MAX498CWI-T [ROCHESTER]

QUAD 1-CHANNEL, AUDIO/VIDEO SWITCH, PDSO28, 0.300 INCH, SOP-28;
MAX498CWI-T
型号: MAX498CWI-T
厂家: Rochester Electronics    Rochester Electronics
描述:

QUAD 1-CHANNEL, AUDIO/VIDEO SWITCH, PDSO28, 0.300 INCH, SOP-28

光电二极管
文件: 总17页 (文件大小:837K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1143; Rev 0; 10/96  
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
8/MAX49  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX498/MAX499 are high-speed, quad/triple, sin-  
gle-pole/double-throw video switches with on-board  
closed-loop buffer amplifiers. The buffer amplifiers fea-  
High Speed:  
250MHz Small-Signal -3dB Bandwidth  
135MHz Full-Power -3dB Bandwidth  
ture +6dB gain (A  
= 2V/V), 250MHz -3dB band-  
VCL  
70MHz 0.1dB Gain Flatness  
width, 70MHz 0.1dB gain flatness, and 1250V/µs slew  
rate. Fast switching time (3ns) and fast settling time  
(12ns for a 4V s te p ) ma ke the s e d e vic e s e xc e lle nt  
choices for a wide variety of video applications. The low  
differential gain/phase errors (0.03%/0.06°) and wide  
bandwidth make them ideal for both composite-video  
and RGB applications. The amplifiers are capable of  
d e live ring ± 2.5V into b a c k-te rmina te d 50or 75Ω  
cables, and they deliver ±2V to a 75load, allowing  
multiple cables to be driven from a single output.  
1250V/µs Slew Rate  
12ns to 0.1% Settling Time  
0.03°/0.06% Differential Phase/Gain Error  
2pF Input Capacitance  
3ns Channel-Switching Time  
120mVp-p Channel-Switching Transient  
Three-State Output Allows Large Switch Arrays  
For implementation of large switch arrays, a low-power  
disable mode places the amplifier outputs in a high-  
imp e d a nc e s ta te . Cha nne l s e le c tion a nd outp ut  
e na b le /d is a b le a re c ontrolle d b y four TTL/CMOS-  
compatible logic inputs. Each video input is isolated by  
an AC-ground pin, which minimizes channel-to-channel  
capacitance and reduces crosstalk to 90dB at 10MHz.  
Directly Drives 50or 75Back-Terminated  
Cables  
______________Ord e rin g In fo rm a t io n  
The four-channel MAX498 dissipates 390mW (typical)  
from ±5VDC power supplies with all output buffers  
enabled. Power consumption is reduced to 130mW with  
all buffers disabled. The corresponding dissipation for  
the thre e -c ha nne l MAX499 is 300mW e na b le d a nd  
100mW disabled.  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
28 SO  
MAX498CWI  
MAX499CWG  
24 SO  
________________________Ap p lic a t io n s  
_________________P in Co n fig u ra t io n s  
Video Switching and Routing  
Broadcast-Quality Composite-Video Multiplexing  
Workstations  
TOP VIEW  
24 GND  
IN1A  
GND  
IN2A  
GND  
1
2
3
4
5
6
7
8
9
23  
22  
21  
20  
LE  
Video Editing  
EN  
A0  
Broadcast and High-Definition TV Systems  
Multimedia Products  
MAX499  
IN3A  
CS  
Medical Imaging  
V
CC  
OUT1  
19  
18  
17  
16  
15  
14  
V
EE  
V
CC  
IN1B  
GND  
V
EE  
OUT2  
N.C.  
IN2B 10  
GND 11  
OUT3  
IN3B  
13 N.C.  
12  
SO  
MAX498 appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V to V )................................................+12V  
Continuous Power Dissipation (T = +70°C)  
A
CC  
EE  
Voltage on IN__ to GND ..................(V - 0.3V) to (V + 0.3V)  
Voltage on Digital Inputs  
24-Pin SO (derate 11.76mW/°C above +70°C).............941mW  
28-Pin SO (derate 12.5mW/°C above +70°C)......................1W  
Operating Temperature Range .................................0°C to +70°  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
EE  
CC  
(LE, EN, A0, CS).........................................-0.3V to (V + 0.3V)  
CC  
Voltage on OUT_ (disabled) ..................................................±4V  
Output Short-Circuit Duration  
to -4V OUT_ +4V ..................................................Continuous  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V = +5V, V = -5V, V _ _ = 0V, R = 150, LE = EN = CS = 0V, T = 0°C to +70°C, unless otherwise noted. Typical values are at  
CC  
EE  
IN  
L
A
T
A
= +25°C.)  
8/MAX49  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
±1.25  
1.985  
1.965  
TYP  
MAX  
UNITS  
Input Voltage Range  
V
IN  
±1.70  
V
R
R
= 150, -1.25V V +1.25V  
2.030  
2.030  
±9  
L
L
IN  
Voltage Gain  
A
V
V/V  
= 75, -1.0V V +1.0V  
IN  
Input Offset Voltage  
V
OS  
