SP207EET/TR [ROCHESTER]

TRIPLE LINE TRANSCEIVER, PDSO24, PLASTIC, SOIC-24;
SP207EET/TR
型号: SP207EET/TR
厂家: Rochester Electronics    Rochester Electronics
描述:

TRIPLE LINE TRANSCEIVER, PDSO24, PLASTIC, SOIC-24

光电二极管
文件: 总19页 (文件大小:1040K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SP207E–SP213E  
Low Power, High ESD +5V RS232 Transceivers  
+5V INPUT  
Meets All EIA-232 and ITU V.28  
0.1µF  
6.3V  
9
Specifications  
10  
+
0.1µF  
6.3V  
C1  
+
VCC  
11  
15  
+
+
0.1µF  
6.3V  
V +  
V –  
Single +5V Supply Operation  
12  
13  
0.1µF  
C1  
C2  
+
3mA Typical Static Supply Current  
4 x 0.1µF External Charge Pump Capacitors  
Typical 230kbps Transmission Rates  
Standard SOIC and SSOP Footprints  
1µA Shutdown Mode (SP211E & SP213E)  
Two Wake-Up Receivers (SP213E)  
Tri-State/RxEnable (SP211E & SP213E)  
Improved ESD Specifications:  
+15kV Human Body Model  
16V  
+
0.1µF  
16V  
SP207E  
400KOHM  
400KOHM  
400KOHM  
400KOHM  
400KOHM  
14  
C2  
7
6
2
T1  
T2  
T3  
T4  
T5  
T1 IN  
T1 OUT  
T2 OUT  
T3 OUT  
3
T2 IN  
T3 IN  
T4 IN  
T5 IN  
1
18  
19  
21  
+15kV IEC1000-4-2 Air Discharge  
+8kV IEC1000-4-2 Contact Discharge  
24  
20  
T
T
4 OUT  
5 OUT  
Now Available in Lead Free Packaging  
5
22  
17  
4
R1  
R
1 OUT  
R1 IN  
R2 IN  
R3 IN  
Device  
Drivers Receivers Pins  
SP207E  
SP208E  
SP211E  
SP213E  
5
4
4
4
3
4
5
5
24  
24  
28  
28  
5KOHM  
5KOHM  
5KOHM  
23  
16  
R2  
R3  
R2 OUT  
R3 OUT  
Table 1. Model Selection Table  
8
GND  
DESCRIPTION  
The SP207E-SP213E are enhanced transceivers intended for use in RS-232 and V.28 serial  
communication. Thesedevicesfeatureverylowpowerconsumptionandsingle-supplyoperation  
making them ideal for space-constrained applications. Sipex-patented (5,306,954) on-board  
charge pump circuitry generates fully compliant RS-232 voltage levels using small and inexpen-  
sive 0.1µF charge pump capacitors. External +12V and -12V supplies are not required. The  
SP211E and SP213E feature a low-power shutdown mode, which reduces power supply drain  
to1µA. SP213Eincludestworeceiversthatremainactiveduringshutdowntomonitorforsignalactivity.  
The SP207E-SP213E devices are pin-to-pin compatible with our previous SP207, SP208,  
SP211 and SP213 as well as industry-standard competitor devices. Driver output and receiver  
input pins are protected against ESD to over ±15kV for both Human Body Model and IEC1000-  
4-2AirDischargetestmethods. Dataratesofover120kbpsareguaranteedwith230kbpstypical,  
making them compatible with high speed modems and PC remote-access applications.  
Receivers also incorporate hysteresis for clean reception of slow moving signals.  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
Power Dissipation Per Package  
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional  
operation of the device at these or any other  
above those indicated in the operation sections  
of the specifications below is not implied. Exposure  
to absolute maximum rating conditions for extended  
periods of time may affect reliability.  
24-pin SSOP (derate 11.2mW/oC above +70oC)....900mW  
24-pin PDIP (derate 15.9mW/oC above +70oC)....1300mW  
24-pin SOIC (derate 12.5mW/oC above +70oC)...1000mW  
28-pin SSOP (derate 11.2mW/oC above +70oC)....900mW  
28-pin SOIC (derate 12.7mW/oC above +70oC)...1000mW  
VCC .................................................................. +6V  
V+ ....................................... (VCC – 0.3V) to +13.2V  
V................................................................ 13.2V  
Input Voltages  
TIN .......................................... –0.3V to (VCC +0.3V)  
RIN ................................................................ ±20V  
Output Voltages  
TOUT ................................ (V+, +0.3V) to (V, –0.3V)  
ROUT ....................................... –0.3V to (VCC +0.3V)  
Short Circuit Duration on TOUT .............. Continuous  
SPECIFICATIONS  
.
VCC at nominal ratings; 0.1µF charge pump capacitors; TMIN to TMAX, unless otherwise noted.  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
TIN, EN, SD  
TTL INPUTS  
Logic Threshold  
VIL  
VIH  
0.8  
Volts  
Volts  
µA  
2.0  
Logic Pullup Current  
Maximum Transmssion Rate  
15  
230  
200  
TIN = 0V  
CL = 1000pF, RL = 3K  
120  
kbps  
TTL OUTPUTS  
Compatibility  
VOL  
TTL/CMOS  
0.05  
0.4  
Volts  
Volts  
µA  
IOUT = 3.2mA; VCC = +5V  
IOUT = –1.0mA  
0V ROUT VCC ; SP211 EN = 0V;  
VOH  
3.5  
Leakage Current  
+10  
SP213 EN = VCC  
TA = +25°C  
RS232 OUTPUT  
Output Voltage Swing  
+5  
+7  
Volts  
All transmitter outputs loaded  
with 3Kto ground  
Output Resistance  
300  
VCC = 0V; VOUT = +2V  
Output Short Circuit Current  
+25  
mA  
Infinite duration, VOUT = 0V  
RS232 INPUT  
Voltage Range  
Voltage Threshold  
Low  
High  
Hysteresis  
Resistance  
–15  
0.8  
+15  
Volts  
1.2  
1.7  
0.5  
5
Volts  
Volts  
Volts  
kΩ  
VCC = 5V, TA = +25°C  
VCC = 5V, TA = +25°C  
VCC = +5V  
2.8  
1.0  
7
0.2  
3
VIN =+15V; TA = +25°C  
DYNAMIC CHARACTERISTICS  
Driver Propagation Delay  
Receiver Propagation Delay  
Instantaneous Slew Rate  
1.5  
0.5  
µs  
µs  
V/µs  
TTL–to–RS-232  
RS-232–to–TTL  
1.5  
30  
CL = 50pF, RL = 3–7K;  
