CTL,CL  
VS,PVCC  
INV  
Short to GND  
Short to VCC  
Short to VREF  
DTC  
FB  
CTL  
CL  
VCC  
VS  
PVCC  
VREF  
INV  
Single Channel Operation  
6)Setting the Oscillating Frequency  
The oscillating frequency can be set by selecting the timing resistor (RRT)and the timing capacitor (CCT).  
Ocsillating Frequency vs. Timing Capacitance (RRT)  
Ocsillating Frequency vs. Timing Capacitance (CCT)  
1000  
100  
10  
1000  
100  
10  
RRT=5.1kΩ  
CCT=100pF  
CCT=470pF  
R
RT=27kΩ  
C
CT=1000pF  
RRT=100kΩ  
10  
100  
1000  
100  
1000  
10000  
Timing Resistance (kΩ)  
Timing Capacitance(pF)  
Fig.3  
Fig.4  
24/29  
Timing Chart (BD9775FV)  
Output ON/OFF, Minimum InputUVLO)  
6.0V  
UVLO is inactivated  
at 5.8V  
VCC  
UVLO is activated at 5.7V  
CTL1  
1.0V  
DTC1  
Vout1  
CTL2  
1.0V  
DTC2  
Vout2  
Stand-by  
Soft start  
Fig.5  
Over Current Protection, Short Circuit Protection, Thermal Shut Down  
CTL1,2  
SCP  
Activate SCP  
2.0V  
Reset the latch by restarting CTL  
DTC1,2  
1.0V  
Activate TSD  
Inactivate TSD  
0.7×fixed output voltage  
Vout1,2  
Half short of output  
OCP detection level  
Iout1,2  
Inactivate half-short  
OCP is activated by detecting 8 consecutive cycles  
Fig.6  
I/O EQUIVALENT CIRCUIT (BD9775FV)  
FB1(1)  
FB2(11)  
RT(3)  
VCC  
VCC  
VREF  
VREGA  
VCC  
VREF  
VREGA  
VREF  
FB1  
RT  
T  
INV1(2),INV2(10)  
CT(4)  
FIN(5)  
VCC  
VCC  
VCC  
VREF  
VREF  
VREF  
INV12  
I
FIN  
Fig.7  
25/29  
DTC1(8),DTC2(9)  
CTL1(12),CTL2(13)  
SYNC(15)  
VCC  
VREGA  
VCC  
VCC  
VREF  
VREF  
VREGA  
DTC1,2
CTL12  
SYNC  
SCP(19)  
OUT2L(17),VREGA(18)  
VREF(7)  
VCC  
VCC  
VCC  
VCC  
VREF  
VREGA  
OUT2L  
VREF  
SCP  
PVCC1(26),PVCC2(22)  
OUT1(25),OUT2H(23),VREGB(24)  
VS1(28),VS2(20),CL1(27),CL2(21)  
VCC  
VC
C
PVCC12  
OUTH12H  
CL12  
VREGB  
VS12  
Fig.8  
Operation Notes (BD9775FV)  
1) Absolute maximum ratings  
Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may result in IC deterioration  
or damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered.  
A physical safety measure such as a fuse should be implemented when use of the IC in a special mode where the absolute maximum ratings  
may be exceeded is anticipated.  
2) GND potential  
Ensure a minimum GND pin potential in all operating conditions. In addition, ensure that no pins other than the GND pin carry a voltage lower  
than or equal to the GND pin, including during actual transient phenomena.  
3) Thermal design  
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.  
4) Inter-pin shorts and mounting errors  
Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting may result in damage to the IC.  
Shorts between output pins or between output pins and the power supply and GND pin caused by the presence of a foreign object may result in  
damage to the IC.  
5) Operation in a strong electromagnetic field  
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.  
6) Thermal shutdown circuit (TSD circuit)  
This IC incorporates a built-in thermal shutdown circuit (TSD circuit). The TSD circuit is designed only to shut the IC off to prevent runaway  
thermal operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of the thermal  
shutdown circuit is assumed.  
7) Testing on application boards  
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge  
capacitors after each process or step. Ground the IC during assembly steps as an antistatic measure, and use similar caution when transporting  
or storing the IC. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process.  
8) Common impedance  
Power supply and ground wiring should reflect consideration of the need to lower common impedance and minimize ripple as much as possible  
(by making wiring as short and thick as possible or rejecting ripple by incorporating inductance and capacitance).  
26/29  
9) Applications with modes that reverse VCC and pin potentials may cause  
damage to internal IC circuits.  
Bypass diode  
For example, such damage might occur when VCC is shorted with the  
GND pin while an external capacitor is charged.  
Countercurrent  
prevention diode  
It is recommended to insert a diode for preventing back current flow  
in series with VCC or bypass diodes between VCC and each pin.  
Vcc  
Pin  
Fig.9  
10) Timing resistor and capacitor  
Timing resistor(capacitor) connected between RT(CT) and GND, has to be placed near RT(CT) terminal 3pin(4pin). And pattern has to be short  
enough.  
VCC  
VREF  
11) The Dead time input voltage has to be set more than 1.1V.  
Also, the resistance between DTC and VREF is used more than 30kto work OCP function reliably.  
12) The energy on DTC18pinand DTC29pinis discharged when CTL112pinand CTL213pinare OFF, respectively, or VCC14pin)  
is OFF (UVLO activation). However, it is considerable to occur overshoot when CTL and VCC are turned on with remaining more than 1V on  
the DTC.  
tsw  
GATE  
13) If Gate capacitance of P-channel MOSFET or resistance placed on  
Gate is large, and the time from beginning of Gate switching to the end of Drain’s (tsw),  
