BD9524MUV_10 [ROHM]

Main Power Supply IC for Note PC (Linear Regulator Integrated); 主电源IC,适用于笔记电脑(线性稳压器集成)
BD9524MUV_10
型号: BD9524MUV_10
厂家: ROHM    ROHM
描述:

Main Power Supply IC for Note PC (Linear Regulator Integrated)
主电源IC,适用于笔记电脑(线性稳压器集成)

稳压器 电脑 PC
文件: 总21页 (文件大小:606K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hi-performance Regulator IC Series for PCs  
Main Power Supply IC  
for Note PC (Linear Regulator Integrated)  
No.10030ECT06  
BD9524MUV  
Description  
BD9524MUV is a switching regulator controller with high output current which can achieve low output voltage (2.0V5.5V)  
from a wide input voltage range (7V~25V). High efficiency for the switching regulator can be realized by utilizing an external  
N-MOSFET power transistor. A new technology called H3RegTM is a Rohm proprietary control method to realize ultra high  
transient response against load change. SLLM (Simple Light Load Mode) technology is also integrated to improve efficiency  
in light load mode, providing high efficiency over a wide load range. For protection and ease of use, the soft start function,  
variable frequency function, short circuit protection function with timer latch, over voltage protection with timer latch, and  
Power good function are all built in. This switching regulator is specially designed for Main Power Supply.  
Features  
1) 2ch H3RegTM Switching Regulator Controller  
2) Adjustable Simple Light Load Mode (SLLM), Quiet Light Load Mode (QLLM) and Forced continuous Mode  
3) Thermal Shut Down (TSD), Under Voltage Lock Out (UVLO), Over Current Protection (OCP),  
Over Voltage Protection (OVP), Short circuit protection with timer-latch (SCP)  
4) Soft start function to minimize rush current during startup  
5) Switching Frequency Variable (f=200KHz500KHz)  
6) Power good circuit  
7) 2ch Linear regulator  
8) VQFN032V5050 package  
Applications  
Laptop PC, Desktop PC, LCD-TV, Digital Components  
Maximum Absolute Ratings (Ta=25)  
Parameter  
Symbol  
Limits  
30 *1*2  
7*1*2  
Unit  
V
VIN, CTL  
EXTVCC, PGOOD1, PGOOD2FB1, FB2, Is+1, Is+2, MCTL  
V
FS1, FS2, REF1, REF2, SS1, SS2, LG1, LG2  
REG1+0.3*1*2  
35*1*2  
V
BOOT1, BOOT2  
V
Terminal voltage  
BOOT1-SW1, BOOT2-SW2, HG1-SW1, HG2-SW2  
7*1*2  
V
HG1  
BOOT1+0.3*1*2  
BOOT2+0.3 *1*2  
6 *1*2  
V
HG2  
V
EN1, EN2  
V
DGND, PGND1, PGND2  
AGND±0.3 *1*2  
0.38 *3  
V
Power dissipation 1  
Pd1  
Pd2  
W
W
W
W
Power dissipation 2  
0.88 *4  
Power dissipation 3  
Pd3  
2.06 *5  
4.56 *6  
Power dissipation 4  
Pd4  
Operating temperature range  
Storage temperature range  
Topr  
Tstg  
Tjmax  
-10 ~ +100  
-55 ~ +150  
+150  
Junction Temperature  
*1 Do not however exceed Pd.  
*2 Instantaneous surge voltage, back electromotive force and voltage under less than 10% duty cycle.  
*3 Reduced by 3.0mW for each increase in Ta of 1over 25(when don’t mounted on a heat radiation board )  
*4 Reduced by 7.0mW for increase in Ta of 1over 25. (when mounted on a board 70.0mm×70mm×1.6mm Glass-epoxy PCB  
which has 1 layer. (Copper foil area : 0mm2))  
*5 Reduced by 16.5mW for increase in Ta of 1over 25. (when mounted on a board 70.0mm×70mm×1.6mm Glass-epoxy PCB  
which has 4 layers. (1st and 4th copper foil area : 20.2mm2, 2nd and 3rd copper foil area : 5505mm2))  
*6 Reduced by 36.5mW for increase in Ta of 1over 25. (when mounted on a board 70.0mm×70mm×1.6mm Glass-epoxy PCB  
which has 4 layers. (All copper foil area : 5505mm2))  
www.rohm.com  
2010.03 - Rev.C  
1/20  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD9524MUV  
Operating Conditions (Ta=25)  
Parameter  
Symbol  
MIN.  
7
MAX.  
25  
Unit  
V
VIN  
EXTVCC  
CTL  
4.5  
-0.3  
-0.3  
4.5  
-0.3  
-0.3  
0.09  
1
5.5  
25  
5.5  
30  
5.5  
5.5  
1.25  
2.75  
5.6  
V
V
V
V
V
V
V
V
EN1, EN2  
BOOT1, BOOT2  
BOOT1-SW1, BOOT2-SW2, HG1-SW1, HG2-SW2  
PGOOD1, PGOOD2  
FS1, FS2  
Terminal voltage  
REF1, REF2  
Is+1, Is+ 2, FB1, FB2  
1.9  
-0.3  
V
V
MCTL  
REG1+0.3  
*This product should not be used in a radioactive environment.  
Electrical characteristics  
(unless otherwise noted, Ta=25VIN=12V, CTL=5V, EN1=EN2=5V, REF1=2.5V, REF2=1.65V, FS1=FS2=0.582V)  
Standard Value  
Unit Conditions  
Parameter  
Symbol  
MIN.  
70  
0
TYP.  
MAX.  
250  
130  
10  
VIN standby current  
VIN bias current  
ISTB  
IIN  
150  
μA CTL=5V, EN1=EN2=0V  
45  
0
-
μA EXTVCC=5V  
Shut down mode current  
CTL Low voltage  
ISHD  
VCTLL  
VCTLH  
ICTL  
-10  
-0.3  
2.3  
-
μA CTL=0V  
0.8  
25  
V
CTL High voltage  
CTL bias current  
-
V
1
-
3
μA VCTL=5V  
EN Low voltage  
VENL  
VENH  
IEN  
-0.3  
2.3  
-
0.8  
5.5  
3
V
EN High voltage  
-
V
EN bias current  
1
μA VEN=3V  
[5V linear regulator]  
REG1 output voltage  
Maximum current  
Line Regulation  
VREG1  
IREG1  
REG1I  
REG1L  
4.90  
5.00  
-
5.10  
-
V
IREG1=1mA  
200  
mA IREG2=0mA  
-
-
90  
30  
180  
50  
mV VIN=7.5 to 25V  
mV IREG1=0 to 30mA  
Load Regulation  
[3.3V linear regulator]  
REG2 output voltage  
Maximum current  
Line regulation  
VREG2  
IREG2  
