MAX5876EGK [ROCHESTER]

PARALLEL, WORD INPUT LOADING, 12-BIT DAC, QCC68, 10 X10 MM, MO-220, QFN-68;
MAX5876EGK
型号: MAX5876EGK
厂家: Rochester Electronics    Rochester Electronics
描述:

PARALLEL, WORD INPUT LOADING, 12-BIT DAC, QCC68, 10 X10 MM, MO-220, QFN-68

输入元件 转换器
文件: 总19页 (文件大小:1070K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3634; Rev 0; 5/05  
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
General Description  
Features  
The MAX5876 is an advanced 12-bit, 250Msps, dual  
digital-to-analog converter (DAC). This DAC meets the  
demanding performance requirements of signal synthesis  
applications found in wireless base stations and other  
communications applications. Operating from +3.3V and  
+1.8V supplies, this dual DAC offers exceptional dynamic  
performance such as 75dBc spurious-free dynamic range  
250Msps Output Update Rate  
Noise Spectral Density = -154dBFS/Hz  
at f = 16MHz  
OUT  
Excellent SFDR and IMD  
SFDR = 75dBc at f  
SFDR = 71dBc at f  
= 16MHz (to Nyquist)  
= 80MHz (to Nyquist)  
OUT  
OUT  
(SFDR) at f  
= 16MHz and supports update rates of  
OUT  
IMD = -87dBc at f  
IMD = -73dBc at f  
= 10MHz  
= 80MHz  
OUT  
OUT  
250Msps, with a power dissipation of only 287mW.  
The MAX5876 utilizes a current-steering architecture  
that supports a 2mA to 20mA full-scale output current  
ACLR = 75dB at f  
= 61MHz  
OUT  
range, and allows a 0.1V  
to 1V  
differential output  
2mA to 20mA Full-Scale Output Current  
LVDS-Compatible Digital and Clock Inputs  
On-Chip +1.20V Bandgap Reference  
P-P  
P-P  
voltage swing. The device features an integrated +1.2V  
bandgap reference and control amplifier to ensure  
high-accuracy and low-noise performance. A separate  
reference input (REFIO) allows for the use of an exter-  
nal reference source for optimum flexibility and  
improved gain accuracy.  
Low 287mW Power Dissipation  
Compact 68-Pin QFN-EP Package (10mm x 10mm)  
Evaluation Kit Available (MAX5878EVKIT)  
The clock inputs of the MAX5876 accept both LVDS  
and LVPECL-compatible voltage levels. The device fea-  
tures an interleaved data input that allows a single  
LVDS bus to support both DACs. The MAX5876 is avail-  
able in a 68-pin QFN package with an exposed pad  
(EP) and is specified for the extended temperature  
range (-40°C to +85°C).  
Ordering Information  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
PKG CODE  
MAX5876EGK -40°C to +85°C 68 QFN-EP**  
**EP = Exposed pad.  
G6800-4  
Refer to the MAX5877 and MAX5878 data sheets for  
pin-compatible 14-bit and 16-bit versions of the  
MAX5876, respectively. Refer to the MAX5873 data  
sheet for a CMOS-compatible version of the MAX5876.  
Pin Configuration  
TOP VIEW  
Applications  
Base Stations: Single-Carrier UMTS, CDMA, GSM  
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52  
Communications: Fixed Broadband Wireless Access,  
Point-to-Point Microwave  
Direct Digital Synthesis (DDS)  
Cable Modem Termination Systems (CMTS)  
Automated Test Equipment (ATE)  
Instrumentation  
B0N  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
1
2
3
4
5
6
7
8
9
51 B8P  
50 B9N  
49 B9P  
48 B10N  
47 B10P  
46 B11N  
45 B11P  
44 SELIQN  
43 SELIQP  
42 XORP  
41 XORN  
40 PD  
MAX5876  
GND 10  
11  
Selector Guide  
DV  
AV  
DD3.3  
GND 12  
GND 13  
RESOLUTION  
(BITS)  
UPDATE  
RATE (Msps)  
LOGIC  
INPUTS  
39 TORB  
38 CLKP  
37 CLKN  
36 GND  
PART  
14  
GND 15  
DD3.3  
MAX5873  
MAX5874  
MAX5875  
MAX5876  
MAX5877  
MAX5878  
12  
14  
16  
12  
14  
16  
200  
200  
200  
250  
250  
250  
CMOS  
CMOS  
CMOS  
LVDS  
LVDS  
LVDS  
REFIO 16  
FSADJ 17  
35 AV  
CLK  
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
QFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
ABSOLUTE MAXIMUM RATINGS  
AV  
AV  
, DV  
, DV  
to GND, DACREF...................-0.3V to +2.16V  
Continuous Power Dissipation (T = +70°C)  
68-Pin QFN-EP  
DD1.8  
DD3.3  
DD1.8  
DD3.3  
A
, AV  
to GND, DACREF........-0.3V to +3.9V  
CLK  
REFIO, FSADJ to  
GND, DACREF..................................-0.3V to (AV  
OUTIP, OUTIN, OUTQP,  
OUTQN to GND, DACREF...................-1V to (AV  
CLKP, CLKN to GND, DACREF..............-0.3V to (AV  
(derate 41.7mW/°C above +70°C) (Note 1)............3333.3mW  
+ 0.3V)  
Thermal Resistance θ (Note 1)...................................+24°C/W  
DD3.3  
JA  
Operating Temperature Range ......................... -40°C to +85°C  
Junction Temperature .................................................... +150°C  
Storage Temperature Range ........................... -60°C to +150°C  
Lead Temperature (soldering, 10s) ............................... +300°C  
+ 0.3V)  
+ 0.3V)  
DD3.3  
CLK  
B11P/B11NB0P/B0N, XORN, XORP, SELIQN,  
SELIQP to GND, DACREF ...................-0.3V to (DV  
TORB, PD to GND, DACREF...............-0.3V to (DV  
+ 0.3V)  
+ 0.3V)  
DD1.8  
DD3.3  
Note 1: Thermal resistance based on a multilayer board with 4 x 4 via array in exposed paddle area.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= AV  
= +3.3V, AV  
= DV  
= +1.8V, GND = 0, f  
= 2 x f  
, external reference V  
= +1.25V, out-  
DD3.3  
DD3.3  
CLK  
DD1.8  
DD1.8  
CLK  
DAC  
REFIO  
put load 50double-terminated, transformer-coupled output, I  
= 20mA, T = T  
to T , unless otherwise noted. Typical values  
MAX  
OUTFS  
A
MIN  
are at T = +25°C.) (Note 2)  
A
PARAMETER  
STATIC PERFORMANCE  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
Bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
