BD6520F-E2 [ROHM]

Large Current Output Power Management Switch ICs; 大电流输出电源管理开关IC
BD6520F-E2
型号: BD6520F-E2
厂家: ROHM    ROHM
描述:

Large Current Output Power Management Switch ICs
大电流输出电源管理开关IC

电源电路 开关 电源管理电路 光电二极管
文件: 总17页 (文件大小:567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
Power Management Switch IC Series for PCs and Digital Consumer Product  
Large Current Output  
Power Management Switch ICs  
BD6520F, BD6522F  
Description  
The power switch for expansion module is a power management switch having one circuit of N-channel Power MOS FET.  
The switch realizes 50m(Typ.) ON resistance. The switch turns on smoothly by the built-in charge pump, therefore, it is  
possible to reduce inrush current at switch on. And soft start control by external capacitor is available.  
Further, it has a discharge circuit that discharges electric charge from capacitive load at switch off, Under voltage lockout  
circuit, and a thermal shutdown circuit.  
Features  
1) Low on resistance (50m, Typ.) N-MOS switch built in  
2) Maximum output current: 2A  
3) Discharge circuit built in  
4) Soft start control circuit built in  
5) Under voltage lockout (UVLO) circuit built in  
6) Thermal shutdown (Output off latching)  
7) Reverse current flow blocking at switch off (only BD6522F)  
Applications  
Notebook PC, PC peripheral device, etc.  
Lineup  
Parameter  
BD6520F  
to 5.5V  
2A  
BD6522F  
to 5.5V  
2A  
Supply Voltage  
Switch current  
On Resistance  
OUT Rise Time  
OUT Fall Time  
Package  
3
3
50mΩ  
2000us  
3us  
50mΩ  
1000us  
4us  
SOP8  
-
SOP8  
Reverse current flow blocking at switch off  
May.2008  
Absolute Maximum Ratings  
Parameter  
Symbol  
VDD  
Rating  
Unit  
V
Supply Voltage  
-0.3 to 6.0  
CTRL Input Voltage  
VCTRL  
-0.3 to 6.0  
V
-0.3 to VDD + 0.3 (BD6520F)  
-0.3 to 6.0 (BD6522F)  
-55 to 150  
V
Switch Output Voltage  
VOUT  
V
Storage temperature  
Power dissipation  
TSTG  
Pd  
mW  
560*1  
*1 This value decreases 4.48mW/above Ta=25℃  
* Resistance radiation design is not doing.  
* Operation is not guaranteed.  
Operation conditions  
Parameter  
Supply Voltage  
Symbol  
VDD  
Limit  
Unit  
V
3.0 to 5.5  
Switch current  
IOUT  
0
to  
2
A
Operating Temperature  
TOPR  
-25 to 85  
Electrical characteristics  
BD6520FUnless otherwise specified, Ta = 25, VDD = 5V)  
Limit  
Parameter  
On Resistance  
Symbol  
Unit  
Condition  
Min.  
Typ.  
50  
60  
110  
-
Max.  
RON  
1
2
-
-
70  
85  
220  
2
mΩ  
mΩ  
uA  
uA  
V
VDD = 5V, VCTRL = 5V  
VDD = 3V, VCTRL = 3V  
VCTRL = 5V, OUT = OPEN  
VCTRL = 0V, OUT = OPEN  
VCTRL L = Low Level  
VCTRL H = High Level  
VCTRL = L, H  
RON  
IDD  
-
Operating Current  
IDDST  
-
VCTRL  
VCTRL  
ICTRL  
L
-
-
0.7  
-
Control Input voltage  
Control Input current  
Turn On Delay  
H
2.5  
-1  
-
V
0
1
uA  
RL = 10Ω,SSCTL = OPEN  
Trd  
Tr  
200  
1000  
2000  
3
2000  
7500  
20  
us  
us  
us  
us  
CTRL = LH OUT=50%  
RL = 10Ω,SSCTL = OPEN  
CTRL = 10% 90%  
Turn On Rise Time  
Turn Off Delay  
500  
RL = 10Ω,SSCTL = OPEN  
CTRL = HL OUT=50%  
RL = 10Ω,SSCTL = OPEN  
CTRL = 90% 10%  
Tfd  
-
-
Turn Off Fall Time  
Tf  
1
20  
Discharge Resistance  
UVLO Threshold Voltage  
RSWDC  
-
350  
2.5  
2.3  
200  
600  
2.7  
2.5  
300  
Ω
V
VDD = 5V, VCTRL = 0V, VOUT = 5V  