TA = +25°C; from +3V  
CL = 2,500pF, RL = 3K;  
measured from +3V to –3V  
or –3V to +3V  
Transition Time  
1.5  
µs  
Output Enable Time  
Output Disable Time  
400  
250  
ns  
ns  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
2
SPECIFICATIONS  
VCC at nominal ratings; 0.1µF charge pump capacitors; TMIN to TMAX, unless otherwise noted.  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
CONDITIONS  
POWER REQUIREMENTS  
VCC  
SP207  
All other parts  
ICC  
4.75  
4.50  
5.00  
5.00  
5.25  
5.50  
Volts  
Volts  
TA = +25°C  
3
15  
1
6
mA  
mA  
µA  
No load; VCC = ±10%  
All transmitters RL = 3KΩ  
TA = +25°C  
Shutdown Current  
10  
ENVIRONMENTAL AND MECHANICAL  
Operating Temperature  
Commercial, –C  
Extended, –E  
Storage Temperature  
0
–40  
–65  
+70  
+85  
+125  
°C  
°C  
°C  
Package  
–A  
Shrink (SSOP) small outline  
Wide (SOIC) small outline  
–T  
–P  
Narrow (PDIP) Plastic Dual-In-Line  
Transmitter Output @ 120kbps  
Transmitter Output @ 120kbps  
RL=3K, CL=1,000pF  
RL=3K, CL=2,500pF  
Transmitter Output @ 240kbps  
Transmitter Output @ 240kbps  
RL=3K, CL=1,000pF  
RL=3K, CL=2,500pF  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
3
PINOUT  
T
2 OUT  
T3 OUT  
R3IN  
T3 OUT  
T1OUT  
T2OUT  
R1IN  
T4 OUT  
R2IN  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
1
2
T1OUT  
R2IN  
R3OUT  
T4IN  
R2OUT  
T5IN  
3
3
R2OUT  
T1IN  
4
4
T4OUT  
T3IN  
R1OUT  
T2IN  
T5OUT  
T4IN  
5
5
R1OUT  
R1IN  
6
6
T2IN  
T1IN  
T3IN  
7
7
GND  
R4OUT  
R4IN  
GND  
R3OUT  
R3IN  
8
8
VCC  
VCC  
9
9
+
+
C1  
C1  
V
V
10  
11  
12  
10  
11  
12  
+
+
C2  
V
C2  
V
+
C1  
+
C2  
C1  
C2  
T3 OUT  
T
4 OUT  
R3IN  
R3OUT  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
2
T3 OUT  
T1OUT  
T2OUT  
R2IN  
T
4 OUT  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
T1OUT  
T2OUT  
R2IN  
R3IN  
2
3
4
5
6
7
8
9
3
R3OUT  
SHUTDOWN (SD)  
EN  
SHUTDOWN (SD)  
4
R2OUT  
T2IN  
EN  
5
R2OUT  
T2IN  
R4IN  
R4OUT  
T4IN  
6
R4IN  
T1IN  
7
T1IN  
R4OUT  
T4IN  
R1OUT  
R1IN  
8
R1OUT  
R1IN  
T3IN  
9
T3IN  
GND  
R5OUT  
R5IN  
10  
11  
12  
13  
14  
GND  
R5OUT  
R5IN  
10  
11  
12  
13  
14  
VCC  
VCC  
+
+
V
C1  
V
+
+
V
C1  
V
C2  
C2  
C2  
C2  
+
C1  
+
C1  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
4
FEATURES  
Transmitter/Drivers  
The SP207E, SP208E, SP211E and  
SP213E multi–channel transceivers fit most  
RS-232/V.28 communication needs. All of  
these devices feature low–power CMOS  
con-struction and SIPEX–proprietary on-  
board charge pump circuitry to generate  
RS-232 signal-voltages, making them ideal  
forapplicationswhere+9Vand-9Vsupplies  
arenotavailable. Thehighlyefficientcharge  
pump is optimized to use small and  
inexpensive0.1µFchargepumpcapacitors,  
saving board space and reducing overall  
circuit cost.  
The drivers are single-ended inverting  
transmitters, which accept either TTL or  
CMOSinputsandoutputtheRS-232signals  
with an inverted sense relative to the input  
logiclevels. Shouldtheinputofthedriverbe  
left open, an internal pullup to VCC forces the  
input high, thus committing the output to a  
logic-1 (MARK) state. The slew rate of the  
transmitter output is internally limited to a  
maximum of 30V/µs in order to meet the  
EIA/RS-232 and ITU V.28 standards. The  
transition of the output from high to low also  
meets the monotonicity requirements of the  
standard even when loaded. Driver output  
voltage swing is ±7V (typical) with no load,  
and ±5V or greater at maximum load. The  
transmitter outputs are protected against  
infinite short–circuits to ground without  
degradation in reliability.  
Each device provides a different driver/  
receiver combination to match standard  
application requirements. The SP207E is a  
5-driver, 3-receiver device, ideal for DCE  
applications such as modems, printers or  
other peripherals. SP208E is a 4-driver/  
4receiver device, ideal for providing hand-  
shaking signals in V.35 applications or other  
general-purpose serial communications.  
TheSP211EandSP213Eareeach3-driver,  
5-receiver devices ideal for DTE serial ports  
on a PC or other data-terminal equipment.  
ThedriversoftheSP211E,andSP213Ecan  
be tri–stated by using the SHUTDOWN  
function. In this “power-off” state the charge  
pump is turned off and VCC current drops to  
1µA typical. Driver output impedance will  
remain greater than 300, satisfying the  
RS-232andV.28specifications. ForSP211E  
SHUTDOWN is active when pin 25 is driven  
high. For SP213E SHUTDOWN is active  
when pin 25 is driven low.  
The SP211 and SP213E feature a low–  
powershutdownmode,whichreducespower  
supply drain to 1µA. TheSP213E includes a  
Wake-Upfunctionwhichkeepstworeceivers  
activeintheshutdownmode,unlessdisabled  
by the EN pin.  
Receivers  
The receivers convert RS-232 level input  
signalstoinvertedTTLlevelsignals.Because  
signals are often received from a  
transmission line where long cables and  
system interference can degrade signal  
quality,theinputshaveenhancedsensitivity  
to detect weakened signals. The receivers  
also feature a typical hysteresis margin of  
500mV for clean reception of slowly  
transitioning signals in noisy conditions.  