OS  
Measured differentially  
0.2  
0.1  
Measured differentially  
LSB  
-0.015  
-4.1  
0.001 +0.015  
10  
%FS  
Offset-Drift Tempco  
Full-Scale Gain Error  
ppm/°C  
%FS  
GE  
External reference  
Internal reference  
External reference  
(Note 3)  
-0.6  
100  
50  
+4.1  
FS  
Gain-Drift Tempco  
ppm/°C  
Full-Scale Output Current  
Output Compliance  
Output Resistance  
I
2
20  
mA  
V
OUTFS  
Single-ended  
-0.5  
+1.1  
R
C
1
5
MΩ  
pF  
OUT  
Output Capacitance  
DYNAMIC PERFORMANCE  
Clock Frequency  
OUT  
f
2
1
500  
250  
MHz  
CLK  
Output Update Rate  
f
f
f
f
= f / 2  
CLK  
Msps  
DAC  
DAC  
DAC  
DAC  
= 150MHz  
= 250MHz  
f
f
= 16MHz, -12dBFS  
= 80MHz, -12dBFS  
-154  
-153  
OUT  
OUT  
dBFS/  
Hz  
Noise Spectral Density  
2
_______________________________________________________________________________________  
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= AV  
= +3.3V, AV  
= DV  
= +1.8V, GND = 0, f  
= 2 x f  
, external reference V  
= +1.25V, out-  
DD3.3  
DD3.3  
CLK  
DD1.8  
DD1.8  
CLK  
DAC  
REFIO  
put load 50double-terminated, transformer-coupled output, I  
= 20mA, T = T  
to T , unless otherwise noted. Typical values  
MAX  
OUTFS  
A
MIN  
are at T = +25°C.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
98  
MAX  
UNITS  
f
f
f
f
f
f
= 1MHz, 0dBFS  
= 1MHz, -6dBFS  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
88  
f
= 100MHz  
= 1MHz, -12dBFS  
= 10MHz, -12dBFS  
= 30MHz, -12dBFS  
= 10MHz, -12dBFS  
81  
DAC  
77  
77  
75  
f
T
= 16MHz, -12dBFS,  
OUT  
67  
66  
75  
Spurious-Free Dynamic Range  
to Nyquist  
+25oC  
SFDR  
A
dBc  
f
f
= 200MHz  
= 250MHz  
DAC  
f
f
f
f
f
f
f
= 16MHz, -12dBFS  
= 50MHz, -12dBFS  
= 80MHz, -12dBFS  
= 10MHz, -12dBFS  
= 50MHz, -12dBFS  
= 80MHz, -12dBFS  
= 100MHz, -12dBFS  
75  
73  
71  
77  
73  
70  
68  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
DAC  
Spurious-Free Dynamic Range,  
25MHz Bandwidth  
SFDR  
f
f
f
f
f
= 150MHz  
= 100MHz  
= 200MHz  
= 150MHz  
=
f
= 16MHz, -12dBFS  
80  
-87  
-73  
-91  
dBc  
dBc  
dBc  
DAC  
DAC  
DAC  
DAC  
DAC  
OUT  
f
f
= 9MHz, -7dBFS;  
= 10MHz, -7dBFS  
OUT1  
OUT2  
Two-Tone IMD  
TTIMD  
f
f
= 79MHz, -7dBFS;  
= 80MHz, -7dBFS  
OUT1  
OUT2  
Four-Tone IMD, 1MHz  
Frequency Spacing, GSM Model  
FTIMD  
ACLR  
f
= 16MHz, -12dBFS  
= 61.44MHz  
OUT  
OUT  
Adjacent Channel Leakage Power  
Ratio 3.84MHz Bandwidth,  
W-CDMA Model  
f
75  
dB  
184.32MHz  
Output Bandwidth  
BW  
(Note 4)  
240  
MHz  
-1dB  
INTER-DAC CHARACTERISTICS  
f
f
= DC - 80MHz  
= DC  
0.2  
+0.01  
20  
OUT  
Gain Matching  
Gain  
dB  
-0.24  
+0.24  
OUT  
Gain-Matching Tempco  
Phase Matching  
Gain/°C  
Phase  
ppm/°C  
f
= 60MHz  
= 60MHz  
0.25  
Degrees  
OUT  
OUT  
DAC  
Degrees/  
°C  
Phase-Matching Tempco  
Phase/°C f  
0.002  
90  
Channel-to-Channel Crosstalk  
REFERENCE  
f
= 200Msps, f  
= 50MHz, 0dBFS  
dB  
OUT  
Internal Reference Voltage Range  
V
1.14  
1.2  
1.26  
V
REFIO  
_______________________________________________________________________________________  
3
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= AV  
= +3.3V, AV  
= DV  
= +1.8V, GND = 0, f  
= 2 x f  
, external reference V  
= +1.25V, out-  
DD3.3  
DD3.3  
CLK  
DD1.8  
DD1.8  
CLK  
DAC  
REFIO  
put load 50double-terminated, transformer-coupled output, I  
= 20mA, T = T  
to T , unless otherwise noted. Typical values  
MAX  
OUTFS  
A
MIN  
are at T = +25°C.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reference Input Compliance  
Range  
V
0.125  
1.260  
V
REFIOCR  
Reference Input Resistance  
Reference Voltage Drift  
R
10  
25  
k  
REFIO  
TCO  
ppm/°C  
REF  
ANALOG OUTPUT TIMING (See Figure 4)  
Output Fall Time  
t
90% to 10% (Note 5)  
0.7  
0.7  
1.1  
1
ns  
ns  
FALL  
Output Rise Time  
Output Propagation Delay  
Glitch Impulse  
t
10% to 90% (Note 5)  
RISE  
t
Excluding data latency (Note 5)  
Measured differentially  
ns  
PD  
pVs  
I
I
= 2mA  
30  
30  
OUTFS  
OUTFS  
Output Noise  
n
pA/Hz  
OUT  
= 20mA  
TIMING CHARACTERISTICS  
Data to Clock Setup Time  
Data to Clock Hold Time  
t
Referenced to rising edge of clock (Note 6)  
Referenced to rising edge of clock (Note 6)  
Latency to I output  
-1.2  
2.0  
ns  
ns  
SETUP  
t
HOLD  
9
Clock  
Cycles  
Data Latency  
Latency to Q output  
8
Minimum Clock Pulse-Width High  
Minimum Clock Pulse-Width Low  
t
CLKP, CLKN  
0.9  
0.9  
ns  
ns  
CH  
t
CLKP, CLKN  
CL  
LVDS LOGIC INPUTS (B11P/B11N–B0P/B0N, XORN, XORP, SELIQN, SELIQP)  
Differential Input-Logic High  
Differential Input-Logic Low  
Common-Mode Voltage Range  
Differential Input Resistance  
Input Capacitance  
V
100  
mV  
mV  
V
IH  
V
-100  
IL  
V
1.125  
1.375  
CMR  
R
(Note 7)  
110  
2.5  
IN  
IN  
C
pF  
CMOS LOGIC INPUTS (PD, TORB)  
0.7 x  
Input-Logic High  
V
V
IH  
DV  
DD3.3  
0.3 x  
Input-Logic Low  
V
V
IL  
DV  
DD3.3  
Input Leakage Current  
I
-20  
1
+20  
µA  
MΩ  
pF  
IN  
PD, TORB Internal Pulldown  
Resistance  
V
= V  
= 3.3V  
TORB  
1.5  
2.5  
PD  
Input Capacitance  
C
IN  
CLOCK INPUTS (CLKP, CLKN)  
Sine wave  
>1.5  
>0.5  
Differential Input  
Voltage Swing  
V
P-P  
Square wave  
4
_______________________________________________________________________________________  
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= AV  
= +3.3V, AV  
= DV  
= +1.8V, GND = 0, f  
= 2 x f  
, external reference V  
= +1.25V, out-  
DD3.3  
DD3.3  
CLK  
DD1.8  
DD1.8  
CLK  
DAC  
REFIO  
put load 50double-terminated, transformer-coupled output, I  