is long, it may not start up due to the OCP malfunction.  
DRAIN  
To avoid it, select MOSFET or adjust resistance as tsw becomes less than 270nsec.  
Fig.10  
14) IC pin input  
This monolithic IC contains P+ isolation and PCB layers between adjacent elements in order to keep them isolated.  
P/N junctions are formed at the intersection of these P layers with the N layers of other elements to create a variety  
of parasitic elements. For example, when a resistor and transistor are connected to pins as shown in following chart,  
the P/N junction functions as a parasitic diode when GND > (Pin A) for the resistor or GND > (Pin B) for the transistor (NPN).  
Similarly, when GND > (Pin B) for the transistor (NPN), the parasitic diode described above combines with the N layer of other adjacent  
elements to operate as a parasitic NPN transistor.  
The formation of parasitic elements as a result of the relationships of the potentials of different pins is an  
inevitable result of the IC's architecture. The operation of parasitic elements can cause interference with circuit  
operation as well as IC malfunction and damage. For these reasons, it is necessary to use caution so that the IC is  
not used in a way that will trigger the operation of parasitic elements, such as by the application of voltages lower  
than the GND (PCB) voltage to input and output pins.  
Resistor  
TransistorNPN)  
(PINA)  
(PINB)  
B
C
E
(PINB)  
(PINA)  
C
E
B
P
P
P+  
P+  
P+  
P+  
N
N
N
P
N
N
GND  
Parasitic element  
GND  
P substrate  
GND  
Parasitic element  
Parasitic element or transistor  
Parasitic element or transistor  
Fig.11  
pd(W)  
1.0  
0.85W  
0.64W  
0.8  
0.6  
0.587W  
0.4  
0.2  
0
With no heat sink  
Copper laminate area 70 mm×70mm  
0
75  
100  
125 150  
Ta(℃)  
50  
25  
AMBIENT TEMPERATURE  
Fig.12  
27/29  
Part order number  
B
D
9
7
7
5
F
V
-
E
2
ROHM Part  
Code  
Type/No.  
Package type  
Tape and Reel Information  
E2 : Embossed carrier tape  
FV : SSOP-B28  
SSOP-B28  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
2000pcs  
E2  
Direction  
of feed  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
Direction of feed  
1pin  
Reel  
(Unit:mm)  
When you order , please order in times the amount of package quantity.  
28/29  
Catalog No.08T672A '08.9 ROHM ©  
Appendix  
Notes  
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM  
CO.,LTD.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you  
wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM  
upon request.  
Examples of application circuits, circuit constants and any other information contained herein illustrate the  
standard usage and operations of the Products. The peripheral conditions must be taken into account  
when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document. However, should  
you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no re-  
sponsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and examples  
of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to  
use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no re-  
sponsibility whatsoever for any dispute arising from the use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic equipment  
or devices (such as audio visual equipment, office-automation equipment, communication devices, elec-  
tronic appliances and amusement devices).  
The Products are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or  
malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard against the  
possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as  
derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your  
use of any Product outside of the prescribed scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or system  
which requires an extremely high level of reliability the failure or malfunction of which may result in a direct  
threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment,  
aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear  
no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intend-  
ed to be used for any such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may be controlled under  
the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2009 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix-Rev4.0  

相关型号:

BD9755FV-E2

Dual Switching Controller, 300kHz Switching Freq-Max, PDSO28, LEAD FREE, SSOP-28
ROHM

BD9756AMWV

Silicon Monolithic Integrated Circuit
ROHM

BD9757MWV

Silicon Monolithic Integrated Circuit
ROHM

BD9757MWV-E2

Switching Regulator
ROHM

BD9759MWV

Silicon Monolithic Integrated Circuit
ROHM

BD9759MWV-E2

Switching Regulator/Controller, Voltage-mode, 1A, 1500kHz Switching Freq-Max, PQCC56
ROHM

BD976

PNP SILICON DARLINGTON TRANSISTORS
INFINEON

BD9763FVM

Single-output Step-up,High-efficiency Switching Regulator (Controller Type)
ROHM

BD9766FV

DC-AC Inverter Control IC
ROHM

BD9766FV-E2

Analog Circuit, 1 Func, PDSO28, ROHS COMPLIANT, SSOP-28
ROHM

BD9766FV_09

Silicon Monolithic Integrated Circuit
ROHM

BD977

TRANSISTOR | BJT | NPN | 60V V(BR)CEO | 1A I(C) | TO-202
ETC