BD9526AMUV [ROHM]

Silicon Monolithic Integrated Circuit; 硅单片集成电路
BD9526AMUV
型号: BD9526AMUV
厂家: ROHM    ROHM
描述:

Silicon Monolithic Integrated Circuit
硅单片集成电路

文件: 总5页 (文件大小:124K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1/4  
STRUCTURE  
TYPE  
Silicon Monolithic Integrated Circuit  
Step down DC/DC converter controller for Laptop PC  
PRODUCT SERIES  
FEATURES  
BD9526AMUV  
Built in 2ch H3REG DC/DC converter controller  
The Light load mode efficiency is improved by SLLM (Simple Light Load Mode)  
Adjustable Switching Frequency (f=200kHz~500kHz)  
Built in 3ch Linear Regulator  
Absolute Maximum ratings (Ta=25)  
Parameter  
Symbol  
VIN1, VIN2, CTL  
Limits  
30 *1*2  
Unit  
V
EXTVCC, FB1, FB2, Is+1, Is+2, MCTL  
FS1, FS2, REF1, REF2, LG1,LG2,TEST1,TEST2  
BOOT1, BOOT2  
7 *1*2  
V
INTVCC+0.3 *1*2  
35 *1*2  
V
V
Terminal voltage  
BOOT1-SW1, BOOT2-SW2, HG1-SW1, HG2-SW2  
7 *1*2  
V
HG1  
BOOT1+0.3 *1*2  
BOOT2+0.3 *1*2  
6 *1*2  
V
HG2  
V
EN1, EN2  
V
AGND±0.3 *1*2  
0.38*3  
DGND, PGND1, PGND2  
V
Power dissipation 1  
Pd1  
Pd2  
W
W
W
W
Power dissipation 2  
0.88 *4  
Power dissipation 3  
Pd3  
2.06 *5  
Power dissipation 4  
Pd4  
4.56 *6  
-10+100  
-55+150  
+150  
Operating temperature range  
Storage temperature range  
Topr  
Tstg  
Tjmax  
Junction Temperature  
*1 Do not however exceed Pd.  
*2 Instantaneous surge voltage, back electromotive force and voltage under less than 10% duty cycle.  
*3 Reduced by 3.0mW for each increase in Ta of 1over 25(when don’t mounted on a heat radiation board )  
*4 Reduced by 7.0mW for increase in Ta of 1over 25. (when mounted on a board 70.0mm×70mm×1.6mm Glass-epoxy PCB  
which has 1 layer. (Copper foil area : 0mm2))  
*5 Reduced by 16.5mW for increase in Ta of 1over 25. (when mounted on a board 70.0mm×70mm×1.6mm Glass-epoxy PCB  
which has 4 layers. (1st and 4th copper foil area : 20.2mm2, 2nd and 3rd copper foil area : 5505mm2))  
*6 Reduced by 36.5mW for increase in Ta of 1over 25. (when mounted on a board 70.0mm×70mm×1.6mm Glass-epoxy PCB  
which has 4 layers. (All copper foil area : 5505mm2))  
Operating supply voltage range (Ta=25)  
Parameter  
Symbol  
MIN.  
7
MAX.  
Unit  
V
VIN1,VIN2  
25  
EXTVCC  
4.5  
-0.3  
-0.3  
4.5  
-0.3  
1
5.5  
V
CTL  
25  
V
EN1, EN2  
BOOT1, BOOT2  
5.5  
30  
V
Terminal voltage  
V
BOOT1-SW1, BOOT2-SW2, HG1-SW1, HG2-SW2  
REF1, REF2  
5.5  
V
2.75  
V
Is+1, Is+ 2, FB1, FB2  
MCTL  
1.9  
-0.3  
5.6  
V
INTVCC+0.3  
V
This product is not designed for protection against radioactive rays.  
Status of this document  
The Japanese version of this document is the official specification.  
This translated version is intended only as a reference, to aid in understanding the official version.  
If there are any differences between the original and translated versions of this document, the official Japanese language version takes priority.  
REV. B  
2/4  
Electrical characteristics (unless otherwise noted, Ta=25VIN1=VIN2=12V, CTL=5V, EN1=EN2=5V, REF1=2.5V, REF2=1.65V, RFS1=RFS2=51kΩ)  
Limit  
Typ.  
130  
Parameter  
Symbol  
Unit  
Condition  
Min.  
-
Max.  
200  
μA  
μA  
VIN1 Bias Current  
IIN1  
CTL=5V  
VIN2 Bias Current 1  
VIN2 Bias Current 2  
VIN1 Shutdown Current  
IIN2_1  
-
100  
150  
CTL=5V, EN1=EN2=0V  
CTL=5V,  
EN1=EN2=0V,EXTVCC=5V  
μA  
IIN2_2  
-
20  
40  
μA  
μA  
V
V
μA  
ISHD1  
ISHD2  
VCTLL  
VCTLH  
ICTL  
VENL  
VENH  
IEN  
-
-
0
0
-
-
1
-
10  
10  
0.8  
25  
3
0.8  
5.5  
3
CTL=0V  
VIN2 Shutdown Current  
CTL Low Voltage  
CTL High Voltage  
CTL Bias Current  
EN Low Voltage  
CTL=0V  
VCTL=5V  