VDD increasing  
VUVLO  
H
2.3  
2.1  
100  
VUVLO  
L
V
VDD decreasing  
UVLO Hysteresis Voltage  
Thermal Shutdown  
Threshold  
VHYS  
mV  
VHYS = VUVLOH - VUVLO  
L
TTS  
-
-
135  
-
-
VCTRL = 5V  
SSCTL Output Voltage  
VSSCTL  
13.5  
V
VCTRL = 5V  
2/16  
BD6522FUnless otherwise specified, Ta = 25, VDD = 5V)  
Limit  
Parameter  
On Resistance  
Symbol  
Unit  
Condition  
Min.  
Typ.  
50  
60  
110  
-
Max.  
70  
85  
220  
2
RON  
1
2
-
-
mΩ  
mΩ  
uA  
uA  
V
VDD = 5V, VCTRL = 5V  
VDD = 3.3V, VCTRL = 3.3V  
VCTRL = 5V, OUT = OPEN  
VCTRL = 0V, OUT = OPEN  
VCTRLL = Low Level  
RON  
IDD  
-
Operating Current  
IDDST  
-
VCTRL  
VCTRL  
ICTRL  
L
-
-
0.7  
-
Control Input Voltage  
Control Input Current  
Turn On Time  
H
2.5  
-1  
-
V
VCTRLH = High Level  
VCTRL = L, H  
0
1
uA  
RL = 10Ω,SSCTL = OPEN  
CTRL = H OUT =90%  
RL = 10Ω,SSCTL = OPEN  
CTRL = L OUT = 10%  
VDD = 5V,VCTRL = 0V  
VDD increasing  
TON  
-
-
1000  
4
3500  
20  
us  
us  
Turn Off Time  
TOFF  
Discharge Resistance  
UVLO Threshold Voltage  
RSWDC  
-
350  
2.5  
600  
2.7  
2.5  
300  
-
Ω
V
VUVLOH  
2.3  
2.1  
100  
-
VUVLO  
L
2.3  
V
VDD decreasing  
UVLO Hysteresis Voltage  
Thermal Shutdown  
Threshold  
VHYS  
TTS  
200  
135  
mV  
VHYS = VUVLOH - VUVLO  
VCTRL = 5V  
L
SSCTL Output Voltage  
VSSCTL  
-
13.5  
-
V
VCTRL = 5V  
Measurement circuit  
BD6520F  
BD6522F  
VDD  
VDD  
BD6520F  
BD6522F  
VDDA  
VDDB  
SSCTL  
CTRL  
VDDA  
VDDB  
OUTA  
OUTB  
OUTA  
OUTB  
DISC  
VSS  
SSCTL OUTC  
CTRL VSS  
RL  
CL  
RL  
CL  
IOUT  
IOUT  
CSS  
CSS  
VCTRL  
VCTRL  
Fig.1 Measurement circuit  
Timing diagram  
BD6520F  
BD6522F  
Tf  
Tr  
90%  
90%  
90%  
VOUT  
VOUT  
50%  
50%  
10%  
10%  
10%  
Trd  
Tfd  
TOFF  
TON  
TON  
TOFF  
VCTRL  
VCTRL  
VCTRLH  
VCTRLL  
VCTRLH  
VCTRLL  
Fig.2 Timing diagram  
3/16  
Typical characteristics  
BD6520F  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
80  
Ta = 25℃  
Ta = 25℃  
70  
60  
50  
40  
30  
20  
10  
0
VDD=3.0V  
VDD=3.3V  
VDD=5.0V, 5.5V  
2
3
4
5
6
2
3
4
5
6
-40 -20  
0
20  
40  
60  
80 100  
SUPPLY VOLTAGE : VDD [V]  
SUPPLY VOLTAGE : VDD [V]  
AMBITENT TEMPERATURE : Ta []  
Fig.3 On resistance  
Fig.4 On resistance  
Fig.5 Operating current  
(CTRL enable)  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.10  
120  
100  
80  
60  
40  
20  
0
VDD = 5.0V  
Ta = 25℃  
VDD = 5.0V  
0.08  
0.06  
0.04  
0.02  
0.00  
2
3
4
5
6
0
20  
40  
60  
80  
100  
-40 -20  
0
20  
40  
60  
80 100  
SUPPLY VOLTAGE : VDD [V]  
AMBIENT TEMPERATURE : Ta [  
]
AMBIENT TEMPERATURE : Ta [  
]
Fig.6 Operating current  
(CTRL enable)  
Fig.7 Operating current  
(CTRL disenable)  
Fig.8 Leak current  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta = 25℃  
VDD = 5.0V  
VDD = 5.0V  
Low to High  
High to Low  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
2
3
4
5
6
AMBIENT TEMPERATURE : Ta [  
]
AMBIENT TEMPERATURE : Ta [  
]
SUPPLY VOLTAGE : VDD [V]  
Fig.9 CTRL input voltage  
Fig.10 CTRL input voltage HL  
Fig.11 CTRL input voltage LH  
0.4  
0.3  
0.2  
0.1  
0
0.4  
5
4
3
2
1
0
Ta = 25℃  
VDD = 5.0V  
Ta = 25℃  
0.3  
0.2  
0.1  
0
Ton  
Tr  
Trd  
2
3
4
5
6
2
3
4
5
6
-40 -20  
0
20  
40  
60  
80 100  
SUPPLY VOLTAGE : VDD [V]  
