BD93F10MWV [ROHM]

BD93F10MWV is a full function USB Type-C Power Delivery (PD) Controller that supports USB PD using base-band communication. It is compatible with USB Type-C specification and Power Delivery specification. BD93F10MWV includes support for the PD policy engine and communicates with an Embedded Controller or the SoC via host interface.;
BD93F10MWV
型号: BD93F10MWV
厂家: ROHM    ROHM
描述:

BD93F10MWV is a full function USB Type-C Power Delivery (PD) Controller that supports USB PD using base-band communication. It is compatible with USB Type-C specification and Power Delivery specification. BD93F10MWV includes support for the PD policy engine and communicates with an Embedded Controller or the SoC via host interface.

光电二极管
文件: 总21页 (文件大小:1061K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
USB Type-C Power Delivery  
High Voltage Protection of CC Pins  
USB Type-C Power Delivery Controller  
BD93F10MWV  
General Description  
Key Specifications  
BD93F10MWV is a full function USB Type-C Power  
Delivery (PD) Controller that supports USB PD using  
base-band communication. It is compatible with USB  
Type-C Specification and Power Delivery specification.  
BD93F10MWV includes support for the PD policy engine  
and communicates with an Embedded Controller or the  
SoC via host interface.  
VBUS Voltage Range:  
VSVR Voltage Range:  
Operating Temperature Range: -30 °C to +85 °C  
Protection Voltage of CC Pins: 28 V  
3.67 V to 22 V  
3.1 V to 5.5 V  
FW Revision  
Rev.7525(1D65h)  
Features  
Applications  
32 Bit ARM® Cortex®-M0 Processor Embedded  
USB Type-C Specification Ver.1.3 Compatible  
USB PD Specification Ver.3.0 Compatible  
Integrated VBUS N-ch MOSFET Switch Gate Driver  
Integrated VBUS Discharge Switch  
Printers  
Projectors  
Mobile Batteries  
POS  
Drone  
Protection Voltage of CC Pins is 28 V  
Supports Dead Battery operation  
I2C Interface for Host Communication  
Smart Speaker  
LAN Device  
Set Top Box  
Package  
UQFN040V5050  
W (Typ) x D (Typ) x H (Max)  
5.0 mm x 5.0 mm x 1.0 mm  
Typical Application Circuits  
Q10  
Q11  
Power Source  
Power Sink  
Q20  
Q21  
VBUS  
CS1S  
1.0 μF  
RDSCHG  
CVB  
CS2S  
120 Ω  
10 μF  
1.0 μF  
VSVR  
3.3V / 5.0V  
39  
20  
VCCIN  
VCONNIN  
XCLPOFF1  
CC1  
VDDIO  
9
7
RSDA RSCL  
3.3 kΩ 3.3 kΩ  
(open)  
8
10  
11  
18  
19  
21  
22  
23  
26  
30  
25  
29  
CC1  
SDA0  
SCL0  
USB  
CC2  
CC2  
BD93F10MWV  
GPIO0  
GPIO1  
GPIO2  
GPIO5  
GPIO9  
GPIO4  
GPIO8  
(open)  
(open)  
HOST I/F  
Type-C PD  
Receptacle  
(open)  
XCLPOFF2  
(Package: UQFN040V5050)  
5.0 mm x 5.0 mm x 1.0 mm  
ADCVREF  
ADCVREF  
U1  
ADCVREF  
RVU1 RVU2 RPU  
5
RTHU  
RVD1  
RVD2  
RPD  
24  
27  
28  
22 kΩ  
GPIO3  
GPIO6  
GPIO7  
14  
15  
16  
ADCIN  
IDSEL  
ATST1  
40  
RTHD  
t°  
XRST  
D+/D-  
RX1+/RX1-  
RX2+/RX2-  
TX1+/TX1-  
TX2+/TX2-  
USB  
PHY  
RAT1  
100 kΩ  
RIDD  
100 kΩ  
CV38  
CVCC  
CV15  
CS 0.1 μF  
0.1 μF  
4.7 μF  
1.0 μF  
GND  
GND  
RS 10 mΩ  
GND  
ARM® Cortex® “is a registered trademark of Arm Limited.  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
1/18  
TSZ22111 14 001  
 