±2  
±50  
±1  
mV  
µV/°C  
µA  
kΩ  
pF  
Input Offset Voltage Drift  
Input Bias Current  
TCV  
OS  
I
B
±7  
Input Resistance  
R
C
-1.25V V +1.25V  
200  
±27  
700  
2
IN  
IN  
IN  
Input Capacitance  
Channel on or off  
Output Short-Circuit Current  
Output Current  
I
-3.5V OUT_ +3.5V (Note 1)  
120  
±40  
0.15  
3.0  
1.2  
mA  
mA  
OUT(SC)  
-2.0V V  
+2.0V, R = 75Ω  
I
OUT_  
L
OUT_  
On Output Resistance  
On Output Impedance  
Off Output Resistance  
Operating Supply-Voltage Range  
Positive Power-Supply Rejection  
R
OUT  
f = 10MHz  
-2.50V V  
+2.50V  
1.0  
±4.50  
55  
kΩ  
V
OUT  
±5.50  
PSR+  
PSR-  
4.50V V 5.50V, V = -5.0V  
72  
72  
dB  
CC  
EE  
Negative Power-Supply  
Rejection  
-5.50V V -4.5V, V = +5.0V  
55  
dB  
EE  
CC  
Logic Low Voltage  
Logic High Voltage  
Logic Input Current  
V
0.8  
V
V
INLL  
V
INLH  
2
130  
52  
41  
17  
14  
50  
39  
15  
12  
I
0V V V  
CC  
-10  
µA  
INL  
INL  
MAX498  
MAX499  
MAX498  
MAX499  
MAX498  
MAX499  
MAX498  
MAX499  
40  
31  
14  
11  
38  
29  
12  
9
EN = 0  
Positive Supply Current  
Negative Supply Current  
I
mA  
mA  
CC  
EN = 1  
EN = 0  
EN = 1  
I
EE  
Note 1: Limited by package power dissipation.  
_______________________________________________________________________________________  
2
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
8/MAX49  
AC ELECTRICAL CHARACTERISTICS  
(V = +5V, V = -5V, V  
= 0V, R = 100, LE = EN = CS = 0V, T = +25°C, unless otherwise noted.)  
CC  
EE  
IN__  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
250  
70  
MAX  
UNITS  
MHz  
MHz  
MHz  
V/µs  
ns  
Small-Signal, -3dB Bandwidth  
±0.1dB Gain Flatness  
Full-Power, -3dB Bandwidth  
Slew Rate  
BW  
V
100mVp-p  
100mVp-p  
-3dB  
IN  
V
IN  
FPBW  
SR  
V
OUT  
= ±2V  
135  
1250  
12  
V
OUT  
= 4V step  
Settling Time  
t
s
0.1%, V  
= 4V step  
OUT  
Input Voltage Noise Density  
Input Current Noise Density  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Adjacent-Channel Crosstalk  
All-Hostile Crosstalk  
Off-Isolation  
f = 100kHz  
f = 100kHz  
f = 10MHz  
7.8  
2.6  
-50  
-66  
90  
nV/Hz  
pA/Hz  
dB  
THD  
SFDR  
f
C
= 3MHz  
dBc  
f = 10MHz (Note 2)  
dB  
f = 10MHz (Note 3)  
62  
dB  
81  
dB  
EN = 1, f = 10MHz (Note 4)  
f = 3.58MHz (Note 5), R = 150Ω  
Differential Gain  
Diff Gain  
0.03  
0.06  
%
L
f = 3.58MHz (Note 5), R = 150Ω  
Differential Phase  
Diff Phase  
degrees  
L
TIMING CHARACTERISTICS  
(V = +5V, V = -5V, V  
= 0V, R = 150, LE = EN = CS = 0V, T = 0°C to +70°C. Typical values are at T = +25°C, unless  
CC  
EE  
IN_ _  
L
A
A
otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
t
LE = high (Note 6)  
8
A0/EN to CS Setup Time  
A0/EN to CS Hold Time  
CS Pulse Width  
SU  
t
LE = high (Note 6)  
(Note 6)  
4
ns  
H
t
CS  
15  
ns  
Channel-Switching  
Propagation Delay  
t
(Note 7)  
(Note 8)  
20  
ns  
ns  
PD  
Channel-Switching Time  
t
3
70  
50  
10  
150  
16  
24  
SW  
Positive  
Negative  
Positive  
Negative  
Channel-Switching Transient  
V
INA  
= V  
= 0V  
= 0V  
mV  
INB  
Enable/Disable Switching  
Transient  
V
INA  
= V  
mV  
INB  
Amplifier-Disable Time  
Amplifier-Enable Time  
t
(Note 9)  
(Note 10)  
ns  
ns  
OFF  
t
ON  
Note 2: Test-channel input grounded through a 50resistor. Adjacent channel driven to a 2Vp-p output with a 10MHz sine wave  
(Figure 9).  
Note 3: Same as Note 2, except all channels but the test channel are driven to a 2Vp-p output with a 10MHz sine wave (Figure 9).  
Note 4: Test-channel input connected to a 2V  
sine wave at 10MHz. The test channel’s output is measured with the outputs  
p-p  
disabled (Figure 9).  
Note 5: Input test signal is a 3.58MHz sine wave of 40IRE amplitude, superimposed on a 0IRE to 100IRE linear ramp (Figure 10).  
Note 6: Guaranteed by design.  
Note 7:  
Note 8:  
V
V
INA  
= +1V, V  
= -1V, delay from CS to 10% of V  
= -1V, delay from CS to 10% of V  
INA  
INB OUT.  
= +1V, V  
INB OUT.  
Note 9: Delay from EN to 90% of V  
OUT.  
Note 10: Delay from EN to 10% of V  
OUT.  
_______________________________________________________________________________________  
3
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = +5V, V = -5V, R = 100, T = +25°C, unless otherwise noted.)  
CC  
EE  
L
A
SMALL-SIGNAL GAIN  
vs. FREQUENCY  
GAIN FLATNESS  
