MAX4990ETD+ [MAXIM]

High-Voltage, 【15kV ESD-Protected Electroluminescent Lamp Driver; 高电压, 【 15kV ESD保护,电致发光灯驱动器
MAX4990ETD+
型号: MAX4990ETD+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

High-Voltage, 【15kV ESD-Protected Electroluminescent Lamp Driver
高电压, 【 15kV ESD保护,电致发光灯驱动器

显示驱动器 驱动程序和接口 接口集成电路 CD
文件: 总15页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0886; Rev 0; 8/07  
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
MAX490E  
General Description  
Features  
ESD-Protected EL Lamp Outputs  
The MAX4990E high-voltage DC-AC converter is ideal  
for driving electroluminescent (EL) lamps. The  
MAX4990E features a wide +2.4V to +5.5V input range  
that allows the device to accept a wide variety of  
voltage sources such as single-cell lithium-ion (Li+)  
batteries and higher voltage battery chargers. The lamp  
outputs of the device generate up to 250V peak-to-  
peak output voltage for maximum lamp brightness.  
15kV Human Body Model  
4kV IEC 61000-4-2 Contact Discharge  
15kV IEC 61000-4-2 Air-Gap Discharge  
250V  
(MAX) Output for Highest Brightness  
P-P  
Wide +2.4V to +5.5V Input Voltage Range  
Resistor-Adjustable Slew-Rate Control for  
Audible Noise Reduction  
The MAX4990E utilizes an inductor-based boost con-  
verter to generate the high voltage necessary to drive  
an EL lamp. The boost-converter switching frequency is  
set with the combination of an external capacitor con-  
nected from SW to GND and an external resistor con-  
nected from SLEW to GND.  
Externally Driven Lamp and Switching Converter  
Frequencies  
Capacitor-Adjustable Lamp and Switching  
Converter Frequencies  
Low 100nA Shutdown Current  
DIM Input for Controlling Output Voltage Through  
The MAX4990E uses a high-voltage full-bridge output  
stage to convert the high voltage generated by the  
boost converter to an AC waveform suitable for driving  
the EL panel. The EL output switching frequency is set  
with the combination of an external capacitor connect-  
ed from EL to GND and an external resistor connected  
from SLEW to GND.  
DC Analog Voltage, PWM, or Resistor to GND  
Capacitor Adjustable for Slow Turn-On/-Off  
Space-Saving Packages  
14-Pin, 3mm x 3mm TDFN  
Applications  
Keypad Backlighting  
MP3 Players  
PDAs/Smartphones  
The MAX4990E uses a proprietary acoustic noise-  
reduction circuit that controls the slew rate of the AC  
voltage, reducing audible noise from the EL panel. The  
slew rate is set with an external resistor connected from  
SLEW to GND.  
Automotive Instrument  
Clusters  
LCD Backlighting  
ꢁin Configuration  
The MAX4990E features an EL lamp dimming control  
(DIM) that allows the user to set the EL output voltage  
with a PWM signal, a DC analog voltage, or a resistor  
connected from the DIM input to GND. A capacitor  
placed in parallel to the resistor on DIM allows the user  
to program a slow turn-on/-off time that generates a soft  
fade-on/fade-off effect of the EL lamp.  
TOP VIEW  
14 13 12 11 10  
9
8
MAX4990E  
The MAX4990E enters a low-power shutdown mode  
(100nA max) when the EN and DIM inputs are connect-  
ed to GND. The MAX4990E also enters thermal shut-  
down if the die temperature rises above +158°C.  
*EP  
+
1
2
3
4
5
6
7
The MAX4990E is available in a space-saving, 14-pin,  
3mm x 3mm TDFN package and is specified over the  
extended -40°C to +85°C operating temperature range.  
TDFN-EP  
*EP = EXPOSED PAD. CONNECT EP TO GND OR LEAVE UNCONNECTED.  
Typical Application Circuits appear at end of data sheet.  
Ordering Information  
TOP  
MARK  
PKG  
CODE  
1ꢀ5k  
PROTECTION  
SLEW-RATE  
CONTROL  
PART  
PIN-PACKAGE  
DIM CONTROL  
MAX4990ETD+  
14 TDFN-EP (3mm x 3mm)  
ADL  
T1433-2  
Yes  
Yes  
Yes  
Note: The device operates over the -40°C to +85°C operating  
temperature range.  
+Denotes a lead-free package.  
EP = Exposed paddle.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND.)  
J .................................................................................41°C/W  
A
V
...........................................................................-0.3V to +7V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
CS, LX...................................................................-0.3V to +160V  
V , V .........................................................-0.3V to (V + 0.3V)  
A
B
CS  
DD  
EN, EL, SLEW, DIM, SW.............................-0.3V to (V  
+ 0.3V)  
Continuous Power Dissipation (T = +70°C)  
A
14-Pin TDFN (derate 24.4mW/°C above +70°C) ...... 1951mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
MAX490E  
ELECTRICAL CHARACTERISTICS  
(V  
DD  
= +2.4V to +5.5V, C  
= 10nF, C = 3.3nF, L = 220µH (I  
= 170mA, R = 5.5Ω), T = T  
to T  
, unless otherwise  
MAX  
LAMP  
CS  
X
SAT  
S
A
MIN  
noted. Typical values are at V  
= +3.0V and T = +25°C.) (Note 1)  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power-Supply Voltage  
V
2.4  
5.5  
V
DD  
R
= 375kΩ, slope = 30V/100µs;  
= 200Hz, V - V = 250V  
A B P-P  
SLEW  
Power-Supply Current  
I
350  
µA  
nA  
nA  
DD  
f
EL  
EN = 0V, DIM = 0V, T = +25°C  
25  
100  
300  
A
Shutdown Supply Current  
I
SHDN  
EN = 0V, DIM = 0V, T = -40°C to +85°C  
A
Shutdown Inductor Supply  
Current  
ILX  
EN = 0V, DIM = 0V, LX = V , CS = V  
DD  
1500  
2.3  
SHDN  
DD  
Undervoltage Lockout  