 
 
 
 
 
 
BD93F10MWV  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
FW Revision ...................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuits .............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................3  
Pin Description................................................................................................................................................................................4  
Block Diagram ................................................................................................................................................................................5  
Description of Block........................................................................................................................................................................6  
Absolute Maximum Ratings ............................................................................................................................................................7  
Thermal Resistance........................................................................................................................................................................7  
Recommended Operating Conditions.............................................................................................................................................8  
Internal Memory Cell Characteristic................................................................................................................................................8  
Electrical Characteristic ..................................................................................................................................................................8  
Timing Chart .................................................................................................................................................................................10  
I/O Equivalence Circuits................................................................................................................................................................12  
Operational Notes.........................................................................................................................................................................14  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Reverse Connection of Power Supply............................................................................................................................14  
Power Supply Lines........................................................................................................................................................14  
Ground Voltage...............................................................................................................................................................14  
Ground Wiring Pattern....................................................................................................................................................14  
Recommended Operating Conditions.............................................................................................................................14  
Inrush Current.................................................................................................................................................................14  
Testing on Application Boards ........................................................................................................................................14  
Inter-pin Short and Mounting Errors ...............................................................................................................................14  
Unused Input Pins ..........................................................................................................................................................14  
Regarding the Input Pin of the IC ...................................................................................................................................15  
Ceramic Capacitor..........................................................................................................................................................15  
Thermal Shutdown Circuit (TSD)....................................................................................................................................15  
Over Current Protection Circuit (OCP) ...........................................................................................................................15  
9.  
10.  
11.  
12.  
13.  
Ordering Information.....................................................................................................................................................................16  
Marking Diagram ..........................................................................................................................................................................16  
Physical Dimension and Packing Information...............................................................................................................................17  
Revision History............................................................................................................................................................................18  
www.rohm.com  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
2/18  
TSZ22111 15 001  
 
