MTD6N20E [ROCHESTER]

6A, 200V, 0.7ohm, N-CHANNEL, Si, POWER, MOSFET, DPAK-3;
MTD6N20E
型号: MTD6N20E
厂家: Rochester Electronics    Rochester Electronics
描述:

6A, 200V, 0.7ohm, N-CHANNEL, Si, POWER, MOSFET, DPAK-3

局域网 开关 脉冲 晶体管
文件: 总10页 (文件大小:768K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MTD6N20E  
Preferred Device  
Power MOSFET  
6 Amps, 200 Volts  
N−Channel DPAK  
This advanced Power MOSFET is designed to withstand high  
energy in the avalanche and commutation modes. The new energy  
efficient design also offers a drain−to−source diode with a fast  
recovery time. Designed for low voltage, high speed switching  
applications in power supplies, converters and PWM motor controls,  
these devices are particularly well suited for bridge circuits where  
diode speed and commutating safe operating areas are critical and  
offer additional safety margin against unexpected voltage transients.  
http://onsemi.com  
6 AMPERES, 200 VOLTS  
RDS(on) = 460 mW  
N−Channel  
D
Features  
Avalanche Energy Specified  
Source−to−Drain Diode Recovery Time Comparable to a  
Discrete Fast Recovery Diode  
Diode is Characterized for Use in Bridge Circuits  
G
I  
and V  
Specified at Elevated Temperature  
DSS  
DS(on)  
S
Pb−Free Package is Available*  
MARKING  
DIAGRAMS  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
C
Rating  
Symbol Value  
Unit  
Vdc  
Vdc  
Drain−to−Source Voltage  
V
200  
200  
4 Drain  
DSS  
DGR  
Drain−to−Gate Voltage (R = 1.0 MW)  
V
GS  
4
DPAK  
CASE 369C  
STYLE 2  
Gate−to−Source Voltage  
− Continuous  
V
20  
40  
Vdc  
Vpk  
GS  
2
1
V
GSM  
− Non−repetitive (t 10 ms)  
p
3
Drain Current  
− Continuous  
− Continuous @ 100°C  
− Single Pulse (t 10 ms)  
2
1
Gate  
3
I
I
6.0  
3.8  
18  
Adc  
Apk  
D
D
Drain  
Source  
I
DM  
p
Total Power Dissipation  
Derate above 25°C  
Total Power Dissipation @ T = 25°C (Note 2)  
P
50  
0.4  
1.75  
W
W/°C  
W
4
D
4 Drain  
A
DPAK  
CASE 369D  
STYLE 2  
Operating and Storage Temperature Range  
T , T  
J
55 to  
150  
°C  
stg  
1
2
Single Pulse Drain−to−Source Avalanche  
E
54  
mJ  
AS  
3
Energy − Starting T = 25°C  
J
(V = 80 Vdc, V = 10 Vdc,  
DD  
GS  
I = 6.0 Apk, L = 3.0 mH, R = 25 W)  
L
G
1
2
3
Gate Drain Source  
6N20E Device Code  
Thermal Resistance − Junction−to−Case  
− Junction−to−Ambient (Note 1)  
− Junction−to−Ambient (Note 2)  
R
R
R
2.50  
100  
71.4  
°C/W  
°C  
q
JC  
JA  
JA  
Y
= Year  
q
q
WW  
G
= Work Week  
= Pb−Free Package  
Maximum Temperature for Soldering  
T
260  
L
Purposes, 1/8from case for 10 secs  
ORDERING INFORMATION  
Maximum ratings are those values beyond which device damage can occur.  
Maximum ratings applied to the device are individual stress limit values (not  
normal operating conditions) and are not valid simultaneously. If these limits are  
exceeded, device functional operation is not implied, damage may occur and  
reliability may be affected.  
1. When surface mounted to an FR4 board using the minimum recommended  
pad size.  
See detailed ordering and shipping information in the package  
dimensions section on page 7 of this data sheet.  
Preferred devices are recommended choices for future use  
and best overall value.  
2. When surface mounted to an FR4 board using the 0.5 sq. in. drain pad size.  
*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
©
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
August, 2005 − Rev. 3  
MTD6N20E/D  
 