UVLO Hysteresis  
V
V
rising  
1.8  
2.1  
V
LO  
DD  
V
125  
mV  
HYST  
EL OUTPUTS (k - k )  
A
B
V
V
V
= +3V, DIM = +0.5V  
= +3V, DIM = +1V  
= +3V, DIM = +1.3V  
84  
100  
200  
250  
122  
230  
280  
DD  
DD  
DD  
Peak-to-Peak Output Voltage  
V
- V  
170  
210  
V
A
B
I
= 1mA, V = +10V,  
CS  
SINK  
Pulldown Switch On-Resistance  
Pullup Switch On-Resistance  
R
R
50  
700  
-1  
165  
500  
2200  
+1  
Ω
Ω
ONPD  
ONPU  
V , V < +0.6V, V  
= +3V  
A
B
DD  
V
= +125V, I  
= 1mA  
1500  
CS  
SOURCE  
V
V
= +125V, V = +125V, shutdown mode,  
B
= +125V  
A
I
LKG_NMOS  
CS  
Switch Off-Leakage  
µA  
V
= 0V, V = unconnected, shutdown  
B
A
I
-60  
+60  
LKG_PMOS  
mode, V = +125V  
CS  
V
= +0.1V, V = 0V, shutdown mode,  
B
A
V , V Differential Resistor  
V
AB_RES  
2
7
MΩ  
A
B
CS = unconnected  
= 872pF, R = 375kΩ  
SLEW  
EL Lamp Switching Frequency  
ESD Protection (V , V Only)  
f
C
210  
250  
15  
4
290  
Hz  
EL  
EL  
Human Body Model  
IEC 61000-4-2 Contact Discharge  
IEC 61000-4-2 Air-Gap Discharge  
kV  
A
B
15  
2
_______________________________________________________________________________________  
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
MAX490E  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= +2.4V to +5.5V, C  
= 10nF, C = 3.3nF, L = 220µH (I  
= 170mA, R = 5.5Ω), T = T  
to T  
, unless otherwise  
MAX  
LAMP  
CS  
X
SAT  
S
A
MIN  
noted. Typical values are at V  
= +3.0V and T = +25°C.) (Note 1)  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BOOST CONkERTER  
V
V
V
= +3V, DIM = +0.5V forced externally  
= +3V, DIM = +1V forced externally  
= +3V, DIM = +1.3V forced externally  
42  
85  
50  
61  
115  
140  
120  
20  
DD  
DD  
DD  
Output Peak Voltage  
V
100  
125  
100  
V
CS  
105  
80  
Boost Switching Frequency  
Switch On-Resistance  
LX Leakage Current  
CS Input Current  
f
C
= 96pF, R = 375kΩ  
SLEW  
kHz  
Ω
SW  
SW  
R
I
= 25mA, V  
= +3V  
DD  
LX  
SINK  
I
V
= +125V  
-1  
+1  
µA  
µA  
LX  
LX  
I
No load, V = +125V, EN = 0V, DIM = 0V  
50  
CS  
CS  
CONTROL INPUT SW  
Input Voltage-High Threshold  
Input Voltage-Low Threshold  
V
R
R
R
= 375kΩ  
0.9  
0.98  
0.49  
1.06  
0.55  
V
V
IH_SW  
SLEW  
SLEW  
V
= 375kΩ  
0.43  
IL_SW  
= 375kΩ, CS = +40V, EL = V  
DD  
SLEW  
DD,  
Input Low Current  
Input High Current  
I
43  
77  
µA  
µA  
IL_SW  
DIM = V  
R
= 375kΩ, CS = +40V, EL = V  
DD  
,
SLEW  
DD  
I
5.0  
7.5  
IH_SW  
DIM = V  
CONTROL INPUT EL  
Input Voltage-High Threshold  
Input Voltage-Low Threshold  
Input Low Current  
V
R
R
R
R
= 375kΩ  
= 375kΩ  
= 375kΩ  
= 375kΩ  
1.08  
0.22  
1.2  
1.32  
0.39  
1.87  
1.87  
V
IH_CEL  
SLEW  
SLEW  
SLEW  
SLEW  
V
V
IL_CEL  
IL_CEL  
IH_CEL  
I
µA  
µA  
Input High Current  
I
1.2  
CONTROL INPUT SLEW  
Force Voltage  
V
I
= 20µA  
0.89  
1.3  
0.95  
30  
1.04  
V
FORCE  
SOURCE  
High-Voltage Output Slew Rate  
CONTROL INPUT DIM  
Input Logic-High Voltage  
Input Logic-Low Voltage  
Input Low Current  
R
= 375kΩ  
V/100µs  
SLEW  
V
Output voltage (max)  
Output voltage (off)  
V
V
IH_DIM  
V
0.15  
3.0  
+1  
IL_DIM  
IL_DIM  
IH_DIM  
I
V
V
= 0V, R  
= 375kΩ  
2.22  
-1  
µA  
µA  
MHz  
V
DIM  
DIM  
SLEW  
Input High Current  
I
= V  
DD  
PWM Frequency Range  
Low-Peak Detector Threshold  
Low-Peak Detector Hysteresis  
CONTROL INPUT EN  
Input Voltage-High Threshold  
Input Voltage-Low Threshold  
Input Low Current  
0.2 to 1  
100  
V
0.15  
1.2  
0.35  
LPD  
V
mV  
LPD_HYST  
V
V
IH_EN  
V
0.2  
+1  
+1  
V
IL_EN  
IL_EN  
IH_EN  
I
-1  
-1  
µA  
µA  
Input High Current  
I
_______________________________________________________________________________________  
3
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
DD  
= +2.4V to +5.5V, C  
= 10nF, C = 3.3nF, L = 220µH (I  
= 170mA, R = 5.5Ω), T = T  
to T  
, unless otherwise  
MAX  
LAMP  
CS  
X
SAT  
S
A
MIN  
noted. Typical values are at V  
= +3.0V and T = +25°C.) (Note 1)  
DD  
A
PARAMETER  
THERMAL SHUTDOWN  
Thermal Shutdown  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
158  
8
°C  
°C  
Thermal Shutdown Hysteresis  
Note 1: Specifications at T = -40°C are guaranteed by design and not production.  
A
MAX490E  
Typical Operating Characteristics  
(V  
DD  
= +3.6V, C  
= 10nF, C  
= 3.3nF, L = 220µH (I  
= 170mA, R = 5.5Ω), R  
= 390kΩ, DIM = V , C  
= 100pF,  
LAMP  
CS  
X
SAT  
S
SLEW  
DD  
SW  
C
EL  
= 1.2nF, T = +25°C, unless otherwise noted.)  
A
TOTAL INPUT CURRENT AND  
PEAK-TO-PEAK OUTPUT VOLTAGE  
TOTAL INPUT CURRENT  
vs. SUPPLY VOLTAGE  
TOTAL INPUT CURRENT  
vs. TEMPERATURE  
vs. BOOST CONVERTER FREQUENCY  
MAX4990E toc03  
20  
80  
60  
40  
20  
0
300  
225  
150  
75  
20  
- - - - PEAK-TO-PEAK OUTPUT VOLTAGE  
90% DUTY CYCLE  
18  
16  
14  
12  
10  
8
16  
12  
8
C
= 2.2nF  
= 4.7nF  
CS  
CS  
C
C
= 4.7nF  
CS  
6
C
4
4
2
= 2.2nF  
120  
CS  
0
200  
0
0
2.4  
3.0  
3.6  
4.2  
4.8  
5.4  
-40  
-15  
10  
35  
60  
85  
40  
80  
160  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
BOOST CONVERTER FREQUENCY (kHz)  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
PEAK-TO-PEAK OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE  
100  
10  
1.0  
0.8  
0.6  
0.4  
0.2  
0
300  
250  
200  
150  
100  
50  
DIM = EN = 0V  
DIM = EN = 0V  
DIM = 1.3V  
DIM = 1.0V  
DIM = 0.8V  
1