These enhancements ensure that the  
receiver is virtually immune to noisy  
transmission lines.  
The family is available in 28 and 24 pin SO  
(wide) and SSOP (shrink) small outline  
packages. Devices can be specified for  
commercial (0˚C to +70˚C) and industrial/  
extended (–40˚C to +85˚C) operating  
temperatures.  
THEORY OF OPERATION  
SipexRS232transceiverscontainthreebasic  
circuit blocks — a) transmitter/driver,  
b) receiver and c) the SIPEX–proprietary  
charge pump. SP211E and SP213E also  
includeSHUTDOWNandENABLEfunctions.  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
5
Receiver input thresholds are between 1.2  
to 1.7 volts typical. This allows the receiver  
to detect standard TTL or CMOS logic-level  
signals as well as RS232 signals. If a  
receiver input is left unconnected or un-  
driven, a 5kpulldown resistor to ground  
will commit the receiver to a logic-1 output  
state.  
Phase 2  
VSS transfer and invert: Phase two connects  
thenegativeterminalofC2 totheVSS storage  
capacitor and the positive terminal of C2 to  
ground. This transfers the doubled and  
inverted (V ) voltage onto C3. Meanwhile,  
capacitor C1 charged from VCC to prepare it  
for its next phase.  
-
V
= +5V  
CC  
HIGHLY EFFICIENT CHARGE–PUMP  
The onboard dual-output charge pump is  
usedtogeneratepositiveandnegativesignal  
voltagesfortheRS232drivers. Thisenables  
fullycompliantRS232andV.28signalsfrom  
a single power supply device.  
C
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
The charge pumps use four external  
capacitors to hold and transfer electrical  
charge. The Sipex–patented design (US  
Patent#5,306,954)usesauniqueapproach  
compared to older, less–efficient designs.  
Thepumpsuseafour–phasevoltageshifting  
technique to attain symmetrical V+ and V-  
power supplies. An intelligent control  
oscillator regulates the operation of the  
chargepumptomaintainthepropervoltages  
at maximum efficiency.  
C
–10V  
3
Figure 2. Charge Pump — Phase 2  
Phase 3  
VDD charge store and double: Phase three  
is identical to the first phase. The positive  
terminalsofcapacitorsC1 andC2 arecharged  
fromVCCwiththeirnegativeterminalsinitially  
connectedtoground. Cl+isthenconnected  
to ground and the stored charge from C1 is  
superimposed onto C2 Since C2+ is still  
connectedtoVCC thevoltagepotentialacross  
capacitor C2 is now 2 x VCC.  
V
= +5V  
CC  
C
+5V  
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
–.  
+
+
C
C
2
1
SS  
C
–5V  
–5V  
3
V
= +5V  
CC  
Figure 1. Charge Pump — Phase 1  
Phase 1  
C
+5V  
4
VSS charge store and double: The positive  
terminalsofcapacitorsC1 andC2 arecharged  
fromVCCwiththeirnegativeterminalsinitially  
connectedtoground. Cl+isthenconnected  
to ground and the stored charge from C1is  
superimposed onto C2. Since C2+ is still  
connectedtoVCC thevoltagepotentialacross  
capacitor C2 is now 2 x VCC.  
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
–5V  
–5V  
3
Figure 3. Charge Pump — Phase 3  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
6
Phase 4  
consumption. This improvement is made  
possiblebytheindependentphasesequence  
of the Sipex charge-pump design.  
VDD transferThefourthphaseconnects  
thenegativeterminalofC2 togroundandthe  
positive terminal of C2 to the VDD storage  
capacitor. This transfers the doubled (V+)  
voltage onto C4. Meanwhile, capacitor C1 is  
charged from VCC to prepare it for its next  
phase.  
The clock rate for the charge pump typically  
operatesatgreaterthan15kHz,allowingthe  
pump to run efficiently with small 0.1µF  
capacitors. Efficient operation depends on  
rapidly charging and discharging C1 and C2,  
therefore capacitors should be mounted  
closetotheICandhavelowESR(equivalent  
series resistance). Low cost surface mount  
ceramiccapacitors(suchasarewidelyused  
for power-supply decoupling) are ideal for  
use on the charge pump. However the  
charge pumps are designed to be able to  
function properly with a wide range of  
capacitor styles and values. If polarized  
capacitors are used, the positive and  
negative terminals should be connected as  
shown.  
V
= +5V  
CC  
C
+
+10V  
4
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
3
Figure 4. Charge Pump — Phase 4  
The Sipex charge-pump generates V+ and  
-
V independently from VCC. Hence in a no–  
Voltagepotentialacrossanyofthecapacitors  
will never exceed 2 x VCC. Therefore  
capacitors with working voltages as low as  
10V rating may be used with a nominal VCC  
supply. C1 will never see a potential greater  
than VCC , so a working voltage of 6.3V is  
adequate. The reference terminal of the VDD  
capacitor may be connected either to VCC or  
ground,butifconnectedtogroundaminimum  
16V working voltage is required. Higher  
workingvoltagesand/orcapacitancevalues  
may be advised if operating at higher VCC or  
to provide greater stability as the capacitors  
age.  
-
loadconditionV+andV willbesymmetrical.  
Older charge pump approaches generate  
V+andthenusepartofthatstoredchargeto  
generate V . Because of inherent losses,  
the magnitude of V will be smaller than V+  
-
-
on these older designs.  