MTD6N20E  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain−Source Breakdown Voltage  
V
(BR)DSS  
200  
689  
Vdc  
mV/°C  
(V = 0 Vdc, I = 0.25 mAdc)  
GS  
D
Temperature Coefficient (Positive)  
Zero Gate Voltage Drain Current  
I
I
mAdc  
DSS  
GSS  
10  
100  
(V = 200 Vdc, V = 0 Vdc)  
DS  
GS  
(V = 200 Vdc, V = 0 Vdc, T = 125°C)  
DS  
GS  
J
Gate−Body Leakage Current (V  
=
20 Vdc, V = 0)  
100  
nAdc  
GS  
DS  
ON CHARACTERISTICS (Note 3)  
Gate Threshold Voltage  
V
GS(th)  
2.0  
3.0  
7.1  
4.0  
Vdc  
mV/°C  
(V = V , I = 250 mAdc)  
DS  
GS  
D
Temperature Coefficient (Negative)  
Static Drain−Source On−Resistance (V = 10 Vdc, I = 3.0 Adc)  
R
V
0.46  
0.700  
Ohm  
Vdc  
GS  
D
DS(on)  
Drain−Source On−Voltage (V = 10 Vdc)  
GS  
DS(on)  
2.9  
5.0  
4.4  
(I = 6.0 Adc)  
(I = 3.0 Adc, T = 125°C)  
D
D
J
Forward Transconductance (V = 15 Vdc, I = 3.0 Adc)  
g
FS  
1.5  
mhos  
pF  
DS  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
iss  
342  
92  
480  
130  
55  
(V = 25 Vdc, V = 0 Vdc,  
DS  
GS  
Output Capacitance  
C
oss  
f = 1.0 MHz)  
Reverse Transfer Capacitance  
C
rss  
27  
SWITCHING CHARACTERISTICS (Note 4)  
Turn−On Delay Time  
t
8.8  
29  
17.6  
58  
44  
40.8  
21  
ns  
d(on)  
(V = 100 Vdc, I = 6.0 Adc,  
Rise Time  
t
DD  
D
r
V
= 10 Vdc,  
GS  
Turn−Off Delay Time  
Fall Time  
t
22  
R
G
= 9.1 W)  
d(off)  
t
20  
f
Gate Charge  
(See Figure 8)  
Q
T
Q
1
Q
2
Q
3
13.7  
2.7  
7.1  
5.9  
nC  
(V = 160 Vdc, I = 6.0 Adc,  
DS  
D
V
= 10 Vdc)  
GS  
SOURCE−DRAIN DIODE CHARACTERISTICS  
Forward On−Voltage (Note 3)  
(I = 6.0 Adc, V = 0 Vdc)  
V
SD  
Vdc  
ns  
S
GS  
(I = 6.0 Adc, V = 0 Vdc,  
0.99  
0.9  
1.2  
S
GS  
T = 125°C)  
J
Reverse Recovery Time  
(See Figure 14)  
t
138  
93  
rr  
t
a
(I = 6.0 Adc, V = 0 Vdc,  
S
GS  
dI /dt = 100 A/ms)  
S
t
45  
b
Reverse Recovery Stored Charge  
Q
0.74  
mC  
RR  
INTERNAL PACKAGE INDUCTANCE  
Internal Drain Inductance  
(Measured from the drain lead 0.25from package to center of die)  
L
4.5  
7.5  
nH  
nH  
D
Internal Source Inductance  
L
S
(Measured from the source lead 0.25from package to source bond pad)  
3. Pulse Test: Pulse Width 300 ms, Duty Cycle 2%.  
4. Switching characteristics are independent of operating junction temperature.  
http://onsemi.com  
2
 