DIM = 0.6V  
0.1  
0.01  
0
2.4  
3.0  
3.6  
4.2  
4.8  
5.4  
2.4  
3.0  
3.6  
4.2  
4.8  
5.4  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
MAX490E  
Typical Operating Characteristics (continued)  
(V  
DD  
= +3.6V, C  
= 10nF, C = 3.3nF, L = 220µH (I  
= 170mA, R = 5.5Ω), R  
= 390kΩ, DIM = V , C  
= 100pF,  
LAMP  
CS  
X
SAT  
S
SLEW  
DD  
SW  
C
EL  
= 1.2nF, T = +25°C, unless otherwise noted.)  
A
PEAK-TO-PEAK OUTPUT VOLTAGE  
vs. TEMPERATURE  
PEAK-TO-PEAK OUTPUT VOLTAGE  
vs. DIM VOLTAGE  
PEAK-TO-PEAK OUTPUT VOLTAGE  
vs. DIM DUTY CYCLE  
210  
205  
200  
195  
190  
185  
180  
300  
300  
V
DD  
= 4.5V  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
f
= 200kHz  
DIM  
f
= 1MHz  
DIM  
0
0
-40  
-15  
10  
35  
60  
85  
0.35  
0.54  
0.73  
0.92  
1.11  
1.30  
20  
40  
60  
80  
TEMPERATURE (°C)  
DIM VOLTAGE (V)  
DIM DUTY CYCLE (%)  
RMS OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE  
AVERAGE OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE  
AVERAGE OUTPUT VOLTAGE  
vs. TEMPERATURE  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
120  
100  
80  
60  
40  
20  
0
2.4  
3.0  
3.6  
4.2  
4.8  
5.4  
2.4  
3.0  
3.6  
4.2  
4.8  
5.4  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
EL SWITCHING FREQUENCY  
vs. SUPPLY VOLTAGE  
EL SWITCHING FREQUENCY  
vs. TEMPERATURE  
EL SWITCHING FREQUENCY vs.C  
EL  
190  
185  
180  
175  
170  
500  
400  
300  
200  
100  
0
190  
185  
180  
175  
170  
R
= 390kΩ  
SLEW  
2.4  
3.0  
3.6  
4.2  
4.8  
5.4  
0.5  
1.0  
1.5  
(nF)  
2.0  
2.5  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
C
TEMPERATURE (°C)  
EL  
_______________________________________________________________________________________  
5
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
Typical Operating Characteristics (continued)  
(V  
DD  
= +3.6V, C  
= 10nF, C = 3.3nF, L = 220µH (I  
= 170mA, R = 5.5Ω), R  
= 390kΩ, DIM = V , C  
= 100pF,  
LAMP  
CS  
X
SAT  
S
SLEW  
DD  
SW  
C
EL  
= 1.2nF, T = +25°C, unless otherwise noted.)  
A
BOOST CONVERTER FREQUENCY  
vs. SUPPLY VOLTAGE  
BOOST CONVERTER FREQUENCY  
vs. TEMPERATURE  
BOOST CONVERTER FREQUENCY vs. C  
SW  
110  
160  
120  
80  
110  
105  
100  
95  
R
SLEW  
= 390kΩ  
105  
100  
95  
MAX490E  
40  
90  
0
90  
-40  
-15  
-10  
35  
60  
85  
80  
115  
150  
(pF)  
185  
220  
2.4  
3.0  
3.6  
4.2  
4.8  
5.4  
TEMPERATURE (°C)  
C
SUPPLY VOLTAGE (V)  
SW  
OUTPUT VOLTAGE SLOPE  
vs. SUPPLY VOLTAGE  
OUTPUT VOLTAGE SLOPE  
vs. TEMPERATURE  
OUTPUT VOLTAGE SLOPE vs. R  
SLEW  
40  
35  
30  
25  
20  
32  
30  
28  
26  
24  
22  
32  
30  
28  
26  
24  
22  
15  
10  
5
0
300 400 500 600  
R
800 900 1000  
700  
2.4  
3.0  
3.6  
4.2  
4.8  
5.4  
-40  
-15  
10  
35  
80  
85  
(kΩ)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SLEW  
TYPICAL V , V , AND  
BRIGHTNESS AND TOTAL INPUT CURRENT  
A
B
V - V WAVEFORMS  
SLOW TURN-ON/-OFF TIME vs. C  
vs. SUPPLY VOLTAGE  
A
B
DIM  
MAX4990E toc24  
MAX4990E toc23  
25  
20  
15  
10  
5
30  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
= 390kΩ  
- - - - SUPPLY CURRENT  
DIM  
C
= 20nF  
LAMP  
26  
22  
18  
14  
10  
V
- V  
B
A
t
ON  
100V/div  
V
A
50V/div  
V
B
50V/div  
t
OFF  
0
1ms/div  
0
0.6  
1.2  
1.8  
(μF)  
2.4  
3.0  
3.6  
2.4  
3.0  
3.6  
4.2  
4.8  
5.4  
C
SUPPLY VOLTAGE (V)  
DIM  
6
_______________________________________________________________________________________  
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
MAX490E  
ꢁin Description  
PIN  
NAME  
FUNCTION  
High-Voltage Slew-Rate Control. Connect an external resistor, R  
the V and V high-voltage outputs.  
, to GND to set the slew rate of  
SLEW  
1
SLEW  
A
B
Enable Input. Drive EN > +1.2V and DIM > +0.35V to turn on the device. Drive EN < +0.2V and DIM <  
+0.15V to turn off the device.  
2
3
EN  
EL Panel Dimming Control. Apply a PWM signal or DC analog control signal, or connect a resistor to  
GND to adjust peak-to-peak output voltage. Use DIM together with EN to control device shutdown  
(see Shutdown section).  
DIM  
EL Voltage Switching Frequency. Connect an external capacitor, C , to GND or drive with an external  
EL  
oscillator to set the switching frequency of the V and V high-voltage outputs. Connect EL to GND to  
4
5
EL  
A
B
shut off the EL oscillator. Drive EL high to keep alternatively V or V output high.  
A
B
Boost-Converter Switching Frequency. Connect an external capacitor, C , to GND or drive with an  
SW  
external oscillator to set the switching frequency of the boost converter. Connect SW to GND to shut  
off the boost oscillator. Do not keep SW high to avoid LX shorting to GND, which causes the internal  
die temperature to increase. The MAX4990E is protected by entering a themal-shutdown state. (See  
the Thermal Short-Circuit Protection section.)  
SW  
6
7
V
Power-Supply Voltage  
Ground  
DD  
GND  
Internal Switching DMOS Drain Connection. Connect LX to a switching inductor and an anode of a  
rectifying diode.  
8
LX  
9, 11, 13  
N.C.  
CS  
No Connection. Leave N.C. unconnected.  
10  
12  
14  
EP  
High-Voltage Supply. Connect CS to output capacitor of boost converter.  
V
V
High-Voltage EL Panel Output. Connect to non-V side of EL lamp.  
A
B
A
High-Voltage EL Panel Output. Connect to non-V side of EL lamp.  