vs. FREQUENCY  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
8
7
6
5
6.2  
6.1  
6.0  
5.9  
8
7
V
IN  
= 20mVp-p  
V
IN  
= 20mVp-p  
V
OUT  
= 2Vp-p  
6
5
4
3
2
1
0
4
3
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
2
1
8/MAX49  
0
-1  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
OUTPUT IMPEDANCE  
vs. FREQUENCY  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
LARGE-SIGNAL GAIN  
vs. FREQUENCY  
1000  
8
7
0.14  
0.10  
R
V
OUT  
= 50Ω  
= 2Vp-p  
L
V
OUT  
= 2Vp-p  
100  
10  
1
OUT0OUT1  
OUT0OUT3  
6
5
4
3
2
1
0
0.06  
0.02  
-0.02  
-0.06  
0.1  
OUT0OUT2  
0.01  
-0.10  
10k  
100k  
1M  
10M  
100M  
1M  
10M  
100M  
500M  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
OFF-ISOLATION  
vs. FREQUENCY  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
CROSSTALK  
vs. FREQUENCY  
-20  
-15  
20  
0
V
OUT  
= 2Vp-p  
-30  
-25  
-35  
-45  
-55  
-65  
-75  
-85  
-95  
-40  
-50  
-20  
-40  
PSR-  
ALL HOSTILE  
-60  
-60  
ADJACENT  
-70  
-80  
PSR+  
-80  
-100  
-120  
-140  
-90  
-100  
1M  
10M  
100M  
1G  
30k 0.1M  
1M  
10M  
100M  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
4
_______________________________________________________________________________________  
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
8/MAX49  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, R = 100Ω, T = +25°C, unless otherwise noted.)  
CC  
EE  
L
A
MAX498  
SUPPLY CURRENT  
vs. TEMPERATURE  
DISABLED SUPPLY CURRENT  
vs. TEMPERATURE  
GAIN vs. TEMPERATURE  
50  
2.0200  
2.0175  
2.0150  
15  
14  
EN = HIGH (OUTPUTS DISABLED)  
45  
40  
35  
30  
13  
12  
V
IN  
= +1V  
I
CC  
I
CC  
V
IN  
= -1V  
11  
I
EE  
I
EE  
10  
9
2.0125  
2.0100  
8
-55 -35 -15  
5
25  
45  
65  
85  
-55 -35 -15  
5
25  
45  
65 85  
-55 -35 -15  
5
25 45  
65  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
12  
10  
8
10  
8
6
6
4
4
2
2
0
0
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
-10  
-12  
-10  
-55 -35 -15  
5
25 45  
65  
85  
-55 -35 -15  
5
25 45  
65  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LARGE-SIGNAL  
LARGE-SIGNAL  
LARGE-SIGNAL  
PULSE RESPONSE (C = 47pF)  
L
PULSE RESPONSE  
PULSE RESPONSE (C = 100pF)  
L
+1  
0
+1  
0
+1  
0
IN  
IN  
IN  
-1  
-1  
-1  
+2  
0
+2  
0
+2  
0
OUT  
OUT  
OUT  
-2  
-2  
-2  
TIME (10ns/div)  
TIME (10ns/div)  
TIME (10ns/div)  
_______________________________________________________________________________________  
5
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = +5V, V = -5V, R = 100, T = +25°C, unless otherwise noted.)  
CC  
EE  
L
A
SMALL-SIGNAL  
PULSE RESPONSE (C = 100pF)  
L
SMALL-SIGNAL  
PULSE RESPONSE  
SMALL-SIGNAL  
PULSE RESPONSE (C = 47pF)  
L
+100  
+100  
0
+100  
0
IN  
0
IN  
IN  
-100  
-100  
-100  
+200  
0
+200  
0
+200  
0
OUT  
OUT  
OUT  
-200  
-200  
-200  
TIME (10ns/div)  
TIME (10ns/div)  
X
TIME (10ns/div)  
ENABLE/DISABLE  
SWITCHING  
CHANNEL-SWITCHING  
TRANSIENT  
CHANNEL SWITCHING  
+5  
0
A0  
+2  
+2  
OUT  
OUT_  
A0  
0
-2  
0
+100m  
+5  
+5  
OUT_  
0
ENABLE  
-100m  
0
0
TIME (10ns/div)  
TIME (50ns/div)  
TIME (10ns/div)  
IN_A = -1V  
IN_B = +1V  
ENABLE/DISABLE  
BANDWIDTH  
SWITCHING TRANSIENT  
vs. INPUT VOLTAGE  
300  
280  
260  
240  
+5  
0
ENABLE  
+100m  
220  
200  
180  
160  
140  
120  
OUT_  
0
-100m  
TIME 50ns/div  
0.01  
0.1  
1
10  
INPUT VOLTAGE (Vp-p)  
6
_______________________________________________________________________________________  
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
8/MAX49  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
MAX498 MAX499  
1, 3, 5,  
2, 4, 9,  
11, 13,  
11, 24  
19  
Analog Ground. All ground pins are internally connected. Connect all ground pins externally to  
ground to minimize impedance.  
GND  
2
4
6
1
3
5
IN1A  
IN2A  
IN3A  
Signal Input 1, Channel A  
Signal Input 2, Channel A  
Signal Input 3, Channel A  
Positive Power-Supply Voltage. Connect V to +5V. V pins are internally connected.  
CC  
CC  
7, 22  
8
6, 18  
V
Connect both pins externally to +5V to minimize supply impedance. Bypass each pin to  
ground with a 0.1µF ceramic capacitor.  
CC  
IN0B  
Signal Input 0, Channel B  
Negative Power-Supply Voltage. Connect V to -5V. V pins are internally connected.  
EE  
EE  
9, 21  
7, 17  
V
EE  
