ADM485JN [ROCHESTER]

LINE TRANSCEIVER, PDIP8, MO-095AA, PLASTIC, DIP-8;
ADM485JN
型号: ADM485JN
厂家: Rochester Electronics    Rochester Electronics
描述:

LINE TRANSCEIVER, PDIP8, MO-095AA, PLASTIC, DIP-8

驱动 信息通信管理 光电二极管 接口集成电路 驱动器
文件: 总13页 (文件大小:941K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 V Low Power  
a
EIA RS-485 Transceiver  
ADM485  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Meets EIA RS-485 Standard  
5 Mbps Data Rate  
Single 5 V Supply  
ADM485  
–7 V to +12 V Bus Common-Mode Range  
High Speed, Low Power BiCMOS  
Thermal Shutdown Protection  
Short-Circuit Protection  
Driver Propagation Delay: 10 ns  
Receiver Propagation Delay: 15 ns  
High Z Outputs with Power Off  
Superior Upgrade for LTC485  
V
RO  
R
CC  
B
RE  
DE  
DI  
A
D
GND  
APPLICATIONS  
Low Power RS-485 Systems  
DTE-DCE Interface  
Packet Switching  
Local Area Networks  
Data Concentration  
Data Multiplexers  
Integrated Services Digital Network (ISDN)  
GENERAL DESCRIPTION  
This minimizes the loading effect when the transceiver is not being  
used. The high impedance driver output is maintained over the  
entire common-mode voltage range from –7 V to +12 V.  
The ADM485 is a differential line transceiver suitable for high  
speed bidirectional data communication on multipoint bus trans-  
mission lines. It is designed for balanced data transmission and  
complies with EIA Standards RS-485 and RS-422. The part  
contains a differential line driver and a differential line receiver.  
Both the driver and the receiver may be enabled independently.  
When disabled, the outputs are three-stated.  
The receiver contains a fail-safe feature that results in a logic  
high output state if the inputs are unconnected (floating).  
The ADM485 is fabricated on BiCMOS, an advanced mixed  
technology process combining low power CMOS with fast switching  
bipolar technology. All inputs and outputs contain protection  
against ESD; all driver outputs feature high source and sink current  
capability. An epitaxial layer is used to guard against latch-up.  
The ADM485 operates from a single 5 V power supply. Excessive  
power dissipation caused by bus contention or by output shorting  
is prevented by a thermal shutdown circuit. This feature forces  
the driver output into a high impedance state if during fault condi-  
tions a significant temperature increase is detected in the internal  
driver circuitry.  
The ADM485 features extremely fast switching speeds. Minimal  
driver propagation delays permit transmission at data rates up to  
5 Mbps while low skew minimizes EMI interference.  
The part is fully specified over the commercial and industrial  
temperature range and is available in PDIP, SOIC, and small  
footprint MSOP packages.  
Up to 32 transceivers may be connected simultaneously on a bus,  
but only one driver should be enabled at any time. It is important,  
therefore, that the remaining disabled drivers do not load the bus.  
To ensure this, the ADM485 driver features high output imped-  
ance when disabled and when powered down.  
REV. E  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
ADM485–SPECIFICATIONS (VCC = 5 V ؎ 5%. All specifications TMIN to TMAX, unless otherwise noted.)  
Parameter  
Min Typ Max  
Unit  
Test Conditions/Comments  
DRIVER  
Differential Output Voltage, VOD  
5.0  
V
V
V
V
V
V
V
mA  
mA  
V
V
µA  
R = , Test Circuit 1  
2.0  
1.5  
1.5  
5.0  
5.0  
5.0  
0.2  
3
0.2  
250  
250  
0.8  
VCC = 5 V, R = 50 (RS-422), Test Circuit 1  
R = 27 (RS-485), Test Circuit 1  
VTST = –7 V to +12 V, Test Circuit 2  
R = 27 or 50 , Test Circuit 1  
R = 27 or 50 , Test Circuit 1  
R = 27 or 50 Ω  
VOD3  
|VOD| for Complementary Output States  
Common-Mode Output Voltage, VOC  
|VOD| for Complementary Output States  
Output Short-Circuit Current (VOUT = High)  
Output Short-Circuit Current (VOUT = Low)  
CMOS Input Logic Threshold Low, VINL  