B
EP  
Exposed Pad. Connect exposed pad to GND.  
The MAX4990E uses a high-voltage full-bridge output  
Detailed Description  
stage to convert the high voltage generated by the  
boost converter to an AC waveform suitable for driving  
the EL panel. The EL output switching frequency is set  
with the combination of an external capacitor connect-  
ed from EL to GND and an external resistor connected  
from SLEW to GND. The MAX4990E allows programma-  
bility of the EL Lamp output frequency by applying a  
clock signal to the EL input. Applying a clock signal to  
the EL input allows the switching frequency of the lamp  
to take the frequency of the clock signal divided by 4 to  
switch at the EL input frequency divided by 4.  
The MAX4990E high-voltage DC-AC converter is ideal  
for driving EL lamps. The MAX4990E features a wide  
+2.4V to +5.5V input range that allows the device to  
accept a wide variety of voltage sources such as sin-  
gle cell Li+ batteries and higher voltage battery charg-  
ers. The lamp outputs of the device generate up to  
250V peak-to-peak output voltage for maximum lamp  
brightness.  
The MAX4990E utilizes an inductor-based boost con-  
verter that allows for the use of a 220µH inductor to gen-  
erate the high voltage necessary to drive an EL lamp.  
The boost converter switching frequency is set with the  
combination of an external capacitor connected from  
the SW input to GND and an external resistor connect-  
ed from SLEW to GND. Applying a PWM signal to the  
SW input allows the switching frequency of the boost  
converter to take the frequency of the PWM signal.  
The MAX4990E uses a proprietary acoustic noise-  
reduction circuit to control the slew rate of the AC volt-  
age, reducing audible noise from the EL panel. The  
slew rate is set with an external resistor connected from  
SLEW to GND.  
The MAX4990E enters a low-power shutdown mode  
(100nA max) when EN and DIM inputs are connected  
_______________________________________________________________________________________  
7
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
Functional Diagram  
V
DD  
LX  
SWITCH  
SW  
N
OSCILLATOR  
TIMEOUT  
+
-
CS  
EL  
EL  
MAX490E  
REF  
OSCILLATOR  
HIGH ESD  
PROTECTION  
V
V-I  
SENSE  
V
V
SLEW  
EN  
A
CONVERTER  
-
+
H-BRIDGE  
LOW-POWER  
SHUTDOWN  
HIGH ESD  
PROTECTION  
B
DMOS  
DRIVER  
PWM  
CONVERTER  
DIM  
LOW PEAK  
DETECTOR  
SHUTDOWN  
THERMAL  
SHUTDOWN  
NO-OPERATION  
SIGNAL  
GND  
MAX4990E  
UVLO  
TIMEOUT LOW-POWER  
SHUTDOWN  
to GND. The MAX4990E also enters thermal shutdown  
if the die temperature rises above +158°C.  
The device uses resistor R  
to set the bias current  
SLEW  
used as a reference current for the MAX4990E internal  
circuitry. The reference current directly affects the slew  
rate of the EL lamp output. Increasing the value of  
The MAX4990E features an EL lamp dimming control  
(DIM) that allows the user to set the EL output voltage  
with a PWM, DC analog voltage, or a resistor connect-  
ed to GND. A capacitor placed in parallel to the resistor  
on the DIM input allows the user to program a slow  
turn-on/-off time of the MAX4990E’s outputs to generate  
a soft fade-on/fade-off effect of the EL lamp.  
R
decreases the slew rate, and decreasing the  
SLEW  
SLEW  
value of R  
increases the slew rate. (See the R  
SLEW  
Resistor Selection section on how to select R  
.)  
SLEW  
The MAX4990E EL lamp output frequency uses an  
internal EL oscillator to set the desired frequency. The  
output frequency is adjusted by either 1) the combina-  
tion of a resistor from SLEW to GND and an external  
capacitor from the EL input to GND, or 2) by driving a  
clock signal directly into the EL input. (See the C  
Capacitor Selection section for choosing the C  
capacitor value.)  
The high-voltage outputs are ESD protected up to  
15kV Human Body Model, 15kV Air-Gap Discharge,  
and 4kV Contact Discharge, as specified in the IEC  
61000-4-2 specification.  
EL  
EL  
EL Output Voltage  
The slew rate, frequency, and peak-to-peak voltage of the  
MAX4990E EL lamp outputs are programmed through a  
combination of external components and/or DC inputs.  
The peak-to-peak voltage of the EL lamp output is var-  
ied from 70V to 250V by applying an external DC  
P-P  
P-P  
voltage ranging from +0.35V to +1.3V to the DIM input.  
8
_______________________________________________________________________________________  
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
MAX490E  
Increasing the voltage on the DIM input increases the  
nected from the DIM input to GND, a PWM signal  
applied to the DIM input, or a DC voltage applied to the  
peak-to-peak voltage, and decreasing the voltage on  
the input decreases the peak-to-peak voltage. The EL  
lamp peak-to-peak voltage is also adjusted by applying  
a PWM signal to the DIM input. The duty cycle of the  
PWM determines the EL lamp output peak-to-peak volt-  
age. As the duty cycle is increased, the peak-to-peak  
output voltage is increased, and as the duty cycle is  
decreased, the peak-to-peak voltage is decreased. The  
MAX4990E also features a slow turn-on and slow turn-off  
time feature that is enabled by connecting a resistor and  
capacitor from DIM to GND (see the Typical Application  
