BD3484FS-E2 [ROHM]

Tone Control Circuit, 4 Channel(s), BICMOS, PDSO32, ROHS COMPLIANT, SSOP-32;
BD3484FS-E2
型号: BD3484FS-E2
厂家: ROHM    ROHM
描述:

Tone Control Circuit, 4 Channel(s), BICMOS, PDSO32, ROHS COMPLIANT, SSOP-32

信息通信管理 光电二极管 商用集成电路
文件: 总17页 (文件大小:1365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
Sound Processor Series for Car Audio  
Sound Processors  
with Built-in 3-band Equalizer  
BD3484FS, BD3485FS, BD3486FS  
Description  
BD3484FS, BD3485FS, BD3486FS are sound processors built-in 3-band equalizer and subwoofer-outputs for car audio.  
The Functions are stereo 4ch input selector, input-gain control, main volume, 3-band parametric equalizer, 6ch fader  
volume. Moreover, “Advanced switch circuit”, that is ROHM original technology, can reduce various switching noise (ex.  
No-signal, low frequency likes 20Hz & large signal inputs). “Advanced switch” makes control of microcomputer easier, and  
can construct high quality car audio system.  
Feature  
1) Standardizing I2C BUS resistor map of BD348X-series can make almost of program on microcomputer common.  
2) Standardizing pin configuration of BD348X-series can make PCB common.  
3) Reduce the switching noise of Main volume, Fader volume, Bass, Middle, Treble, Loudness(BD3484FS), Super  
bass(BD3485FS), Effect(BD3486FS) gain and attenuation by using advanced switch circuit. Possible to control all  
steps.)  
4) Decrease the number of external parts by built-in 3-band equalizer filter and low-pass filter for subwoofer.  
Possible to control Bass, Treble, Middle and LPF equalizer freely.  
5) Built-in operational amplifier for Loudness. Possible to control gain setting. (BD3484FS)  
6) Built-in operational amplifier for Super Bass function. Possible to control gain setting. (BD3485FS)  
7) Built-in operational amplifier for Effect function. Possible to control gain setting. (BD3486FS)  
8) It is equipped with output terminals of Subwoofer. Moreover, the stereo signal of the front and rear, too, can be  
output by the I2C BUS control.  
9) It is possible for the bass, middle, treble to correspond to the simple loudness, too, with the gain adjustment  
quantity of ±20dB and 1 dB step gain adjustment.  
10) Built-in level meter (BD3485FS), 7-band spectrum analyzer (BD3486FS) making music more visible.  
11) Bi-CMOS process  
12) Built-in ground isolation amplifier inputs, ideal for external stereo input.  
13) Package of these LSI is SSOP-A32. Putting input-terminals together and output-terminals together can make PCB  
layout easier and can makes area of PCB smaller.  
14) It is possible to control by 3.3V / 5V for I2C BUS and 2 wire serial controller.  
Use  
It is suitable for car audio specially, audio equipment of mini Compo, micro-Compo, DVD, TV etc with all kinds.  
May 2007  
Product lineup  
Item  
Loudness  
BD3484FS  
BD3485FS  
BD3486FS  
Super bass  
Effect  
Level meter  
Spectrum analyzer  
: Built-in  
: Not built-in  
BD3484FS/BD3485FS/BD3486FS are compatiable for pin configuration of power supply pin,  
gnd pin, control pins. The package of BD3484FS / BD3485FS / BD3486FS is SSOP-A32.  
Absolute Maximum Ratings (Ta=25)  
Item  
Symbol  
VCC  
VIN  
Limits  
10.0  
Unit  
V
Impressed Voltage  
Input voltage  
VCC+0.3GND-0.3  
950 1  
V
Power Dissipation  
Storage Temperature  
Pd  
mW  
Tastg  
-55+150  
1 At Ta=25°C or higher, this value is decreaced to 7.6 mW/°C. Thermal resistance θja=131.6.  
When Rohm standard board is mounted.  
Rohm standard board: size: 70×70×1.6 (mm3) Material: FR4 glass-epoxy substrate (copper foil area: less than 3%).  
Operating Range  
Item  
Symbol  
VCC  
Min.  
7.0  
Typ.  
Max.  
9.5  
Unit  
V
Power supply voltage  
Temperature  
Topr  
-40  
+85  
Design against radiation-proof isn’t made.  
2/16  
Electrical Characteristic  
(Unless specified particularly, Ta=25, VCC=8.5V, f=1kHz, Vin=1Vrms, Rg=600Ω, RL=10kΩ, A input, Input gain 0dB,  
Mute off, Volume 0dB, Tone 0dB, Loudness 0dB(BD3484FS), Super Bass 0dB(BD3485FS),Effect 0dB(BD3486FS)  
Fader Volume 0dB)  
Limits  
Unit  
Condition  
Item  
Symbol  
Min  
