ADM485JNZ [ADI]

5 V, Low Power, 5 Mbps, Half Duplex EIA RS-485 Transceiver;
ADM485JNZ
型号: ADM485JNZ
厂家: ADI    ADI
描述:

5 V, Low Power, 5 Mbps, Half Duplex EIA RS-485 Transceiver

文件: 总8页 (文件大小:135K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
+5 V Low Power  
EIA RS-485 Transceiver  
a
ADM485  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Meets EIA RS-485 Standard  
5 Mb/s Data Rate  
Single +5 V Supply  
ADM485  
–7 V to +12 V Bus Common-Mode Range  
High Speed, Low Power BiCMOS  
Thermal Shutdown Protection  
Short Circuit Protection  
RO  
RE  
DE  
DI  
1
2
3
4
R
8
7
6
5
V
B
A
CC  
Zero Skew Driver  
Driver Propagation Delay: 10 ns  
Receiver Propagation Delay: 25 ns  
High Z Outputs with Power Off  
Superior Upgrade for LTC485  
APPLICATIONS  
D
GND  
Low Power RS-485 Systems  
DTE-DCE Interface  
Packet Switching  
Local Area Networks  
Data Concentration  
Data Multiplexers  
Integrated Services Digital Network (ISDN)  
This minimizes the loading effect when the transceiver is not  
being utilized. The high impedance driver output is maintained  
over the entire common-mode voltage range from –7 V to +12 V.  
PRODUCT DESCRIPTION  
The ADM485 is a differential line transceiver suitable for high  
speed bidirectional data communication on multipoint bus  
transmission lines. It is designed for balanced data transmission  
and complies with both EIA Standards RS-485 and RS-422.  
The part contains a differential line driver and a differential line  
receiver. Both the driver and the receiver may be enabled inde-  
pendently. When disabled, the outputs are tristated.  
The receiver contains a fail safe feature which results in a logic  
high output state if the inputs are unconnected (floating).  
The ADM485 is fabricated on BiCMOS, an advanced mixed  
technology process combining low power CMOS with fast  
switching bipolar technology. All inputs and outputs contain  
protection against ESD; all driver outputs feature high source  
and sink current capability. An epitaxial layer is used to guard  
against latch-up.  
The ADM485 operates from a single +5 V power supply.  
Excessive power dissipation caused by bus contention or by out-  
put shorting is prevented by a thermal shutdown circuit. This  
feature forces the driver output into a high impedance state if  
during fault conditions a significant temperature increase is  
detected in the internal driver circuitry.  
The ADM485 features extremely fast switching speeds. Minimal  
driver propagation delays permit transmission at data rates up to  
5 Mbits/s while low skew minimizes EMI interference.  
Up to 32 transceivers may be connected simultaneously on a  
bus, but only one driver should be enabled at any time. It is im-  
portant, therefore, that the remaining disabled drivers do not  
load the bus. To ensure this, the ADM485 driver features high  
output impedance when disabled and also when powered down.  