Underlightlyloadedconditionstheintelligent  
pump oscillator maximizes efficiency by  
running only as needed to maintain V+ and  
-
V . Sinceinterfacetransceiversoftenspend  
muchoftheirtimeatidle,thispower-efficient  
innovation can greatly reduce total power  
+10V  
a) C2+  
Figure5: typicalwaveformsseenon  
capacitor C2 when all drivers are at  
maximum load.  
GND  
GND  
b) C2–  
–10V  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
7
SHUTDOWN MODE  
SP211Eand SP213E feature a control input  
which will shut down the device and reduce  
the power supply current to less than 10µA,  
making the parts ideal for battery–powered  
systems. Inshutdownmodethetransmitters  
Allreceiversthatareactiveduringshutdown  
maintain 500mV (typ.) of hysteresis. All  
receivers on the SP213E may be put into tri-  
state using the ENABLE pin.  
+
SHUTDOWN CONDITIONS  
will be tri–stated, the V output of the charge  
For complete shutdown to occur and the  
10µApowerdraintoberealized,thefollowing  
conditions must be met:  
pumpwilldischargetoVCC,andtheV output  
will discharge to ground. Shutdown will tri-  
state all receiver outputs of the SP211E.  
SP211E:  
SP213E WAKEUP FUNCTION  
• +5V must be applied to the SD pin  
• ENABLE must be either Ground, +5.0V or  
not connected  
• the transmitter inputs must be either +5.0V  
or not connected  
• VCC must be +5V  
• Receiver inputs must be greater than  
Ground and less than +5V  
On the SP213E, shutdown will tri-state  
receivers 1-3. Receivers 4 and 5 remain  
active to provide a “wake-up” function and  
may be used to monitor handshaking and  
control inputs for activity. With only two  
receivers active during shutdown, the  
SP213E draws only 5–10µA of supply  
current.  
SP213E:  
A typical application of this function would  
be where a modem is interfaced to a com-  
puter in a power–down mode. The ring indi-  
catorsignalfromthemodemcouldbepassed  
through an active receiver in the SP213E  
that is itself in the shutdown mode. The ring  
indicator signal would propagate through  
the SP213E to the power management cir-  
cuitryofthecomputertopowerupthemicro-  
processorandtheSP213Edrivers. Afterthe  
supplyvoltagetotheSP213Ereaches+5.0V,  
theSHUTDOWNpincanbedisabled,taking  
the SP213E out of the shutdown mode.  
• Zero Volts must be applied to the SD pin  
• ENABLE must be either Ground, +5.0V or  
not connected  
Thetransmitterinputsmustbeeither+5.0V  
or not connected  
• VCC must be +5V  
• Receiver inputs must be greater than  
Ground and less than +5V  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
8
RECEIVER ENABLE  
SP211EandSP213Efeatureanenableinput,  
which allows the receiver outputs to be either  
tri–stated or enabled. This can be especially  
useful when the receiver is tied directly to a  
shared microprocessor data bus. For the  
SP211E, enable is active low; that is, Zero  
Volts applied to the ENABLE pin will enable  
the receiver outputs. For the SP213E, enable  
is active high; that is, +5V applied to the  
ENABLE pin will enable the receiver outputs.  
Table 2. Shut-down and Wake–Up Truth Tables  
SP211E  
SD  
0
0
1
1
EN#  
Drivers  
Active  
Active  
Off  
Receivers  
Tri-State  
Active  
Tri-State  
Tri-State  
1
0
1
0
Off  
SP213E  
SD#  
EN  
1
0
1
0
Drivers  
Off  
Off  
Active  
Active  
Rx 1-3  
Rx 4-5  
Active  
Tri-State  
Active  
0
0
1
1
Tri-State  
Tri-State  
Active  
Tri-State  
Tri-State  
POWER UP WITH SD ACTIVE (Charge pump in shutdown mode)  
t
0 (POWERUP)  
+5V  
DATA VALID  
R
OUT  
0V  
t
WAIT  
ENABLE  
SD  
DISABLE  
POWER UP WITH SD DISABLED (Charge pump in active mode)  
t
0 (POWERUP)  
+5V  
DATA VALID  
R
OUT  
0V  
t
ENABLE  
ENABLE  
SD  
DISABLE  
EXERCISING WAKE–UP FEATURE  
t
0 (POWERUP)  
+5V  
DATA VALID  
DATA VALID  
DATA VALID  
t
ENABLE  
R
OUT  
0V  
t
t
ENABLE  
ENABLE  
SD  
DISABLE  
ENABLE  
DISABLE  
t
WAIT  
V
= +5V ±10%; T = 25°C  
A
CC  
t
t
= 2ms typical, 3ms maximum  
WAIT  
ENABLE  
= 1ms typical, 2ms maximum  
Figure 6. Wake–Up Timing  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
9
ESD TOLERANCE  
The SP207E Family incorporates rugge-  
dized ESD cells on all driver output and  
receiver input pins. The ESD structure is  
improved over our previous family for more  
rugged applications and environments sen-  
The IEC-1000-4-2, formerly IEC801-2, is  
generallyusedfortestingESDonequipment  
and systems. For system manufacturers,  
they must guarantee a certain amount of  
ESD protection since the system itself is  
exposed to the outside environment and  
human presence. The premise with  
IEC1000-4-2isthatthesystemisrequiredto  
withstandanamountofstaticelectricitywhen  
ESD is applied to points and surfaces of the  
equipment that are accessible to personnel  
during normal usage. The transceiver IC  
receives most of the ESD current when the  
ESDsourceisappliedtotheconnectorpins.  
The test circuit for IEC1000-4-2 is shown on  
Figure 8. There are two methods within  
IEC1000-4-2, theAirDischargemethodand  
the Contact Discharge method.  
sitive  
to  
electro-static  
discharges and associated transients. The  
improved ESD tolerance is at least +15kV  
without damage nor latch-up.  