Typ  
36  
Max  
50  
BD3484FS  
Current Upon  
no signal  
VIN=0Vrms  
IQ  
mA  
BD3485FS  
BD3486FS  
37  
0
Gv=20log(VOUT/VIN)  
CB = GV1-GV2  
Voltage gain  
GV  
-1.5  
-1.5  
1.5  
1.5  
dB  
dB  
Channel balance  
0
CB  
BD3484FS  
BD3485FS  
BD3486FS  
BD3484FS  
BD3485FS  
BD3486FS  
BD3484FS  
BD3485FS  
BD3486FS  
Total harmonic  
distortion  
0.007  
VOUT=1Vrms  
BW=400-30KHz  
0.05  
25  
THD+N  
0.005  
10.5  
Output noise  
Rg = 0Ω  
BW = IHF-A  
μVrms  
VNO  
voltage *  
9
Residual  
Fader = -dB  
2.5  
μVrms Rg = 0Ω  
VNOR  
CTC  
10  
output noise  
voltage *  
BW = IHF-A  
2
Rg = 0Ω  
CTC=20log(VOUT/VIN)  
BW = IHF-A  
f=100Hz  
VRR=100mVrms  
RR=20log(VOUT/VIN)  
Cross-talk between channels *  
-100  
-90  
-40  
dB  
Ripple rejection  
RR  
RIN  
VIM  
-70  
100  
2.3  
dB  
kΩ  
Input impedance(A, B, C)  
Maximum input voltage(A, B, C)  
70  
130  
VIM at THD+N(VOUT)=1%  
BW=400-30KHz  
2.1  
Vrms  
Rg = 0Ω  
Cross-talk between selectors *  
Minimum input gain  
-2  
CTS=20log(VOUT/VIN)  
BW = IHF-A  
CTS  
-100  
0
-90  
+2  
22  
dB  
dB  
dB  
Input gain 0dB  
VIN=100mVrms  
Gin=20log(VOUT/VIN)  
GIN MIN  
Input gain 20dB  
VIN=100mVrms  
Gin=20log(VOUT/VIN)  
Maximum input gain  
GIN MAX  
18  
20  
GAIN=0+20dB  
GAIN=+1+20dB  
-2  
+2  
Step resolution  
GIN STEP  
GIN ERR  
RIN  
1
0
dB  
dB  
Gain set error  
Input impedance(DP, DN)  
200  
250  
325  
KΩ  
VIM at THD+N(VOUT)=1%  
BW=400-30KHz  
Maximum input voltage  
Voltage gain  
VIM  
2.1  
2.3  
0
Vrms  
dB  
GVDIF  
-1.5  
1.5  
Gv=20log(VOUT/VIN)  
DP1 and DN input  
DP2 and DN input  
CMRR=20log(VIN/VOUT)  
BW = IHF-A  
Common mode rejectiom ratio CMRR  
50  
65  
dB  
dB  
BD3484FS  
Mute  
Mute ON  
Gmute=20log(VOUT/VIN)  
BW = IHF-A  
-100  
-105  
attenuation  
GMUTE  
-85  
BD3485FS  
BD3486FS  
3/16  
Volume = +15dB, VIN=100mVrms  
Gv=20log(VOUT/VIN)  
Maximum gain  
GV MAX  
+13  
+15  
+17  
-85  
dB  
dB  
Volume = -dB  
Gv=20log(VOUT/VIN), BW = IHF-A  
Maximum attenuation *  
GV MIN  
-100  
Step resolution  
GV STEP  
GV ERR  
-2  
-2  
-3  
-4  
1
0
0
0
0
2
dB  
dB  
dB  
dB  
dB  
GAIN & ATT=+15dB-79dB  
GAIN=+1+15dB  
Gain set error  
Attenuation set error 1  
Attenuation set error 2  
Attenuation set error 3  
GV ERR1  
GV ERR2  
GV ERR3  
2
ATT=-1dB-15dB  
3
ATT=-16dB-47dB  
ATT=-48dB-79dB  
4
Gain=+20dB,VIN=100mVrms  
GB=20log (VOUT/VIN)  
Maximum boost gain  
Maximum cut gain  
18  
20  
22  
dB  
dB  
GB BST  
GB CUT  
Gain=-20dB, VIN=1Vrms  
GB=20log (VOUT/VIN)  
-22  
-20  
-18  
Step resolution  
Gain set error  
GB STEP  
GB ERR  
fB1  
fB2  
-
1
0
-
dB  
dB  
Gain=-20+20dB  
Gain=-20+20dB  
-2  
2
-
-
-
-
-
-
-
-
60  
80  
-
-
-
-
-
-
-
-
Gain=-20+20dB  
Gain=-20+20dB  
Center frequency  
Quality factor  
Hz  
fB3  
100  
120  
0.5  
1
fB4  
QB1  
QB2  
QB3  
QB4  
-
1.5  
2.0  
Gain=+20dB, VIN=100mVrms  
GB=20log (VOUT/VIN)  
Maximum boost gain  
Maximum cut gain  
18  
20  
22  
dB  
dB  
GM BST  
Gain=-20dB,VIN=1Vrms  
GB=20log (VOUT/VIN)  
-22  
-20  
-18  
GM CUT  
GM STEP  
GM ERR  
fM1  
fM2  
Step resolution  
Gain set error  
-
1
0
-
dB  
dB  
Gain=-20+20dB  
Gain=-20+20dB  
-2  
2
-
-
-
-
-
-
-
-
500  
1k  
-
-
-
-
-
-
-
-
Gain=-20+20dB  
Gain=-20+20dB  
Center frequency  
Quality factor  
Hz  
fM3  
1.5k  
2.5k  
0.75  
1
fM4  
QM1  
QM2  
QM3  
QM4  
-
1.25  
1.5  
Gain=+20dB, VIN=100mVrms  
GB=20log (VOUT/VIN)  
Maximum boost gain  
Maximum cut gain  
17  
20  
23  
dB  
dB  
GT BST  
GT CUT  
Gain=-20dB, VIN=1Vrms  
GB=20log (VOUT/VIN)  
-23  
-
-20  
1
-17  
-
Step resolution  
Gain set error  
dB  
dB  
Gain=-20+20dB  
Gain=-20+20dB  
GT STEP  
GT ERR  
fT1  
-2  
-
0
2
-
7.5k  
10k  
fT2  
fT3  
-
-
-
-
Gain=-20+20dB  
Gain=-20+20dB  
Center frequency  
Hz  
12.5k  
15k  
0.75  
1.25  
fT4  
QT1  
QT2  
fC1  
-
-
-
-
-
-
-
-
Quality factor  
-
80  
Cut-off frequency  
Hz  
fC2  
fC3  
-
-
120  
160  
-
-
4/16  
Maximum output voltage  
VL MAX  
VL OFF  
2.9  
-
3.3  
0
3.5  
50  
V
Output offset voltage  
mV  
Maximum output voltage 1(EQ16)  
VIN=2.3Vrms, EQ1EQ6  
VS MAX1  
VS MAX2  
VS OFF  
2.8  
2.5  