MTD6N20E  
TYPICAL ELECTRICAL CHARACTERISTICS  
12  
10  
8
12  
V
= 10 V  
9 V  
8 V  
T = −ꢀ55°C  
T = 25°C  
J
V
10 V  
DS  
GS  
J
10  
8
25°C  
100°C  
7 V  
6
6
6 V  
5 V  
4
4
2
0
2
0
0
1
2
3
4
5
6
7
8
9
2
3
4
5
6
7
8
9
V
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
V , GATE−TO−SOURCE VOLTAGE (VOLTS)  
GS  
DS  
Figure 1. On−Region Characteristics  
Figure 2. Transfer Characteristics  
1.2  
1.0  
0.8  
0.6  
0.4  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
T = 25°C  
V
= 10 V  
J
GS  
T = 100°C  
J
25°C  
V
= 10 V  
15 V  
GS  
−ꢀ55°C  
0.2  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
I , DRAIN CURRENT (AMPS)  
D
I , DRAIN CURRENT (AMPS)  
D
Figure 3. On−Resistance versus Drain Current  
and Temperature  
Figure 4. On−Resistance versus Drain Current  
and Gate Voltage  
2.5  
2.0  
1.5  
1.0  
0.5  
0
100  
10  
1
V = 10 V  
GS  
I = 3 A  
V
= 0 V  
GS  
T = 125°C  
J
D
100°C  
25°C  
− 50  
− 25  
0
25  
50  
75  
100  
125  
150  
0
50  
100  
150  
200  
T , JUNCTION TEMPERATURE (°C)  
J
V
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
DS  
Figure 5. On−Resistance Variation with  
Temperature  
Figure 6. Drain−To−Source Leakage  
Current versus Voltage  
http://onsemi.com  
3
MTD6N20E  
POWER MOSFET SWITCHING  
Switching behavior is most easily modeled and predicted  
by recognizing that the power MOSFET is charge  
controlled. The lengths of various switching intervals (Dt)  
are determined by how fast the FET input capacitance can  
be charged by current from the generator.  
The capacitance (C ) is read from the capacitance curve at  
iss  
a voltage corresponding to the off−state condition when  
calculating t  
and is read at a voltage corresponding to the  
d(on)  
on−state when calculating t  
.
d(off)  
At high switching speeds, parasitic circuit elements  
complicate the analysis. The inductance of the MOSFET  
source lead, inside the package and in the circuit wiring  
which is common to both the drain and gate current paths,  
produces a voltage at the source which reduces the gate drive  
current. The voltage is determined by Ldi/dt, but since di/dt  
is a function of drain current, the mathematical solution is  
complex. The MOSFET output capacitance also  
complicates the mathematics. And finally, MOSFETs have  
finite internal gate resistance which effectively adds to the  
resistance of the driving source, but the internal resistance  
is difficult to measure and, consequently, is not specified.  
The resistive switching time variation versus gate  
resistance (Figure 9) shows how typical switching  
performance is affected by the parasitic circuit elements. If  
the parasitics were not present, the slope of the curves would  
maintain a value of unity regardless of the switching speed.  
The circuit used to obtain the data is constructed to minimize  
common inductance in the drain and gate circuit loops and  
is believed readily achievable with board mounted  
components. Most power electronic loads are inductive; the  
data in the figure is taken with a resistive load, which  
approximates an optimally snubbed inductive load. Power  
MOSFETs may be safely operated into an inductive load;  
however, snubbing reduces switching losses.  
The published capacitance data is difficult to use for  
calculating rise and fall because drain−gate capacitance  
varies greatly with applied voltage. Accordingly, gate  
charge data is used. In most cases, a satisfactory estimate of  
average input current (I  
) can be made from a  
G(AV)  
rudimentary analysis of the drive circuit so that  
t = Q/I  
G(AV)  
During the rise and fall time interval when switching a  
resistive load, V remains virtually constant at a level  
GS  
known as the plateau voltage, V . Therefore, rise and fall  
SGP  
times may be approximated by the following:  
t = Q x R /(V − V )  
GSP  
r
2
G
GG  
t = Q x R /V  
f
2
G
GSP  
where  
= the gate drive voltage, which varies from zero to V  
V
GG  
GG  
R = the gate drive resistance  
G
and Q and V  
are read from the gate charge curve.  
2
GSP  
During the turn−on and turn−off delay times, gate current is  
not constant. The simplest calculation uses appropriate  
values from the capacitance curves in a standard equation for  
voltage change in an RC network. The equations are:  
t
t
= R C In [V /(V − V )]  
G iss GG GG GSP  
d(on)  
d(off)  
= R C In (V /V )  
GG GSP  
G
iss  
900  
750  
600  
450  
300  
150  
0
V
= 0 V  
V
= 0 V  
GS  
DS  
T = 25°C  
J
C
C
iss  
C
iss  
rss  
C
oss  
C
rss  
10  
5
0
5
10  
15  
20  
25  
V
V
DS  
GS  
GATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
Figure 7. Capacitance Variation  
http://onsemi.com  
4
MTD6N20E  
12  
10  
8
1000  
100  
10  
90  
75  
V
I = 6 A  
= 100 V  
DD  
Q
T
D
V
= 10 V  
GS  
V
GS  
T = 25°C  
J
Q
Q
2
1
60  
45  
30  
15  
0
6
t
r
t
f
t
d(off)  
4
t
d(on)  
I = 6 A  
D
T = 25°C  
J
2
V
Q
DS  
3
0
1
0
2
4
6
8
10  
12  
14  
1
10  
R , GATE RESISTANCE (OHMS)  
100  
Q , TOTAL CHARGE (nC)  
T
G
Figure 8. Gate−To−Source and Drain−To−Source  
Voltage versus Total Charge  
Figure 9. Resistive Switching Time  
Variation versus Gate Resistance  