REG2I  
REG2L  
3.27  
3.30  
3.33  
-
V
IREG2=1mA  
100  
-
-
-
mA  
-
-
20  
30  
mV VIN=7.5 to 25V  
Load regulation  
mV IREG2=0 to 100mA  
[5V switch block]  
EXTVCC input threshold voltage  
EXTVCC input delay time  
Switch Resistance  
VCC_UVLO  
TVCC  
4.2  
2
4.4  
4
4.6  
8
V
ms  
EXTVCC: Sweep up  
RVCC  
1.0  
2.0  
[Under voltage lock out block for DC/DC]  
REG1 threshold voltage  
REG2 threshold voltage  
Hysteresis voltage  
REG1_UVLO  
4.0  
2.45  
50  
4.2  
2.65  
100  
4.4  
2.85  
200  
V
V
REG1: Sweep up  
REG2: Sweep up  
REG2_UVLO  
dV_UVLO  
mV REG1, REG2: Sweep down  
[Error amplifier block]  
REF1×2  
-25m  
20  
REF1×2  
+25m  
90  
Feedback voltage 1  
VFB1  
REF1×2  
V
FB1 bias current  
IFB1  
45  
1
μA FB1=5V  
kΩ  
Output discharge resistance 1  
RDISOUT1  
0.5  
REF2×2  
-25m  
3
REF2×2  
+25m  
60  
Feedback voltage 2  
VFB2  
REF2×2  
V
FB2 bias current  
IFB2  
10  
30  
1
μA FB2=3.3V  
Output discharge resistance 2  
REF1, REF2 bias current  
RDISOUT2  
IREF1, IREF2  
0.5  
-10  
3
kΩ  
μA  
-
10  
www.rohm.com  
2010.03 - Rev.C  
2/20  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD9524MUV  
Electrical characteristics  
-
Continued  
(unless otherwise noted, Ta=25VIN=12V, CTL=5V, EN1=EN2=5V, REF1=2.5V, REF2=1.65V, FS1=FS2=0.582V)  
Standard Value  
TYP.  
Unit  
Conditions  
Parameter  
[H3RegTM block]  
Symbol  
MIN.  
MAX.  
On Time 1  
TON1  
TON2  
0.810  
0.520  
3.5  
0.960  
0.670  
7
1.110  
0.820  
14  
μs REF=2.5V  
On Time 2  
μs REF=1.65V  
Maximum On Time  
TONMAX  
TOFFMIN  
IFS  
μs  
μs  
μA  
Minimum Off Time  
-
0.2  
0
0.4  
FS1, FS2 bias current  
[FET driver block]  
-10  
10  
HG higher side ON resistor  
HG lower side ON resistor  
LG higher side ON resistor  
LG lower side ON resistor  
[Over Voltage Protection block]  
HGHON  
HGLON  
LGHON  
LGLON  
-
-
-
-
3.0  
2.0  
2.0  
0.5  
6.0  
4.0  
4.0  
1.0  
REF×2  
×1.15  
REF×2  
×1.175  
REF×2  
×1.20  
Latch Type OVP Threshold voltage  
VLOVP  
TLOVP  
V
Latch Type OVP delay time  
50  
150  
300  
μs  
[Short circuit protection block]  
REF×2× REF×2  
REF×2  
×0.74  
2
SCP Threshold voltage  
VSCP  
TSCP  
V
0.66  
×0.7  
Delay time  
0.5  
1
ms  
[Current limit protection block]  
Maximum offset voltage  
Is+1 bias current  
dVSMAX  
IISP1  
50  
-
65  
2.5  
2.5  
80  
10  
10  
mV  
μA  
μA  
Is+2 bias current  
IISP2  
-
[Power good block]  
REF×2  
×0.87  
REF×2  
×1.07  
-
REF×2  
×0.90  
REF×2  
×1.10  
0.1  
REF×2  
×0.93  
REF×2  
×1.13  
0.2  
Power good low threshold  
Power good high threshold  
VPGTHL  
VPGTHH  
V
V
Power good low voltage  
Power good leakage current  
[Soft Start block]  
VPGL  
V
IPGOOD=1mA  
ILEAKPG  
-2  
0
2
μA VPGOOD=5V  
Charge current  
ISS  
1.8  
-
2.5  
-
3.2  
50  
μA  
Standby voltage  
VSS_STB  
mV  
[SLLM mode control block]  
MCTL terminal voltage 1  
VCONT  
VQLLM  
-0.3  
1.5  
-
-
0.3  
3.0  
V
V
Continuous mode  
QL2M mode  
MCTL terminal voltage 2  
(Maximum LG off time : 50μs)  
SL2M mode  
MCTL terminal voltage 3  
MCTL float level  
VSLLM  
VMCTL  
4.5  
1.5  
-
-
REG1+0.3  
3.0  
V
V
(Maximum LG off time : )  
Output condition table  
Input  
Output  
CTL  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
EN1  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
EN2  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
REG1(5V)  
OFF  
OFF  
OFF  
OFF  
ON  
REG2(3.3V)  
OFF  
OFF  
OFF  
OFF  
ON  
DC/DC1  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
DC/DC2  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
ON  
ON  
ON  
www.rohm.com  
2010.03 - Rev.C  
3/20  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD9524MUV  
Block Diagram, Application circuit  
2
24  
3
1
31  
32  
26  
25  
22  
23  
REG1  
REG1  
AGND  
13  
7
DGND  
FS1  
CL2  
SCP2  
CL1  
SCP1  
Overlap  
Protection  
Circuit  
Overlap  
Protection  
Circuit  
FS2  
11  
14  
MCTL2  
FS2  
SL2MTM  
Block  
SL2MTM  
Block  
MCTL1  
FS1  
H3RegTM  
Controller  
Block  
H3RegTM  
Controller  
Block  
EN1  
EN2  
FB1  
FB2  
10  
15  
REF1  
REF2  
17  
REG2  
REG2  
8
Thermal  
Protection  
5
20  
PGOOD2  
REG2  
REG2  
PGOOD1  
Is+1  
5V  
Reg  
3.3V  
Reg  
Is+2  
16  
9
VIN  
Reference  
Block  
EN1  
21  
EN2  
4
6
18  
12  
27  
30  
29  
28  
19  
*Apply the supply voltage EXTVCC pin after REG1 pin is operated.  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.C  
4/20  
Technical Note  
BD9524MUV  
Pin Configuration  
24 23 22 21  
17  
20 19 18  
PGND1  
LG1  
Is+1  
FB1  
25  
26  
27  
28  
29  
16  
15  
14  
13  
EXTVCC  
REG2  
FS1  
AGND  
FIN  
REG1  
12 MCTL  
VIN 30  
11  
10  
9
FS2  
LG2  
31  
32  
FB2  
Is+2  
PGND2  
1
2
3
4
5
6
7
8
Pin Function Table  
PIN No.  
1
PIN name  
SW2  
PIN Function  
Highside FET source pin 2  
Highside FET gate drive pin 2  
HG Driver power supply pin 2  
2
HG2  
3
BOOT2  
EN2  
4
Vo2 ON/OFF pin (High=ON, Low=OFF)  
Vo2 Power Good Open Drain Output pin  
Vo2 soft start pin  
5
PGOOD2  
SS2  
6
7
DGND  
REF2  