CMOS Input Logic Threshold High, VINH  
Logic Input Current (DE, DI)  
35  
35  
–7 V  
–7 V  
VO  
VO  
+12 V  
+12 V  
2.0  
1.0  
RECEIVER  
Differential Input Threshold Voltage, VTH  
Input Voltage Hysteresis, VTH  
Input Resistance  
–0.2  
12  
+0.2  
V
–7 V  
VCM = 0 V  
VCM  
+12 V  
+12 V  
70  
mV  
kΩ  
mA  
mA  
V
V
µA  
V
–7 V  
IN = 12 V  
VIN = –7 V  
VCM  
Input Current (A, B)  
1
–0.8  
0.8  
V
CMOS Input Logic Threshold Low, VINL  
CMOS Input Logic Threshold High, VINH  
Logic Enable Input Current (RE)  
CMOS Output Voltage Low, VOL  
CMOS Output Voltage High, VOH  
Short-Circuit Output Current  
2.0  
1
0.4  
IOUT = +4.0 mA  
IOUT = –4.0 mA  
VOUT = GND or VCC  
4.0  
7
V
mA  
µA  
85  
1.0  
Three-State Output Leakage Current  
0.4 V VOUT 2.4 V  
POWER SUPPLY CURRENT  
ICC (Outputs Enabled)  
ICC (Outputs Disabled)  
1.0  
0.6  
2.2  
1
mA  
mA  
Digital Inputs = GND or VCC  
Digital Inputs = GND or VCC  
Specifications subject to change without notice.  
(VCC = 5 V ؎ 5%. All specifications TMIN to TMAX, unless otherwise noted.)  
TIMING SPECIFICATIONS  
Parameter  
Min  
Typ  
Max Unit  
Test Conditions/Comments  
DRIVER  
Propagation Delay Input to Output tPLH, tPHL  
Driver O/P to O/P, tSKEW  
Driver Rise/Fall Time, tR, tF  
Driver Enable to Output Valid  
Driver Disable Timing  
2
10  
1
8
10  
10  
0
15  
5
15  
25  
25  
2
ns  
ns  
ns  
ns  
ns  
ns  
RLDIFF = 54 , CL1 = CL2 = 100 pF, Test Circuit 3  
RLDIFF = 54 , CL1 = CL2 = 100 pF, Test Circuit 3  
RLDIFF = 54 , CL1 = CL2 = 100 pF, Test Circuit 3  
RL = 110 , CL = 50 pF, Test Circuit 4  
RL = 110 , CL = 50 pF, Test Circuit 4  
Matched Enable Switching  
RL = 110 , CL = 50 pF, Test Circuit 4*  
|tAZH – tBZL|, |tBZH – tAZL  
Matched Disable Switching  
|tAHZ – tBLZ|, |tBHZ – tALZ  
|
|
0
2
ns  
RL = 110 , CL = 50 pF, Test Circuit 4*  
RECEIVER  
Propagation Delay Input to Output, tPLH, tPHL  
Skew |tPLH – tPHL  
Receiver Enable, tEN1  
Receiver Disable, tEN2  
Tx Pulse Width Distortion  
Rx Pulse Width Distortion  
8
15  
30  
5
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 15 pF, Test Circuit 5  
CL = 15 pF, Test Circuit 5  
CL = 15 pF, RL = 1 k, Test Circuit 6  
CL = 15 pF, RL = 1 k, Test Circuit 6  
|
5
5
1
1
*Guaranteed by characterization.  
Specifications subject to change without notice.  
–2–  
REV. E  
ADM485  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C, unless otherwise noted.)  
Table I. Transmitting  
Inputs Outputs  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Inputs  
DE  
DI  
B
A
Driver Input (DI) . . . . . . . . . . . . . . . . –0.3 V to VCC + 0.3 V  
Control Inputs (DE, RE) . . . . . . . . . . –0.3 V to VCC + 0.3 V  
Receiver Inputs (A, B) . . . . . . . . . . . . . . . . . . –9 V to +14 V  
Outputs  
1
1
0
1
0
X
0
1
Z
1
0
Z
Driver Outputs (A, B) . . . . . . . . . . . . . . . . . . –9 V to +14 V  
Receiver Output . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Power Dissipation 8-Lead MSOP . . . . . . . . . . . . . . . . 900 mW  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . 206°C/W  
Power Dissipation 8-Lead PDIP . . . . . . . . . . . . . . . . . 500 mW  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . 130°C/W  
Power Dissipation 8-Lead SOIC . . . . . . . . . . . . . . . . . 450 mW  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . 170°C/W  
Operating Temperature Range  
Commercial (J Version) . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
Industrial (A Version) . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range. . . . . . . . . . . . 65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . . 300°C  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
Table II. Receiving  
Inputs Output  
RE A–B  
RO  
0
0
0
1
+0.2 V  
–0.2 V  
1
0
1
Z
Inputs Open  
X
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods of time may affect device reliability.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Option  