DRAIN−TO−SOURCE DIODE CHARACTERISTICS  
6
V
= 0 V  
GS  
T = 25°C  
J
5
4
3
2
1
0
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
V
, SOURCE−TO−DRAIN VOLTAGE (VOLTS)  
SD  
Figure 10. Diode Forward Voltage versus Current  
SAFE OPERATING AREA  
The Forward Biased Safe Operating Area curves define the  
maximum simultaneous drain−to−source voltage and drain  
current that a transistor can handle safely when it is forward  
biased. Curves are based upon maximum peak junction  
reliable operation, the stored energy from circuit inductance  
dissipated in the transistor while in avalanche must be less  
than the rated limit and adjusted for operating conditions  
differing from those specified. Although industry practice is  
to rate in terms of energy, avalanche energy capability is not  
a constant. The energy rating decreases non−linearly with an  
increase of peak current in avalanche and peak junction  
temperature.  
temperature and a case temperature (T ) of 25°C. Peak  
C
repetitive pulsed power limits are determined by using the  
thermal response data in conjunction with the procedures  
discussed in AN569, “Transient Thermal Resistance−General  
Data and Its Use.”  
Although many E−FETs can withstand the stress of  
drain−to−source avalanche at currents up to rated pulsed  
Switching between the off−state and the on−state may  
traverse any load line provided neither rated peak current  
current (I ), the energy rating is specified at rated  
DM  
(I ) nor rated voltage (V ) is exceeded and the  
continuous current (I ), in accordance with industry  
DM  
DSS  
D
transition time (t ,t ) do not exceed 10 ms. In addition the total  
power averaged over a complete switching cycle must not  
custom. The energy rating must be derated for temperature  
as shown in the accompanying graph (Figure 12). Maximum  
r f  
energy at currents below rated continuous I can safely be  
exceed (T  
− T )/(R ).  
D
J(MAX)  
C qJC  
assumed to equal the values indicated.  
A Power MOSFET designated E−FET can be safely used  
in switching circuits with unclamped inductive loads. For  
http://onsemi.com  
5
MTD6N20E  
SAFE OPERATING AREA  
100  
10  
60  
50  
I = 6 A  
D
V
= 20 V  
SINGLE PULSE  
GS  
T = 25°C  
C
10 ms  
40  
30  
20  
10  
0
100 ms  
1.0  
0.1  
1 ms  
10 ms  
dc  
R
LIMIT  
DS(on)  
THERMAL LIMIT  
PACKAGE LIMIT  
0.1  
1.0  
10  
100  
1000  
25  
50  
75  
100  
125  
150  
V
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
T , STARTING JUNCTION TEMPERATURE (°C)  
J
DS  
Figure 11. Maximum Rated Forward Biased  
Safe Operating Area  
Figure 12. Maximum Avalanche Energy versus  
Starting Junction Temperature  
1
D = 0.5  
0.2  
0.1  
0.05  
0.1  
P
(pk)  
R
(t) = r(t) R  
q
JC  
q
JC  
0.02  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
0.01  
t
1
1
SINGLE PULSE  
t
2
T
− T = P  
C
R (t)  
q
JC  
J(pk)  
(pk)  
DUTY CYCLE, D = t /t  
1 2  
0.01  
1.0E−05  
1.0E−04  
1.0E−03  
1.0E−02  
t, TIME (s)  
1.0E−01  
1.0E+00  
1.0E+01  
Figure 13. Thermal Response  
di/dt  
I
S
t
rr  
t
a
t
b
TIME  
0.25 I  
t
p
S
I
S
Figure 14. Diode Reverse Recovery Waveform  
http://onsemi.com  
6
MTD6N20E  
ORDERING INFORMATION  
Device  
MTD6N20E  
Package  
Shipping  
DPAK  
75 Units / Rail  
75 Units / Rail  
MTD6N20E1  
DPAK  
Straight Lead  
MTD6N20ET4  
DPAK  
2500 Tape & Reel  
2500 Tape & Reel  
MTD6N20ET4G  
DPAK  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
7
MTD6N20E  
PACKAGE DIMENSIONS  
DPAK  
CASE 369C−01  
ISSUE O  
SEATING  
PLANE  
−T−  
C
B
R
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
5.97  
6.35  
2.19  
0.69  
0.46  
0.94  
MAX  
6.22  
6.73  
2.38  
0.88  
0.58  
1.14  
E
V
A
B
C
D
E
F
G
H
J
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.027 0.035  
0.018 0.023  
0.037 0.045  
0.180 BSC  
0.034 0.040  
0.018 0.023  
0.102 0.114  
0.090 BSC  
4
2
Z
A
K
S
4.58 BSC  
1
3
0.87  
0.46  
2.60  
1.01  
0.58  
2.89  
U
K
L
2.29 BSC  
R
S
U
V
Z
0.180 0.215  
0.025 0.040  
4.57  
0.63  
0.51  
0.89  
3.93  
5.45  
1.01  
−−−  
1.27  
−−−  
F
J
0.020  
0.035 0.050  
0.155 −−−  
−−−  
L
H
D 2 PL  
STYLE 2:  
PIN 1. GATE  
2. DRAIN  
M
G
0.13 (0.005)  
T
3. SOURCE  
4. DRAIN  
SOLDERING FOOTPRINT*  
6.20  
3.0  
0.244  
0.118  
2.58  
0.101  
5.80  
0.228  
1.6  
0.063  
6.172  
0.243  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
8
MTD6N20E  
PACKAGE DIMENSIONS  
DPAK  
CASE 369D−01  
ISSUE B  
NOTES:  
C
B
R
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
V
S
E
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
5.97  
6.35  
2.19  
0.69  
0.46  
0.94  
MAX  
6.35  
6.73  
2.38  
0.88  
0.58  
1.14  
4
2
Z
A
B
C
D
E
F
G
H
J
K
R
S
V
Z
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.027 0.035  
0.018 0.023  
0.037 0.045  
0.090 BSC  
0.034 0.040  
0.018 0.023  
0.350 0.380  
0.180 0.215  
0.025 0.040  
0.035 0.050  
A
K
1
3
−T−  
SEATING  
PLANE  
2.29 BSC  
0.87  
0.46  
8.89  
4.45  
0.63  
0.89  
3.93  
1.01  
0.58  
9.65  
5.45  
1.01  
1.27  
−−−  
J
F
H
0.155  
−−−  
D 3 PL  
STYLE 2:  
PIN 1. GATE  
G
M
T
0.13 (0.005)  
2. DRAIN  
3. SOURCE  
4. DRAIN  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
MTD6N20E/D  