Connect both pins to -5V externally to minimize supply impedance. Bypass each pin to  
ground with a 0.1µF ceramic capacitor.  
10  
12  
8
10  
IN1B  
IN2B  
IN3B  
N.C.  
Signal Input 1, Channel B  
Signal Input 2, Channel B  
14  
12  
Signal Input 3, Channel B  
15, 17  
16  
13, 15  
14  
No Connect. Not internally connected; connect to GND.  
OUT3  
OUT2  
OUT1  
OUT0  
Output 3  
Output 2  
Output 1  
Output 0  
18  
16  
20  
19  
23  
Chip-Select Input. When CS is low, the A0 and EN latches are transparent. The data present at A0  
is latched when CS goes high. LE’s status determines whether EN is latched along with A0, or if the  
EN latch remains transparent independently of CS.  
24  
25  
26  
20  
21  
22  
CS  
A0  
EN  
Address Input. A0 = 0 selects channel A, and A0 = 1 selects channel B if CS is low. A0 is  
latched on CSs low-to-high transition.  
Output Buffer-Enable Input. EN = 0 enables the output buffer amplifiers, and EN = 1 disables  
the output buffers if CS is low. EN is latched during CSs low-to-high transition if LE is high. EN  
is not latched if LE is low.  
Latch-Enable Input. With LE = 1, EN is latched along with A0 when CS goes high. When LE = 0,  
the EN latch is transparent independently of CSs state.  
27  
28  
23  
LE  
IN0A  
Signal Input 0, Channel A  
_______________________________________________________________________________________  
7
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
1
2
3
28  
27  
26  
25  
24  
23  
22  
21  
GND  
IN1A  
GND  
IN0A  
LE  
EN  
4
5
IN2A  
GND  
A0  
CS  
8/MAX49  
MAX498  
6
OUT0  
IN3A  
7
8
+5V  
DC  
+5V  
DC  
V
CC  
V
CC  
10µF  
0.1µF  
0.1µF  
0.1µF  
IN0B  
V
EE  
-5V  
DC  
9
20  
19  
18  
-5V  
DC  
OUT1  
GND  
OUT2  
N.C.  
V
EE  
10µF  
0.1µF  
10  
11  
12  
13  
IN1B  
GND  
17  
16  
15  
IN2B  
GND  
OUT3  
N.C.  
14  
IN3B  
EIGHT-IN/FOUR-OUT  
VIDEO MUX AMP  
NOTE: ALL RESISTORS ARE 50OR 75Ω  
Figure 1a. MAX498 Typical Application Circuit  
_______________________________________________________________________________________  
8
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
8/MAX49  
24  
23  
22  
21  
20  
1
2
3
IN1A  
GND  
GND  
LE  
EN  
IN2A  
GND  
IN3A  
4
5
A0  
CS  
MAX499  
6
19  
+5V  
DC  
OUT1  
V
CC  
10µF  
0.1µF  
0.1µF  
7
8
18  
17  
+5V  
DC  
+5V  
DC  
V
V
EE  
CC  
10µF  
0.1µF  
0.1µF  
IN1B  
GND  
V
EE  
-5V  
DC  
16  
15  
14  
9
10  
11  
12  
OUT2  
N.C.  
IN2B  
GND  
OUT3  
N.C.  
13  
IN3B  
SIX-IN/THREE-OUT  
VIDEO MUX AMP  
NOTE: ALL RESISTORS ARE 50OR 75Ω  
Figure 1b. MAX499 Typical Application Circuit  
_______________________________________________________________________________________  
9
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
______________ De t a ile d De s c rip t io n  
The MAX498/MAX499 are quad/triple video switches  
with high-speed, closed-loop, voltage-feedback ampli-  
fiers set to a 2V/V gain. Figure 1 shows typical applica-  
tion circuits. The amplifiers use a unique two-stage,  
IN0A  
MAX498  
MAX499  
GM_A  
S1  
CHANNEL 0  
voltage-feedback architecture that combines the bene-  
fits of c onve ntiona l volta g e -fe e d b a c k a nd c urre nt-  
X1  
OUT0  
C
C
feedback topologies to achieve wide bandwidths and  
high slew rates while maintaining precision.  
R
0
IN0B  
Figure 2 is a simplified block diagram of the MAX498/  
MAX499. All four amplifier/switch blocks are identical to  
that shown for Ch_0. A common control logic block  
a c c e p ts e xte rna l log ic inp uts A0, EN, CS, a nd LE,  
and controls the status of switches S1, S2, and S3 of  
each amplifier in parallel, as described in the Digital  
Interface section.  
GM_B  
S2  
X1  
S3  
R
FB  
R
G
8/MAX49  
S3 is open in the enabled state, and if Ch_A is select-  
ed, S1 is connected to IN_A and S2 is connected to  
GND. If Ch_B is selected, S1 is connected to GND and  
S2 is connected to IN_B. Connecting the deselected  
GM_ block to GND ensures minimum feedthrough.  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
S3 is closed in the disabled state, and both S1 and S2  
are connected to GND. Disconnecting both inputs and  
connecting the amplifiers inputs to GND significantly  
improves off-isolation.  
S1  
S2  
S3  
A0  
EN  
CS  
LE  
__________Ap p lic a t io n s In fo rm a t io n  
CONTROL LOGIC  