Branding  
ADM485AN  
ADM485AR  
ADM485AR-REEL  
ADM485ARZ*  
ADM485ARZ-REEL*  
ADM485ARM  
ADM485ARM-REEL  
ADM485ARM-REEL7  
ADM485JN  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
0°C to 70°C  
N-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
M41  
M41  
M41  
ADM485JR  
0°C to 70°C  
ADM485JR-REEL  
ADM485JR-REEL7  
ADM485JRZ*  
ADM485JRZ-REEL*  
ADM485JRZ-REEL7*  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
R-8  
*Z = Lead Free.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADM485 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
–3–  
REV. E  
ADM485  
PIN CONFIGURATION  
1
2
3
4
8
7
6
5
V
RO  
RE  
DE  
DI  
CC  
ADM485  
B
TOP VIEW  
A
(Not to Scale)  
GND  
PIN FUNCTION DESCRIPTIONS  
Pin No. Mnemonic Function  
1
2
3
4
RO  
RE  
DE  
DI  
Receiver Output. When enabled, if A > B by 200 mV, then RO = High. If A < B by 200 mV, then  
RO = Low.  
Receiver Output Enable. A low level enables the receiver output, RO. A high level places it in a high  
impedance state.  
Driver Output Enable. A high level enables the driver differential outputs, A and B. A low level places it in a  
high impedance state.  
Driver Input. When the driver is enabled, a Logic Low on DI forces A low and B high while a Logic High  
on DI forces A high and B low.  
5
6
7
8
GND  
A
B
Ground Connection, 0 V.  
Noninverting Receiver Input A/Driver Output A.  
Inverting Receiver Input B/Driver Output B.  
Power Supply, 5 V 5%.  
VCC  
REV. E  
–4–  
ADM485  
Test Circuits  
V
CC  
A
B
R
R
R
L
S1  
S2  
0V OR 3V  
DE IN  
V
OD  
DE  
C
V
L
OUT  
V
OC  
Test Circuit 1. Driver Voltage Measurement  
Test Circuit 4. Driver Enable/Disable  
375  
A
V
OUT  
V
V
OD3  
60⍀  
375⍀  
TST  
RE  
B
C
L
Test Circuit 5. Receiver Propagation Delay  
Test Circuit 2. Driver Voltage Measurement  
V
+1.5V  
CC  
A
C
L1  
S1  
R
L
S2  
R
LDIFF  
–1.5V  
RE  
C
V
C
L
OUT  
L2  
B
RE IN  
Test Circuit 3. Driver Propagation Delay  
Test Circuit 6. Receiver Enable/Disable  
Switching Characteristics  
3V  
1.5V  
tPLH  
1.5V  
0V  
B
tPHL  
A, B  
0V  
0V  
1/2VO  
V
O
tPLH  
tPHL  
A
tSKEW = ͦtPLH tPHLͦ  
V
OH  
V
O
90% POINT  
90% POINT  
RO  
0V  
1.5V  
1.5V  
tSKEW = ͦtPLH tPHLͦ  
10% POINT  
10% POINT  
–V  
O
V
tR  
tF  
OL  
Figure 1. Driver Propagation Delay, Rise/Fall Timing  
Figure 3. Receiver Propagation Delay  
3V  
3V  
DE  
1.5V  
tLZ  
1.5V  
tZL  
1.5V  
tZL  
1.5V  
RE  
0V  
0V  
tLZ  
2.3V  
2.3V  
A, B  
A, B  
1.5V  
1.5V  
V
+ 0.5V  
OL  
R
R
V
+ 0.5V  
– 0.5V  
OL  
V
O/P LOW  
O/P HIGH  
OL  
V
OL  
tZH  
tHZ  
tZH  
tHZ  
V
OH  
V
– 0.5V  
OH  
V
OH  
V
OH  
0V  
0V  
Figure 2. Driver Enable/Disable Timing  
Figure 4. Receiver Enable/Disable Timing  
–5–  
REV. E  
ADM485–Typical Performance Characteristics  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
I = 8mA  
0
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
–50  
–25  
0
25  
50  
75  
100  
125  
OUTPUT VOLTAGE – V  
TEMPERATURE – ؇C  
TPC 1. Output Current vs. Receiver Output Low Voltage  
TPC 4. Receiver Output Low Voltage vs. Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
3.50  
3.75  
4.00  
4.25  
4.50  
4.75  
5.00  
OUTPUT VOLTAGE – V  
OUTPUT VOLTAGE – V  
TPC 5. Output Current vs. Driver Differential  
Output Voltage  
TPC 2. Output Current vs. Receiver Output High Voltage  
2.15  
4.55  
I = 8mA  
4.50  
2.10  
2.05  
2.00  
1.95  
1.90  
4.45  
4.40  
4.35  
4.30  
4.25  
4.20  
4.15  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 3. Receiver Output High Voltage vs. Temperature  
TPC 6. Driver Differential Output Voltage vs.  
Temperature, RL = 26.8 Ω  
–6–  
REV. E  
ADM485  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
| t  
– t  
|
PLH  
PHL  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
–50  
–25  
0
25  
50  
75  
100  
125  
125  
150  
OUTPUT VOLTAGE – V  
TEMPERATURE – ؇C  