= 20mA, T = T  
to T , unless otherwise noted. Typical values  
MAX  
OUTFS  
A
MIN  
are at T = +25°C.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Differential Input Slew Rate  
SR  
(Note 8)  
>100  
V/µs  
CLK  
External Common-Mode Voltage  
Range  
AV  
/ 2  
CLK  
0.3  
V
V
COM  
Input Resistance  
R
C
5
kΩ  
CLK  
Input Capacitance  
POWER SUPPLIES  
2.5  
pF  
CLK  
AV  
AV  
DV  
DV  
3.135  
1.710  
3.135  
1.710  
3.135  
3.3  
1.8  
3.3  
1.8  
3.3  
52  
1
3.465  
1.890  
3.465  
1.890  
3.465  
56  
DD3.3  
DD1.8  
DD3.3  
DD1.8  
Analog Supply Voltage Range  
V
V
Digital Supply Voltage Range  
Clock Supply Voltage Range  
AV  
V
CLK  
f
= 250Msps, f  
= 16MHz  
= 16MHz  
= 16MHz  
= 16MHz  
= 16MHz  
mA  
µA  
DAC  
OUT  
OUT  
OUT  
OUT  
OUT  
= DV  
I
AVDD3.3 +  
I
AVCLK  
Power-down  
= 250Msps, f  
Analog Supply Current  
Digital Supply Current  
f
31  
1
36  
1
mA  
µA  
DAC  
I
I
I
AVDD1.8  
DVDD3.3  
DVDD1.8  
Power-down  
= 250Msps, f  
f
0.15  
1
mA  
µA  
DAC  
Power-down  
= 250Msps, f  
f
33  
4
40  
324  
mA  
µA  
DAC  
Power-down  
= 250Msps, f  
f
287  
16  
mW  
µW  
DAC  
Power Dissipation  
P
DISS  
Power-down  
AV = AV  
(Notes 8, 9)  
= +3.3V 5%  
DD3.3  
DD3.3  
CLK  
Power-Supply Rejection Ratio  
PSRR  
-0.1  
+0.1  
%FS/V  
Note 2: Specifications at T +25°C are guaranteed by production testing. Specifications at T < +25°C are guaranteed by design.  
A
A
Note 3: Nominal full-scale current I  
= 32 x I  
.
OUTFS  
REF  
Note 4: This parameter does not include update-rate-dependent effects of sin(x)/x filtering inherent in the MAX5876.  
Note 5: Parameter measured single-ended into a 50termination resistor.  
Note 6: Not production tested. Guaranteed by design.  
Note 7: No termination resistance between XORP and XORN.  
Note 8: A differential clock input slew rate of >100V/µs is required to achieve the specified dynamic performance.  
Note 9: Parameter defined as the change in midscale output caused by a 5% variation in the nominal supply voltage.  
_______________________________________________________________________________________  
5
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
Typical Operating Characteristics  
(AV  
= DV  
= AV  
= +3.3V, AV  
= DV  
= +1.8V, external reference, V  
= +1.25V, R = 50double-terminated,  
DD3.3  
DD3.3  
CLK  
DD1.8  
DD1.8  
REFIO  
L
I
= 20mA, T = +25°C, unless otherwise noted.)  
OUTFS  
A
SINGLE-TONE SFDR vs. OUTPUT  
SINGLE-TONE SFDR vs. OUTPUT  
SINGLE-TONE SFDR vs. OUTPUT  
FREQUENCY (f  
= 50Msps)  
FREQUENCY (f  
= 100Msps)  
FREQUENCY (f = 150Msps)  
DAC  
DAC  
DAC  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
100  
-6dBFS  
-6dBFS  
-6dBFS  
80  
60  
40  
20  
0
-12dBFS  
-12dBFS  
0dBFS  
0dBFS  
0dBFS  
-12dBFS  
0
5
10  
15  
(MHz)  
20  
25  
0
10  
20  
30  
(MHz)  
40  
50  
0
15  
30  
45  
(MHz)  
60  
75  
f
f
f
OUT  
OUT  
OUT  
SINGLE-TONE SFDR vs. OUTPUT  
SINGLE-TONE SFDR vs. OUTPUT  
TWO-TONE IMD vs. OUTPUT FREQUENCY  
(1MHz CARRIER SPACING, f = 100Msps)  
FREQUENCY (f  
= 200Msps)  
FREQUENCY (f  
= 250Msps)  
DAC  
DAC  
DAC  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
-70  
-6dBFS  
-6dBFS  
-75  
0dBFS  
0dBFS  
-80  
-12dBFS  
-12dBFS  
-12dBFS  
-85  
-90  
-95  
-6dBFS  
20  
-100  
0
20  
40  
60  
(MHz)  
80  
100  
0
25  
50  
75  
(MHz)  
100  
125  
5
10  
15  
25  
30  
35  
40  
f
f
f (MHz)  
OUT  
OUT  
OUT  
6
_______________________________________________________________________________________  
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= AV  
= +3.3V, AV  
= DV  
= +1.8V, external reference, V  
= +1.25V, R = 50double-terminated,  
DD3.3  
DD3.3  
CLK  
DD1.8  
DD1.8  
REFIO  
L
I
= 20mA, T = +25°C, unless otherwise noted.)  
OUTFS  
A
TWO-TONE INTERMODULATION  
SFDR vs. FULL-SCALE OUTPUT CURRENT  
DISTORTION (f  
= 100Msps)  
DAC  
(f  
DAC  
= 250Msps)  
0
-20  
-60  
100  
80  
60  
40  
20  
0
BW = 12MHz  
f
f
= 28.7793MHz  
A
= -6dBFS  
T1  
T2  
OUT  
20mA  
= 30.0098MHz  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
f
f
T1  
T2  
-6dBFS  
10mA  
-40  
5mA  
-60  
2 x f - f  
2 x f - f  
T1 T2  
T2 T1  
-80  
-12dBFS  
-100  
24  
26  
28  
30  
32  
34  
36  
0
10 20 30 40 50 60 70 80  
(MHz)  
0
25  
50  
75  
(MHz)  
100  
125  
f
(MHz)  
OUT  
f
f
OUT  
OUT  
INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE  
SFDR vs. TEMPERATURE  
(f = 250Msps)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE  
DAC  
0.4  
0.3  
0.2  
0.1  
85  
80  
75  
70  
65  
0.3  
0.2  
0.1  
0
A
= -6dBFS  
OUT  
T
= +25°C  
A
T
= -40°C  
A
0
-0.1  
-0.2  
T
= +85°C  
A
-0.1  
-0.2  
-0.3  
-0.3  
-0.4  
0
1024  
2048  
3072  
4096  
0
25  
50  
75  
100  
125  
0
1024  
2048  
3072  
4096  
DIGITAL INPUT CODE  
f
(MHz)  
DIGITAL INPUT CODE  
OUT  
_______________________________________________________________________________________  
7
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= AV  
= +3.3V, AV  
= DV  
= +1.8V, external reference, V  
= +1.25V, R = 50double-terminated,  
DD3.3  
DD3.3  
CLK  
DD1.8  
DD1.8  
REFIO  
L
I
= 20mA, T = +25°C, unless otherwise noted.)  
OUTFS  
A
4-TONE POWER RATIO PLOT  
POWER DISSIPATION vs. DAC UPDATE  
RATE (f = 10MHz)  
POWER DISSIPATION vs. SUPPLY VOLTAGE  
(f = 100Msps, f = 10MHz)  
(f  
= 150MHz)  
DAC  
OUT  
DAC  
= 0dBFS  
OUT  
OUT  
280  
260  
240  
220  
200  
180  
160  
200  
195  
190  
185  
180  
0
-20  
-40  
-60  
-80  
BW = 12MHz  
A
f
A
= 0dBFS  
f
T2  
OUT  
T3  