SUPPLY VOLTAGE : VDD[V]  
AMBIENT TEMPERATURE : Ta [  
]
Fig.13 CTRL hysteresis voltage  
Fig.14 Turn On Rise time  
Fig.12 CTRL hysteresis voltage  
4/16  
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
VDD = 5.0V  
Ta = 25℃  
VDD = 5.0V  
Toff  
Toff  
Tfd  
Ton  
Tfd  
Tf  
Tr  
Tf  
Trd  
2
3
4
5
6
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
SUPPLY VOLTAGE : VDD [V]  
AMBIENT TEMPERATURE : Ta [  
]
AMBIENT TEMPERATURE : Ta [  
]
Fig.16 Turn Off Fall time  
Fig.17 Turn Off Fall time  
Fig.15 Turn On Rise time  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
3.0  
Ta = 25℃  
VDD = 5.0V  
VDD = 5.0V  
2.8  
2.6  
2.4  
2.2  
2.0  
VDD increasing  
VDD decreasing  
-40 -20  
0
20  
40  
60  
80 100  
2
3
4
5
6
-40 -20  
0
20  
40  
60  
80 100  
AMBIENT TEMPERATURE : Ta [  
]
SUPPLY VOLTAGE : VDD [V]  
AMBIENT TEMPERATURE : Ta [  
]
Fig.18 Switch discharge resistance  
Fig.19 Switch discharge resistance  
Fig.20 UVLO threshold voltage  
100  
100  
0.3  
VDD = 5.0V  
VDD = 5.0V, Ta = 25, RL = 10Ω  
VDD = 5.0V, Ta = 25, RL = 10Ω  
0.2  
0.1  
0
10  
10  
1
1
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
-40 -20  
0
20  
40  
60  
80 100  
Css [pF]  
Css [pF]  
AMBIENT TEMPERATURE : Ta [  
]
Fig.21 UVLO hysteresis voltage  
Fig.22 Turn On Rise time (vs. Css)  
Fig.23 Turn Off Fall time (vs. Css)  
16  
16  
Ta = 25℃  
VDD = 5.0V  
14  
14  
12  
10  
8
12  
10  
8
6
6
4
4
2
2
0
0
2
3
4
5
6
-40 -20  
0
20  
40  
60  
80 100  
SUPPLY VOLTAGE : VDD [V]  
AMBIENT TEMPERATURE : Ta [  
]
Fig.24 SSCTL output voltage  
Fig.25 SSCTL output voltage  
5/16  
BD6522F  
120  
100  
80  
60  
40  
20  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
Ta = 25℃  
Ta = 25℃  
70  
60  
50  
40  
30  
20  
10  
0
VDD=3.3V  
VDD=5.0V  
2
3
4
5
6
-40 -20  
0
20  
40  
60  
80 100  
2
3
4
5
6
SUPPLY VOLTAGE : VDD [V]  
AMBIENT TEMPERATURE : Ta [  
]
SUPPLY CURRENT : VDD [V]  
Fig.26 ON resistance  
Fig.27 ON resistance  
Fig.28 Operating current  
(CTRL enable)  
120  
100  
80  
60  
40  
20  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.10  
VDD = 5.0V  
Ta = 25℃  
VDD = 5.0V  
0.08  
0.06  
0.04  
0.02  
0.00  
0
20  
40  
60  
80  
100  
-40 -20  
0
20  
40  
60  
80 100  
2
3
4
5
6
AMBIENT TEMPERATURE : Ta [  
]
AMBIENT TEMPERATURE : Ta [  
]
SUPPLY VOLTAGE : VDD [V]  
Fig.29 Operating current  
(CTRL enable)  
Fig.31 Leak current  
Fig.30 Operating current  
(CTRL disenable)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.4  
0.3  
0.2  
0.1  
0
Ta = 25℃  
VDD = 5.0V  
Ta = 25℃  
High to Low  
Low to High  
Low to High  
High to Low  
2
3
4
5
6
-40 -20  
0
20  
40  
60  
80 100  
2
3
4
5
6
SUPPLY VOLTAGE : VDD [V]  
AMBIENT TEMPERATURE : Ta [  
]
SUPPLY VOLTAGE : VDD [V]  
Fig.33 CTRL input voltage  
Fig.32 CTRL input voltage  
Fig.34 CTRL hysteresis voltage  
5
4
3
2
1
0
0.4  
0.3  
0.2  
0.1  
0.0  
5
VDD = 5.0V  
Ta = 25℃  
VDD = 5.0V  
4
3
2
1
0
2
3
4
5
6
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
DD  
AMBIENT TEMPERATURE : Ta [  
]
SUPPLY VOLTAGE :V [V]  
AMBIENT TEMPERATURE : Ta [ ]  
Fig.35 CTRL hysteresis voltage  
Fig.36 Turn On time  
Fig.37 Turn On time  
6/16  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
500  
400  
300  
200  
100  
0
Ta = 25℃  
VDD = 5.0V  
Ta = 25℃  