Is+2  
Ground  
8
Vo2 output voltage setting pin  
Current sense pin +2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Reverse  
FB2  
Vo2 output voltage sense pin, current sense pin -2  
Input pin for setting Vo2 frequency  
FS2  
MCTL  
AGND  
FS1  
Mode shift pin (Low=continuous, Middle=QLLM, High=SLLM)  
Input pin Ground  
Input pin for setting Vo1 frequency  
Vo2 output voltage sense pin, current sense pin -1  
Current sense pin +1  
FB1  
Is+1  
REF1  
CTL  
Vo1 output voltage setting pin  
Linear regulator ON/OFF pin (High=ON, Low=OFF)  
Vo1 soft start pin  
SS1  
PGOOD1  
EN1  
Vo1 Power Good Open Drain Output pin  
Vo1 ON/OFF pin (High=ON, Low=OFF)  
HG Driver power supply pin 1  
Highside FET gate drive pin 1  
Highside FET source pin 1  
BOOT1  
HG1  
SW1  
PGND1  
LG1  
Lowside FET source pin 1  
Lowside FET gate drive pin 1  
Outside power supply input pin  
3.3V linear regulator output pin  
5V linear regulator output pin  
Power supply input pin  
EXTVCC  
REG2  
REG1  
VIN  
LG2  
Lowside FET gate drive pin 2  
Lowside FET source pin 2  
PGND2  
FIN  
Exposed Pad, Connect to GND  
www.rohm.com  
2010.03 - Rev.C  
5/20  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD9524MUV  
Reference data  
EN  
EN  
5V/div  
5V/div  
CTL  
PGOOD  
5V/div  
PGOOD  
5V/div  
10V/div  
REG1  
2V/div  
SS  
1V/div  
Vo  
SS  
1V/div  
Vo  
REG2  
2V/div  
2V/div  
2V/div  
Fig.1 wake up (Vo=5.0V)  
Fig.2 wake up (Vo=3.3V)  
Fig.3 wake up (REG1, REG2)  
Vo  
Vo  
Vo  
20mV/div  
20mV/div  
20mV/div  
IL  
IL  
IL  
2A/div  
2A/div  
2A/div  
SW  
5V/div  
LG  
SW  
5V/div  
LG  
SW  
5V/div  
LG  
5V/div  
5V/div  
5V/div  
Fig.4 CONT Mode (Io=0A)  
Fig.5 CONT Mode (Io=0.4A)  
Fig.6 CONT Mode (Io=1.4A)  
Vo  
Vo  
Vo  
20mV/div  
20mV/div  
20mV/div  
IL  
IL  
IL  
2A/div  
2A/div  
2A/div  
SW  
5V/div  
LG  
SW  
5V/div  
LG  
SW  
5V/div  
LG  
5V/div  
5V/div  
5V/div  
Fig.7 QLLM (Io=0A)  
Fig.8 QLLM (Io=0.4A)  
Fig.9 QLLM (Io=1.4A)  
Vo  
Vo  
Vo  
20mV/div  
20mV/div  
20mV/div  
IL  
IL  
IL  
2A/div  
2A/div  
2A/div  
SW  
5V/div  
LG  
SW  
5V/div  
LG  
SW  
5V/div  
LG  
5V/div  
5V/div  
5V/div  
Fig.10 SLLM (Io=0A)  
Fig.11 SLLM (Io=0.4A)  
Fig.12 SLLM (Io=1.4A)  
www.rohm.com  
2010.03 - Rev.C  
6/20  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD9524MUV  
Reference data  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
CONT Mode (VIN=19)  
CONT Mode (VIN=12)  
CONT Mode (VIN=7)  
1.5  
1200  
1000  
800  
600  
400  
200  
0
VIN=12V, Vo=5.0V  
1.0  
0.5  
0.0  
QLLM,SLLM (VIN=19)  
QLLM,SLLM (VIN=12)  
QLLM,SLLM (VIN=7)  
Vo=5.0V  
Vo=3.3V  
QLLM  
(VIN=7, 12, 19V)  
CONT Mode (5.0V)  
CONT Mode (3.3V)  
QLLM, SLLM (3.3V)  
QLLM, SLLM (3.3V)  
SLLM  
0
0.00  
0.40  
0.80  
FS[V]  
1.20  
1.60  
0.001  
0.01  
0.1  
Io [A]  
1
10  
0.00  
0.40  
0.80  
FS[V]  
1.20  
1.60  
Fig.15 Io-frequency (Vo1=5.0V)  
Fig.13 FS-ON TIME  
Fig.14 FS-frequency  
100  
10  
1
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SLLM  
CONT Mode  
QLLM  
QLLM  
CONT Mode  
SLLM  
0.1  
7
10  
13  
16  
VIN [V]  
19  
22  
25  
1
10  
100  
Io [mA]  
1000  
10000  
Fig.16 Io-efficiency (VIN=12V, Vo1=5.0V)  
Fig.17 VIN-IVIN (Io=0A, Vo1=5.0V)  
www.rohm.com  
2010.03 - Rev.C  
7/20  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD9524MUV  
Pin Descriptions  
VIN  
This is the main power supply pin. The input supply voltage range is 7V to 25V. The duty cycle of BD9524MUV is determined by  
input voltage and control output voltage. Therefore, when VIN voltage fluctuated, the output voltage also becomes unstable.  
Since VIN line is also the input voltage of switching regulator, stability depends on the impedance of the voltage supply. It is  
recommended to establish bypass capacitor and CR filter suitable for the actual application.  
CTL  
When CTL pin voltage is at least 2.3V the status of the linear regulator output becomes active (REG1=5V, REG2=3.3V).  
Conversely, the status switches off when CTL pin voltage goes lower than 0.8V. The switching regulator doesn’t become active  
when the status of CTL pin is low, if the status of EN pin is high.  
EN  
When EN pin voltage is at least 2.3V, the status of the switching regulator becomes active. Conversely, the status switches off  
when EN pin voltage goes lower than 0.8V.  
REG1  
This is the output pin for 5V linear regulator and also active in power supply for driver and control circuit of the inside. The  
standby function for REG1 is determined by CTL pin. The voltage is 5V, with 100mA current ability. It is recommended that a  
10uF capacitor (X5R or X7R) be established between REG1 and GND.  
REG2  
This is the output pin for 3.3V linear regulator. The standby function for REG2 is determined by CTL. The voltage is 3.3V, with  
100mA current ability. It is recommended that a 10uF capacitor (X5R or X7R) be established between REG2 and GND. It is  
available to set REF and SS by the resistance division value from REG2 in case REF are not set from an external power supply.  