f
T1  
EXTERNAL REFERENCE  
f
T4  
f
T1  
f
T2  
f
T3  
f
T4  
= 29.6997MHz  
= 30.7251MHz  
= 31.6040MHz  
= 32.4829MHz  
INTERNAL REFERENCE  
3.300  
-100  
3.465  
26  
28  
30  
32  
(MHz)  
34  
36  
38  
0
50  
100  
150  
(Msps)  
200  
250  
3.135  
f
SUPPLY VOLTAGE (V)  
f
OUT  
DAC  
ACLR FOR W-CDMA MODULATION,  
SINGLE-CARRIER ACLR  
ACLR FOR W-CDMA MODULATION  
TWO-CARRIER ACLR  
-20  
-30  
-20  
-30  
-40  
-50  
-60  
-70  
f
f
= 245.76Msps  
= 30.72MHz  
DAC  
f
f
= 184.32Mbps  
CARRIER  
ACLR = +77dB  
DAC  
CENTER  
= 30.72MHz  
ACLR = +74dB  
-40  
-50  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
1MHz  
92.16MHz  
3.05MHz/div  
9.216MHz/div  
ACLR FOR W-CDMA MODULATION,  
TWO-CARRIER ACLR  
W-CDMA BASEBAND ACLR  
(f = 245.76Msps)  
DAC  
81  
80  
79  
78  
77  
76  
75  
74  
73  
f
= 184.32Msps  
DAC  
ADJACENT  
ALTERNATE  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
= 30.72MHz  
CENTER  
ACLR = +73dB  
79.8  
79.5  
78.2  
78.0  
77.3  
77.1  
75.8  
75.8  
-110  
-120  
3.05MHz/div  
1
2
3
4
NUMBER OF CHANNELS  
8
_______________________________________________________________________________________  
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
Pin Description  
PIN  
1
NAME  
B0N  
FUNCTION  
Complementary Data Bit 0 (LSB)  
29  
N.C.  
No Connection. Leave floating or connect to GND.  
10, 12, 13, 15,  
20, 23, 26, 27,  
30, 33, 36  
GND  
Ground  
Digital Supply Voltage. Accepts a 3.135V to 3.465V supply voltage range. Bypass with a 0.1µF  
capacitor to GND.  
11  
DV  
DD3.3  
14, 21, 22, 31,  
32  
Analog Supply Voltage. Accepts a 3.135V to 3.465V supply voltage range. Bypass each pin with  
a 0.1µF capacitor to GND.  
AV  
DD3.3  
Reference I/O. Output of the internal 1.2V precision bandgap reference. Bypass with a 1µF  
capacitor to GND. REFIO can be driven with an external reference source. See Table 1.  
16  
17  
REFIO  
FSADJ  
Full-Scale Adjust Input. This input sets the full-scale output current of the DAC. For a 20mA full-  
scale output current, connect a 2kresistor between FSADJ and DACREF. See Table 1.  
Current-Set Resistor Return Path. Internally connected to GND. Do not use as an external  
ground connection.  
18  
DACREF  
Analog Supply Voltage. Accepts a 1.71V to 1.89V supply voltage range. Bypass each pin with a  
0.1µF capacitor to GND.  
19, 34  
AV  
DD1.8  
24  
25  
28  
29  
OUTQN  
OUTQP  
OUTIN  
OUTIP  
Complementary Q-DAC Output. Negative terminal for current output.  
Q-DAC Output. Positive terminal for current output.  
Complementary I-DAC Output. Negative terminal for current output.  
I-DAC Output. Positive terminal for current output.  
Clock Supply Voltage. Accepts a 3.135V to 3.465V supply voltage range. Bypass with a 0.1µF  
capacitor to GND.  
35  
37  
38  
AV  
CLK  
Complementary Converter Clock Input. Negative input terminal for LVDS/LVPECL-compatible  
CLKN  
CLKP  
differential converter clock. Internally biased to AV  
/ 2.  
CLK  
Converter Clock Input. Positive input terminal for LVDS/LVPECL-compatible differential converter  
clock. Internally biased to AV / 2.  
CLK  
Twos-Complement/Binary Select Input. Set TORB to a CMOS-logic-high level to indicate a twos-  
complement input format. Set TORB to a CMOS-logic-low level to indicate an offset binary input  
format. TORB has an internal pulldown resistor.  
39  
40  
41  
TORB  
PD  
Power-Down Input. Set PD to a CMOS-logic-high level to force the DAC into power-down mode.  
Set PD to a CMOS-logic-low level for normal operation. PD has an internal pulldown resistor.  
Complementary LVDS DAC Exclusive-OR Select Input. Set XORN high and XORP low to allow  
the data stream to pass unchanged to the DAC input. Set XORN low and XORP high to invert the  
XORN  
DAC input data. If unused, connect XORN to DV  
.
DD1.8  
LVDS DAC Exclusive-OR Select Input. Set XORN high and XORP low to allow the data stream to  
pass unchanged to the DAC input. Set XORN low and XORP high to invert the DAC input data. If  
unused, connect XORP to GND.  
42  
XORP  
_______________________________________________________________________________________  
9
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
LVDS DAC Select Input. Set SELIQN low and SELIQP high to direct data to the I-DAC outputs.  
Set SELIQP low and SELIQN high to direct data to the Q-DAC outputs.  
43  
SELIQP  
Complementary LVDS DAC Select Input. Set SELIQN low and SELIQP high to direct data to the  
I-DAC outputs. Set SELIQP low and SELIQN high to direct data to the Q-DAC outputs.  
44  
SELIQN  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
B11P  
B11N  
B10P  
B10N  
B9P  
Data Bit 11 (MSB)  
Complementary Data Bit 11 (MSB)  
Data Bit 10  
Complementary Data Bit 10  
Data Bit 9  
B9N  
B8P  
Complementary Data Bit 9  
Data Bit 8  
B8N  
B7P  
Complementary Data Bit 8  
Data Bit 7  
B7N  
B6P  
Complementary Data Bit 7  
Data Bit 6  
B6N  
B5P  
Complementary Data Bit 6  
Data Bit 5  
B5N  
B4P  
Complementary Data Bit 5  
Data Bit 4  
B4N  
Complementary Data Bit 4  
Digital Supply Voltage. Accepts a 1.71V to 1.89V supply voltage range. Bypass with a 0.1µF  
capacitor to GND.  
61  
DV  
DD1.8  
62  
63  
64  
65  
66  
67  
68  
B3P  
B3N  
B2P  
B2N  
B1P  
B1N  
B0P  
EP  
Data Bit 3  
Complementary Data Bit 3  
Data Bit 2  
Complementary Data Bit 2  
Data Bit 1  
Complementary Data Bit 1  
Data Bit 0 (LSB)  
Exposed Pad. Must be connected to GND through a low-impedance path.  