P o w e r Dis s ip a t io n  
The MAX498/MAX499s maximum output current is limit-  
ed by the package s maximum allowable power dissi-  
pation. The maximum junction temperature should not  
exceed +150°C. Power dissipation increases with load,  
and this increase can be approximated by one of the  
following equations:  
Figure 2. Block Diagram  
To t a l No is e  
The MAX498/MAX499s low 2.6pA/Hz input current  
noise and 7.8nV/Hz voltage noise provide for lower  
total noise compared to typical current-mode feedback  
amplifiers, which usually have significantly higher input  
current noise. The input current noise multiplied by the  
feedback resistor is the dominant noise source of cur-  
rent-mode feedback amplifiers.  
For V  
> 0V: |V - VOUT| I  
OUT  
CC  
LOAD  
OR  
For V  
< 0V: |V - VOUT| I  
.
OUT  
EE  
LOAD  
These devices can drive 100loads connected to  
each of the outputs over the entire rated output swing  
and temperature range. While the output is short-circuit  
protected to 120mA, this does not necessarily guaran-  
tee that under all conditions, the maximum junction  
temperature will not be exceeded. Do not exceed the  
derating values given in the Absolute Maximum Ratings  
section.  
Diffe re n t ia l Ga in a n d P h a s e Erro rs  
Differential gain and phase errors are critical specifica-  
tions for a buffer in composite (NTSC, PAL, SECAM) video  
applications, because these errors correspond directly to  
color changes in the displayed picture of composite video  
systems. The MAX498/MAX499s low differential gain and  
phase errors (0.03%/0.06°) make them ideal in broadcast-  
quality, composite video applications.  
10 ______________________________________________________________________________________  
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
8/MAX49  
FULL POWER-DOWN  
FULL POWER-DOWN  
14  
12  
10  
8
14  
12  
10  
8
R
ISO  
= 0Ω  
R
ISO  
= 6.8Ω  
100pF  
47pF  
100pF  
150pF  
47pF  
6
6
0pF  
0pF  
4
4
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 3a. Small-Signal Gain vs. Frequency and Load  
Figure 3b. Small-Signal Gain vs. Frequency and Load  
Capacitor (R = 100, R  
= 0)  
Capacitor (R = 100, R  
= 6.8)  
L
ISO  
L
ISO  
+1  
+100  
V
IN  
V
IN  
-1  
-100  
+2  
+200  
V
OUT  
V
OUT  
-200  
-2  
TIME (10ns/div)  
TIME (10ns/div)  
Figure 4b. Small-Signal Pulse Response with C = 100pF and  
Figure 4a. Large-Signal Pulse Response with C = 100pF and  
L
L
R
= 5.1Ω  
R
= 5.1Ω  
ISO  
ISO  
Co a x ia l Ca b le Drive rs  
Ca p a c it ive -Lo a d Drivin g  
Hig h-s p e e d p e rforma nc e , e xc e lle nt outp ut c urre nt  
capability, and an internally fixed gain of +2 make the  
MAX498/MAX499 ideal for driving back-terminated 50Ω  
or 75coaxial cables to ±2.5V.  
In most amplifier circuits, driving large capacitive loads  
increases the likelihood of oscillation. This is especially  
true for circuits with high loop gains, such as voltage  
followers. The amplifiers output resistance and the  
capacitive load form an RC filter that adds a pole to the  
loop response. If the pole frequency is low enough (as  
when driving a large capacitive load), the circuit-phase  
margin is degraded and oscillation may occur.  
In a typical application, the MAX498/MAX499 drive a  
back-terminated cable (Figure 1). The back-termination  
resistor, at the output, matches the impedance of the  
cables driven end to the cables impedance, eliminating  
signal reflections. This resistor, along with the load-  
termination resistor, forms a voltage divider with the load  
impedance, which attenuates the signal at the cables  
output by one-half. The MAX498/MAX499 operate with  
an internal +2V/V closed-loop gain to provide unity gain  
at the cables output.  
The MAX498/MAX499 d rive c a p a c itive loa d s up to  
100pF without sustained oscillation, although some  
peaking may occur (Figures 3a and 3b). When driving  
larger capacitive loads, or to reduce peaking, add an  
) between the output and the  
capacitive load (Figures 4a, 4b, and 5).  
isolation resistor (R  
ISO  
______________________________________________________________________________________ 11  
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
MAX186/MAX188  
FULL POWER-DOWN  
vs. SUPPLY VOLTAGE  
8
7
-82  
-84  
-86  
6
5
-88  
-90  
-92  
-94  
4
3
2