The part is fully specified over the commercial and industrial  
temperature range and is available in an 8-lead DIL/SOIC package.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
(VCC = +5 V ؎ 5%. All specifications TMIN to TMAX unless otherwise noted)  
ADM485–SPECIFICATIONS  
Parameter  
Min  
Typ Max Units Test Conditions/Comments  
DRIVER  
Differential Output Voltage, VOD  
5.0  
5.0  
5.0  
5.0  
0.2  
3
0.2  
250  
250  
0.8  
V
V
V
V
V
V
V
mA  
mA  
V
R = , Figure 1  
2.0  
1.5  
1.5  
VCC = 5 V, R = 50 (RS-422), Figure 1  
R = 27 (RS-485), Figure 1  
VTST = –7 V to +12 V, Figure 2  
R = 27 or 50 , Figure 1  
R = 27 or 50 , Figure 1  
R = 27 or 50 Ω  
VOD3  
|VOD| for Complementary Output States  
Common-Mode Output Voltage VOC  
|VOC| for Complementary Output States  
Output Short Circuit Current (VOUT = High) 35  
Output Short Circuit Current (VOUT = Low) 35  
CMOS Input Logic Threshold Low, VINL  
–7 V VO +12 V  
–7 V VO +12 V  
CMOS Input Logic Threshold High, VINH  
Logic Input Current (DE, DI)  
2.0  
V
1.0 µA  
RECEIVER  
Differential Input Threshold Voltage, VTH  
Input Voltage Hysteresis, VTH  
Input Resistance  
–0.2  
12  
+0.2  
V
–7 V VCM +12 V  
VCM = 0 V  
–7 V VCM +12 V  
VIN = 12 V  
70  
mV  
kΩ  
mA  
mA  
µA  
V
Input Current (A, B)  
+1  
–0.8  
1
VIN = –7 V  
Logic Enable Input Current (RE)  
CMOS Output Voltage Low, VOL  
CMOS Output Voltage High, VOH  
Short Circuit Output Current  
0.4  
IOUT = +4.0 mA  
IOUT = –4.0 mA  
VOUT = GND or VCC  
4.0  
7
V
mA  
85  
Tristate Output Leakage Current  
1.0 µA  
0.4 V VOUT +2.4 V  
POWER SUPPLY CURRENT  
ICC (Outputs Enabled)  
ICC (Outputs Disabled)  
1.35 2.2  
0.7  
mA  
mA  
Outputs Unloaded, Digital Inputs = GND or VCC  
Outputs Unloaded, Digital Inputs = GND or VCC  
1
Specifications subject to change without notice.  
(V = +5 V ؎ 5%. All specifications TMIN to TMAX unless otherwise noted.)  
TIMING SPECIFICATIONS  
CC  
Parameter  
Min Typ Max Units Test Conditions/Comments  
DRIVER  
Propagation Delay Input to Output TPLH, TPHL  
Driver O/P to O/P TSKEW  
Driver Rise/Fall Time TR, TF  
Driver Enable to Output Valid  
Driver Disable Timing  
2
10  
0
2
10  
10  
15  
5
10  
25  
25  
ns  
ns  
ns  
ns  
ns  
RL Diff = 54 CL1 = CL2 = 100 pF, Figure 3  
RL Diff = 54 CL1 = CL2 = 100 pF, Figure 3  
RL Diff = 54 CL1 = CL2 = 100 pF, Figure 3  
RECEIVER  
Propagation Delay Input to Output TPLH, TPHL  
18  
25  
0
15  
15  
40  
5
25  
25  
ns  
ns  
ns  
ns  
CL = 15 pF, Figure 5  
Skew |TPLH–TPHL  
|
Receiver Enable TEN1  
Receiver Disable TEN2  
Figure 6  
Figure 6  
Specifications subject to change without notice.  
–2–  
REV. A  
ADM485  
ABSOLUTE MAXIMUM RATINGS*  
(TA = +25°C unless otherwise noted)  
PIN FUNCTION DESCRIPTION  
Pin Mnemonic Function  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7 V  
Inputs  
1
2
3
4
RO  
RE  
DE  
DI  
Receiver Output. When enabled if A > B by  
200 mV, then RO = High. If A < B by  
200 mV, then RO = Low.  
Driver Input (DI) . . . . . . . . . . . . . . . . –0.3 V to VCC + 0.3 V  
Control Inputs (DE, RE) . . . . . . . . . . –0.3 V to VCC + 0.3 V  
Receiver Inputs (A, B) . . . . . . . . . . . . . . . . . –14 V to +14 V  
Outputs  
Driver Outputs . . . . . . . . . . . . . . . . . . . . . . . –14 V to +14 V  
Receiver Output . . . . . . . . . . . . . . . . . –0.5 V to VCC +0.5 V  
Power Dissipation 8-Pin DIP . . . . . . . . . . . . . . . . . . . 500 mW  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . +130°C/W  
Power Dissipation 8-Pin SOIC . . . . . . . . . . . . . . . . . 450 mW  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . +170°C/W  
Power Dissipation 8-Pin Cerdip . . . . . . . . . . . . . . . . 500 mW  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . +125°C/W  
Operating Temperature Range  
Commercial (J Version) . . . . . . . . . . . . . . . . . 0°C to +70°C  
Industrial (A Version) . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . +300°C  
Vapour Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods may affect device reliability.  