BD93F10MWV  
Pin Configuration  
(TOP VIEW)  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
VS 31  
20 VDDIO  
19 SCL0  
18 SDA0  
17 GND  
S1_DRV 32  
S1_SRC 33  
S2_DRV 34  
S2_SRC 35  
DISCHG 36  
VB 37  
16 ATST1  
15 IDSEL  
14 ADCIN  
13 CSP  
GND 38  
EXP-PAD  
VSVR 39  
XRST 40  
12 CSN  
Pin 1 mark  
11 XCLPOFF2  
1
2
3
4
5
6
7
8
9
10  
www.rohm.com  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
3/18  
TSZ22111 15 001  
BD93F10MWV  
Pin Description  
Pin No.  
Pin Name  
LDO38  
VCCIN  
GND  
Function  
1
Internal LDO 3.8 V  
2
Internal power supply (for internal use only)  
3
Ground  
4
LDO15  
ADCVREF  
ATST2  
XCLPOFF1  
CC1  
Internal LDO 1.5 V  
5
Reference voltage for ADC  
6
Analog test pin. Short to GND.  
7
Disable clamper of CC1 L: Dead-battery not support, Open: Dead-battery support  
8
Configuration channel 1 for Type-C  
9
VCONNIN  
CC2  
Input power for VCONN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Configuration channel 2 for Type-C  
XCLPOFF2  
CSN  
Disable clamper of CC2 L: Dead-battery not support, Open: Dead-battery support  
Current sensing negative input  
Current sensing positive input  
Input voltage to ADC  
I2C Device ID Select  
Analog test pin. Short to GND.  
Ground  
CSP  
ADCIN  
IDSEL  
ATST1  
GND  
SDA0  
SMBus slave data  
SMBus slave clock  
GPIO H level voltage input  
GPIO  
SCL0  
VDDIO  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
VS  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Source voltage monitor input  
Power path FET gate control  
Power path FET BG/SRC voltage  
Power path FET gate control  
Power path FET BG/SRC voltage  
Discharge NMOS drain (Max 28 V)  
Power supply from VBUS  
Ground  
S1_DRV  
S1_SRC  
S2_DRV  
S2_SRC  
DISCHG  
VB  
GND  
VSVR  
Power supply from 3.3 V / 5 V system voltage rail  
System reset signal input  
XRST  
EXP-PAD connects with substrate of IC. On the board, this PAD shall be shorted to  
Ground or be open condition.  
-
EXP-PAD  
www.rohm.com  
TSZ02201-0Q3Q0H507800-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
4/18  
TSZ22111 15 001  
02.Apr.2020 Rev.001  
BD93F10MWV  
Block Diagram  
VS  
S1_DRV  
S1_SRC  
S2_DRV  
S2_SRC  
DSCHG  
VB  
GPIOs  
VDDIO  
SCL0  
OSC  
SDA0  
GND  
Device Policy Manager  
Protocol Layer  
POWCNT  
ATST1  
IDSEL  
ADCIN  
CSP  
Policy Engine  
ADC  
GND  
VSVR  
CSN  
VREF  
BB_PHY  
CC_PHY  
XRST  
XCLPOFF2  
www.rohm.com  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
5/18  
TSZ22111 15 001  
BD93F10MWV  
Description of Block  
(VREF)  
VREF block is internal power source circuit of this LSI with the UVLO (Under Voltage Lock Out) function.  
The main power input is VSVR. And for supporting dead battery operation, VB can become power source of this LSI when  
VSVR does not exist.  
VREF block monitors VSVR and VB, and chooses an appropriate power supply by detecting normal condition or dead  
battery condition. From the voltage it chose, it generates VCCIN and LDO15 for internal circuits.  
(OSC)  
OSC block is reference clock circuit of this LSI. This LSI does not need another external clock source.  
(I/F Bus)  
I/F Bus block have I2C Slave for Host Control. The I2C Slave is intended to communicate with HOST MCU such as the EC.  
(Device Policy Manager)  
Device Policy Manager manages USB Type-C Power Delivery operation. It is constructed in internal MCU and program  
memory. It is accessible using Host IF Bus from external host MCU. And the writing access to program memory is possible  
from Host IF Bus.  
(Policy Engine / Protocol Layer)  
Policy Engine and Protocol Layer carry out USB Power Delivery operation. These blocks are constructed in internal MCU  
and the program memory in the same way as Device Policy Manager.  
(CC_PHY)  
CC_PHY block is a physical layer of USB Type-C. It supports the following function  
Pull-down Resistor for Up Facing Port (UFP)  
the CC1 pin and the CC2 pin clamper for dead battery  