-96  
-98  
47  
100 150  
200  
270  
390  
510  
10  
100  
1k  
10k  
CAPACITANCE (pF)  
FREQUENCY (Hz)  
8/MAX49  
Figure 6. Total Harmonic Distortion (Audio) vs. Frequency  
Figure 5. Isolation Resistor vs. Capacitive Load  
S w it c h in g Au d io S ig n a ls  
(Au d io -Dis t o rt io n Me a s u re m e n t )  
When switching audio signals, distortion is the prime  
consideration in performance. Figure 6 shows total  
harmonic distortion vs. frequency, in the audio range,  
for the MAX498/MAX499.  
Dig it a l In t e rfa c e  
The MAX498/MAX499 multiplexer architecture ensures  
that no input channels are ever connected together.  
Select a channel by changing A0s state (A0 = 0 for  
channel A, and A0 = 1 for channel B) and pulsing CS low  
(see Tables 1a and 1b). Figure 7 shows the logic timing  
diagram.  
La rg e S w it c h Arra ys  
Large crosspoint switch arrays are possible with the  
MAX498/MAX499 using the enable function EN. When  
the amplifiers are disabled, output impedance is typi-  
cally 1.2kΩ, due to the feedback and gain resistors.  
This limits the number of outputs that can be paralleled  
without a buffer. Since each output can drive 100,  
eight outputs can typically be connected together. If  
additional outputs must be connected in parallel, a  
MAX4178 (single), MAX496 (quad), or equivalent unity-  
gain buffer can be used.  
—–  
When the enable input (EN) is driven to a TTL low state, it  
—–  
enables the MAX498/MAX499 amplifier outputs. When EN  
is driven high, it disables the amplifier outputs. When  
disabled, the MAX498/MAX499 exhibit a 1.2kdis-  
abled output resistance due to their internal feedback  
resistors.  
—–  
LE determines whether EN is latched by CS or operates  
independently. When the latch-enable input (LE) is con-  
—–  
nected to V+, CS becomes the latch control for the EN  
—–  
input register. If CS is low, both the EN and A0 latches  
—–  
are transparent; once CS returns high, both A0 and EN  
Whether enabled or disabled, each input represents  
more than 200kof resistance. Capacitance is the  
prime consideration limiting the number of inputs that  
can be connected to a single output. Since each output  
can drive 100pF of capacitance without an isolation  
are latched.  
—–  
When LE is connected to ground, the EN latch is trans-  
p a re nt a nd ind e p e nd e nt of CS. This a llows a ll  
MAX498/MAX499 devices to be shut down simultane-  
ously, regardless of CS’s input state. Simply connect  
resistor, 50 inputs (C = 2pF, typical) can be driven  
IN  
—–  
LE to g round a nd c onne c t a ll EN inp uts tog e the r  
by a single output. However, peaking will occur as  
inputs are added (Figure 3), which reduces the 0.1dB  
bandwidth.  
(Figure 8a). Hard wire LE to V+ or ground (rather than  
driving LE with a gate) to prevent crosstalk from the  
digital inputs to IN0A.  
12 ______________________________________________________________________________________  
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
8/MAX49  
Another option for output disable is to connect LE to V+,  
Table 1a. Amplifier and Channel  
Selection with LE = V+  
parallel the outputs of several MAX498/MAX499s, and use  
—–  
EN to individually disable all devices but the one in use  
CS  
EN  
A0  
FUNCTION  
(Figure 8b).  
Enables amplifier outputs. Selects  
channel A.  
Enables amplifier outputs. Selects  
channel B.  
When the outputs are disabled, off-isolation from the  
analog inputs to the amplifier outputs is typically 81dB  
at 10MHz.  
0
0
0
0
0
1
Gro u n d in g a n d La yo u t  
The MAX498/MAX499 bandwidths are in the RF fre -  
quency range. Depending on the size of the PC board  
used and the frequency of operation, it may be neces-  
sary to use Micro-strip or Stripline techniques.  
0
1
1
X
X
Disables amplifiers. Outputs high-Z.  
X
Latches A0, EN. Outputs unchanged.  
To realize the full AC performance of these high-speed  
buffers, pay careful attention to power-supply bypassing  
and board layout. The PC board should have at least two  
layers (wire-wrap boards are too inductive, and bread  
boards are too capacitive), with one side a signal layer  
and the other a large, low-impedance ground plane. With  
multilayer boards, locate the ground plane on the layer  
that is not dedicated to a specific signal trace. The ground  