10 ______________________________________________________________________________________  
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
+1.2V bandgap reference, control amplifier, and user-  
Detailed Description  
selectable external resistor determine the data convert-  
Architecture  
The MAX5876 high-performance, 12-bit, dual current-  
steering DAC (Figure 1) operates with DAC update rates  
up to 250Msps. The converter consists of input registers  
and a demultiplexer for single-port operation, followed by  
a current-steering array. During operation, the input data  
registers demultiplex the single-port data bus. The cur-  
rent-steering array generates differential full-scale cur-  
rents in the 2mA to 20mA range. An internal  
current-switching network, in combination with external  
50termination resistors, converts the differential output  
currents into dual differential output voltages with a 0.1V  
to 1V peak-to-peak output voltage range. An integrated  
ers full-scale output range.  
Reference Architecture and Operation  
The MAX5876 supports operation with the internal  
+1.2V bandgap reference or an external reference volt-  
age source. REFIO serves as the input for an external,  
low-impedance reference source. REFIO also serves as  
a reference output when the DAC operates in internal  
reference mode. For stable operation with the internal  
reference, decouple REFIO to GND with a 1µF capaci-  
tor. Due to its limited output drive capability, buffer  
REFIO with an external amplifier when driving large  
external loads.  
DV  
DD3.3  
DV  
DD1.8  
AV  
DD1.8  
AV  
DD3.3  
OUTIP  
OUTIN  
TORB  
XOR/  
LATCH  
LATCH  
LATCH  
LATCH  
LATCH  
LATCH  
DAC  
DAC  
SELIQP  
SELIQN  
DECODE  
LVDS  
RECEIVER  
DATA11–  
DATA0  
LATCH  
XORP  
XORN  
OUTQP  
OUTQN  
XOR/  
DECODE  
AV  
CLK  
CLKP  
CLKN  
DACREF  
REFIO  
CLK  
INTERFACE  
+1.2V  
REFERENCE  
FSADJ  
MAX5876  
POWER-DOWN  
BLOCK  
PD  
GND  
Figure 1. MAX5876 High-Performance, 12-Bit, Dual Current-Steering DAC  
______________________________________________________________________________________ 11  
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
The MAX5876s reference circuit (Figure 2) employs a  
Clock Inputs (CLKP, CLKN)  
The MAX5876 features flexible differential clock inputs  
(CLKP, CLKN) operating from a separate supply  
control amplifier to regulate the full-scale current  
I
for the differential current outputs of the DAC.  
OUTFS  
Calculate the full-scale output current as follows:  
(AV  
) to achieve optimum jitter performance. Drive  
CLK  
the differential clock inputs from a single-ended or a  
differential clock source. For single-ended operation,  
drive CLKP with a logic source and bypass CLKN to  
GND with a 0.1µF capacitor.  
V
R
1
REFIO  
I
= 32 ×  
×
1 −  
OUTFS  
12  
2
SET  
where I  
DAC. R  
is the full-scale output current of the  
(located between FSADJ and DACREF)  
determines the amplifiers full-scale output current for  
the DAC. See Table 1 for a matrix of different I  
OUTFS  
SET  
CLKP and CLKN are internally biased to AV  
/ 2. This  
CLK  
facilitates the AC-coupling of clock sources directly to  
the device without external resistors to define the DC  
level. The dynamic input resistance from CLKP and  
CLKN to ground is 5k.  
OUTFS  
and R  
selections.  
SET  
Analog Outputs (OUTIP, OUTIN, OUTQP,  
OUTQN)  
Each MAX5876 DAC outputs two complementary cur-  
rents (OUTIP/N, OUTQP/N) that operate in a single-  
ended or differential configuration. A load resistor  
converts these two output currents into complementary  
single-ended output voltages. A transformer or a differ-  
ential amplifier configuration converts the differential  
voltage existing between OUTIP (OUTQP) and OUTIN  
(OUTQN) to a single-ended voltage. If not using a  
transformer, the recommended termination from the  
output is a 25termination resistor to ground and a  
50resistor between the outputs.  
To generate a single-ended output, select OUTIP (or  
OUTQP) as the output and connect OUTIN (or OUTQN)  
to GND. SFDR degrades with single-ended operation  
or increased output swing. Figure 3 displays a simpli-  
fied diagram of the internal output structure of the  
MAX5876.  
Table 1. I  
Matrix Based on a Typical +1.200V  
Reference Voltage  
and R  
Selection  
SET  
OUTFS  
R
(k)  
SET  
FULL-SCALE  
CURRENT I  
(mA)  
OUTFS  
CALCULATED  
1% EIA STD  
2
19.2  
7.68  
3.84  
2.56  
1.92  
19.1  
7.5  
5
10  
15  
20  
3.83  
2.55  
1.91  
+1.2V  
REFERENCE  
AV  
DD  
CURRENT  
SOURCES  
10kΩ  
CURRENT  
SWITCHES  
REFIO  
1µF  
OUTIP  
FSADJ  
CURRENT-SOURCE  
ARRAY DAC  
I
REF  
R
SET  
I
I
OUT  
OUT  
OUTIN  
DACREF  
I
= V  
/ R  
REF  
REFIO SET  
OUTIN OUTIP  
GND  
Figure 2. Reference Architecture, Internal Reference  
Configuration  
Figure 3. Simplified Analog Output Structure  
12 ______________________________________________________________________________________  
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
CLKP-CLKN  
I0  
Q0  
I1  
Q1  
I2  
Q2  
I3  
Q3  
DATA  
IN  
SELIQP  
SELIQN  
t
t
H
S
I0 - 3  
I0 - 4  
I0 - 2  
I0 - 5  
OUTI  
I0 - 6  
Q0 - 6  
Q0 - 5  
OUTQ  
Q0 - 4  
Q0 - 3  
Q0 - 2  
t
PD  
Figure 4. Timing Diagram  
Figure 5. XORP and XORN are not internally terminated.  
These LVDS inputs (B11P/NB0P/N) allow for a low differ-  
ential voltage swing with low constant power consump-  
tion. A 1.25V common-mode level and 250mV differential  
input swing can be applied to the B11P/NB0P/N,  
XORP/N, and SELIQP/N inputs.  