-40 -20  
0
20  
40  
60  
80 100  
2
3
4
5
6
2
3
4
5
6
AMBIENT TEMPERATURE : Ta [  
]
SUPPLY VOLTAGE : VDD [V]  
SUPPLY VOLTAGE : VDD [V]  
Fig.38 Turn Off time  
Fig.39 Turn Off time  
Fig.40 Switch discharge resistance  
0.3  
3.0  
500  
400  
300  
200  
100  
0
VDD = 5.0V  
Ta = 25℃  
VDD = 5.0V  
2.8  
2.6  
2.4  
2.2  
2.0  
0.2  
0.1  
0
VDD increasing  
VDD decreasing  
-40 -20  
AMBIENT TEMPERATURE : Ta [ ]  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
AMBIENT TEMPERATURE : Ta [  
]
AMBIENT TEMPERATURE : Ta [  
]
Fig.43 UVLO hysteresis voltage  
Fig.41 Switch discharge resistance  
Fig.42 UVLO threshold voltage  
100  
16  
100  
10  
1
VDD = 5.0V, Ta = 25, RL = 10Ω  
VDD = 5.0V, Ta = 25, RL = 10Ω  
Ta = 25℃  
14  
12  
10  
8
10  
6
4
2
1
0
1
10  
100  
1000  
10000  
2
3
4
5
6
1
10  
100  
1000  
10000  
Css [pF]  
SUPPLY VOLTAGE : VDD [V]  
Css [pF]  
Fig.44 Turn On time (vs. Css)  
Fig.45 Turn Off time (vs. Css)  
Fig.46 SSCTL output voltage  
16  
14  
12  
10  
8
VDD = 5.0V  
6
4
2
0
-40 -20  
0
20  
40  
60  
80 100  
AMBIENT TEMPERATURE : Ta [  
]
Fig.47 SSCTL output voltage  
7/16  
Waveform data  
VDD = 5V, CL = 47uF, RL = 47Ω, unless otherwise specified.  
VCTRL  
VCTRL  
VCTRL  
(5V/div.)  
(5V/div.)  
(5V/div.)  
VOUT  
VOUT  
VOUT  
(5V/div.)  
(5V/div.)  
(5V/div.)  
IOUT  
IOUT  
(0.5A/div.)  
IOUT  
(0.5A/div.)  
(0.5A/div.)  
TIME (1ms/div.)  
TIME (5ms/div.)  
TIME (1ms/div.)  
Fig.48 Turn On Rise Time  
(BD6520F)  
Fig.49 Turn Off Fall Time  
(BD6520F)  
Fig.50 Turn On Rise Time  
(BD6522F)  
VCTRL  
VCTRL  
VCTRL  
(5V/div.)  
(5V/div.)  
(5V/div.)  
CL=330uF  
CL=330uF  
Open  
Open  
VOUT  
470pF  
(5V/div.)  
1000pF  
4700pF  
2200pF  
IOUT  
IOUT  
IOUT  
(0.5A/div.)  
(0.2A/div.)  
(0.5A/div.)  
TIME (5ms/div.)  
TIME (2ms/div.)  
TIME (2ms/div.)  
Fig.51 Turn Off Fall Time  
(BD6522F)  
Fig.52 Inrush current vs. Css  
(BD6520F)  
Fig.53 Inrush current vs. Css  
(BD6522F)  
VCTRL  
VCTRL  
(5V/div.)  
(5V/div.)  
DISC terminal not in use  
DISC terminal in use  
VOUT  
VOUT  
(2V/div.)  
(2V/div.)  
Temperature decline  
Latch release  
Return  
Thermal shut down  
TIME (500ms/div.)  
TIME (20ms/div.)  
Fig.54 Discharge: CL = 47uF, RL = Open  
(BD6522F)  
Fig.55 Thermal shutdown  
VDD  
(2V/div.)  
VDD  
VOUT  
(2V/div.)  
(2V/div.)  
VOUT  
(2V/div.)  
TIME (500ms/div)  
TIME (500ms/div)  
Fig.56 UVLO (at VDD increase)  
Fig.57 UVLO (at VDD decrease)  
8/16  
Block diagram, pin configuration, pin description  
(BD6520F)  
OUTA  
VDDA  
1
8
OUTB  
7
VDDB  
2
Oscillator  
SSCTL  
Charge  
Pump  
OUTC  
6
3
UVLO  
Band  
Gap  
Thermal  
S
R
Q
Shutdown  
FF  
1
2
8
7
6
OUTA  
VDDA  
VDDB  
OUTB  
OUTC  
CTRL  
3
SSCTL  
4
CTRL  
4
5
VSS  
VSS  
5
Fig.58 Block diagram(BD6520F)  
Pin No.  
1,2  
Symbol  
Pin Function  
Switch input pin  
VDDA, VDDB  
SSCTL  
At use, connect each pin outside.  
Soft start setting pin  
3
Add external capacitor, it is possible to delay switch On, Off time.  
Control input pin  
4
5
CTRL  
VSS  
Switch On at High level, switch Off at Low level.  
Ground  
Switch output pin  
6,7,8  
OUTA, OUTB, OUTC  
At use, connect each pin outside.  
9/16  
(BD6522F)  
VDDA  
OUTA  
8
1
VDDB  
2
OUTB  
7
Oscillator  
Charge  
Pump  
SSCTL  
3
UVLO  
DISC  
6
Band  
Gap  