VBUS Detecting  
(BB_PHY)  
BB_PHY block is a physical layer of USB Power Delivery. By control from Protocol Layer, it performs coding,  
decoding and judgment of CRC and communicates Base Band PD signal.  
(POWCONT)  
POWCONT block is power path control circuit of VBUS. It has two gate drivers for Nch MOSFET switch, high withstand  
discharge switch for VBUS and over voltage protection (OVP).  
(ADC)  
ADC block is a general-purpose ADC. It is used for the monitoring of various operating states. Monitoring object is external  
input voltage for thermistor circuit, VBUS voltage, system Voltage, die temperature and source current  
www.rohm.com  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
6/18  
TSZ22111 15 001  
BD93F10MWV  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Symbol  
Rating  
Unit  
Supply Voltage [VSVR]  
VSVR  
VB  
-0.3 to +6.0  
-0.3 to +28  
V
V
VBUS Voltage [VB]  
I/O Voltage [VDDIO]  
VDDIO  
Tjmax  
Tstg  
VSRC  
VDRV  
VHV  
-0.3 to VSVR (or VB)  
+150  
V
Maximum Junction Temperature  
Storage Temperature Range  
S1_SRC, S2_SRC Voltage  
S1_DRV, S2_DRV Voltage  
DSCHG, CC1, CC2, VS Voltage  
LDO15, ADCVREF, ADCIN Voltage  
°C  
°C  
V
-55 to +150  
-0.3 to +22  
-0.3 to (VSRC+6.0)  
-0.3 to +28  
V
V
VLV  
-0.3 to +2.1  
V
Differential Voltage Between CSN and  
CSP  
VCS  
-0.2 to +0.2  
-0.3 to +6.0  
V
V
All Other Pins  
VOTH  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance (Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s (Note 3)  
2s2p (Note 4)  
UQFN040V5050  
Junction to Ambient  
Junction to Top Characterization Parameter (Note 2)  
θJA  
113.6  
8
24.5  
3
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A (Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70 μm  
Thermal Via (Note 5)  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
Footprints and Traces  
70 μm  
74.2 mm x 74.2 mm  
35 μm  
74.2 mm x 74.2 mm  
70 μm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
7/18  
BD93F10MWV  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Temperature  
Supply Voltage  
Topr  
VSVR  
VB  
-30  
3.1  
+25  
3.3  
-
+85  
5.5  
22  
°C  
V
VBUS Voltage  
3.67  
1.7  
V
VDDIO Voltage  
VDDIO  
3.3  
5.5  
V
Internal Memory Cell Characteristic (Unless otherwise specified VSVR = VDDIO = 3.3 V, VB = 5.0 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Memory Data rewrite cycles (Note 6)  
Memory Data retention life (Note 7)  
Mrw  
Mrl  
100  
20  
-
-
-
-
cycles Ta = -30 °C to 85 °C  
years Ta = -30 °C to 85 °C  
(Note 6) BD93F10MWV cannot rewrite FW. ROHM cannot guarantee if FW is rewriting.  
(Note 7) Not 100% Tested  
Electrical Characteristic (Unless otherwise specified VSVR = VDDIO = 3.3 V, VB = 5.0 V, Ta = 25 °C)  
Parameter  
Current Consumption  
Shutdown Current  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
XRST=” L”  
VSVR Current  
ISD  
ISP  
IST  
-
-
-
30  
150  
2
70  
-
μA  
μA  
USB-C Un-Attached  
VSVR Current  
The option function stops.  
USB-C Attached, PD Standby  
VSVR Current  
Stop Current  
Standby Current  
-
mA  
VREF  
VCCIN Voltage  
VCCIN  
V38  
-
-
3.3  
3.8  
-
-
V
V
Standby  
Standby  
VB = 5 V  
LDO38 Output Voltage  
LDO15 Output Voltage  
VSVR UVLO release  
VB UVLO release  
V15D  
-
-
-
-
1.5  
-
-
V
V
V
V
Standby  
VDBSVR  
VBUSDET  
VDBDDIO  
3.10  
3.67  
1.7  
-
VDDIO UVLO release  
1.0  
Digital DC Characteristics (GPIOx: x = 2 to 9)  
0.8 x  
VDDIO  
VDDIO  
0.3  
+
Input HVoltage 1  
VIH1  
-
V
0.2 x  
VDDIO  
Input LVoltage 1  
Input Leak Current 1  
Output HVoltage 1  
VIL1  
IIL1  
-0.3  
-
0
-
V
μA  
V
-5  
+5  
0.85 x  
VDDIO  
VOH1  
VOL1  
-
IL = +1 mA  
IL = -1 mA  
Output LVoltage 1  
Digital DC Characteristics (SDA0,SCL1)  
Output LVoltage 2  
SCL Frequency  
-
-
0.3  
V
VOL3  
fSCL  
-
-
-
0.4  
V
IL = -3 mA  
0
400  
kHz  
CC_PHY  
Pull-Down Resistor  
RRD  
4.6  
5.1  
5.6  
kΩ  
www.rohm.com  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