-
3.1  
2.7  
0
3.3  
3.3  
50  
V
V
VIN=2.3Vrms, EQ7  
Maximum output voltage 2 (EQ7)  
Output offset voltage  
BD3484FS  
mV  
No signal  
21  
23  
25  
Gain=23dB (BD3484FS)  
Gain=15dB (BD3485/86FS)  
VIN=100mVrms  
Maximum gain  
dB  
BD3485FS  
BD3486FS  
GF BST  
13  
15  
17  
GF=20log(VOUT/VIN)  
Fader = -dB  
Maximum attenuation *  
GF=20log(VOUT/VIN)  
BW = IHF-A  
GF BST  
GF STEP  
GF ERR  
-100  
-90  
dB  
Gain & ATT=+15-79dB  
Step resolution  
Gain set error  
1
0
dB  
dB  
Gain=+1~+23dB (BD3484FS)  
Gain=+1+15dB (BD3485/86FS)  
-2  
2
Attenuation set error 1  
Attenuation set error 2  
Attenuation set error 3  
Output impedance  
ATT=-1-15dB  
GF ERR1  
GF ERR2  
GF ERR3  
ROUT  
-2  
-3  
-4  
2
0
0
2
3
dB  
dB  
ATT=-16-47dB  
ATT=-48-79dB  
VIN=100mVrms  
0
4
dB  
2.2  
Ω
50  
THD=1, BW=400-30KHz  
VOM  
Vrms  
Maximum output voltage  
Gain=-20dB, VIN=100mVrms  
GL=20log(VOUT/VIN)  
GL MAX  
-23  
-20  
-17  
dB  
Maximum attenuation  
Step resolution  
Gain=0-10dB  
Gain=-10-20dB  
Gain=-1-20dB  
2
GL STEP1  
GL STEP2  
GL ERR  
-2  
1
2
0
dB  
dB  
dB  
Gain set error  
Maximum gain  
Gain=+20dB, VIN=100mVrms  
GE=20log(VOUT/VIN)  
GE MAX  
17  
20  
23  
dB  
Gain=0+10dB  
Gain=+10+20dB  
Gain=+1+20dB  
2
GE STEP1  
GE STEP2  
GE ERR  
-2  
1
2
0
dB  
dB  
dB  
Step resolution  
Gain set error  
Maximum gain  
Gain set error  
Gain 15dB  
VIN=100mVrms, f=20kHz  
GE=20log(VOUT/VIN)  
GE MAX  
GE ERR  
13  
15  
0
17  
2
dB  
dB  
Gain=+1+15dB, f=20KHz  
-2  
TM1  
TM2  
0.6  
1.0  
Advanced switch ON  
Advanced switch time of Mute  
msec  
TM3  
1.4  
TM4  
3.2  
TVS1  
TVS2  
TVS3  
TVS4  
TVS5  
TVS6  
TVS7  
TVS8  
4.7  
11.2  
14.4  
19.7  
25.7  
30.3  
42.0  
53.5  
Advanced switch time of Volume,  
Fader, Tone control gain and att.  
Advanced switch ON  
msec  
VP-9690A(Average value detection, effective value display) filter by Matsushita Communication is used for measurement.  
Phase between input / output is same.  
5/16  
Timing chart  
Electrical specifications and timing for bus lines and I/O stages  
SDA  
tBUF  
tHD;STA  
tF  
tSP  
tR  
tLOW  
SCL  
tSU;STO  
tSU;STA  
tHD;STA  
tSU;DAT  
tHD;DAT  
tHIGH  
Sr  
S
P
P
Fig.1 Definition of timing on the I2C-bus  
Table 1 Characteristics of the SDA and SCL bus lines for I2C-bus devices  
Item  
Fast-mode I2C-bus  
Symbol  
Unit  
Min.  
0
Max.  
400  
kHz  
1
2
SCL clock frequency  
fSCL  
tBUF  
Bus free time between a STOP and START condition  
1.3  
0.6  
μS  
Hold time (repeated) START condition. After this period, the first  
clock pulse is generated  
3
tHD;STA  
μS  
4
5
6
7
8
9
LOW period of the SCL clock  
tLOW  
tHIGH  
tSU;STA  
tHD;DAT  
tSU; DAT  
tR  
1.3  
0.6  
μS  
μS  
μS  
μS  
ns  
HIGH period of the SCL clock  
Set-up time for a repeated START condition  
Data hold time:  
0.6  
0*  
Data set-up time  
100  
20+Cb  
20+Cb  
0.6  
Rise time of both SDA and SCL signals  
300  
300  
ns  
10 Fall time of both SDA and SCL signals  
11 Set-up time for STOP condition  
tF  
ns  
tSU;STO  
Cb  
μS  
pF  
12 Capacitive load for each bus line  
400  
All values referred to VIH min. and VIL max. Levels (see Table 2).  
* A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIH min. of the SCL signal) in order to  
bridge the undefined region of the falling edge of SCL.  
Table 2 Characteristics of the SDA and SCL I/O stages for I2C-bus devices  
Fast-mode devices  
Item  
Symbol  
Unit  
Min.  
-0.5  
Max.  
1
LOW level input voltage : fixed input levels  
HIGH level input voltage : fixed input levels  
Hysterics of Schmitt trigger inputs : fixed input levels  
V
V
13  
14  
15  
VIL  
VIH  
2.3  
n/a  
0
n/a  
50  
Vhys  
Tsp  
V
16 Pulse width of spikes which must be suppressed by the input filter.  
ns  
V
LOW level output voltage (open drain or open collector):  
17  
VOL1  
0
0.4  
at 3mA sink current  
20+0.1Cb  
*1)  
250  
Output fall time from VIHmin. to VIHmax. with a bus capacitance  
from 10 pF to 400pF : with up to 3mA sink current at VOL1  
18  
tOF  
ns  
*2)  
Input current each I/O pin with an input voltage between 0.4V and  