EXTVCC  
This is the external input pin to REG1. When EXTVCC is beyond 4.4V, it supplies REG1 as EXTVCC is the power supply.  
REF  
This is the setting pin for output voltage of switching regulator. It is so convenient to be synchronized to outside power supply.  
This IC controls the voltage in the status of 2×REFFB.  
FB  
This is the feedback pin from the output of switching regulator. This IC controls the voltage in the status of 2×REFFB.  
SS  
This is the setting pin for soft start. The rising time is determined by the capacitor connected between SS and GND, and the fixed  
current inside IC after it is the status of low in standby mode. It controls the output voltage till SS voltage catch up the REF pin to  
become the double of the SS terminal voltage.  
FS  
This is the input pin for setting the frequency. It is available to set it in frequency range is 200KHz to 500kHz.  
Is+  
This is the sense pin for output current. In case it is connected to side of the coil resistance for sense current and the voltage is  
set 65mV(typ) or more higher than FB pin voltage, the switching operation turns OFF.  
PGOOD  
This is the open drain pin for deciding the output of switching regulator.  
MCTL  
This is the switching shift pin for SLLM (Simple Light Load Mode). The efficiency in SLLM mode improves in setting MCTL pin to  
1.5V or more. In case MCTL terminal voltage range is from 1.5 to 3.0V, LG maximum OFF time is 40usec, from 4.5V to  
REG1+0.3V, LG maximum OFF time is to infinity. It is in continuous mode that MCTL pin voltage is set 0.3V or less.  
AGND,DGND  
This is the ground pin.  
BOOT  
This is the power supply pin for high side FET driver. The maximum voltage range to GND pin is to 35V, to SW pin is to 7V. In  
switching operations, the voltage swings from (VIN+REG1) to REG1 by BOOT pin operation.  
HG  
This is the highside FET gate drive pin. It is operated in switching between BOOT to SW. In case the output MOS is 3ohm /the  
status of Hi, 2ohm/the status of Low, it is operated hi-side FET gate in high speed.  
SW  
This is the ground pin for high side FET drive. The maximum voltage range to GND pin is to 30V. Switching operation swings  
from the status of BOOT to the status of GND.  
LG  
This is the lowside FET gate drive pin. It is operated in switching between REG1 to PGND. In case the output MOS is 2ohm /the  
status of Hi, 0.5ohm/the status of Low, it is operated low-side FET gate in high speed.  
PGND  
This is the ground pin for low side FET drive.  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.C  
8/20  
Technical Note  
BD9524MUV  
Explanation of Operation  
The BD9524MUV is a 2ch synchronous buck regulator controller incorporating ROHM’s proprietary H3RegTM CONTROLLA  
control system. When VOUT drops due to a rapid load change, the system quickly restores VOUT by extending the TON  
time interval. Thus, it serves to improve the regulator’s transient response. Activating the Light Load Mode will also exercise  
Simple Light Load Mode (SLLM) control when the load is light, to further increase efficiency.  
H3RegTM control  
(Normal operation)  
When VOUT falls to a reference voltage (2×REF), the drop  
VOUT  
is detected, activating the H3RegTM CONTROLLA system.  
2×REF  
2×REF  
1
f
tON=  
×
[sec]・・・(1)  
HG  
LG  
VIN  
HG output is determined by the formula above.  
(VOUT drops due to a rapid load change)  
VOUT  
When VOUT drops due to a rapid load change, and the  
voltage remains below reference voltage after the  
programmed tON time interval has elapsed, the system  
quickly restores VOUT by extending the tON time, improving  
the transient response.  
Io  
tON+α  
HG  
LG  
Light Load Control  
(SLLM)  
VOUT  
In SLLM (MCTL=”High voltage”), when the status of LG is  
OFF and the coil current is within 0A (it flows to SW from  
VOUT.), SLLM function is operated to prevent output next  
HG. The status of HG is ON, when VOUT falls below  
reference voltage again.  
2×REF  
HG  
LG  
0A  
(QLLM)  
VOUT  
In QLLM (MCTL=”Hiz or Middle voltage”), when the status  
of LG is OFF and the coil current is within 0A (it flows to  
SW from VOUT.), QLLM function is operated to prevent  
output next HG.  
2×REF  
HG  
Then, VOUT falls below the output programmed voltage  
within the programmed time (typ=40μs), the status of HG  
is ON. In case VOUT doesn’t fall in the programmed time,  
the status of LG is ON forcedly and VOUT falls. As a result,  
he status of next HG is ON.  
LG  
0A  
*Attention: H3RegTM CONTROLLA monitors the supplying current  
from capacitor to load, using the ESR of output capacitor,  
and realize the rapid response. Bypass capacitor used at  
each load (Ex. Ceramic capacitor) exercise the effect  
with connecting to each load side. Do not put a ceramic  
capacitor on COUT side of power supply.  
COUT  
Load  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.C  
9/20  
Technical Note  
BD9524MUV  
Timing Chart  
• Soft Start Function  