8/18  
TSZ22111 15 001  
BD93F10MWV  
Electrical Characteristic - continued  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Voltage Measurement  
ADVREF Voltage  
VADC  
VRV  
1.45  
0
1.5  
-
1.55  
28  
V
V
VB/VS Voltage Measurement Range  
External Input Voltage Measurement  
Range  
VRIN  
0
-
1.5  
V
POWCNT  
Output Voltage between  
S1_DRV and S1_SRC or  
S2_DRV and S2_SRC  
VOSW  
4.4  
5.5  
6.6  
V
Sx_SRC = 5.0 V (x = 1 or 2)  
Discharge Switch on Resistance  
OVP Detecting Voltage Accuracy  
RDSC  
-
2.0  
-
-
Ω
DSCHG = 0.2 V  
ACOVP  
-5  
+5  
%
OVP Detecting Voltage = 6.0 V  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
9/18  
BD93F10MWV  
Timing Chart  
(Normal Wakeup)  
3.3V  
VSVR  
VB  
0V  
0V  
0V  
0V  
0V  
0V  
5V  
t1  
VDDIO  
VCONNIN  
LDO38  
(Internal)  
1.5V  
LDO15  
(Internal)  
CC1 or CC2  
(Pull Down)  
Hi-Z  
Pull Down Enable  
LSI Operation Shutdown  
HW Standby  
Initialization  
Active(Type-C)  
t2  
According to USB Type-C Specification  
Timing Characteristic (Ta = 25 °C)  
Parameter  
Symbol  
Min  
Typ  
Max  
-
Unit  
Conditions  
VDDIO Input Timing from VSVR  
Input  
t1  
t2  
0
-
-
-
ms  
ms  
Not emergency operating.  
I2C (slave) is disable.  
LSI Wakeup Time  
100  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
10/18  
BD93F10MWV  
Timing Chart - Continued  
(Normal Shutdown)  
t3  
3.3V  
VSVR  
0.5V  
0V  
5V  
VB  
3.3V  
t4  
VDDIO  
0.5V  
0V  
VCONNIN  
0V  
LDO38  
(Internal)  
0V  
1.5V  
LDO15  
(Internal)  
0V  
CC1 or CC2  
(Pull Down)  
Pull Down Enable  
Hi-Z  
Timing Characteristic (Ta = 25 °C)  
Parameter  
Symbol  
t3  
Min  
-
Typ  
-
Max  
400  
Unit  
ms  
Conditions  
VSVR Falling Time  
As for the timing of t4, it is arbitrary. But LSI may not maintain action of USB Type-C PD when it is lost during LSI action.  
www.rohm.com  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
11/18  
TSZ22111 15 001  
BD93F10MWV  
I/O Equivalence Circuits  
PIN  
Pin Name  
Equivalent Circuit Diagram  
No.  
VB  
Pin  
1
LDO38  
GND  
GND  
GND  
VCCIN  
Pin  
4
5
LDO15  
ADCVREF  
GND  
GND  
GND  
Pin  
7
11  
XLCPOFF1  
XCLPOFF2  
GND  
Pin  
8
10  
CC1  
CC2  
GND  
GND  
GND  
VCCIN  
Pin  
12  
13  
CSN  
CSP  
GND  
GND  
GND  
Pin  
ADCVREF  
14  
ADCIN  
GND  
www.rohm.com  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
12/18  
TSZ22111 15 001  
BD93F10MWV  
I/O Equivalence Circuits - Continued  
Pin  
Pin Name  
No.  
Equivalent Circuit Diagram  
VCCIN  
Pin  
15  
IDSEL  
GND  
GND  
VDDIO  
18  
19  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SDA0  
SCL0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
Pin  
GND  
GND  
Pin  
32  
34  
S1_DRV  
S2_DRV  
Sx_SRC  
Sx_DRV  
Pin  
33  
35  
S1_SRC  
S2_SRC  
GND  
Pin  
31  
36  
VS  
DSCHG  
GND  
VCCIN  
Pin  
40  
XRST  
GND  
www.rohm.com  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
13/18  
TSZ22111 15 001  
BD93F10MWV  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
14/18  
TSZ22111 15 001  
BD93F10MWV  
Operational Notes continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 1. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
15/18  
TSZ22111 15 001  
BD93F10MWV  
Ordering Information  
B D 9 3 F 1 0 M W V -  
E 2  
Part Number  
Package  
MWV: UQFN040V5050  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
UQFN040V5050 (TOP VIEW)  
Part Number Marking  
D 9 3 F 1 0  
LOT Number  
Pin 1 Mark  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
16/18  
BD93F10MWV  
Physical Dimension and Packing Information  
Package Name  
UQFN040V5050  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
17/18  
BD93F10MWV  
Revision History  
Date  
Revision  
001  
Changes  
02, Apr.2020  
New Release  
www.rohm.com  
TSZ02201-0Q3Q0H507800-1-2  
02.Apr.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
18/18  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD93F50MWV