There are different methods of ESD testing  
applied:  
a) MIL-STD-883, Method 3015.7  
b) IEC1000-4-2 Air-Discharge  
c) IEC1000-4-2 Direct Contact  
The Human Body Model has been the  
generally accepted ESD testing method for  
semiconductors. This method is also  
specified in MIL-STD-883, Method 3015.7  
for ESD testing. The premise of this ESD  
testistosimulatethehumanbody’spotential  
to store electro-static energy and discharge  
it to an integrated circuit. The simulation is  
performedbyusingatestmodelasshownin  
Figure 7. This method will test the IC’s  
capability to withstand an ESD transient  
during normal handling such as in  
manufacturing areas where the ICs tend to  
be handled frequently.  
With the Air Discharge Method, an ESD  
voltage is applied to the equipment under  
test (EUT) through air. This simulates an  
electricallychargedpersonreadytoconnect  
a cable onto the rear of the system only to  
findanunpleasantzapjustbeforetheperson  
touches the back panel. The high energy  
potential on the person discharges through  
an arcing path to the rear panel of the  
system before he or she even touches the  
system. This energy, whether discharged  
directly or through air, is predominantly a  
R
R
S
S
R
R
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
Figure 7. ESD Test Circuit for Human Body Model  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
10  
Contact-Discharge Module  
Contact-Discharge Module  
R
R
R
R
S
S
R
R
V
V
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
R
R
and R add up to 330for IEC1000-4-2.  
and R add up to 330for IEC1000-4-2.  
S
S
V
V
Figure 8. ESD Test Circuit for IEC1000-4-2  
function of the discharge current rather than  
the discharge voltage. Variables with an air  
discharge such as approach speed of the  
object carrying the ESD potential to the  
system and humidity will tend to change the  
discharge current. For example, the rise  
time of the discharge current varies with the  
approach speed.  
30A  
15A  
0A  
The Contact Discharge Method applies the  
ESDcurrentdirectlytotheEUT. Thismethod  
wasdevisedtoreducetheunpredictabilityof  
the ESD arc. The discharge current rise  
time is constant since the energy is directly  
transferred without the air-gap arc. In  
situations such as hand held systems, the  
ESD charge can be directly discharged to  
theequipmentfromapersonalreadyholding  
theequipment. Thecurrentistransferredon  
to the keypad or the serial port of the  
equipment directly and then travels through  
the PCB and finally to the IC.  
t=0ns  
t=30ns  
t  
Figure 9. ESD Test Waveform for IEC1000-4-2  
in the capacitor is then applied through RS,  
the current limiting resistor, onto the device  
under test (DUT). In ESD tests, the SW2  
switchispulsedsothatthedeviceundertest  
receives a duration of voltage.  
For the Human Body Model, the current  
limitingresistor(RS)andthesourcecapacitor  
(CS) are 1.5kW an 100pF, respectively. For  
IEC-1000-4-2, the current limiting resistor  
(RS)andthesourcecapacitor(CS)are330W  
an 150pF, respectively.  
ThecircuitmodelinFigures7and8represent  
the typical ESD testing circuit used for all  
three methods. The CS is initially charged  
with the DC power supply when the first  
switch (SW1) is on. Now that the capacitor  
is charged, the second switch (SW2) is on  
while SW1 switches off. The voltage stored  
The higher CS value and lower RS value in  
the IEC1000-4-2 model are more stringent  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
11  
than the Human Body Model. The larger  
storage capacitor injects a higher voltage to  
thetestpointwhenSW2isswitchedon. The  
lower current limiting resistor increases the  
current charge onto the test point.  
EIA STANDARDS  
The Electronic Industry Association (EIA)  
developed several standards of data trans-  
mission which are revised and updated in  
order to meet the requirements of the indus-  
try. In data processing, there are two basic  
means of communicating between systems  
and components. The RS--232 standard was  
first introduced in 1962 and, since that time,  
has become an industry standard.  
DEVICE PIN  
TESTED  
HUMAN BODY  
MODEL  
IEC1000-4-2  
Air Discharge Direct Contact  
Level  
Driver Outputs  
Receiver Inputs  
+15kV  
+15kV  
+15kV  
+15kV  
+8kV  
+8kV  
4
4
Table 3. Transceiver ESD Tolerance Levels  
Specification  
RS–232D  
RS–423A  
RS–422  
RS–485  
RS–562  
Mode of Operation  
Single–Ended  
Single–Ended  
Differential  
Differential  
Single–Ended  
No. of Drivers and Receivers  
Allowed on One Line  
1 Driver  
1 Receiver  
1 Driver  
10 Receivers  
1 Driver  
10 Receivers  
32 Drivers  
32 Receivers  
1 Driver  
1 Receiver  
Maximum Cable Length  
50 feet  
4,000 feet  
4,000 feet  
4,000 feet  
C 2,500pF @ <20Kbps;  
C 1,000pF @ >20Kbps  
64Kb/s  
Maximum Data Rate  
20Kb/s  
100Kb/s  
10Mb/s  
10Mb/s  
Driver output Maximum Voltage  
±25V  
±6V  
–0.25V to +6V  
–7V to +12V  
–3.7V to +13.2V  
Driver Output Signal Level  
Loaded  
Unloaded  
±5V  
±15V  
±3.6V  
±6V  
±2V  
±5V  
±1.5V  
±5V  
±3.7V  
±13.2V  
Driver Load Impedance  
3 – 7Kohm  
450 ohm  
100 ohm  
54 ohm  
3–7Kohm  
Max. Driver Output Current  