Soft start is exercised with the EN pin set high. Current  
control takes effect at startup, enabling a moderate output  
voltage “ramping start.” Soft start timing and incoming  
current are calculated with formulas (2) and (3) below.  
EN  
TSS  
Soft start time  
SS  
VOUT  
IIN  
REF×Css  
・・・(2)  
Tss=  
[sec]  
[A]  
2μA(typ)  
Incoming current  
Co×VOUT  
・・・(3)  
IIN=  
Tss  
(Css: Soft start capacitor; Co: Output capacitor)  
Timer Latch Type Short Circuit Protection  
REF
×
1.4  
Short protection kicks in when output falls to or below  
REF × 1.4 (setting voltage × 0.7).  
VOUT  
When the programmed time period elapses, output is  
latched OFF to prevent destruction of the IC. Output  
voltage can be restored either by reconnecting the EN pin  
or disabling UVLO.  
SCP  
EN / UVLO  
Over Voltage Protection  
150μs(typ)  
150μs(typ)  
When output rise to or above REF×2.35  
or less  
or more  
(output setting voltage ×1.175), output over voltage  
protection is exercised, and low side FET goes up  
maximum for reducing output. LG=High, HG=Low. When  
output falls within the programmed time (typ=150μs), it  
returns to the standard mode. When the programmed time  
period elapses, output is latched OFF to prevent  
destruction of the IC. Output voltage can be restored either  
by reconnecting the EN pin or disabling UVLO.  
REF×2.35  
VOUT  
150μs(typ)  
Latch  
OVP  
EN / UVLO  
Over current protection circuit  
During the normal operation, when VOUT becomes less  
than reference voltage, HG becomes High during the  
time tON . However, when inductor current exceeds  
ILIMIT threshold, HG becomes OFF.  
After 2.5μsec(typ), HG becomes ON again if the output  
voltage is lower than the specific voltage level and IL is  
lower than ILIMIT level.  
tON  
tON  
tON  
2.5usec  
HG  
LG  
ILIMIT  
IL  
Vo  
2×REF  
increase Io  
www.rohm.com  
2010.03 - Rev.C  
10/20  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD9524MUV  
External Component Selection  
1. Inductor (L) selection  
The inductor value is a major influence on the output ripple  
current. As formula (4) below indicates, the greater the inductor or  
the switching frequency, the lower the ripple current.  
(VIN-VOUT)×VOUT  
ΔIL  
[A]・・・(4)  
VIN  
ΔIL=  
L×VIN×f  
The proper output ripple current setting is about 30% of maximum  
output current.  
IL  
L
ΔIL=0.3×IOUTmax. [A]・・・(5)  
VOUT  
(VIN-VOUT)×VOUT  
[H]・・・(6)  
L=  
Co  
ΔIL×VIN×f  
(ΔIL: output ripple current; f: switch frequency)  
Output ripple current  
Passing a current larger than the inductor’s rated current will cause magnetic saturation in the inductor and decrease  
system efficiency. In selecting the inductor, be sure to allow enough margin to assure that peak current does not exceed  
the inductor rated current value.  
To minimize possible inductor damage and maximize efficiency, choose a inductor with a low (DCR, ACR) resistance.  
2.Output Capacitor (CO) Selection  
VIN  
When determining the proper output capacitor, be sure to factor in the equivalent  
series resistance required to smooth out ripple volume and maintain a stable  
output voltage range.  
VOUT  
Output ripple voltage is determined as in formula (7) below.  
L
ΔVOUT=ΔIL×ESR [V]・・・(7)  
ESR  
Co  
Load  
(ΔIL: Output ripple current; ESR: CO equivalent series resistance)  
CEXT  
In selecting a capacitor, make sure the capacitor rating allows sufficient  
margin relative to output voltage. Note that a lower ESR can minimize output  
ripple voltage.  
Output Capacitor  
Please give due consideration to the conditions in formula (8) below for output capacity, bear in mind that output rise time  
must be established within the soft start time frame.  
Tss: Soft start time  
Limit: Over current detection 2A(Typ)  
TSS×(Limit-IOUT)  
Co+CEXT≦  
・・・(8)  
VOUT  
Note: Improper capacitor may cause startup malfunctions.  
3. Input Capacitor (Cin) Selection  
The input capacitor selected must have low enough ESR resistance to fully  
support large ripple output, in order to prevent extreme over current. The  
formula for ripple current IRMS is given in (9) below.  
VIN  
Cin  
VOUT  
VIN(VIN-VOUT)  
IRMS=IOUT×  
[A]・・・(9)  
L
VIN  
Co  
IOUT  
2
Where VIN=2×VOUT, IRMS=  
Input Capacitor  
A low ESR capacitor is recommended to reduce ESR loss and maximize efficiency.  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.C  
11/20  
Technical Note  
BD9524MUV  
4. MOSFET Selection  
Loss on the main MOSFET  
Pmain=PRON+PGATE+PTRAN  
VIN  
main switch  
VOUT  
VIN2×Crss×IOUT×f  
2
×RON×IOUT +Ciss×f×VDD+  
=
・・・(10)  
VIN  
IDRIVE  
VOUT  
L
(Ron: On-resistance of FET; Ciss: FET gate capacitance;  
f: Switching frequency Crss: FET inverse transfer function;  
IDRIVE: Gate peak current)  
Co  
synchronous switch  
Loss on the synchronous MOSFET  
Psyn=PRON+PGATE  
VIN-VOUT  
2
・・・(11)  
×RON×IOUT +Ciss×f×VDD  
=
VIN  
5. Setting Detection Resistance (Detect ILIMIT at the peak current)  
(A) High accuracy current detective circuit (use the low resistance)  