DIM input. (See the R  
Selection section.)  
Resistor and C  
Capacitor  
DIM  
DIM  
The duty cycle of a PWM signal to the DIM input is  
internally translated into a DC voltage with the 0 to  
+1.22V range. The DIM input accepts the frequency  
range of 200kHz to 1MHz. As the duty cycle increases,  
the peak-to-peak voltage of the output increases, and  
as the duty cycle decreases, the peak-to-peak voltage  
of the output decreases.  
The peak-to-peak voltage is adjusted by applying a DC  
voltage to the DIM input. Increasing the voltage on DIM  
increases the peak-to-peak output, and decreasing the  
voltage on DIM decreases the peak-to-peak output  
voltage.  
Circuits and the R  
Resistor and C  
Capacitor  
DIM  
DIM  
Selection section). This slow turn-on/-off feature causes  
the peak-to-peak voltage of the EL outputs to slowly rise  
from zero to the maximum set value when the device is  
enabled. This feature also causes the peak-to-peak volt-  
age of the EL outputs to fall from the maximum set value  
to zero when the device is placed into shutdown. The  
slow rise and fall of the peak-to-peak EL output voltage  
creates a soft fade-on and fade-off of the EL lamp,  
rather than an abrupt change in brightness.  
The DIM input, in combination with the EN input, con-  
trols the shutdown mode of the MAX4990E shutdown.  
(See the Shutdown section.)  
ꢀlow Turn-On, ꢀlow Turn-Off  
The MAX4990E provides a slow turn-on/-off feature by  
connecting a resistor in parallel with a capacitor con-  
Boost Converter  
The MAX4990E boost converter consists of an external  
nected from the DIM input to GND (see the R  
DIM  
inductor from V  
to the LX input, an internal DMOS  
Resistor and C  
Capacitor Selection section). When  
DD  
DIM  
switch, an external diode from LX to the CS output, an  
external capacitor from the CS output to GND, and the  
EN is driven high, the reference current I (set by  
B
R
) is used to charge capacitor C  
. When EN is  
DIM  
SLEW  
EL lamp, C  
, connected to the EL lamp outputs.  
driven to GND, I is removed, and the voltage on the  
LAMP  
B
When the DMOS switch is turned on, LX is connected  
to GND, and the inductor is charged. When the DMOS  
switch is turned off, the energy stored in the inductor is  
capacitor C  
stant of R  
and resistor decays with a time con-  
DIM  
x C  
. A slow turn-on effect is seen by  
DIM  
DIM  
driving EN high. The slow rise and fall of the voltage on  
DIM during transitions on the EN input modulates the  
peak-to-peak voltage of the EL outputs, creating a soft  
fade-on/-off effect at the EL lamp.  
transferred to the capacitor C and the EL lamp.  
CS  
Note: Keeping SW high shorts LX to GND, causing the  
internal die temperature to increase. The MAX4990E is  
protected by entering a thermal-shutdown state (See  
the Thermal Short-Circuit Protection section.)  
ꢀhutdown  
The MAX4990E features an enable logic input, EN, to  
enable and disable the device. To enable the device,  
apply +1.2V or greater to the EN input and +0.35V or  
greater to the DIM input. To place the device in shut-  
down, apply +0.2V or less to the EN input, and +0.15V  
or less to the DIM input.  
The MAX4990E boost converter frequency uses an  
internal switch oscillator to set the desired frequency of  
the boost converter. The boost converter frequency is  
adjusted by either 1) the combination of a resistor from  
SLEW to GND and an external capacitor from SW to  
GND, or 2) by driving a PWM signal directly into the SW  
input. When SW is driven with an external PWM signal  
at a suggested 90% duty cycle, the boost converter fre-  
quency is changed to the frequency of the external  
Undervoltage Loc5out (UVL0)  
The MAX4990E has a UVLO threshold of +2.1V (typ).  
When V  
falls below +2.1V (typ), the device enters a  
DD  
nonoperative mode.  
PWM signal. (See the C  
Capacitor Selection section  
SW  
for choosing the C  
capacitor value.)  
SW  
Thermal ꢀhort-Circuit ꢁrotection  
The MAX4990E enters a nonoperative mode if the inter-  
nal die temperature of the device reaches or exceeds  
+158°C (typ). The device turns back on when the inter-  
nal die temperature cools to +150°C.  
Dimming Control  
The MAX4990E features a dimming control input, DIM,  
that controls the peak-to-peak voltage on the lamp out-  
puts V and V . DIM is controlled by a resistor con-  
A
B
_______________________________________________________________________________________  
9
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
±±15V EꢀD ꢁrotection  
Machine Model  
As with all Maxim devices, ESD-protection structures  
are incorporated on all pins to protect against electro-  
static discharges encountered during handling and  
assembly. The EL lamp driver outputs of the MAX4990E  
have extra protection against static electricity. Maxim’s  
engineers have developed state-of-the-art structures to  
protect these pins against ESD of 15kV without dam-  
age. The ESD structures withstand high ESD in all  
states: normal operation, shutdown, and powered  
down. After an ESD event, the MAX4990E keep working  
without latchup or damage.  
The machine model for ESD tests all pins using a 200pF  
storage capacitor and zero discharge resistance.  
The objective is to emulate the stress caused when I/O  