Thermal  
Shutdown  
S
Q
FF  
R
1
2
8
7
6
OUTA  
VDDA  
VDDB  
OUTB  
DISC  
CTRL  
4
3
SSCTL  
CTRL  
4
5
VSS  
VSS  
5
Fig.59 Block diagram(BD6522F)  
Pin No.  
1,2  
Symbol  
Pin Function  
Switch input pin  
VDDA, VDDB  
SSCTL  
At use, connect each pin outside.  
Soft start setting pin  
3
4
Add external capacitor, it is possible to delay switch On, Off time.  
Control input pin  
CTRL  
Switch On at High level, switch Off at Low level.  
Ground  
5
6
VSS  
DISC  
Discharge pin  
Switch output pin  
7,8  
OUTA, OUTB  
At use, connect each pin outside.  
10/16  
I/O circuit  
Equivalent circuit  
BD6520F  
Equivalent circuit  
BD6522F  
Symbol  
Pin No.  
SSCTL  
SSCTL  
SSCTL  
CTRL  
DISC  
OUT  
3
CTRL  
CTRL  
4
DISC  
6
(BD6522F)  
6 (BD6520F),  
7, 8  
OUT  
OUT  
Fig.60 I/O circuit  
Functional description  
1. Switch operation  
VDD pin and OUT pin are connected to the drain and the source of switch MOSFET respectively. And the VDD is used also  
as power source input to internal control circuit.  
When CTRL input is set to High level and the switch is turned on, VDD and OUT is connected by a 50mswitch. In a normal  
condition, current flows from VDD to OUT. If voltage of OUT is higher than VDD, current flows from OUT to VDD, since the  
switch is bidirectional.  
In BD6520F, there is a parasitic diode between the drain and the source of switch MOSFET. Therefore, even when the switch  
is off, if the voltage of OUT is higher than that of VDD, current flows from OUT to VDD. In BD6522F, there is not this parasitic  
diode, it is possible to prevent current from flowing reversely from OUT to VDD.  
2. Thermal shutdown  
Thermal shut down circuit turns off the switch when the junction temperature exceeds 135(Typ.).  
The switch off status of the thermal shut down is latched. Therefore, even when the junction temperature goes down, switch  
off is maintained. To release the latch, it is necessary to input a signal to switch off to CTRL terminal or make UVLO status.  
When the switch on signal is input or UVLO is released, the switch output is recovered.  
The thermal shut down circuit works when CTRL signal is active.  
11/16  
3. Low voltage malfunction prevention circuit (UVLO)  
The UVLO circuit monitors the voltage of the VDD pin, when the CTRL input is active. UVLO circuit prevents the switch from  
turning on until the VDD exceeds 2.5V(Typ.). If the VDD drops below 2.3V(Typ.) while the switch turns on, then UVLO shuts off  
the switch.  
4. Soft start control  
In BD6520F/22F, soft start is carried out in order to reduce inrush current at switch on. Further, in order to reduce inrush  
current, soft start control pin (SSCTL) is prepared.  
By connecting external capacitor to between SSCTL and GND, it is possible to make smoother the switch rise time. When the  
switch is enabled, SSCTL outputs voltage of about 13.5V.  
SSCTL terminal requires high impedance, so pay attention in packaging it so that there should not be leak current. And when  
voltage is impressed from the outside to SSCTL terminal, switch on, off cannot be made correctly.  
5. Discharge circuit  
When the switch between the VDD and the OUT is OFF, the 200(Typ.) discharge switch between OUT and GND turns on.  