VIN  
The over current protection function detects the output ripple  
current peak value. This parameter (setting value) is  
determined as in formula (13) below.  
L
R
VOUT  
65mV(typ)  
IL  
ILMIT=  
[A]・・・(12)  
Co  
R
(R: Detection resistance)  
OCP  
65mV  
Current limit  
(B) Low loss current detective circuit (use the DCR value of inductor)  
VIN  
When the over current protection is detected by DCR of inductor L,  
this parameter (setting value) is determined as in formula (13)  
below.  
IL  
(Application circuit:P18)  
L
r
RL  
C
VOUT  
r×C  
ILMIT=65mV(typ)×  
[A]・・・(13)  
Co  
L
L
)
(RL=  
r×C  
(RL: the DCR value of inductor)  
OCP  
65mV  
Current limit  
(C) Low loss current detective circuit (the DCR value of inductor : high)  
VIN  
65mV(typ)  
ILIMIT=  
[A]・・・(14)  
k×RL  
IL  
L
(1-k)RL kRL  
L
,
R2  
R1+R2  
VOUT  
( k=  
= kR1C )  
RL  
R1  
R2  
C
Co  
(RL: the DCR value of inductor)  
65mV  
Current limit  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.C  
12/20  
Technical Note  
BD9524MUV  
6. Setting standard voltage (REF)  
VIN  
It is available to set the reference voltage (REF)  
with outside supply voltage ×2 [V] by using  
outside power supply voltage.  
H3RegTM  
R
S
Q
REF  
CONTROLLA  
Outside  
voltage  
FB  
R0  
R0  
REG2(3.3V)  
REF  
It is available to set the reference voltage (REF)  
by the resistance division value from REG2 in  
case REF is not set from an external power  
supply.  
VIN  
R1  
R2  
H3RegTM  
R
S
Q
R2  
CONTROLLA  
REF=  
×REG2 [V]・・・(15)  
R1+R2  
FB  
R0  
R0  
7. Setting output voltage  
This IC is operated that output voltage is REF×2FB.  
And it is operated that output voltage is feed back to FB pin.  
VIN  
VIN  
H3RegTM  
SLLM  
Output  
voltage  
R
S
Q
REF  
CONTROLLA  
Driver  
Circuit  
SLLM  
FB  
R0  
R0  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.C  
13/20  
Technical Note  
BD9524MUV  
I/O Equivalent Circuit  
1, 24pin (SW2, SW1)  
BOOT  
2, 23pin (HG2, HG1)  
3, 22pin (BOOT2, BOOT1)  
BOOT  
BOOT  
HG  
HG  
SW  
SW  
4, 21pin (EN2, EN1)  
5, 20pin (PGOOD2, PGOOD1)  
9, 16pin (Is+2, Is+1)  
12pin (MCTL)  
6, 19pin (SS2, SS1)  
REG1  
8, 17pin (REF2, REF1)  
10, 15pin (FB2, FB1)  
REG1  
11, 14pin (FS2, FS1)  
18pin (CTL)  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.C  
14/20  
Technical Note  
BD9524MUV  
I/O Equivalent Circuit  
26, 31pin (LG1, LG2)  
27pin (EXTVCC)  
28pin (REG2)  
REG1  
REG1  
REG1  
29pin (REG1)  
30pin (VIN)  
VIN  
Evaluation Board Circuit (Vo1=5V f1=300kHz Vo2=3.3V f2=400kHz)  
REG1  
VIN  
12V  
VIN VIN  
BD9524MUV  
VIN  
R1  
30  
18  
21  
D3  
R50  
C27  
CTL  
VIN  
REG1  
REG1  
C1  
22  
BOOT1  
R2  
C25  
C26  
CTL  
EN1  
C24  
CTL  
EN1  
R49  
R47  
Q2  
23  
24  
EN1  
EN2  
VO1  
HG1  
SW1  
SW1  
R3  
R4  
L1  
R48  
R44  
C21 C22  
C33 C32 C20  
D1  
EN2  
R43  
4
R46  
EN2  
Q1  
26  
25  
LG1  
C23  
R45 C34  
REG1  
TPQ6  
R57  
29  
5V  
REG1  
R10  
C2  
C3  
C4  
PGND1  
Is+1  
R56  
REG2  
3.3V  
Q5  
R40  
28  
27  
REG2  
16  
15  
R55  
EXTVCC  
Vo1  
C19  
R39  
R5  
FB1  
EXTVCC  
REG1  
REG2  
REG2  
R6  
VIN VIN  
R8  
D4  
C17  
R35  
R34  
17  
3
REF1  
BOOT2  
C14  
R7  
R9  
C5  
C6  
C15  
C16  
2
1
Q4  
HG2  
SW2  
VO2  
SW2  
L2  
R33  
R32  
8
REF2  
SS1  
19  
C11 C12 C29 C30 C10  
R30  
Q3  
VIN  
VIN  
REG2  
R29  
D2  
31  
32  
LG2  
R54  
SS2  
6
R28  
C13  
R31 C36  
FS1  
PGND2  
TPQ5  
R63  
R58  
R13  
R16  
C8  
C7  
R15  
14  
FS1  
R25  
Q6  
C18  
9
Is+2  
FB2  
R17  
FS2  
REG2  
R24  
C9  
REG1  
R20  
REG1  
R52  
10  
R12  
PGOOD1  
11  
12  
FS2  
C31  
R14  
R37  
20  
5
MCTL  
PGOOD1  
PGOOD2  
PGOOD2  
MCTL  
DGND  
AGND  
7
R36  
C28  
R21  
13  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.C  
15/20  
Technical Note  
BD9524MUV  
DESIGNATION RATING  
PART No.  
COMPANY  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
-
DESIGNATION  
R58  
R63  
C1  
RATING  
1M  
PART No.  
COMPANY  
R1  
0Ω  
0Ω  
0Ω  
0Ω  
0Ω  
15kΩ  
47kΩ  
30kΩ  
30kΩ  
-
MCR03EZHJ000  
MCR03PZHZF1004  
-
ROHM  
R2  
MCR03EZHJ000  
-
-
R3  
MCR03EZHJ000  
10uF(25V)  
10uF(6.3V)  
10uF(6.3V)  
10uF(6.3V)  
CM32X7R106M25A  
GRM21BB10J106KD  
GRM21BB10J106KD  
GRM21BB10J106KD  
KYOCERA  
R4  
MCR03EZHJ000  
C2  
MURATA  
R5  
MCR03EZHJ000  
C3  
MURATA  
R6  
MCR03PZHZF1502  
C4  
MURATA  
R7  
MCR03PZHZF4702  
C5  
0.01uF(50V) GRM188B11H103KD  
0.01uF(50V) GRM188B11H103KD  
1000pF(50 V) GRM188B11H102KD  
1000pF(50V) GRM188B11H102KD  
MURATA  
R8  
MCR03PZHZF3002  
C6  
MURATA  
R9  
MCR03PZHZF3002  
C7  
MURATA  
R10 *  
R11 *  
R12  
R13  
R14  
R15 *  
R16  
R17  
R18 *  
R19 *  
R20  
R21  
R22 *  
R24  
R25  
R26 *  
R27 *  
R28  
R29  
R30  
R31 *  
R32  
R33  
R34  
R35  
R36  
R37  
R39  
R40  
R41 *  
R42 *  
R43  
R44  
R45 *  
-
C8  
MURATA  
-
-
-
C9  
-
-
-
-
-
-
C10  
C11  
C12  
C13 *  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23 *  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34 *  
C35 *  
C36 *  
C37 *  