0.9 VDDmax.  
19  
Ii  
-10  
10  
10  
μA  
Capacitance for each I/O pin.  
20  
Ci  
pF  
n/a = not applicable  
1) maximum VIH=VDDmax0.5V , VDDMAX=5.5V  
2) Cb = capacitance of one bus line in pF.  
3) Note that the maximum tF for the SDA and SCL bus lines quoted in Table 1 (300ns) is longer than the specified maximum tOF for  
the output stages (250ns). This allows series protection resistors (Rs) to be connected between the SDA/SCL pins and the  
SDA/SCL bus lines as shown in Fig. 1 without exceeding the maximum specified tF.  
6/16  
CONTROL SIGNAL SPECIFICATION (BD3484FS)  
Data  
Select  
Address  
(hex)  
MSB  
Data  
LSB  
Item  
Initial Setup 1  
Initial Setup 2  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Advanced  
switch  
ON/OFF  
Advanced switch time of  
Volume/Fader/Tone/Loudness  
Advanced switch time of  
Mute  
01  
02  
0
0
Subwoofer Output  
0
0
0
0
0
0
Subwoofer LPF fc  
Input Selector  
Selector  
04  
06  
0
0
0
0
0
Input Selector  
Input gain  
Mute  
ON/OFF  
Input Gain  
20  
28  
29  
2A  
2B  
2C  
2D  
Volume Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Volume gain  
Fader 1ch Front  
Fader 2ch Front  
Fader 1ch Rear  
Fader 2ch Rear  
Fader 1ch Sub  
Fader 2ch Sub  
41  
44  
0
0
0
0
Bass fo  
0
0
0
0
Bass Q  
Bass setup  
Middle fo  
Treble fo  
Middle Q  
Middle setup  
47  
51  
54  
57  
0
0
0
0
0
0
0
0
Treble Q  
Treble setup  
Bass gain  
Bass  
Boost/Cut  
0
0
0
Bass Gain  
Middle Gain  
Treble Gain  
Middle  
Boost/Cut  
Middle gain  
Treble gain  
Treble  
Boost/Cut  
Loudness  
75  
80  
0
1
0
0
0
0
0
0
Loudness Attenuation  
attenuation  
Test Mode 1  
0
0
0
1
F0  
F1  
F2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Test Mode 2  
FE  
1
0
0
0
0
0
0
1
System Reset  
In function changing of the hatching part, it works advanced switch.  
Slave address  
MSB  
LSB  
A6  
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
A0  
R/W  
80H  
1
0
0
Please refer toBD3484FS User’s Manual for I2C BUS communicationabout the detail of control signal specification.  
7/16  
CONTROL SIGNAL SPECIFICATION (BD3485FS)  
Data  
Select  
Address  
(hex)  
MSB  
Data  
LSB  
Item  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Advanced  
switch  
ON/OFF  
Advanced switch time of  
Volume/Fader/Tone/  
Super Bass  
Advanced switch time of  
Mute  
01  
02  
0
0
Initial Setup 1  
Initial Setup 2  
Subwoofer Output  
Selector  
0
0
0
0
0
0
Subwoofer LPF fc  
Input Selector  
04  
06  
0
0
0
0
0
Input Selector  
Input gain  
Mute  
ON/OFF  
Input Gain  
20  
28  
29  
2A  
2B  
2C  
2D  
Volume Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Volume gain  
Fader 1ch Front  
Fader 2ch Front  
Fader 1ch Rear  
Fader 2ch Rear  
Fader 1ch Sub  
Fader 2ch Sub  
41  
44  
0
0
0
0
Bass fo  
0
0
0
0
Bass Q  
Bass setup  
Middle fo  
Treble fo  
Middle Q  
Middle setup  
47  
51  
54  
0
0
0
0
0
0
0
Treble setup  
Bass gain  
Treble Q  
Bass  
0
0
Bass Gain  
Middle Gain  
Treble Gain  
Boost/Cut  
Middle  
Middle gain  
Boost/Cut  
Treble  
57  
75  
0
0
0
0
Treble gain  
Boost/Cut  
0
0
Super Bass Gain  
Super Bass Gain  
0
1
80  
0
0
0
0
0
1
Test Mode 1  
F0  
F1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Test Mode 2  
F2  
FE  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
System Reset  
In function changing of the hatching part, it works advanced switch.  
Slave address  
MSB  
LSB  
A6  
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
A0  
R/W  
80H  
1
0
0
Please refer toBD3485FS User’s Manual for I2C BUS communicationabout the detail of control signal specification.  
8/16  
CONTROL SIGNAL SPECIFICATION (BD3486FS)  
Data  
Select  
Address  
(hex)  
MSB  
Data  
LSB  
Item  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Advanced  
switch  
ON/OFF  
Advanced switch time of  
Volume/Fader/Tone/Effect  
Advanced switch time of  
Mute  
01  
02  
0
0
Initial Setup 1  
Initial Setup 2  
Subwoofer Output  
Selector  
0
0
0
0
0
0
Subwoofer LPF fc  
Input Selector  
04  
06  
0
0
0
0
0
Input Selector  
Input gain  
Mute  
ON/OFF  
Input Gain  
20  