By turning on this switch, electric charge at capacitive load is discharged.  
In BD6522F, the input of discharge circuit is separately prepared as DISC pin. When to use the discharge circuit, connect  
OUT pin and DISC pin outside.  
Timing diagram  
VDD  
VCTRL  
VOUT  
Discharge circuit  
ON  
OFF  
ON  
Fig.61 Normal operation  
VDD  
VUVLOL  
VUVLOH  
VCTRL  
VOUT  
Discharge circuit  
ON  
OFF  
Fig.62 UVLO operation  
12/16  
Over temperature Over temperature  
corrected  
occurs  
Over temperature  
corrected  
Over temperature  
occurs  
VDD  
VCTRL  
VOUT  
Latch  
Release  
Release  
Set  
Set  
Release  
ON OFF  
Release  
OFF  
Discharge circuit  
OFF  
Fig.63 Thermal shutdown operation  
Typical application circuits  
BD6520F  
OUTA  
BD6522F  
Power Supply  
Power Supply  
VDDA  
VDDA  
VDDB  
OUTA  
1uF  
Load  
1uF  
Load  
VDDB  
SSCTL  
CTRL  
OUTB  
OUTC  
OUTB  
DISC  
VSS  
Css  
Css  
SSCTL  
CTRL  
On/Off  
On/Off  
VSS  
Fig.64 Power supply switch circuit (BD6520F)  
Fig.65 Power supply switch circuit (BD6522F)  
BD6522F  
BD6522F  
Power Supply A  
VDDA  
VDDB  
OUTA  
OUTB  
VDDA  
VDDB  
OUTA  
OUTB  
Power Supply B  
On/Off  
Load  
Css  
Css  
DISC  
VSS  
DISC  
VSS  
SSCTL  
CTRL  
SSCTL  
CTRL  
On/Off  
Fig.66 2 power supply changeover switch circuit (BD6522F)  
13/16  
Thermal derating characteristic  
(SOP8)  
600  
500  
400  
300  
200  
100  
0
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE: Ta [  
]
Fig. 67 Power dissipation curve  
Cautions on use  
(1) Absolute Maximum Ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can  
break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any  
special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety  
measures including the use of fuses, etc.  
(2) Operating conditions  
These conditions represent a range within which characteristics can be provided approximately as expected. The electrical  
characteristics are guaranteed under the conditions of each parameter.  
(3) Reverse connection of power supply connector  
The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown  
due to the reverse connection, such as mounting an external diode between the power supply and the IC’s power supply  
terminal.  
(4) Power supply line  
Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard, for  
the digital block power supply and the analog block power supply, even though these power supplies has the same level of  
potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing the  
diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns. For the  
GND line, give consideration to design the patterns in a similar manner.  
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the  
same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used  
present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.  
(5) GND voltage  
Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state.  
Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric  
transient.  
14/16  
(6) Short circuit between terminals and erroneous mounting  
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can  
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the  
terminal and the power supply or the GND terminal, the ICs can break down.  
(7) Operation in strong electromagnetic field  