D1  
-
-
-
1MΩ  
51kΩ  
-
MCR03PZHZF1004  
ROHM  
ROHM  
-
220uF  
6TPE220MI  
SANYO  
MCR03PZHZF5102  
-
-
-
-
-
-
-
-
-
-
0.47uF(10V) GRM188B11A474KD  
MURATA  
36kΩ  
-
MCR03PZHZF3602  
ROHM  
-
10uF(25V)  
CM32XR7106M25A  
KYOCERA  
-
-
10uF(25V)  
CM32XR7106M25A  
KYOCERA  
-
-
10uF(6.3V)  
GRM21BB10J106KD  
MURATA  
100kMCR03PZHZF1003  
ROHM  
ROHM  
-
-
-
-
0Ω  
-
MCR03EZHJ000  
-
-
-
-
-
-
-
0Ω  
0Ω  
-
MCR03EZHJ000  
MCR03EZHJ000  
-
ROHM  
ROHM  
-
220uF  
6TPE220MI  
SANYO  
-
-
-
-
-
-
-
-
-
0.47uF(10V) GRM188B11A474KD  
MURATA  
0Ω  
0Ω  
0Ω  
-
MCR03EZHJ000  
MCR03EZHJ000  
MCR03EZHJ000  
-
ROHM  
ROHM  
ROHM  
-
10uF(25V)  
CM32XR7106M25A  
KYOCERA  
10uF(25V)  
CM32XR7106M25A  
KYOCERA  
10uF(6.3V)  
GRM21BB10J106KD  
MURATA  
-
-
-
0Ω  
5mΩ  
0Ω  
0Ω  
MCR03EZHJ000  
PMR100HZPFU5L00  
MCR03EZHJ000  
MCR03EZHJ000  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
-
-
-
-
-
-
-
-
-
-
-
-
-
100kMCR03PZHZF1003  
-
-
-
0Ω  
0Ω  
0Ω  
-
MCR03EZHJ000  
-
-
-
MCR03EZHJ000  
-
-
-
MCR03EZHJ000  
-
-
-
-
-
-
-
-
-
-
Diode  
Diode  
Diode  
Diode  
RSX501L-20  
RSX501L-20  
RB520S-30  
ROHM  
ROHM  
ROHM  
ROHM  
0Ω  
0Ω  
-
MCR03EZHJ000  
MCR03EZHJ000  
-
ROHM  
ROHM  
-
D2  
D3  
D4  
RB520S-30  
CDEP105NP-2R5MC-  
R46  
R47  
0Ω  
0Ω  
MCR03EZHJ000  
MCR03EZHJ000  
ROHM  
ROHM  
L1  
L2  
2.5uH  
2.5uH  
Sumida  
Sumida  
32  
CDEP105NP-2R5MC-  
32  
R48  
R49  
R50  
R52  
R54  
R55  
R56  
R57  
5mΩ  
PMR100HZPFU5L00  
ROHM  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
U1  
FET  
FET  
FET  
FET  
-
uPA2702  
NEC  
NEC  
NEC  
NEC  
-
0Ω  
MCR03EZHJ000  
ROHM  
uPA2702  
0Ω  
MCR03EZHJ000  
ROHM  
uPA2702  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
uPA2702  
-
-
-
-
-
BD9524MUV  
ROHM  
* Patterns for over current detection used DCR.  
www.rohm.com  
2010.03 - Rev.C  
16/20  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD9524MUV  
Handling method of unused pin during using only 1ch DC/DC.  
If using only 1ch DC/DC and 2ch pin is set to be off at all times, please manage the unused pin as diagram below.  
PIN No,  
PIN Name  
Management  
1
2
SW2  
GND  
HG2  
OPEN  
GND  
3
BOOT2  
EN2  
4
GND  
5
PGOOD2  
SS2  
GND  
6
GND  
8
REF2  
Is+2  
GND  
9
GND  
10  
11  
31  
FB2  
GND  
FS2  
GND  
LG2  
OPEN  
REG1  
VIN  
12V  
VIN VIN  
BD9524MUV  
R1  
30  
D3  
R50  
VO1  
VIN  
C27  
VIN  
CTL  
C1  
22  
BOOT1  
C25  
C26  
R2  
CTL  
18  
C24  
CTL  
R49  
R47  
Q2  
23  
24  
REG1  
EN1  
EN1  
R51  
R60  
VO1  
HG1  
SW1  
SW1  
R3  
L1  
R48  
R44  
21  
EN1  
C21 C22  
C33 C32 C20  
D1  
R43  
4
R46  
EN2  
Q1  
26  
25  
LG1  
C23  
R10  
R45 C34  
REG1  
TPQ6  
R57  
29  
5V  
REG1  
C2  
C3  
C4  
PGND1  
Is+1  
R56  
REG2  
3.3V  
Q5  
R40  
28  
REG2  
16  
15  
R55  
EXTVCC  
Vo1  
C19  
R39  
R5  
27  
FB1  
EXTVCC  
REG2  
R6  
17  
3
REF1  
BOOT2  
R7  
C5  
2
1
HG2  
SW2  
8
REF2  
19  
SS1  
VIN  
REG2  
31  
32  
C7  
LG2  
SS2  
6
FS1  
PGND2  
R58  
R16  
14  
FS1  
C18  
9
Is+2  
FB2  
R17  
10  
REG1  
R20  
PGOOD1  
11  
FS2  
R21  
MCTL  
20  
5
PGOOD1  
PGOOD2  
12  
MCTL  
7
C28  
DGND  
13  
AGND  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.C  
17/20  
Technical Note  
BD9524MUV  
Notes for use  
1. This integrated circuit is a monolithic IC, which (as shown in the figure below), has P isolation in the P substrate and  
between the various pins. A P-N junction is formed from this P layer and N layer of each pin, with the type of junction  
depending on the relation between each potential, as follows:  
When GND> element A> element B, the P-N junction is a diode.  
When element B>GND element A, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, as well as operating malfunctions and physical damage. Therefore, be careful to avoid  
methods by which parasitic diodes operate, such as applying a voltage lower than the GND (P substrate) voltage to an  
input pin.  
Resistor  
Transistor (NPN)  
B
Pin A  
Pin B  
Pin B  
C
E
Pin A  
B
C
E
N
N
N
P+  
P+  
P+  
P+  
N
P
P
Parasitic  
element  
N
N
Parasitic  
element  
P substrate  
P substrate  
GND  
GND  
GND  
GND  
Parasitic element  
Parasitic element  
Other adjacent elements  
2. In some modes of operation, power supply voltage and pin voltage are reversed, giving rise to possible internal circuit  
damage. For example, when the external capacitor is charged, the electric charge can cause a VCC short circuit to the  
GND. In order to avoid these problems, inserting a VCC series countercurrent prevention diode or bypass diode between  
the various pins and the VCC is recommended.  
Bypass diode  
Countercurrent  
VCC  
Pin  
3. Absolute maximum rating  
Although the quality of this IC is rigorously controlled, the IC may be destroyed when applied voltage or operating  
temperature exceeds its absolute maximum rating. Because short mode or open mode cannot be specified when the IC is  
destroyed, it is important to take physical safety measures such as fusing if a special mode in excess of absolute rating  