Data Timing Relationship  
Figure 4 displays the timing relationship between digital  
LVDS data, clock, and output signals. The MAX5876  
features a 2.0ns hold, a -1.2ns setup, and a 1.1ns prop-  
agation delay time. A nine (eight)-clock-cycle latency  
exists between CLKP/CLKN and OUTIP/OUTIN  
(OUTQP/OUTQN).  
The MAX5876 includes LVDS-compatible exclusive-OR  
inputs (XORP, XORN). Input data (all bits) is compared  
with the bits applied to XORP and XORN through exclu-  
sive-OR gates. Setting XORP high and XORN low inverts  
the input data. Setting XORP low and XORN high leaves  
the input data noninverted. By applying a previously  
encoded pseudo-random bit stream to the data input  
and applying decoding to XORP/XORN, the digital input  
data can be decorrelated from the DAC output, allowing  
for the troubleshooting of possible spurious or harmonic  
distortion degradation due to digital feedthrough on the  
PC board. If XOR functionality is not required, connect  
LVDS-Compatible Digital Inputs  
(B11P/B11N–B0P/B0N, XORP, XORN,  
SELIQP, SELIQN)  
The MAX5876 latches B11P/NB0P/N, XORP/N, and  
SELIQP/N data on the rising edge of the clock. A logic-  
high signal on SELIQP and a logic-low signal on  
SELIQN directs data onto the I-DAC inputs. A logic-low  
signal on SELIQP and a logic-high signal on SELIQN  
directs data onto the Q-DAC inputs.  
The MAX5876 features LVDS receivers on the bus input  
interface with internal 110termination resistors. See  
XORP to GND and XORN to DV  
.
DD1.8  
______________________________________________________________________________________ 13  
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
Table 2. DAC Output Code Table  
DIGITAL INPUT CODE  
OUT_P  
OUT_N  
OFFSET BINARY  
0000 0000 0000  
0111 1111 1111  
1111 1111 1111  
TWOS COMPLEMENT  
1000 0000 0000  
0
I
OUTFS  
0000 0000 0000  
I
/ 2  
I
/ 2  
OUTFS  
OUTFS  
0
0111 1111 1111  
I
OUTFS  
CMOS-Compatible Digital Inputs  
Applications Information  
Input Data Format Select (TORB)  
The TORB input selects between twos-complement or  
offset binary digital input data. Set TORB to a CMOS-  
logic-high level to indicate a twos-complement input for-  
mat. Set TORB to a CMOS-logic-low level to indicate an  
offset binary input format.  
CLK Interface  
The MAX5876 features a flexible differential clock input  
(CLKP, CLKN) with a separate supply (AV  
) to  
CLK  
achieve optimum jitter performance. Use an ultra-low  
jitter clock to achieve the required noise density. Clock  
jitter must be less than 0.5ps  
for meeting the speci-  
RMS  
fied noise density. For that reason, the CLKP/CLKN  
input source must be designed carefully. The differen-  
tial clock (CLKN and CLKP) input can be driven from a  
single-ended or a differential clock source. Differential  
clock drive is required to achieve the best dynamic  
performance from the DAC. For single-ended opera-  
tion, drive CLKP with a low noise source and bypass  
CLKN to GND with a 0.1µF capacitor.  
Power-Down Operation (PD)  
The MAX5876 also features an active-high power-down  
mode that reduces the DACs digital current consump-  
tion from 33mA to less than 5µA and the analog current  
consumption from 83mA to less than 2µA. Set PD high  
to power down the MAX5876. Set PD low for normal  
operation.  
When powered down, the MAX5876 reduces the overall  
power consumption to less than 16µW. The MAX5876  
requires 10ms to wake up from power-down and enter  
a fully operational state. The PD integrated pulldown  
resistor activates the MAX5876 if PD is left floating.  
Figure 6 shows a convenient and quick way to apply a  
differential signal created from a single-ended source  
(e.g., HP 8662A signal generator) and a wideband trans-  
former. Alternatively, these inputs can be driven from a  
CMOS-compatible clock source; however, it is recom-  
mended to use sinewave or AC-coupled differential  
ECL/PECL or LVDS drive for best dynamic performance.  
WIDEBAND RF TRANSFORMER  
0.1µF  
PERFORMS SINGLE-ENDED-TO-  
CLKP  
DIFFERENTIAL CONVERSION  
25Ω  
B11PB0P,  
D
D
Q
Q
TO DAC  
1:1  
SINGLE-ENDED  
CLOCK SOURCE  
(e.g., HP 8662A)  
SELIQP  
TO  
DECODE  
LOGIC  
110  
25Ω  
0.1µF  
B11NB0N,  
SELIQN  
CLKN  
MAX5876  
CLOCK  
GND  
Figure 5. Simplified LVDS-Compatible Digital Input Structure  
Figure 6. Differential Clock-Signal Generation  
14 ______________________________________________________________________________________  
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
Differential-to-Single-Ended Conversion  
Using a Wideband RF Transformer  
Grounding, Bypassing, and Power-  
Supply Considerations  
Use a pair of transformers (Figure 7) or a differential  
amplifier configuration to convert the differential voltage  
existing between OUTIP/OUTQP and OUTIN/OUTQN to  
a single-ended voltage. Optimize the dynamic perfor-  
mance by using a differential transformer-coupled out-  
put and limit the output power to <0dBm full scale. Pay  
close attention to the transformer core saturation char-  
acteristics when selecting a transformer for the  
MAX5876. Transformer core saturation can introduce  
strong 2nd-order harmonic distortion especially at low  
output frequencies and high signal amplitudes. For best  
results, center tap the transformer to ground. When not  
using a transformer, terminate each DAC output to  
ground with a 25resistor. Additionally, place a 50Ω  
resistor between the outputs (Figure 8).  
Grounding and power-supply decoupling can strongly  