pins are contacted by handling equipment during test  
and assembly. Of course, all pins require this protection.  
The Air-Gap test involves approaching the device with a  
charged probe. The Contact Discharge method connects  
the probe to the device before the probe is energized.  
MAX490E  
Design ꢁrocedure  
L
Inductor ꢀelection  
X
ESD protection can be tested in various ways. The  
transmitter EL lamp outputs of the MAX4990E are char-  
acterized for protection to the following limits:  
The recommended inductor values are 220µH/330µH.  
For most applications, series resistance (DCR) should  
be below 8Ω for reasonable efficiency. Do not exceed  
the inductor’s saturation current.  
15kV using the Human Body Model  
4kV IEC 61000-4-2 Contact Discharge  
15kV IEC 61000-4-2 Air-Gap Discharge  
R
Resistor ꢀelection  
ꢀLEW  
To help reduce audible noise emission by the EL lamp,  
the MAX4990E features a slew-rate control input  
(SLEW) that allows the user to set the slew-rate of the  
ESD Test Conditions  
ESD performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents  
test setup, test methodology, and test results.  
high-voltage outputs, V and V by connecting a  
A
B,  
resistor, R  
, from the SLEW input to GND. R  
SLEW  
SLEW  
precisely sets the reference current I that is used to  
B
Human Body Model  
Figure 1a shows the Human Body Model, and Figure  
1b shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of  
a 100pF capacitor charged to the ESD voltage of inter-  
est, which is then discharged into the test device  
through a 1.5kΩ resistor.  
charge and discharge the capacitances at the SW  
input and EL input, and is used as a reference current  
for internal circuitry. The reference current is related to  
R
by the following equation: I = 1V/R  
.
SLEW  
SLEW  
B
Decreasing the value of R  
increases I and  
SLEW  
B
increases the slew rate at the EL lamp output. Increasing  
the value of R decreases I and decreases the  
SLEW  
B
slew rate at the EL lamp output. The output slew rate is  
related to R by the following equation:  
IEC 6±000-4-2  
The IEC 61000-4-2 standard covers ESD testing and  
performance of finished equipment. However, it does  
not specifically refer to integrated circuits. The  
MAX4990E assists in designing equipment to meet IEC  
61000-4-2 without the need for additional ESD-protec-  
tion components.  
SLEW  
V
11.25  
R MΩ  
SLEW  
SlewRate  
=
100μs  
(
)
The ideal value for a given design varies depending on  
lamp size and mechanical enclosure. Typically, the best  
slew rate for minimizing audible noise is between  
The major difference between tests done using the  
Human Body Model and IEC 61000-4-2 is higher peak  
current in IEC 61000-4-2 because series resistance is  
lower in the IEC 61000-4-2 model. Hence, the ESD  
withstand voltage measured to IEC 61000-4-2 is gener-  
ally lower than that measured using the Human Body  
Model. Figure 1c shows the IEC 61000-4-2 model, and  
Figure 1d shows the current waveform for IEC 61000-4-  
2 ESD Contact Discharge test.  
10V/100µs and 20V/100µs. This results in R  
values  
SLEW  
ranging from 1.125MΩ to 0.5625MΩ. For example, if the  
desired slew rate is 20 (V/100µs), this leads to an R  
SLEW  
resistor value in MΩ of R  
= 11.25/20V = 0.5625MΩ.  
SLEW  
Note: Connecting R  
to GND will not damage the  
SLEW  
device. However, for the device to operate correctly,  
R
SLEW  
should be in the 100kΩ to 2.2MΩ range.  
R
also affects the frequency of the boost converter  
SLEW  
(see the C  
Capacitor Selection), the frequency of the  
SW  
EL lamp (see the C Capacitor Selection section), and  
the peak-to-peak voltage of the EL lamp.  
EL  
10 ______________________________________________________________________________________  
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
MAX490E  
R
R
1MΩ  
R
D
330Ω  
R
C
C
D
50MΩ TO 100MΩ  
1500Ω  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
150pF  
STORAGE  
CAPACITOR  
C
s
100pF  
STORAGE  
CAPACITOR  
SOURCE  
SOURCE  
Figure 1c. IEC 61000-4-2 ESD Test Model  
Figure 1a. Human Body ESD Test Model  
I
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
100%  
90%  
I
P
r
AMPS  
36.8%  
10%  
0
10%  
TIME  
0
t
t = 0.7ns TO 1ns  
r
RL  
t
30ns  
t
DL  
60ns  
CURRENT WAVEFORM  
Figure 1b. Human Body Current Waveform  
Figure 1d. IEC 61000-4-2 ESD Generator Current Waveform  
Table 1. Inductor Vendors  
INDUCTOR kALUE (µH)  
kENDOR  
TOKO  
WEBSITE  
PART  
220  
330  
470  
220  
330  
470  
www.tokoam.com  
www.coilcraft.com  
www.coilcraft.com  
www.coilcraft.com  
www.coilcraft.com  
www.coilcraft.com  
D312C 1001BS-221M  
DO1608C-334ML  
DO1608C-474ML  
LPS4018-224ML  
LPS4018-334ML  
LPS4018-474ML  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
The peak-to-peak voltage is adjusted by connecting a  
resistor from the SLEW input to GND together with a  
resistor from the DIM input to GND. The equation relating  
the peak-to-peak voltage to the resistors is the following:  
R
Resistor and C  
DIM  
DIM  
Capacitor ꢀelection  
The MAX4990E provides a slow turn-on/-off feature by  
connecting a resistor in parallel with a capacitor con-  
nected from the DIM input to GND. The reference cur-  
rent I is used to charge the resistor and capacitor.  
When EN is driven to GND, I is removed, and the volt-  