limits is to be implemented.  
4.GND potential  
Make sure the potential for the GND pin is always kept lower than the potentials of all other pins, regardless of the  
operating mode.  
5. Thermal design  
In order to build sufficient margin into the thermal design, give proper consideration to the allowable loss (Power  
Dissipation) in actual operation.  
6. Short-circuits between pins and incorrect mounting position  
When mounting the IC onto the circuit board, be extremely careful about the orientation and position of the IC. The IC may  
be destroyed if it is incorrectly positioned for mounting. Do not short-circuit between any output pin and supply pin or  
ground, or between the output pins themselves. Accidental attachment of small objects on these pins will cause shorts and  
may damage the IC.  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.C  
18/20  
Technical Note  
BD9524MUV  
7. Operation in strong electromagnetic fields  
Use in strong electromagnetic fields may cause malfunctions. Use extreme caution with electromagnetic fields.  
8. Thermal shutdown circuit  
This IC is provided with a built-in thermal shutdown (TSD) circuit, which is activated when the operating temperature  
reaches 175(standard value), and has a hysteresis range of 15(standard). When the IC chip temperature rises to  
the threshold, all the inputs automatically turn OFF. Note that the TSD circuit is provided for the exclusive purpose shutting  
down the IC in the presence of extreme heat, and is not designed to protect the IC per se or guarantee performance when  
or after extreme heat conditions occur. Therefore, do not operate the IC with the expectation of continued use or  
subsequent operation once the TSD is activated.  
9. Capacitor between output and GND  
When a larger capacitor is connected between the output and GND, Vcc or VIN shorted with the GND or 0V line – for any  
reason – may cause the charged capacitor current to flow to the output, possibly destroying the IC. Do not connect a  
capacitor larger than 1000uF between the output and GND.  
10. Precautions for board inspection  
Connecting low-impedance capacitors to run inspections with the board may produce stress on the IC. Therefore, be  
certain to use proper discharge procedure before each process of the operation. To prevent electrostatic accumulation and  
discharge in the assembly process, thoroughly ground yourself and any equipment that could sustain ESD damage, and  
continue observing ESD-prevention procedures in all handling, transfer and storage operations. Before attempting to  
connect components to the test setup, make certain that the power supply is OFF. Likewise, be sure the power supply is  
OFF before removing any component connected to the test setup.  
11. GND wiring pattern  
When both a small-signal GND and high current GND are present, single-point grounding (at the set standard point) is  
recommended, in order to separate the small-signal and high current patterns, and to be sure the voltage change  
stemming from the wiring resistance and high current does not cause any voltage change in the small-signal GND. In the  
same way, care must be taken to avoid wiring pattern fluctuations in any connected external component GND.  
Power Dissipation  
[mW]  
1000  
70mm×70mm×1.6mm Glass-epoxy PCB  
θj-a=142.0/W  
880mW  
800  
600  
With no heat sink θj-a=328.9/W  
400  
200  
380mW  
0
25  
50  
75  
100  
125  
150 []  
Ambient Temperature [Ta]  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.C  
19/20  
Technical Note  
BD9524MUV  
Ordering part number  
B
D
9
5
2
4
M U V  
-
E
2
Part No.  
Part No.  
Package  
Packaging and forming specification  
MUV : VQFN032V5050 E2: Embossed tape and reel  
VQFN032V5050  
<Tape and Reel information>  
5.0 0.1  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
1PIN MARK  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
S
(
)
0.08  
S
3.4 0.1  
C0.2  
1
8
9
32  
16  
25  
24  
17  
0.75  
Direction of feed  
1pin  
+0.05  
0.04  
0.25  
0.5  
-
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.C  
20/20  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
R1010  
A

相关型号:

BD9526AMUV

Silicon Monolithic Integrated Circuit
ROHM

BD9528AMUV

High Performance Regulators for PCs Main Power Supply for Notebook PCs(With Built-in Linear Regulator)
ROHM

BD9528MUV

Main Power Supply ICs for Note PC(Linear Regulator Integrated)
ROHM

BD9528MUV-E2

Main Power Supply ICs for Note PC(Linear Regulator Integrated)
ROHM

BD952F

isc Silicon PNP Power Transistor
ISC

BD953

NPN PLASTIC POWER TRANSISTORS
CDIL

BD953

Silicon NPN Power Transistors
ISC

BD953

Silicon NPN Power Transistors
SAVANTIC

BD9532EKN

Step down DC/DC converter Controller for NOTE PC
ROHM

BD9532EKN-E1

Switching Regulator/Controller, Voltage-mode, 600kHz Switching Freq-Max, PQCC20
ROHM

BD9532EKN_08

Switching Regulators for DDR-SDRAM Cores
ROHM

BD9533EKN

Step down DC/DC converter Controller for NOTE PC
ROHM