Be noted that using ICs in the strong electromagnetic field can malfunction them.  
(8) Inspection with set PCB  
On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress.  
Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB  
to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig. After  
the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition, for  
protection against static electricity, establish a ground for the assembly process and pay thorough attention to the  
transportation and the storage of the set PCB.  
(9) Input terminals  
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the  
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the  
input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a  
voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to  
the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied,  
apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical  
characteristics.  
(10) Ground wiring pattern  
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern  
from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to  
the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND.  
Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.  
(11) External capacitor  
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a  
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.  
(12) Thermal shutdown circuit (TSD)  
When junction temperatures become 135°C (typ.) or higher, the thermal shutdown circuit operates and turns a switch  
OFF. The thermal shutdown circuit, which is aimed at isolating the LSI from thermal runaway as much as possible, is  
not aimed at the protection or guarantee of the LSI. Therefore, do not continuously use the LSI with this circuit  
operating or use the LSI assuming its operation.  
(13) Thermal design  
Perform thermal design in which there are adequate margins by taking into account the power dissipation (Pd) in actual  
states of use.  
15/16  
Product Designation  
-
B
D
6
5
2
0
F
E
2
Part No.  
BD6520  
BD6522  
Package type  
F: SOP  
Packaging and forming specification  
E2: Embossed tape and reel  
SOP8  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
Direction  
of feed  
E2  
5.0 0.2  
8
5
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
4
0.15 0.1  
0.1  
1.27  
0.4 0.1  
Direction of feed  
1Pin  
Reel  
(Unit:mm)  
When you order , please order in times the amount of package quantity.  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2008 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

BD6520F_09

Large Current Output Power Management Switch ICs
ROHM

BD6520F_11

Load Switch ICs for Portable Equipment
ROHM

BD6522F

Power Management Switch
ROHM

BD6524HFV

Power management switch
ROHM

BD6524HFV-TR

Power Supply Support Circuit, Fixed, 1 Channel, PDSO6, HVSOF-6
ROHM

BD6524HFV_11

Load Switch IC for Portable Equipment
ROHM

BD6525

BD6525是一款高性能、准谐振式原边控制功率开关,可提供高精度恒压和恒流输出性能,尤其适合于小功率离线式充电器应用中.
SUYIN-USA

BD6528HFV

Silicon monolithic integrated circuit
ROHM

BD6528HFV-TR

Power Supply Support Circuit, Fixed, 1 Channel, PDSO6, 1.60 X 3 MM, HVSOF-6
ROHM

BD6528HFV_11

Load Switch ICs for Portable Equipment
ROHM

BD6528HFV_14

0.5A Current Load Switch ICs
ROHM

BD6529GUL

Silicon monolithic integrated circuit
ROHM