plane should be as free from voids as possible. Connect  
all ground pins to the ground plane.  
Table 1b. Amplifier and Channel  
Selection with LE = GND  
CE  
EN  
A0  
FUNCTION  
Enables amplifier outputs. Selects  
channel A.  
0
0
0
Enables amplifier outputs. Latches A0  
1
0
X
to output A or B, according to A0’s  
state at CSs last edge.  
—–  
Connect both positive power-supply pins together and  
bypass with a 0.10µF ceramic capacitor at each power-  
supply pin, as close to the device as possible. Repeat  
for the negative power-supply pins. The capacitor lead  
lengths should be as short as possible to minimize lead  
inductance; surface-mount chip capacitors are ideal. A  
large-value (10µF or greater) tantalum or electrolytic  
bypass capacitor on each supply may be required for  
high-current loads. The location of this capacitor is not  
critical.  
Disables amplifiers. Outputs high-Z.  
A0 latch = channel A.  
Enables amplifier outputs. Selects  
channel B.  
X
0
1
0
X
1
The MAX498/MAX499s analog input pins are isolated  
with ground pins to minimize parasitic coupling, which can  
degrade crosstalk and/or amplifier stability. Keep signal  
paths as short as possible to minimize inductance. Ensure  
that all input channel traces are the same length, to main-  
tain the phase relationship between the four channels. To  
further reduce crosstalk, connect the coaxial-cable shield  
to the ground side of the 75terminating resistor at the  
ground plane, and terminate all unused inputs to ground  
and outputs with a 100or 150resistor to ground.  
______________________________________________________________________________________ 13  
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
tCS  
CS  
tSU  
tH  
A0  
tSU  
tH  
EN  
tOFF  
tON  
tPD  
OUTPUTS  
8/MAX49  
tSW  
LE = V+  
Figure 7. Logic Timing Diagram  
EN  
AO  
CS  
LE  
+5V  
MAX498  
MAX499  
MAX498  
MAX499  
LE  
SHUTDOWN  
EN  
EN  
AO  
LE  
CS  
MAX498  
MAX499  
+5V  
MAX498  
MAX499  
LE  
EN  
NOTE: ISOLATION RESISTORS  
(IF REQUIRED) NOT SHOWN.  
(a)  
(b)  
–  
–  
Figure 8. (a) Simultaneous Shutdown of all MAX498/MAX499s; (b) Enable (EN) Register Latched by CS  
14 ______________________________________________________________________________________  
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
8/MAX49  
MAX498/MAX499  
MAX498/MAX499  
50Ω  
50Ω  
100Ω  
100Ω  
V
IN  
= 4Vp-p,  
f = 10MHz,  
R = 75Ω  
50Ω  
50Ω  
50Ω  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
50Ω  
S
50Ω  
50Ω  
V
= 4Vp-p,  
IN  
100Ω  
f = 10MHz,  
R = 75Ω  
S
a) ADJACENT CHANNEL  
b) ALL HOSTILE  
Figure 9. Test Circuits for Measuring Crosstalk: a) Adjacent Channel; b) All Hostile  
75CABLE  
75Ω  
MAX499  
75CABLE  
75CABLE  
75Ω  
DUT  
75Ω  
SOURCE:  
TEKTRONIX  
75Ω  
MEASUREMENT:  
TEKTRONIX VM700  
1910 DIGITAL GENERATOR  
VIDEO MEASUREMENT  
SET  
Figure 10. Differential Phase and Gain Error Test Circuit  
______________________________________________________________________________________ 15  
Qu a d /Trip le , S P DT, RGB S w it c h e s  
w it h 2 5 0 MHz Vid e o Bu ffe r Am p lifie rs  
____P in Co n fig u ra t io n s (c o n t in u e d )  
___________________Ch ip In fo rm a t io n  
SUBSTRATE CONNECTED TO: V  
TRANSISTOR COUNT: 813  
EE  
TOP VIEW  
IN0A  
28  
GND  
IN1A  
GND  
IN2A  
GND  
IN3A  
1
2
3
4
27 LE  
26  
EN  
A0  
25  
24  
23  
22  
21  
MAX498  
5
6
CS  
OUT0  
V
CC  
V
CC  
7
8
9
IN0B  
V
EE  
20 OUT1  
V
EE  
8/MAX49  
GND  
19  
18  
IN1B 10  
OUT2  
11  
12  
GND  
IN2B  
17 N.C.  
16 OUT3  
15 N.C.  
GND 13  
IN3B  
14  
SO  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.093  
MAX  
0.104  
0.012  
0.019  
0.013  
0.299  
MIN  
2.35  
0.10  
0.35  
0.23  
7.40  
MAX  
2.65  
0.30  
0.49  
0.32  
7.60  
D
A
A1 0.004  
0°- 8°  
B
C
E
e
0.014  
0.009  
0.291  
A
0.101mm  
0.004in.  
1.27  
0.050  
e
B
A1  
H
L
0.394  
0.016  
0.419  
0.050  
10.00  
0.40  
10.65  
1.27  
C
L
INCHES  
MILLIMETERS  
MAX  
PINS  
DIM  
MIN MAX MIN  
E
H
Wide SO  
SMALL-OUTLINE  
PACKAGE  
0.398 0.413 10.10 10.50  
0.447 0.463 11.35 11.75  
0.496 0.512 12.60 13.00  
0.598 0.614 15.20 15.60  
D
D
D
D
D
16  
18  
20  
24  
28  
(0.300 in.)  
0.697 0.713 17.70 18.10  
21-0042A  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX498EVKIT