(High Impedance State)  
Power On  
±100µA  
±100µA  
Power Off  
V
/300  
MAX  
100µA  
±100µA  
Slew Rate  
30V/µs max.  
±15V  
Controls Provided  
±12V  
30V/µs max.  
±15V  
Receiver Input Voltage Range  
Receiver Input Sensitivity  
Receiver Input Resistance  
–7V to +7V  
±200mV  
–7V to +12V  
±200mV  
±3V  
±200mV  
±3V  
3–7Kohm  
4Kohm min.  
4Kohm min.  
12Kohm min.  
3–7Kohm  
Table 4. EIA Standard Definitions  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
12  
TYPICAL APPLICATION CIRCUITS...SP207E TO SP213E  
+5V  
11  
VCC  
12  
Typical EIA-232  
Application:  
SP213E, UART &  
DB-9 Connector  
C1+  
C1-  
C2+  
C2-  
V+  
V-  
14  
15  
13  
17  
16  
8
9
DCD  
DSR  
Rx  
1
2
3
4
5
16C550  
UART  
22  
23  
6
7
8
9
26  
7
27  
2
DCD  
DSR  
SI  
RTS  
Tx  
6
3
CTS  
DTR  
RTS  
SO  
5
4
1
CTS  
DTR  
RI  
RI  
20  
19  
18  
28  
CS  
NC  
NC  
SG  
21  
25  
24  
CS  
SHUTDOWN  
VCC or CS *  
EN  
GND  
Figure 10. Typical SP213E Application  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
13  
TYPICAL APPLICATION CIRCUITS...SP207E TO SP213E  
+5V INPUT  
+5V INPUT  
0.1µF  
6.3V  
9
0.1µF  
6.3V  
9
10  
+
0.1µF  
6.3V  
C1  
+
10  
+
0.1µF  
6.3V  
VCC  
11  
15  
C1  
+
+
+
0.1µF  
6.3V  
VCC  
V +  
V –  
11  
15  
+
+
0.1µF  
6.3V  
V +  
V –  
12  
13  
0.1µF  
C1  
C2  
+
12  
13  
0.1µF  
C1  
C2  
+
16V  
+
16V  
+
0.1µF  
16V  
0.1µF  
16V  
SP207E  
400KOHM  
400KOHM  
400KOHM  
400KOHM  
400KOHM  
SP208E  
400KOHM  
400KOHM  
400KOHM  
400KOHM  
14  
14  
C2  
C2  
7
6
2
5
18  
19  
21  
2
T1  
T2  
T3  
T4  
T5  
T1 IN  
T1 OUT  
T1  
T2  
T3  
T4  
T1 IN  
T
T
T
T
1 OUT  
2 OUT  
3 OUT  
4 OUT  
3
1
T2 IN  
T3 IN  
T4 IN  
T5 IN  
T2 OUT  
T2 IN  
T3 IN  
T4 IN  
1
18  
19  
21  
24  
20  
T3 OUT  
24  
20  
T
4 OUT  
5 OUT  
6
4
7
T
R1  
R1 OUT  
R2 OUT  
R3 OUT  
R1 IN  
R2 IN  
R3 IN  
5KOHM  
5KOHM  
5KOHM  
5KOHM  
3
5
22  
17  
4
R2  
R3  
R1  
R
1 OUT  
R1 IN  
R2 IN  
R3 IN  
5KOHM  
5KOHM  
5KOHM  
22  
23  
23  
16  
R2  
R3  
R2 OUT  
R3 OUT  
17  
16  
R4  
R
4 OUT  
R4 IN  
8
8
GND  
GND  
+5V INPUT  
+5V INPUT  
0.1µF  
11  
0.1µF  
6.3V  
11  
VCC  
12  
6.3V  
+
0.1µF  
6.3V  
12  
C1  
+
+
0.1µF  
6.3V  
VCC  
13  
17  
C1  
+
+
+
0.1µF  
6.3V  
V +  
V –  
13  
+
+
0.1µF  
6.3V  
V +  
V –  
14  
15  
0.1µF  
16V  
+
C1  
C2  
+
14  
15  
0.1µF  
C1  
C2  
+
16V  
+
17  
0.1µF  
16V  
SP211E  
400KOHM  
400KOHM  
400KOHM  
400KOHM  
0.1µF  
16V  
SP213E  
16  
C2  
16  
C2  
400KOHM  
400KOHM  
400KOHM  
400KOHM  
7
6
2
7
6
T1  
T2  
T3  
T4  
2
T1 IN  
T
T
T
T
1 OUT  
2 OUT  
3 OUT  
4 OUT  
T1  
T2  
T3  
T4  
T1 IN  
T
1 OUT  
3
T2 IN  
T3 IN  
T4 IN  
3
T2 IN  
T3 IN  
T4 IN  
T2 OUT  
1
20  
21  
1
20  
21  
T3 OUT  
28  
28  
T4 OUT  
8
5
9
R1  
R
1 OUT  
R1 IN  
R2 IN  
R3 IN  
8
5
9
R1  
R1 OUT  
R2 OUT  
R3 OUT  
R1 IN  
R2 IN  
R3 IN  
5KOHM  
5KOHM  
5KOHM  
5KOHM  
5KOHM  
4
5KOHM  
5KOHM  
5KOHM  
5KOHM  
5KOHM  
R2  
R3  
R2 OUT  
R3 OUT  
4
R2  
R3  
26  
27  
26  
27  
22  
23  
18  
25  
R4  
R5  
R4 OUT  
R4IN  
R5 IN  
SD  
22  
23  
R4  
R5  
R4 OUT*  
R4IN*  
R5 IN*  
SD  
19  
24  
R5 OUT  
EN  
19  
24  
18  
25  
R5 OUT*  
EN  
10  
GND  
10  
GND  
*Receivers active during shutdown  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
14  
PACKAGE: PLASTIC SHRINK  
SMALL OUTLINE  
(SSOP)  
E
H
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
24–PIN  
28–PIN  
A
A1  
B
D
E
0.068/0.078  
(1.73/1.99)  
0.068/0.078  
(1.73/1.99)  
0.002/0.008  
(0.05/0.21)  
0.002/0.008  
(0.05/0.21)  
0.010/0.015  
(0.25/0.38)  
0.010/0.015  
(0.25/0.38)  
0.317/0.328  
(8.07/8.33)  
0.397/0.407  
(10.07/10.33)  
0.205/0.212  
(5.20/5.38)  
0.205/0.212  
(5.20/5.38)  
e
0.0256 BSC  
(0.65 BSC)  
0.0256 BSC  
(0.65 BSC)  
H
L
0.301/0.311  
(7.65/7.90)  
0.301/0.311  
(7.65/7.90)  
0.022/0.037  
(0.55/0.95)  
0.022/0.037  
(0.55/0.95)  
Ø
0°/8°  
(0°/8°)  
0°/8°  
(0°/8°)  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
15  
PACKAGE: PLASTIC  
SMALL OUTLINE (SOIC)  
(WIDE)  
E
H
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
24–PIN  
28–PIN  
A
A1  
B
D
E
0.093/0.104  
0.093/0.104  
(2.352/2.649) (2.352/2.649)  
0.004/0.012  
(0.102/0.300) (0.102/0.300)  
0.004/0.012  
0.013/0.020 0.013/0.020  
(0.330/0.508) (0.330/0.508)  
0.599/0.614 0.697/0.713  
(15.20/15.59) (17.70/18.09)  
0.291/0.299 0.291/0.299  
(7.402/7.600) (7.402/7.600)  
e
0.050 BSC  
(1.270 BSC)  
0.050 BSC  
(1.270 BSC)  
H
L
0.394/0.419  
0.394/0.419  
(10.00/10.64) (10.00/10.64)  
0.016/0.050  
(0.406/1.270) (0.406/1.270)  
0.016/0.050  
Ø
0°/8°  
(0°/8°)  
0°/8°  
(0°/8°)  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
16  
PACKAGE: PLASTIC  
DUAL–IN–LINE  
(NARROW)  
E1  
E
D1 = 0.005" min.  
(0.127 min.)  
A1 = 0.015" min.  
(0.381min.)  
D
A = 0.210" max.  
(5.334 max).  
C
A2  
Ø
L
B1  
B
e
= 0.300 BSC  
(7.620 BSC)  
e = 0.100 BSC  
(2.540 BSC)  
A
ALTERNATE  
END PINS  
(BOTH ENDS)  
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
24–PIN  
0.115/0.195  
(2.921/4.953)  
A2  
0.014/0.022  
(0.356/0.559)  
B
0.045/0.070  
B1  
C
(1.143/1.778)  
0.008/0.014  
(0.203/0.356)  
1.230/1.280  
(31.24/32.51)  
D
0.300/0.325  
(7.620/8.255)  
E