influence the MAX5876 performance. Unwanted digital  
crosstalk couples through the input, reference, power  
supply, and ground connections, and affects dynamic  
performance. High-speed, high-frequency applications  
require closely followed proper grounding and power-  
supply decoupling. These techniques reduce EMI and  
internal crosstalk that can significantly affect the  
MAX5876 dynamic performance.  
Use a multilayer printed circuit (PC) board with sepa-  
rate ground and power-supply planes. Run high-speed  
signals on lines directly above the ground plane. Keep  
digital signals as far away from sensitive analog inputs  
and outputs, reference input sense lines, and clock  
inputs as practical. Use a controlled-impedance, sym-  
metric, differential design of clock input and the analog  
output lines to minimize 2nd-order harmonic distortion  
components, thus optimizing the DACs dynamic per-  
formance. Keep digital signal paths short and run  
lengths matched to avoid propagation delay and data  
skew mismatches.  
For a single-ended unipolar output, select OUTIP  
(OUTQP) as the output and ground OUTIN (OUTQN).  
Driving the MAX5876 single-ended is not recommended  
since additional noise and distortion will be added.  
The distortion performance of the DAC depends on the  
load impedance. The MAX5876 is optimized for 50Ω  
differential double termination. It can be used with a  
transformer output as shown in Figure 7 or just one 25Ω  
resistor from each output to ground and one 50resis-  
tor between the outputs (Figure 8). This produces a full-  
scale output power of up to -2dBm, depending on the  
output current setting. Higher termination impedance  
can be used at the cost of degraded distortion perfor-  
mance and increased output noise voltage.  
The MAX5876 requires five separate power-supply inputs  
for analog (AV  
and AV  
), digital (DV  
and  
DD1.8  
), and clock (AV  
DD3.3  
DD1.8  
DV  
) circuitry. All power-supply  
DD3.3  
CLK  
pins must be connected to their proper supply. Decouple  
each AV , DV , and AV input pin with a separate  
DD  
DD  
CLK  
0.1µF capacitor as close to the device as possible with  
the shortest possible connection to the ground plane  
(Figure 9). Minimize the analog and digital load capaci-  
tances for optimized operation. Decouple all three power-  
supply voltages at the point they enter the PC board with  
50Ω  
V
OUT  
, SINGLE-ENDED  
T2, 1:1  
OUTIP/OUTQP  
OUTIN/OUTQN  
DATA11DATA0  
100Ω  
50Ω  
MAX5876  
12  
T1, 1:1  
GND  
WIDEBAND RF TRANSFORMER T2 PERFORMS THE  
DIFFERENTIAL-TO-SINGLE-ENDED CONVERSION  
Figure 7. Differential-to-Single-Ended Conversion Using a Wideband RF Transformer  
______________________________________________________________________________________ 15  
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
tantalum or electrolytic capacitors. Ferrite beads with  
additional decoupling capacitors forming a pi-network  
could also improve performance.  
spread heat. Use as many vias as possible to the ground  
plane to minimize inductance.  
Static Performance Parameter Definitions  
The analog and digital power-supply inputs AV  
,
DD3.3  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from either a best straight-line fit  
(closest approximation to the actual transfer curve) or a  
line drawn between the end points of the transfer func-  
tion, once offset and gain errors have been nullified.  
For a DAC, the deviations are measured at every indi-  
vidual step.  
AV  
, and DV  
allow a +3.135V to +3.465V sup-  
CLK  
DD3.3  
ply voltage range. The analog and digital power-supply  
inputs AV and DV allow a +1.71V to +1.89V  
DD1.8  
DD1.8  
supply voltage range.  
The MAX5876 is packaged in a 68-pin QFN-EP pack-  
age, providing greater design flexibility, and optimized  
DAC AC performance. The EP enables the use of nec-  
essary grounding techniques to ensure highest perfor-  
mance operation. Thermal efficiency is not the key  
factor, since the MAX5876 features low-power opera-  
tion. The exposed pad ensures a minimum inductance  
ground connection between the DAC and the PC  
boards ground layer.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step height and the ideal value of 1 LSB. A DNL  
error specification of less than 1 LSB guarantees a  
monotonic transfer function.  
Offset Error  
The offset error is the difference between the ideal and  
the actual offset current. For a DAC, the offset point is  
the average value at the output for the two midscale  
digital input codes with respect to the full scale of the  
DAC. This error affects all codes by the same amount.  
The data converter die attaches to an EP lead frame with  
the back of this frame exposed at the package bottom  
surface, facing the PC board side of the package. This  
allows for a solid attachment of the package to the PC  
board with standard infrared reflow (IR) soldering tech-  
niques. A specially created land pattern on the PC board,  
matching the size of the EP (6mm x 6mm), ensures the  
proper attachment and grounding of the DAC (refer to the  
MAX5878 EV kit data sheet). Designing vias into the land  
area and implementing large ground planes in the PC  
board design allow for the highest performance operation  
of the DAC. Use an array of at least 4 x 4 vias (0.3mm  
diameter per via hole and 1.2mm pitch between via  
holes) for this 68-pin QFN-EP package. Connect the  
MAX5876 exposed paddle to GND. Vias connect the  