28  
29  
2A  
2B  
2C  
2D  
Volume Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Fader Gain / Attenuation  
Volume gain  
Fader 1ch Front  
Fader 2ch Front  
Fader 1ch Rear  
Fader 2ch Rear  
Fader 1ch Sub  
Fader 2ch Sub  
41  
44  
0
0
0
0
Bass fo  
0
0
0
0
Bass Q  
Bass setup  
Middle fo  
Treble fo  
Middle Q  
Middle setup  
47  
51  
54  
0
0
0
0
0
0
0
Treble Q  
Treble setup  
Bass gain  
Bass  
Boost/Cut  
0
0
Bass Gain  
Middle Gain  
Treble Gain  
Middle  
Boost/Cut  
Middle gain  
Treble  
Boost/Cut  
57  
75  
0
0
0
0
Treble gain  
0
1
0
0
Effect Gain  
Effect Gain  
80  
0
0
0
0
0
1
Test Mode 1  
F0  
F1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Test Mode 2  
FE  
1
0
0
0
0
0
0
1
System Reset  
In function changing of the hatching part, it works advanced switch.  
Slave address  
MSB  
LSB  
A6  
A5  
0
A4  
0
A3  
0
A2  
0
A1  
0
A0  
R/W  
80H  
1
0
0
Please refer toBD3486FS User’s Manual for I2C BUS communicationabout the detail of control signal specification.  
9/16  
Application Circuit Diagram (BD3484FS)  
FIL  
GND  
OUTR2  
4.7μ  
SDA  
SCL  
MUTE  
VCC  
OUTF1  
4.7μ  
OUTF2  
4.7μ  
OUTR1  
4.7μ  
OUTS1  
4.7μ  
OUTS2  
4.7μ  
ADJ  
10μ  
1μ  
1μ  
1μ  
2.2k  
33k  
(±1%)  
10μ  
0.1μ  
22  
21  
20  
19  
18  
17  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
INF1  
INF2  
INR1  
VCO  
30k  
30k  
30k  
I2C BUS LOGIC  
VCC  
VCC/2  
・LPF : fc=80/120/160Hz, OFF  
・Fader Volume : +23dB~-79dB/1dB step, -∞  
・Loudness : +0~-10dB/1dB step, -10~-20dB/2dB step  
・Volume : +15dB~-79dB/1dB step, -∞  
・Volume1 : +15dB~-24dB/1dB step  
・Volume2 : 0~-55(-24~-79)dB/1dB step, -∞  
LPF  
・Tone : ±20dB/1dB step  
・Bass : fo=60/80/100/120, Q=0.5/1/1.5/2  
・Middle : fo=500/1k/1.5k/2.5k, Q=0.75/1/1.25/1.5  
・Treble : fo=7.5k/10k/12.5k/15k, Q=0.75/1.25  
・Input Gain : +20~0dB/1dB step  
1st order LPF  
Volume2  
Treble/ Bass/Middle  
2nd order LPF  
Volume1 / Mute  
Input Gain  
Loudness  
Input Selector  
Buffered  
Diff amp  
Buffered  
Diff amp  
30k  
100k  
100k  
100k  
100k  
100k  
100k  
VOUT2  
VOUT1  
250k  
250k  
250k  
LOUT1  
LOUT2  
INR2  
8
9
10  
11  
1
2
3
4
5
6
7
12  
13  
14  
15  
16  
56k  
56k  
1μ  
1μ  
1μ  
1μ  
1μ  
1μ  
10μ  
10μ  
10μ  
4.7μ  
4.7μ  
1μ  
1000p 4.7k  
4.7k 1000p  
4.7k  
4.7k  
A1  
A2  
B1  
B2  
DP1  
C1  
C2  
DN  
DP2  
0.047μ  
0.047μ  
Unit  
Fig.2 Application Circuit Diagram(BD3484FS)  
Terminal Terminal  
R : [Ω]  
C : [F]  
●Descriptions of terminal  
Terminal Terminal  
Description  
Description  
No.  
Name  
No.  
Name  
1
A1  
A input terminal of 1ch  
A input terminal of 2ch  
B input terminal of 1ch  
B input terminal of 2ch  
17  
INR1  
Rear input terminal of 1ch  
Front input terminal of 2ch  
Front input terminal of 1ch  
2
3
4
A2  
B1  
B2  
18  
19  
20  
INF2  
INF1  
ADJ  
Adjust terminal of VCO frequency  
Subwoofer output terminal of 2ch  
5
C1  
C input terminal of 1ch  
21  
OUTS2  
6
C2  
DP1  
DN  
C input terminal of 2ch  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
OUTS1  
OUTR2  
OUTR1  
OUTF2  
OUTF1  
VCC  
Subwoofer output terminal of 1ch  
Rear output terminal of 2ch  
Rear output terminal of 1ch  
Front output terminal of 2ch  
Front output terminal of 1ch  
Power supply terminal  
7
D positive input terminal of 1ch  
D negative input terminal  
8
9
DP2  
LIN2  
D positive input terminal of 2ch  
Loudness input terminal of 2ch  
10  
11  
12  
13  
14  
15  
16  
VOUT2 Volume output terminal of 2ch  
VOUT1 Volume output terminal of 1ch  
MUTE  
SCL  
External compulsory mute terminal  
I2C Communication clock terminal  
I2C Communication data terminal  
Grounding terminal  
LIN1  
LOUT1  
LOUT2  
INR2  
Loudness input terminal of 1ch  
Loudness output terminal of 1ch  
Loudness output terminal of 2ch  
Rear input terminal of 2ch  
SDA  
GND  
FIL  
VCC/2 terminal  
10/16  
Application Circuit Diagram (BD3485FS)  
FIL  
10μ  
GND  
OUTR1  
4.7μ  
OUTR2  
4.7μ  
OUTS1  
4.7μ  
OUTS2  
LOUT  
SDA  
SCL  
MUTE  
VCC  
OUTF1  
4.7μ  
OUTF2  
4.7μ  
ADJ  
DATA  
CLK  
4.7  
μ
2.2k  
33k  
(±1%)  
10μ  
0.1μ  