0.240/0.280  
E1  
L
(6.096/7.112)  
0.115/0.150  
(2.921/3.810)  
0°/ 15°  
(0°/15°)  
Ø
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
17  
ORDERING INFORMATION  
RS232 Transceivers:  
Model .................... Drivers .......................... Receivers ..................................... Temperature Range ................................. Package Type  
SP207ECA ................. 5 ....................................... 3 ................................................... 0°C to +70°C ............................................... 24–pin SSOP  
SP207ECP ................. 5 ....................................... 3 ................................................... 0°C to +70°C ....................................... 24–pin Plastic DIP  
SP207ECT ................. 5 ....................................... 3 ................................................... 0°C to +70°C ................................................ 24–pin SOIC  
SP207EEA ................. 5 ....................................... 3 ............................................... –40°C to +85°C ............................................... 24–pin SSOP  
SP207EEP ................. 5 ....................................... 3 ............................................... –40°C to +85°C ....................................... 24–pin Plastic DIP  
SP207EET ................. 5 ....................................... 3 ............................................... –40°C to +85°C ................................................ 24–pin SOIC  
SP208ECA ................. 4 ....................................... 4 ................................................... 0°C to +70°C ............................................... 24–pin SSOP  
SP208ECP ................. 4 ....................................... 4 ................................................... 0°C to +70°C ....................................... 24–pin Plastic DIP  
SP208ECT ................. 4 ....................................... 4 ................................................... 0°C to +70°C ................................................ 24–pin SOIC  
SP208EEA ................. 4 ....................................... 4 ............................................... –40°C to +85°C ............................................... 24–pin SSOP  
SP208EEP ................. 4 ....................................... 4 ............................................... –40°C to +85°C ....................................... 24–pin Plastic DIP  
SP208EET ................. 4 ....................................... 4 ............................................... –40°C to +85°C ................................................ 24–pin SOIC  
RS232 Transceivers with Low–Power Shutdown and Tri–state Enable:  
Model .................... Drivers .......................... Receivers ..................................... Temperature Range ................................. Package Type  
SP211ECA ............ 4 ....................................... ....5 ............................... ...................0°C to +70°C............. ................................... 28–pin SSOP  
SP211ECT ............ 4 ....................................... ....5 ............................... ...................0°C to +70°C.......... ....................................... 28–pin SOIC  
SP211EEA ............ 4 ....................................... ....5 ............................... ...............–40°C to +85°C................ ................................ 28–pin SSOP  
SP211EET ............ 4.... ................................... ....5 ............................... ...............–40°C to +85°C................... ............................. 28–pin SOIC  
RS232 Transceivers with Low–Power Shutdown, Tri–state Enable, andWake–Up Function:  
Model .................... Drivers .......................... Receivers ..................................... Temperature Range ................................. Package Type  
SP213ECA ............ 4 ....................................... 5, with 2 active in Shutdown ................................ 0°C to +70°C ....................... ....28–pin SSOP  
SP213ECT ............ 4 ....................................... 5, with 2 active in Shutdown ................................ 0°C to +70°C ............................ 28–pin SOIC  
SP213EEA ............ 4 ....................................... 5, with 2 active in Shutdown ................................ –40°C to +85°C ....................... 28–pin SSOP  
SP213EET ............ 4 ....................................... 5, with 2 active in Shutdown ................................ –40°C to +85°C ........................ 28–pin SOIC  
Please consult the factory for pricing and availability on a Tape-On-Reel option.  
Available in lead free packaging. To order add "-L" suffix to part number.  
Example: SP213EET/TR = standard; SP213EET-L/TR = lead free.  
/TR = Tape and Reel  
Solved by Sipex  
TM  
Sipex Corporation  
Headquarters and  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.  
Date: 1/27/06  
SP207E Low Power, High ESD +5V RS232 Transceivers  
© Copyright 2006 Sipex Corporation  
18  