age across the capacitor and resistor decay with a time  
constant of RC that provides a slow turn off of the EL  
B
R
DIM  
V
= 200 ×  
P-P  
B
R
SLEW  
______________________________________________________________________________________ 11  
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
lamp outputs. A slow turn-on effect is produced by dri-  
ving EN high. Slow turn-on/-off time is related by the fol-  
lowing equation:  
Connect the SW input to GND to turn the switch oscilla-  
tor of the boost converter off. Although the optimal f  
depends on the inductor value, the suggested f  
range is 20kHz to 150kHz.  
SW  
SW  
t
t
= 2.6 x R  
OFF  
x C  
DIM  
ON  
DIM DIM  
= 1.2 x R  
x C  
DIM  
Note: Driving SW with a logic-high causes LX to be dri-  
ven to GND. Keeping SW high shorts LX to GND, caus-  
ing the internal die temperature to increase. The  
MAX4990E is protected by entering a thermal-shutdown  
state. (See the Thermal Short-Circuit Protection section.)  
For this equation to be valid, R  
1.3.  
/R  
must be  
DIM SLEW  
C
Capacitor ꢀelection  
Cꢀ  
C
CS  
is the output of the boost converter and provides  
MAX490E  
C
Capacitor ꢀelection  
B
the high-voltage source for the EL lamp. Connect a  
3.3nF capacitor from CS to GND and place as close to  
the CS input as possible. When using an inductor value  
larger than 220µH, it may be necessary to increase the  
Bypass V  
with a 0.1µF ceramic capacitor as close to  
DD  
the IC as possible and a 4.7µF ceramic capacitor as  
close to the inductor as possible  
C
. For a LX = 470µH and C  
= 20nF, a C  
LAMP CS  
CS  
Diode ꢀelection  
Connect a diode, D , from the LX node to CS to rectify  
1
ranging from 3.3nF to 6.8nF is recommended.  
the boost voltage on CS. The diode should be a fast-  
recovery diode that is tolerant to +150V.  
C
Capacitor ꢀelection  
EL  
The MAX4990E EL lamp output frequency is set by  
connecting a capacitor from the EL input to GND  
together with a resistor from SLEW to GND or by driving  
the EL input with an external clock (0 to +1.5V). The EL  
EL Lamp ꢀelection  
EL lamps have a capacitance of approximately 2.5nF to  
3.5nF per square inch. The MAX4990E effectively  
charges capacitance ranging from 2nF to 20nF.  
lamp output frequency is related to the C capacitor  
EL  
by the following equation:  
Applications Information  
0.0817  
ꢁCB Layout  
Keep PCB traces as short as possible. Ensure that  
bypass capacitors are as close to the device as possi-  
ble. Use large ground planes where possible.  
f
=
EL  
R
×C  
EL  
SLEW  
For example, an R  
= 375kΩ and a C capacitor  
EL  
value of 1000pF equals an EL lamp output frequency of  
= 217Hz.  
SLEW  
F
EL  
Chip Information  
C
Capacitor ꢀelection  
ꢀW  
The boost converter switching frequency is set by con-  
necting a capacitor from the SW input to GND, together  
with the resistance from the SLEW input to GND, or driving  
the SW input with an external clock (0 to +1.5V). The  
switching frequency of the boost converter is related to the  
capacitor from SW to GND by the following equation:  
PROCESS: BiCMOS-DMOS  
3.61  
f
=
SW  
R
×C  
SW  
SLEW  
12 ______________________________________________________________________________________  
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
MAX490E  
Typical Application Circuits  
R
SLEW  
1
14  
SLEW  
EN  
V
A
2
3
4
5
6
7
13  
12  
11  
10  
9
EL LAMP  
= 10nF  
DIGITAL OUTPUT  
N.C.  
C
LAMP  
DIM  
EL  
V
B
PWM OR V  
BIAS  
C
C
EL  
MAX4990E  
N.C.  
CS  
μC  
OR ASIC  
SW  
SW  
C
CS  
= 3.3nF  
V
DD  
N.C.  
LX  
D
1
8
C
= 0.1μF  
B
GND  
V
DD  
L
X
= 220μH  
4.7μF  
R
SLEW  
1
2
3
14  
SLEW  
EN  
V
A
13  
12  
11  
10  
9
EL LAMP  
= 10nF  
DIGITAL OUTPUT  
N.C.  
C
C
LAMP  
DIM  
V
B
DIM  
MAX4990E  
N.C.  
CS  
μC  
OR ASIC  
R
DIM  
C
EL  
4
5
6
EL  
C
SW  
SW  
C
CS  
= 3.3nF  
N.C.  
LX  
D
1
V
DD  
7
8
C
B
= 0.1μF  
GND  
V
DD  
L
X
= 220μH  
4.7μF  
______________________________________________________________________________________ 13  
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
ꢁac5age Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
MAX490E  
14 ______________________________________________________________________________________  
High-Voltage, ±±15V EꢀD-ꢁrotected  
Electroluminescent Lamp Driver  
MAX490E  
ꢁac5age Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE VARIATIONS  
COMMON DIMENSIONS  
SYMBOL  
A
MIN.  
0.70  
MAX.  
0.80  
PKG. CODE  
T633-2  
N
6
D2  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEED-3  
MO229 / WEED-3  
- - - -  
b
[(N/2)-1] x e  
1.90 REF  
1.95 REF  
1.95 REF  
1.50±0.10  
1.50±0.10  
1.50±0.10  
1.50±0.10  
1.50±0.10  
1.70±0.10  
1.70±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
0.95 BSC  
0.65 BSC  
0.65 BSC  
0.50 BSC  
0.50 BSC  
0.40 BSC  
0.40 BSC  
0.40±0.05  
0.30±0.05  
0.30±0.05  
0.25±0.05  
0.25±0.05  
0.20±0.05  
0.20±0.05  
T833-2  
8
D
E
2.90  
2.90  
3.10  
3.10  
T833-3  
8
A1  
0.00  
0.20  
0.05  
0.40  
T1033-1  
T1033-2  
T1433-1  
T1433-2  
10  
10  
14  
14  
2.00 REF  
2.00 REF  
2.40 REF  
2.40 REF  
L
k
0.25 MIN.  
0.20 REF.  
- - - -  
A2  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated ꢁroducts, ±20 ꢀan Gabriel Drive, ꢀunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
SPRINGER  