相关型号:

MTD6N20E-T4

6A, 200V, 0.7ohm, N-CHANNEL, Si, POWER, MOSFET, DPAK-3
ROCHESTER

MTD6N20E1

Power MOSFET 6 Amps, 200 Volts N−Channel DPAK
ONSEMI

MTD6N20E1

6A, 200V, 0.7ohm, N-CHANNEL, Si, POWER, MOSFET, DPAK-3
ROCHESTER

MTD6N20ET4

Power MOSFET 6 Amps, 200 Volts N−Channel DPAK
ONSEMI

MTD6N20ET4G

Power MOSFET 6 Amps, 200 Volts N−Channel DPAK
ONSEMI

MTD6N20ET5G

6A, 200V, 0.7ohm, N-CHANNEL, Si, POWER, MOSFET, ROHS COMPLIANT, PLASTIC, CASE 369C-01, DPAK-3
ONSEMI

MTD6P10E

TMOS POWER FET 6.0 AMPERES 100 VOLTS RDS(on) = 0.66 OHM
MOTOROLA

MTD6P10E-T4

6A, 100V, 0.66ohm, P-CHANNEL, Si, POWER, MOSFET
MOTOROLA

MTD6P10EG

6A, 100V, 0.66ohm, P-CHANNEL, Si, POWER, MOSFET, LEAD FREE, CASE 369C-01, DPAK-3
ONSEMI

MTD6P10ET4

6A, 100V, 0.66ohm, P-CHANNEL, Si, POWER, MOSFET, CASE 369C-01, DPAK-3
ONSEMI

MTD6P10ET4G

6A, 100V, 0.66ohm, P-CHANNEL, Si, POWER, MOSFET, LEAD FREE, CASE 369C-01, DPAK-3
ONSEMI

MTD7030

PHOTO DIODE
MARKTECH