VEN=3V  
-0.3  
2.3  
-
-0.3  
2.3  
-
V
V
μA  
EN High Voltage  
EN Bias Current  
-
1
[5V Linear Regulator]  
INTVCC output Voltage  
INTVCC Maximum Current  
INTVCC Line regulation  
INTVCC Load regulation  
[3.3V Linear Regulator]  
REG1 Output Voltage  
REG1Maximum Current  
REG1Line regulation  
REG1Load regulation  
REG2 Output Voltage  
REG2Maximum Current  
REG2Line regulation  
REG2Load regulation  
[5V Switch Block]  
VINTVCC  
IINTVCC  
Reg.lINT  
Reg.LINT  
4.90  
200  
-
-
5.00  
5.10  
-
180  
50  
V
IINTVCC1=1mA  
IREG2=0mA  
VIN=7.5 to 25V  
IINTVCC=0 to 30mA  
-
-
-
mA  
mV  
mV  
VREG1  
IREG1  
Reg.l1  
Reg.L1  
VREG2  
IREG2  
Reg.l2  
Reg.L2  
3.27  
100  
-
-
3.27  
100  
-
3.30  
-
-
-
3.33  
-
33  
33  
3.33  
-
V
IREG1=1mA  
mA  
mV  
mV  
V
mA  
mV  
mV  
VIN=7.5 to 25V  
IREG1=0 to 50mA  
IREG2=1mA  
3.30  
-
-
-
20  
30  
VIN=7.5 to 25V  
IREG2=0 to 100mA  
-
EXTVCC Input Threshold Voltage  
EXTVCC Input Delay Time  
Switch Resistance  
Vcc_UVLO  
TVcc  
RVcc  
4.2  
2
-
4.4  
4
1.0  
4.6  
8
2.0  
V
ms  
Ω
EXTVCC: Sweep up  
[Under voltage lock out block for DC/DC]  
INTVCC Threshold Voltage  
REG2 Threshold Voltage  
Hysteresis voltage  
REG1_UVLO  
REG2_UVLO  
dV_UVLO  
4.0  
2.45  
50  
4.2  
2.65  
100  
4.4  
2.85  
200  
V
V
mV  
INTVCC: Sweep up  
REG2: Sweep up  
INTVCC, REG2: Sweep down  
[Error amplifier block]  
REF1×2 -25m  
REF1×2  
REF1×2 +25m  
Feed back voltage 1  
VFB1  
IFB1  
V
μA  
kΩ  
V
FB1 Bias Current  
5
25  
50  
FB1=5V  
Output Discharge Resistance 1  
Feed back voltage 2  
RDISOUT1  
VFB2  
-
1
3
REF2×2 -25m  
REF2×2  
REF2×2 +25m  
μA  
kΩ  
μA  
FB2 Bias Current  
IFB2  
3
-
16  
1
32  
3
FB2=3.3V  
Output Discharge Resistance 2  
REF1, REF2 Bias Current  
[H3REG block]  
RDISOUT2  
IREF1, IREF2  
-1  
-
1
μs  
μs  
μs  
μs  
ON Time 1  
TON1  
TON2  
0.860  
0.570  
3.5  
0.960  
0.670  
7
1.060  
0.770  
14  
REF=2.5V  
ON Time 2  
REF=1.65V  
Maximum On Time  
Minimum Off Time  
[FET Driver block]  
HG higher side ON resistor  
HG lower side ON resistor  
LG higher side ON resistor  
TONMAX  
TOFFMIN  
-
0.2  
0.4  
Ω
Ω
Ω
Ω
HGHON  
HGLON  
LGHON  
LGLON  
-
-
-
-
3.0  
2.0  
2.0  
0.5  
6.0  
4.0  
4.0  
1.0  
LG lower side ON resistor  
[Short circuit protection block]  
SCP Threshold Voltage  
Delay Time  
REF×2×0.66  
REF×2×0.7  
REF×2×0.74  
VSCP  
TSCP  
V
ms  
0.5  
1
2
[Current limit protection block]  
Maximum offset voltage  
Is+1 bias current  
dVSMAX  
IISP1  
43  
-
50  
2.5  
2.5  
57  
10  
10  
mV  
μA  
μA  
Is+1=2V  
Is+2=2V  
Is+2 bias current  
IISP2  
-
[Soft Start block]  
Soft Start Time  
TSS  
0.5  
1.0  
2.0  
ms  
[SLLM mode control block]  
MCTL terminal voltage 1  
VCONT  
VQLLM  
-0.3  
1.5  
-
-
0.3  
3.0  
V
V
Continuous mode  
QL2M mode  
MCTL terminal voltage 2  
(Maximum LG off time : 40usec)  
SL2M mode  
MCTL terminal voltage 3  
MCTL float level  
VSLLM  
VMCTL  
4.5  
1.5  
-
-
INTVCC+0.3  
3.0  
V
V
(Maximum LG off time : )  
REV. B  
3/4  
Physical Dimensions  
5.0 0.1  
D 9 5 2 6 A  
Lot No.  
S
0.08 S  
3.4 0.1  
C0.2  
1
8
9
32  
25  
VQFN032-V5050  
16  
24  
17  
(UNIT : mm)  
+0.05  
-0.04  
0.25  
0.75  
0.5  
Block Diagram, Application Circuit  
Pin Description  
PIN No.  
1
PIN Name  
LG2  
PGND2  
SW2  
2
3
4
HG2  
5
BOOT2  
TEST2  
DGND  
REF2  
Is+2  
6
7
8
20  
21  
22  
24  
23  
5
4
3
1
2
INT  
VCC  
INT  
VCC  
9
AGND  
DGND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
-
FB2  
13  
7
CL2  
SCP2  
CL1  
SCP1  
Short through  
Protection  
Circuit  
Short through  
Protection  
Circuit  
FS2  
MCTL  