BD93F50MWV is a full function USB Type-C Power Delivery (PD) Controller that supports USB PD using base-band communication. It is compatible with USB Type-C Specification and Power Delivery specification. BD93F50MWV includes support for the PD policy engine and communicates with an Embedded Controller or the SoC via host interface.
ROHM

BD940

isc Silicon PNP Power Transistor
ISC

BD9400BFP

Silicon Monolithic integrated Circuit
ROHM

BD9400BFP-E2

Switching Regulator, Voltage-mode, 2A, 500kHz Switching Freq-Max, PDSO25, ROHS COMPLIANT, HSOP-25
ROHM

BD9401FM

Silicon Monolithic integrated Circuit
ROHM

BD9401FV

Silicon Monolithic integrated Circuit
ROHM

BD9403FV

Silicon Monolithic integrated Circuit
ROHM

BD94062F

BD94062F是白色LED用高效率驱动器,适用于大屏幕液晶驱动器。BD94062F 内置了准谐振方式(quasi-resonant: QR)DCDC转换器和电流连续方式(continuous current mode: CCM)DCDC转换器,可为LED串联阵列的可向光源提供适当电压。外接电流检测电阻,可实现高自由度的电源设计。
ROHM

BD9408FV

BD9408FV是白色LED用高效率驱动器,适用于大屏幕液晶驱动器。BD9408FV内置了可向光源(LED串联连接的阵列)提供适当电压的DC/DC转换器。BD9408FV中内置了应对异常状态的几种保护功能。过电压保护(OVP: over voltage protection)、过电流检测(OCP: over current limit protection of DC/DC)、LED过流保护(LED OCP: LED Over Current Protection)、过升压保护(FBMAX)等。因此,可在更宽的电压条件及负载条件下使用。
ROHM

BD9409F

BD9409F是白色LED用高效率驱动器,适用于大屏幕液晶驱动器。BD9409F内置了可向光源(LED串联连接的阵列)提供适当电压的DCDC转换器。BD9409F中内置了应对异常状态的几种保护功能。过电压保护(OVP: over voltage protection), 过电流检测(OCP: over current limit protection of DCDC), LED 过电流保护(LEDOCP: LED over current protection), 过升压保护(FBMAX: over boost protection)等。因此,可在更宽的输出电压条件及负载条件下使用。
ROHM

BD940F

isc Silicon PNP Power Transistor
ISC

BD941

SILICON EPITAXIAL BASE POWER TRANSISTORS
NXP