22  
21  
20  
19  
18  
17  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
DATA  
CLK  
SDA  
SCL  
MUTE  
ADJ  
LOUT  
VCC  
VCC/2  
I2C BUS LOGIC  
Level meter  
・Volume2  
・Treble  
0~-55dB/1dB step, -∞  
・fo=7.5k/10k/12.5k/15k  
・Q=0.75/1.25  
・Bass  
・Gain=±20dB/1dB step  
・fo=60/80/100/120  
・Q=0.5/1/1.5/2  
・Gain=±20dB/1dB step  
・Fader Volume  
+15dB~-79dB/1dB step,-∞  
・Volume1  
・+15dB~-24dB/1dB step  
・LPF  
fc=OFF, 80/120/160Hz  
・Middle  
・Input Gain  
・0~+20dB/1dB step  
・fo=500/1k/1.5k/2.5kHz  
・Q=0.75/1.0/1.25/1.5  
・Gain=±20dB/1dB step  
・Super Bass  
0~+10dB/1dB step  
+10~+20dB/2dB step  
LPF  
Volume2  
1st order LPF  
Treble/Bass/Middle  
2nd order LPF  
Volume1 / Mute  
Input Gain  
Input Selector  
SUPER BASS  
Buffered  
Diff amp  
Buffered  
Diff amp  
100k  
100k  
100k  
100k  
100k  
100k  
250k  
250k  
250k  
8
9
10  
11  
1
2
3
4
5
6
7
12  
13  
14  
15  
16  
1μ  
1μ  
1μ  
1μ  
μ
μ
10μ  
μ
1
1
10  
10  
μ
A1  
A2  
B1  
B2  
C1  
C2  
DP1  
DN  
DP2  
Unit  
Fig.3 Application Circuit Diagram(BD3485FS)  
Terminal Terminal  
R : [Ω]  
C : [F]  
●Descriptions of terminal  
Terminal Terminal  
Description  
Description  
No.  
Name  
No.  
Name  
1
A1  
A input terminal of 1ch  
A input terminal of 2ch  
B input terminal of 1ch  
B input terminal of 2ch  
17  
CLK  
Clock terminal for Level meter  
Data terminal for Level meter  
Output terminal for Level meter  
Adjust terminal of VCO frequency  
2
3
4
A2  
B1  
B2  
18  
19  
20  
DATA  
LOUT  
ADJ  
5
C1  
C input terminal of 1ch  
21  
OUTS2  
Subwoofer output terminal of 2ch  
6
C2  
DP1  
C input terminal of 2ch  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
OUTS1  
OUTR2  
OUTR1  
OUTF2  
OUTF1  
VCC  
Subwoofer output terminal of 1ch  
Rear output terminal of 2ch  
Rear output terminal of 1ch  
Front output terminal of 2ch  
Front output terminal of 1ch  
Power supply terminal  
7
D positive input terminal of 1ch  
D negative input terminal  
8
DN  
9
DP2  
D positive input terminal of 2ch  
Terminal 3 for Super Bass of 2ch  
Terminal 1 for Super Bass of 2ch  
Terminal 2 for Super Bass 2ch  
BIAS terminal for Supper Bass  
Terminal 2 for Super Bass of 1ch  
Terminal 1 for Super Bass of 1ch  
Terminal 3 for Super Bass 1ch  
10  
11  
12  
13  
14  
15  
16  
SB32  
SB12  
SB22  
SBIAS  
SB21  
SB11  
SB31  
MUTE  
SCL  
External compulsory mute terminal  
I2C Communication clock terminal  
I2C Communication data terminal  
Grounding terminal  
SDA  
GND  
FIL  
VCC/2 terminal  
11/16  
Application Circuit Diagram (BD3486FS)  
FIL  
GND  
OUTR2  
4.7μ  
SOUT  
SDA  
SCL  
MUTE  
VCC  
OUTF1  
4.7μ  
OUTF2  
4.7μ  
OUTR1  
4.7μ  
OUTS1  
4.7μ  
OUTS2  
4.7μ  
ADJ  
DATA  
CLK  
10μ  
33k  
(±1%)  
2.2k  
10μ  
0.1μ  
22  
21  
20  
19  
18  
17  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
VCC  
VCC/2  
I2C BUS LOGIC  
Spectrum Analyzer  
・Volume2  
0~-55dB/1dB step, -∞  
・Treble  
・fo=7.5k/10k/12.5k/15k  
・Q=0.75/1.25  
・Fader Volume  
+15dB~-79dB/1dB step,-∞  
・Bass  
・fo=60/80/100/120  
・Q=0.5/1/1.2  
・Gain=±20dB/1dB step  
・Volume1  
・+15dB~-24dB/1dB step  
・LPF  
・Gain=±20dB/1dB step  
fc=OFF, 80/120/160Hz  
・Middle  
・Input Gain  
・0~+20dB/1dB step  
・Effect  
0~+15dB/1dB step  
・fo=500/1k/1.5k/2.5kHz  
・Q=0.75/1.0/1.25/1.5  
・Gain=±20dB/1dB step  
LPF  
Volume2  
1st order LPF  
Treble/Bass/Middle  
Volume1 / Mute  
Input Gain  
Input Selector  
Buffered  
Diff amp  
Buffered  
Diff amp  
Effect  
100k  
100k  
100k  
100k  
100k  
100k  
250k  
250k  
250k  
8
9
10  
11  
1
2
3
4
5
6
7
12  
13  
14  
15  
16  
1μ  
1μ  
1μ  
1μ  
1
1
10μ  
10  
10  
μ
μ
μ
μ
A1  
A2  
B1  
B2  
DP1  
C1  
C2  
DN  
DP2  
DS32  
DS12  
DS22  
EBIAS  
DS21  
DS11  
DS31  
Unit  
Fig.4 Application Circuit Diagram(BD3486FS)  
R : [Ω]  
C : [F]  
●Descriptions of terminal  
Terminal Terminal  
Terminal Terminal  
Description  
Description  
No.  
Name  
No.  
17  
Name  
CLK  
1
A1  
A input terminal of 1ch  
A input terminal of 2ch  
B input terminal of 1ch  
B input terminal of 2ch  
Clock terminal for Spectrum Analyzer  