相关型号:

MAX4991

Low RON, Dual-SPDT/Single-DPDT Analog Switches with Slow Turn-On Time
MAXIM

MAX4991EVB+

Low RON, Dual-SPDT/Single-DPDT Analog Switches with Slow Turn-On Time
MAXIM

MAX4992

Low RON, Dual-SPDT/Single-DPDT Analog Switches with Slow Turn-On Time
MAXIM

MAX49921

0 to 70V, High-Precision Current-Sense Amplifier
MAXIM

MAX49921EVKIT

Precision Real-Time Current Monitoring
MAXIM

MAX49921FATA/VY+

0 to 70V, High-Precision Current-Sense Amplifier
MAXIM

MAX49921FATA/VY+T

0 to 70V, High-Precision Current-Sense Amplifier
MAXIM

MAX49921TATA/VY+

0 to 70V, High-Precision Current-Sense Amplifier
MAXIM

MAX49921TATA/VY+T

0 to 70V, High-Precision Current-Sense Amplifier
MAXIM
MAXIM

MAX4992EVB+

Low RON, Dual-SPDT/Single-DPDT Analog Switches with Slow Turn-On Time
MAXIM

MAX4992EVB+T

Multiplexers/Switches, 2 Func, BICMOS, PQCC10,
MAXIM