Dual-Channel CardBus and PCMCIA VCC VPP Power Switching Networks[MAX1600/MAX1603/MAX1600EAI/MAX1600EAI-T/MAX1603EAI/MAX1603EAI-T ]
MAXIM

MAX499

Quad/Triple, SPDT, RGB Switches with 250MHz Video Buffer Amplifiers
MAXIM

MAX4990E

High-Voltage, 【15kV ESD-Protected Electroluminescent Lamp Driver
MAXIM

MAX4990ETD+

High-Voltage, 【15kV ESD-Protected Electroluminescent Lamp Driver
MAXIM

MAX4991

Low RON, Dual-SPDT/Single-DPDT Analog Switches with Slow Turn-On Time
MAXIM

MAX4991EVB+

Low RON, Dual-SPDT/Single-DPDT Analog Switches with Slow Turn-On Time
MAXIM

MAX4992

Low RON, Dual-SPDT/Single-DPDT Analog Switches with Slow Turn-On Time
MAXIM

MAX49921

0 to 70V, High-Precision Current-Sense Amplifier
MAXIM

MAX49921EVKIT

Precision Real-Time Current Monitoring
MAXIM

MAX49921FATA/VY+

0 to 70V, High-Precision Current-Sense Amplifier
MAXIM

MAX49921FATA/VY+T

0 to 70V, High-Precision Current-Sense Amplifier
MAXIM

MAX49921TATA/VY+

0 to 70V, High-Precision Current-Sense Amplifier
MAXIM