Data terminal for Spectrum Analyzer  
Output terminal for Spectrum Analyzer  
Adjust terminal of VCO frequency  
2
3
4
A2  
B1  
B2  
18  
19  
20  
DATA  
SOUT  
ADJ  
5
C1  
C input terminal of 1ch  
21  
OUTS2  
Subwoofer output terminal of 2ch  
6
C2  
DP1  
C input terminal of 2ch  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
OUTS1  
OUTR2  
OUTR1  
OUTF2  
OUTF1  
VCC  
Subwoofer output terminal of 1ch  
Rear output terminal of 2ch  
Rear output terminal of 1ch  
Front output terminal of 2ch  
Front output terminal of 1ch  
Power supply terminal  
7
D positive input terminal of 1ch  
D negative input terminal  
D positive input terminal of 2ch  
Terminal 3 for Effect of 2ch  
Terminal 1 for Effect of 2ch  
Terminal 2 for Effect of 2ch  
BIAS terminal for Effect  
8
DN  
9
DP2  
10  
11  
12  
13  
14  
15  
16  
DS32  
DS12  
DS22  
EBIAS  
DS21  
DS11  
DS31  
MUTE  
SCL  
External compulsory mute terminal  
I2C Communication clock terminal  
I2C Communication data terminal  
Grounding terminal  
Terminal 2 for Effect of 1ch  
Terminal 1 for Effect of 1ch  
Terminal 3 for Effect of 1ch  
SDA  
GND  
FIL  
VCC/2 terminal  
12/16  
Data  
50  
40  
30  
20  
10  
0
10  
1
5
4
3
10kHz  
1kHz  
2
Gain=0dB  
100Hz  
1
0.1  
0
-1  
-2  
-3  
-4  
-5  
0.01  
0.001  
10  
100  
1k  
10k  
100k  
0.001  
0.01  
0.1  
1
10  
0
1
2
3
4
5
6
7
8
9
10  
SUPPLY VOLTAGE : VCC[V]  
OUTPUT VOLTAGE : Vo[Vrms]  
FREQUENCY :f [Hz]  
Fig.5 QUIESCENT CURRENT VS  
Fig.6 TOTAL HARMONIC DISTORTION  
Fig.7 VOLTAGE GAIN VS  
FREQUECY  
SUPPLY VOLTAGE  
VS OUTPUT VOLTAGE  
25  
20  
15  
10  
5
25  
15  
5
25  
Q : 0.5/1/1.5/2  
BASS GAIN : ±20dB  
fo : 100Hz  
fo : 60/80/100/120Hz  
BASS GAIN : ±20dB  
Q : 0.5  
BASS GAIN : -20+20dB  
20  
/1dB step  
fo : 100Hz  
Q : 0.5  
15  
10  
5
0
0
-5  
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
-15  
-25  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY :f [Hz]  
FREQUENCY :f [Hz]  
FREQUENCY :f [Hz]  
Fig.10 CMRR VS  
Fig.9 BASS VOLTAGE GAIN VS  
Fig.8 BASS VOLTAGE GAIN VS  
FREQUENCY 1  
FREQUENCY 3(Q VARIABLE)  
25  
FREQUENCY 2(fo VARIABLE)  
25  
25  
15  
5
MIDDLE GAIN :  
±20dB  
fo : 500/1k/1.5k/2.5kHz  
MIDDLE GAIN :  
±20dB  
fo : 1kHz  
Q : 0.75/1/1.25/1.5  
MIDDLE GAIN :  
-20+20dB /1dB step  
Q : 0.75  
15  
5
15  
5
fo : 1kHz  
Q : 0.75  
-5  
-5  
-5  
y
-15  
-15  
-25  
-15  
-25  
-25  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY :f [Hz]  
FREQUENCY :f [Hz]  
FREQUENCY :f [Hz]  
Fig.12 MIDDLE VOLTAGE GAIN vs  
Fig.13 MIDDLE VOLTAGE GAIN vs  
FREQUENCY 3 (Q VARIABLE)  
Fig.11 MIDDLE VOLTAGE GAIN vs  
FREQUENCY 1  
FREQUENCY 2(fo VARIABLE)  
25  
25  
15  
5
26  
TREBLE GAIN : -20+20dB  
fo : 7.5k/10k/12.5k/15kHz  
TREBLE GAIN : ±20dB  
Q : 0.75/1.25  
TREBLE GAIN : ±20dB  
21  
/1dB step  
fo : 10kHz  
Q : 0.75  
Q : 0.5  
fo : 10kHz  
15  
16  
11  
6
5
-5  
1
-5  
-4  
-9  
-15  
-25  
-15  
-25  
-14  
-19  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY :f [Hz]  
FREQUENCY :f [Hz]  
FREQUENCY :f [Hz]  
Fig.14 TREBLE VOLTAGE GAIN VS  
FREQUENCY 1  
Fig.15 TREBLE VOLTAGE GAIN VS  
FREQUENCY 2(fo VARIABLE)  
Fig.16 TREBLE VOLTAGE GAIN VS  
FREQUENCY 3(Q VARIABLE)  
13/16  
1000  
100  
10  
100  
10  
1
1000  
DIN-AUDIO  
IHF-A  
DIN-AUDIO  
IHF-A  
DIN-AUDIO  
IHF-A  
100  
10  
1
1
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
-80 -70 -60 -50 -40 -30 -20 -10  
0
10 20  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
MIDDLE VOLTAGE GAIN :Gv [dB]  
VOLUME ATTENUATION : ATT[dB]  
BASS VOLTAGE GAIN : Gv[dB]  
Fig.19 MIDDLE VOLTAGE GAIN VS  
OUTPUT NOISE  
Fig.17 VOLUME ATTENUATION VS  
Fig.18 BASS VOLTAGE GAIN VS  
OUTPUT NOISE  
OUTPUT NOISE  
1000  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
-20  
-40  
100  
DIN-AUDIO  
IHF-A  
-60  
10  
-80  
1
-100  
10  
100  
1k  
10k  
100k  
100  
1000  
10000  
100000  
-20 -15 -10 -5  
0
5
10 15 20  
LOAD RESISTANCE :RL [Ω]  
FREQUENCY :f [Hz]  
TREBLE VOLTAGE GAIN :Gv [dB]  
Fig.20 TREBLE VOLTAGE GAIN VS  
OUTPUT NOISE  
Fig.22 LOAD RESISITANCE VS  
Fig.21 CMRR VS  
MAXIMUM OUTPUT VOLTAGE  