land pattern to internal or external copper planes to  
Gain Error  
A gain error is the difference between the ideal and the  
actual full-scale output voltage on the transfer curve,  
BYPASSINGDAC LEVEL  
AV  
DD1.8  
AV  
DD3.3  
AV  
CLK  
0.1µF  
0.1µF  
0.1µF  
OUTIP/OUTQP  
DATA11DATA0  
MAX5876  
25Ω  
12  
OUTIP/OUTQP  
OUTIN/OUTQN  
DATA11DATA0  
OUTP  
OUTN  
50Ω  
25Ω  
MAX5876  
0.1µF  
0.1µF  
12  
OUTIN/OUTQN  
GND  
DV  
DD1.8  
DV  
DD3.3  
*BYPASS EACH POWER-SUPPLY PIN INDIVIDUALLY.  
Figure 9. Recommended Power-Supply Decoupling and  
Bypassing Circuitry  
Figure 8. Differential Output Configuration  
16 ______________________________________________________________________________________  
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
after nullifying the offset error. This error alters the slope  
of the transfer function and corresponds to the same  
percentage error in each step.  
Two-/Four-Tone Intermodulation Distortion (IMD)  
The two-tone IMD is the ratio expressed in dBc (or dBFS)  
of the worst 3rd-order (or higher) IMD product(s) to either  
output tone; 2nd-order IMD products usually fall at fre-  
quencies that digital filtering easily removes. Therefore,  
they are not as critical as 3rd-order IMDs. The two-tone  
IMD performance of the MAX5876 is tested with the two  
individual output tone levels set to at least -6dBFS and  
the four-tone performance was tested according to the  
GSM model at an output frequency of 16MHz and ampli-  
tude of -12dBFS.  
Dynamic Performance Parameter Definitions  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital sam-  
ples, the theoretical maximum SNR is the ratio of the full-  
scale analog output (RMS value) to the RMS quantization  
error (residual error). The ideal, theoretical minimum can  
be derived from the DACs resolution (N bits):  
SNR = 6.02 x N + 1.76  
dB  
dB  
dB  
Adjacent Channel Leakage Power Ratio (ACLR)  
Commonly used in combination with wideband code-  
division multiple-access (W-CDMA), ACLR reflects the  
leakage power ratio in dB between the measured  
power within a channel relative to its adjacent channel.  
ACLR provides a quantifiable method of determining  
out-of-band spectral energy and its influence on an  
adjacent channel when a bandwidth-limited RF signal  
passes through a nonlinear device.  
However, noise sources such as thermal noise, reference  
noise, clock jitter, etc., affect the ideal reading; therefore,  
SNR is computed by taking the ratio of the RMS signal to  
the RMS noise, which includes all spectral components  
minus the fundamental, the first four harmonics, and the  
DC offset.  
Noise Spectral Density  
The DAC output noise floor is the sum of the quantiza-  
tion noise and the output amplifier noise (thermal and  
shot noise). Noise spectral density is the noise power in  
1Hz bandwidth, specified in dBFS/Hz.  
Settling Time  
The settling time is the amount of time required from the  
start of a transition until the DAC output settles its new  
output value to within the converters specified accuracy.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of RMS amplitude of the carrier fre-  
quency (maximum signal components) to the RMS  
value of their next-largest distortion component. SFDR  
is usually measured in dBc and with respect to the car-  
rier frequency amplitude or in dBFS with respect to the  
DACs full-scale range. Depending on its test condition,  
SFDR is observed within a predefined window or to  
Nyquist.  
Glitch Impulse  
A glitch is generated when a DAC switches between  
two codes. The largest glitch is usually generated  
around the midscale transition, when the input pattern  
transitions from 011...111 to 100...000. The glitch  
impulse is found by integrating the voltage of the glitch  
at the midscale transition over time. The glitch impulse  
is usually specified in pVs.  
______________________________________________________________________________________ 17  
12-Bit, 250Msps, High-Dynamic-Performance,  
Dual DAC with LVDS Inputs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM  
1
21-0122  
C
2
PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM  
1
21-0122  
C
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX5876EGK+TD

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.014us Settling Time, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68
MAXIM

MAX5876EGK-D

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.014us Settling Time, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX5876EGK-TD

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.014us Settling Time, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX5876EGKD

MAX5876/MAX5877/MAX5878 Evaluation Kits
MAXIM

MAX5876EVKIT

MAX5876/MAX5877/MAX5878 Evaluation Kits
MAXIM

MAX5877

16-Bit, 250Msps, High-Dynamic-Performance, Dual DAC with LVDS Inputs
MAXIM

MAX5877EGK

D/A Converter, 1 Func, Parallel, Word Input Loading, 10 X10 MM, MO-220, QFN-68
MAXIM

MAX5877EGK+D

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.014us Settling Time, 10 X 10 MM, 0.9 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68
MAXIM

MAX5877EGK-D

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.014us Settling Time, 10 X 10 MM, 0.9 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX5877EGKD

MAX5876/MAX5877/MAX5878 Evaluation Kits
MAXIM

MAX5877EVKIT

MAX5876/MAX5877/MAX5878 Evaluation Kits
MAXIM

MAX5878

16-Bit, 250Msps, High-Dynamic-Performance, Dual DAC with LVDS Inputs
MAXIM