相关型号:

SP207EH

High Speed +5V High Performance RS232 Transceivers
SIPEX

SP207EHCA

High Speed +5V High Performance RS232 Transceivers
SIPEX

SP207EHCA-L

Line Transceiver, 3 Func, 5 Driver, 3 Rcvr, CMOS, PDSO24, SSOP-24
SIPEX

SP207EHCA-L/TR

Line Transceiver, 3 Func, 5 Driver, 3 Rcvr, CMOS, PDSO24, SSOP-24
SIPEX

SP207EHCP

High Speed +5V High Performance RS232 Transceivers
SIPEX

SP207EHCT

High Speed +5V High Performance RS232 Transceivers
SIPEX

SP207EHCT-L

Line Transceiver, 3 Func, 5 Driver, 3 Rcvr, CMOS, PDSO24, SOIC-24
SIPEX

SP207EHCT-L

TRIPLE LINE TRANSCEIVER, PDSO24, SOIC-24
ROCHESTER

SP207EHEA

High Speed +5V High Performance RS232 Transceivers
SIPEX

SP207EHEA-L

Line Transceiver, 3 Func, 5 Driver, 3 Rcvr, CMOS, PDSO24, SSOP-24
SIPEX

SP207EHEA-L

TRIPLE LINE TRANSCEIVER, PDSO24, SSOP-24
ROCHESTER

SP207EHEA/TR

Line Transceiver, 3 Func, 5 Driver, 3 Rcvr, CMOS, PDSO24, SSOP-24
SIPEX