TPC 10. Rx Skew vs. Temperature  
TPC 7. Output Current vs. Driver Output Low Voltage  
6
5
4
3
2
1
0
–10  
–20  
–30  
–40  
–50  
–60  
| t  
– t  
|
–70  
PHLA  
PHLB  
–80  
–90  
–100  
–110  
–120  
| t  
– t  
|
PLHB  
PLHA  
0
–50  
–25  
0
25  
50  
75  
100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TEMPERATURE – ؇C  
OUTPUT VOLTAGE – V  
TPC 11. Tx Skew vs. Temperature  
TPC 8. Output Current vs. Driver Output High Voltage  
1.4  
1.1  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
DRIVER ENABLED  
0.9  
0.8  
| t  
– t  
|
PLH  
PHL  
0.7  
DRIVER DISABLED  
0.6  
0.5  
–50  
–50  
–25  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 12. Tx Pulse Width Distortion  
TPC 9. Supply Current vs. Temperature  
–7–  
REV. E  
ADM485  
DI  
A
4
A
B
B
1, 2  
3
1, 2  
RO  
TPC 13. Unloaded Driver Differential Outputs  
TPC 16. Driver/Receiver Propagation Delays High to Low  
A
A
B
B
1, 2  
1, 2  
TPC 14. Loaded Driver Differential Outputs  
TPC 17. Driver Output at 30 Mbps  
DI  
4
A
B
1, 2  
3
RO  
TPC 15. Driver/Receiver Propagation Delays Low to High  
REV. E  
–8–  
ADM485  
APPLICATION INFORMATION  
Differential Data Transmission  
on the bus. Only one driver can transmit at a particular time, but  
multiple receivers may be enabled simultaneously.  
Differential data transmission is used to reliably transmit data at  
high rates over long distances and through noisy environments.  
Differential transmission nullifies the effects of ground shifts and  
noise signals that appear as common-mode voltages on the line.  
There are two main standards approved by the Electronics  
Industries Association (EIA) that specify the electrical charac-  
teristics of transceivers used in differential data transmission.  
As with any transmission line, it is important that reflections be  
minimized. This can be achieved by terminating the extreme ends  
of the line using resistors equal to the characteristic impedance  
of the line. Stub lengths of the main line should also be kept as  
short as possible. A properly terminated transmission line appears  
purely resistive to the driver.  
RT  
RT  
The RS-422 standard specifies data rates up to 10 MBaud and  
line lengths up to 4000 ft. A single driver can drive a transmission  
line with up to 10 receivers.  
D
D
In order to cater for true multipoint communications, the  
RS-485 standard was defined. This standard meets or exceeds  
all the requirements of RS-422 but also allows for up to 32  
drivers and 32 receivers to be connected to a single bus. An  
extended common-mode range of –7 V to +12 V is defined. The  
most significant difference between RS-422 and RS-485 is the  
fact that the drivers may be disabled, thereby allowing more  
than one (32 in fact) to be connected to a single line. Only one  
driver should be enabled at a time, but the RS-485 standard  
contains additional specifications to guarantee device safety in  
the event of line contention.  
R
R
R
R
D
D
Figure 5. Typical RS-485 Network  
Thermal Shutdown  
Table III. Comparison of RS-422 and RS-485 Interface Standards  
The ADM485 contains thermal shutdown circuitry that protects the  
part from excessive power dissipation during fault conditions.  
Shorting the driver outputs to a low impedance source can result  
in high driver currents. The thermal sensing circuitry detects the  
increase in die temperature and disables the driver outputs. The  
thermal sensing circuitry is designed to disable the driver outputs  
when a die temperature of 150°C is reached. As the device cools,  
the drivers are re-enabled at 140°C.  
Specification  
RS-422  
RS-485  
Transmission Type  
Maximum Cable Length  
Differential  
4000 ft.  
Differential  
4000 ft.  
Minimum Driver Output Voltage Ϯ2 V  
Ϯ1.5 V  
54 Ω  
12 kmin  
Ϯ200 mV  
Driver Load Impedance  
Receiver Input Resistance  
Receiver Input Sensitivity  