AGND  
FS1  
FS2  
FS1  
SLLMTM  
Block  
SLLMTM  
Block  
MCTL2  
FS2  
MCTL1  
11  
14  
RFS2  
RFS1  
H3RegTM  
Controller  
Block  
FB1  
H3RegTM  
Controller  
Block  
FS1  
Is+1  
REF1  
CTL  
EN2  
TEST2  
(Vo2±5%)  
EN1  
TEST1  
(Vo1±5%)  
TEST1  
BOOT1  
HG1  
FB2  
FB1  
Thermal  
Protection  
10  
8
15  
17  
REF1  
REF2  
SW1  
REG2  
Is+1  
REG2  
PGND1  
LG1  
5V  
Reg  
3.3V  
Reg  
VIN2  
16  
9
VIN1  
EN1  
Reference  
Block  
REG1  
EXTVCC  
REG2  
INTVCC  
EN2  
EN1  
26  
VIN1  
31  
3.3V  
Reg  
32  
12  
18  
27  
28  
30  
6
25  
29  
19  
VIN2  
FIN  
Apply the supply voltage EXTVCC pin after INTVCC pin is operated.  
REV. B  
4/4  
Output condition table  
Input  
Output  
INTVCC  
OFF  
OFF  
OFF  
OFF  
ON  
CTL  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
EN1  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
EN2  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
REG1(3.3V)  
OFF  
OFF  
OFF  
OFF  
ON  
REG2(3.3V)  
OFF  
OFF  
OFF  
OFF  
ON  
DC/DC1  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
DC/DC2  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
ON  
ON  
ON  
ON  
NOTE FOR USE  
(1) Absolute maximum rating  
The device may be destroyed when applied voltage or operating temperature exceeds its absolute maximum rating. Because the  
source, such as short mode or open mode, cannot be identified if the device is destroyed, it is important to take physical safety  
measures (such as fusing) if a special mode in excess of absolute rating limits is to be implemented.  
(2) Supply line  
In case the motor’s reverse electromotive force gives rise to the return of regenerative current, measures should be taken to  
establish a channel for the current, such as adding a capacitor between the power supply and GND. In determining the  
approach to take, make sure that no problems will be posed by the various characteristics involved, such as capacitance loss at  
low temperatures with an electrolytic capacitor.  
(3) GND potential  
Make sure the potential for the GND pin is always kept lower than the potentials of all other pins, regardless of the operating  
mode.  
(4) Thermal design  
Be sure to factor in allowable power dissipation (Pd) in actual operation, and to build sufficient margin into the thermal design to  
accommodate this power loss.  
(5) Operation in strong magnetic fields  
Use in strong electromagnetic fields may cause malfunctions. Exercise caution with respect to electromagnetic fields.  
(6) ASO  
Set the parameters so that output Tr will not exceed the absolute maximum rating or ASO value when the IC is used.  
(7) Thermal shutdown circuit  
This IC is provided with a built-in thermal shutdown (TSD) circuit, which is activated when the chip temperature reaches the  
threshold value listed below. When TSD is on, the device goes to high impedance mode. Note that the TSD circuit is provided  
for the exclusive purpose shutting down the IC in the presence of extreme heat, and is not designed to protect the IC per se or  
guarantee performance when or after extreme heat conditions occur. Therefore, do not operate the IC with the expectation of  
continued use or subsequent operation once the TSD is activated.  
TSD ON temperature [] (typ.)  
Hysteresis temperature [] (typ.)  
175  
15  
(8) Ground wiring pattern  
When both a small-signal GND and high current GND are present, single-point grounding (at the set standard point) is  
recommended, in order to separate the small-signal and high current patterns, and to be sure the voltage change stemming from  