FREQUENCY  
10  
SCL  
SDA  
SCL  
SDA  
1
OUTF1  
OUTF1  
0.1  
OUTF2  
OUTF2  
0.01  
0.01  
0.1  
1
10  
INPUT LEVEL :Vin [V]  
Fig.23 ADVANCED SWITCH  
WAVEFORM 1  
Fig.24 ADVANCED SWITCH  
WAVEFORM 2  
Fig.25 INPUT VOLTAGE VS  
LEVEL METER OUTPUT  
14/16  
About selecting components for application  
About resistor of “ADJ” terminal (20pin)  
This resistor desides oscillation frequency of VCO.  
Please select a resistor that has low temperature coefficiency and high accuracy.  
And, the value of this resistor changes center frequency of tone control and also changes advanced switch time.  
Please refer to the following table.  
Reference data)  
RadjTYP  
(33kΩ)  
Radj-18%  
(27kΩ)  
Block  
Item  
Unit  
fB1  
fB2  
fB3  
fB4  
fM1  
fM2  
fM3  
fM4  
fc1  
60  
80  
73  
98  
Bass  
100  
120  
500  
1 k  
122  
147  
611  
1.2k  
1.8k  
3.1k  
98  
Tone  
Control  
Middle  
Hz  
1.5 k  
2.5 k  
80  
LPF  
fc2  
120  
160  
0.6  
146  
195  
0.5  
fc3  
1
0.8  
MUTE  
Advanced switch time  
1.4  
1.1  
3.2  
2.6  
4.7  
3.8  
11.2  
14.4  
19.7  
25.7  
30.3  
42  
9.2  
ms  
Volume  
Tone control  
Loudness (BD3484FS)  
Super bass (BD3485FS)  
Effect (BD3486FS)  
Fader  
11.8  
16.1  
21.0  
24.8  
34.3  
43.8  
Advanced switch time  
53.5  
Cautions on use  
(1) Numbers and data in entries are representative design values and are not guaranteed values of the items.  
(2) Although we are confident in recommending the sample application circuits, carefully check their characteristics further  
when using them. When modifying externally attached component constants before use, determine them so that they  
have sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only  
for static characteristics but also including transient characteristics.  
(3) Absolute maximum ratings  
If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be  
damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in  
which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not  
to apply the conditions under which absolute maximum ratings are exceeded to the LSI.  
(4) GND potential  
Make the GND pin voltage such that it is the lowest voltage even when operating below it. Actually confirm that the  
voltage of each pin does not become a lower voltage than the GND pin, including transient phenomena.  
(5) Thermal design  
Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in  
actual states of use.  
(6) Shorts between pins and misinstallation  
When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is  
misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign  
substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.  
(7) Operation in strong magnetic fields  
Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.  
15/16  
Selection of order type  
2
B D 3 4 8  
F S - E  
4
Package and forming specification  
Part No.  
BD3484FS  
BD3485FS  
BD3486FS  
SSOP-A32  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
2000pcs  
13.6 0.2  
Direction  
of feed  
E2  
32  
17  
16  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
0.15 0.1  
0.1  
0.8  
0.36 0.1  
Direction of feed  
1pin  
Reel  
When you order , please order in times the amount of package quantity.  
Unit:mm)  
Catalog No.07T151A '07.5 ROHM © 1000 NZ  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2008 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

BD3485FS

Silicon Monolithic Integrated Circuit
ROHM

BD3485FS-E2

Tone Control Circuit, 4 Channel(s), BICMOS, PDSO32, ROHS COMPLIANT, SSOP-32
ROHM

BD3486FS

Silicon Monolithic Integrated Circuit
ROHM

BD3486FS-E1

Consumer Circuit, BICMOS, PDSO32
ROHM

BD3486FS-E2

Tone Control Circuit, 4 Channel(s), BICMOS, PDSO32, ROHS COMPLIANT, SSOP-32
ROHM

BD3487FS

Silicon Monolithic Integrated Circuit
ROHM

BD3487FS-E1

Consumer Circuit, BICMOS, PDSO32
ROHM

BD3488FS

Silicon Monolithic Integrated Circuit
ROHM

BD3488FS-E2

Consumer Circuit, BICMOS, PDSO32,
ROHM

BD3489FS

Silicon Monolithic Integrated Circuit
ROHM

BD3489FS-E2

Consumer Circuit, BICMOS, PDSO32
ROHM

BD3490FV

Silicon Monolithic Integrated Circuit
ROHM