Receiver Input Voltage Range  
100 Ω  
4 kmin  
Ϯ200 mV  
Propagation Delay  
–7 V to +7 V –7 V to +12 V  
The ADM485 features very low propagation delay, ensuring  
maximum baud rate operation. The driver is well balanced, ensuring  
distortion free transmission.  
No. of Drivers/Receivers per Line 1/10  
32/32  
Cable and Data Rate  
Another important specification is a measure of the skew between  
the complementary outputs. Excessive skew impairs the noise  
immunity of the system and increases the amount of electro-  
magnetic interference (EMI).  
The transmission line of choice for RS-485 communications  
is a twisted pair. Twisted pair cable tends to cancel common-  
mode noise and causes cancellation of the magnetic fields gener-  
ated by the current flowing through each wire, thereby reducing  
the effective inductance of the pair.  
Receiver Open-Circuit Fail-Safe  
The receiver input includes a fail-safe feature that guarantees  
a Logic High on the receiver when the inputs are open circuit  
or floating.  
The ADM485 is designed for bidirectional data communications  
on multipoint transmission lines. A typical application showing  
a multipoint transmission network is illustrated in Figure 5.  
An RS-485 transmission line can have as many as 32 transceivers  
–9–  
REV. E  
ADM485  
OUTLINE DIMENSIONS  
8-Lead Standard Small Outline Package [SOIC]  
(R-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
؋
 45؇  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8؇  
0.51 (0.0201)  
0.31 (0.0122)  
0؇ 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
3.00  
BSC  
8
5
4
4.90  
BSC  
3.00  
BSC  
1
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.40  
8؇  
0؇  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
REV. E  
–10–  
ADM485  
OUTLINE DIMENSIONS  
8-Lead Plastic Dual In-Line Package [PDIP]  
(N-8)  
Dimensions shown in inches and (millimeters)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.015  
(0.38)  
MIN  
0.180  
(4.57)  
MAX  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
–11–  
REV. E  
ADM485  
Revision History  
Location  
Page  
10/03—Data Sheet changed from REV. D to REV. E.  
Changes to TIMING SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Updated ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7/03—Data Sheet changed from REV. C to REV. D.  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Update to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1/03—Data Sheet changed from REV. B to REV. C.  
Change to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Change to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
12/02—Data Sheet changed from REV. A to REV. B.  
Deleted Q-8 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits, additions to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits, additions to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Additions to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
TPCs updated and reformatted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Addition of 8-Lead MSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Update to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
–12–  
REV. E  

相关型号:

ADM485JNZ

5 V, Low Power, 5 Mbps, Half Duplex EIA RS-485 Transceiver
ADI

ADM485JNZ

LINE TRANSCEIVER, PDIP8, MO-095AA, PLASTIC, DIP-8
ROCHESTER

ADM485JNZ1

Meets EIA RS-485 standard
ADI

ADM485JR

+5 V Low Power EIA RS-485 Transceiver
ADI

ADM485JR-REEL

Meets EIA RS-485 standard
ADI

ADM485JR-REEL

LINE TRANSCEIVER, PDSO8, MS-012AA, SOIC-8
ROCHESTER

ADM485JR-REEL7

Meets EIA RS-485 standard
ADI

ADM485JR-REEL7

LINE TRANSCEIVER, PDSO8, MS-012AA, SOIC-8
ROCHESTER

ADM485JRZ

5 V, Low Power, 5 Mbps, Half Duplex EIA RS-485 Transceiver
ADI

ADM485JRZ-REEL

5 V, Low Power, 5 Mbps, Half Duplex EIA RS-485 Transceiver
ADI

ADM485JRZ-REEL1

Meets EIA RS-485 standard
ADI

ADM485JRZ-REEL7

暂无描述
ADI