the wiring resistance and high current does not cause any voltage change in the small-signal GND. In the same way, care must  
be taken to avoid wiring pattern fluctuations in any connected external component GND.  
(9) Heat sink (FIN)  
Since the heat sink (FIN) is connected with the Sub, short it to the GND.  
(10) For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal powering  
sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width of GND wiring,  
and routing of wiring.  
(11) Short-circuits between pins and and mounting errors  
Do not short-circuit between output pin and supply pin or ground, or between supply pin and ground. Mounting errors, such as  
incorrect positioning or orientation, may destroy the device.  
REV. B  
Appendix  
Notes  
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM  
CO.,LTD.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you  
wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM  
upon request.  
Examples of application circuits, circuit constants and any other information contained herein illustrate the  
standard usage and operations of the Products. The peripheral conditions must be taken into account  
when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document. However, should  
you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no re-  
sponsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and examples  
of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to  
use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no re-  
sponsibility whatsoever for any dispute arising from the use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic equipment  
or devices (such as audio visual equipment, office-automation equipment, communication devices, elec-  
tronic appliances and amusement devices).  
The Products are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or  
malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard against the  
possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as  
derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your  
use of any Product outside of the prescribed scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or system  
which requires an extremely high level of reliability the failure or malfunction of which may result in a direct  
threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment,  
aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear  
no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intend-  
ed to be used for any such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may be controlled under  
the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2009 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix-Rev4.0  

相关型号:

BD9528AMUV

High Performance Regulators for PCs Main Power Supply for Notebook PCs(With Built-in Linear Regulator)
ROHM

BD9528MUV

Main Power Supply ICs for Note PC(Linear Regulator Integrated)
ROHM

BD9528MUV-E2

Main Power Supply ICs for Note PC(Linear Regulator Integrated)
ROHM

BD952F

isc Silicon PNP Power Transistor
ISC

BD953

NPN PLASTIC POWER TRANSISTORS
CDIL

BD953

Silicon NPN Power Transistors
ISC

BD953

Silicon NPN Power Transistors
SAVANTIC

BD9532EKN

Step down DC/DC converter Controller for NOTE PC
ROHM

BD9532EKN-E1

Switching Regulator/Controller, Voltage-mode, 600kHz Switching Freq-Max, PQCC20
ROHM

BD9532EKN_08

Switching Regulators for DDR-SDRAM Cores
ROHM

BD9533EKN

Step down DC/DC converter Controller for NOTE PC
ROHM

BD9533EKN-E2

Switching Controller, Voltage-mode, 600kHz Switching Freq-Max, ROHS COMPLIANT, HQFN-20
ROHM