Receiver Output Enable. A low level enables  
the receiver output, RO. A high level places it  
in a high impedance state.  
Driver Output Enable. A high level enables  
the driver differential outputs, A and B. A  
low level places it in a high impedance state.  
Driver Input. When the driver is enabled a  
logic Low on DI forces A low and B high  
while a logic High on DI forces A high and B  
low.  
5
6
GND  
A
Ground Connection, 0 V.  
Noninverting Receiver Input A/Driver  
Output A.  
7
8
B
Inverting Receiver Input B/Driver Output B.  
Power Supply, 5 V 5%.  
VCC  
PIN CONFIGURATION  
Table I. Transmitting  
1
2
3
4
8
7
6
5
V
CC  
RO  
RE  
DE  
DI  
B
A
ADM485  
TOP VIEW  
(Not to Scale)  
INPUTS  
DE  
OUTPUT  
RE  
DI  
B
A
GND  
X
X
X
1
1
0
1
0
X
0
1
Z
1
0
Z
ORDERING GUIDE  
Model  
Temperature Range  
Package Option  
Table II. Receiving  
ADM485JN  
ADM485JR  
ADM485AN  
ADM485AR  
ADM485AQ  
0°C to +70°C  
N-8  
SO-8  
N-8  
SO-8  
Q-8  
INPUTS  
OUTPUT  
RO  
0°C to +70°C  
RE  
DE  
A-B  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
0
0
0
1
0
0
0
0
+0.2 V  
–0.2 V  
Inputs Open  
X
1
0
1
Z
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADM485 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. A  
–3–  
ADM485  
Test Circuits  
V
CC  
R
A
B
R
R
L
S2  
S1  
0V OR 3V  
DE IN  
V
OD  
DE  
V
C
OUT  
L
V
OC  
Figure 1. Driver Voltage Measurement Test Circuit  
Figure 4. Driver Enable/Disable Test Circuit  
A
375  
V
V
V
TST  
60Ω  
375Ω  
OUT  
OD3  
B
RE  
C
L
Figure 2. Driver Voltage Measurement Test Circuit 2  
Figure 5. Receiver Propagation Delay Test Circuit  
+1.5V  
V
CC  
A
S1  
C
L1  
R
L
R
S2  
LDIFF  
–1.5V  
RE IN  
RE  
C
C
V
OUT  
L2  
L
B
Figure 3. Driver Propagation Delay Test Circuit  
Figure 6. Receiver Enable/Disable Test Circuit  
Switching Characteristics  
3V  
1.5V  
PLH  
1.5V  
0V  
0V  
T
AB  
0V  
B
T
PHL  
1/2VO  
T
T
PHL  
PLH  
VO  
V
V
OH  
A
T
T
SKEW  
SKEW  
90% POINT  
RO  
1.5V  
1.5V  
VO  
0V  
90% POINT  
OL  
10% POINT  
10% POINT  
VO  
T
T
F
R
Figure 9. Receiver Propagation Delay  
Figure 7. Driver Propagation Delay, Rise/Fall Timing  
3V  
3V  
1.5V  
1.5V  
RE  
1.5V  
1.5V  
DE  
A, B  
A, B  
0V  
0V  
T
T
LZ  
ZL  
T
T
ZL  
LZ  
R
R
1.5V  
1.5V  
2.3V  
2.3V  
V
+ 0.5V  
O/P LOW  
O/P HIGH  
OL  
V
+ 0.5V  
OL  
V
OL  
V
OL  
T
T
HZ  
T
T
ZH  
HZ  
ZH  
V
V
OH  
OH  
V
0.5V  
V
0.5V  
OH  
OH  
0V  
0V  
Figure 8. Driver Enable/Disable Timing  
Figure 10. Receiver Enable/Disable Timing  
–4–  
REV. A  
Typical Performance CharacteristicsADM485  
40  
36  
32  
28  
24  
20  
16  
12  
8
0
2  
5.0  
I = 8mA  
4  
4.9  
6  
8  
4.8  
4.7  
4.6  
4.5  
10  
12  
14  
16  
18  
20  
4
0
0.0  
0.5  
1.0  
1.5  
2.0  
3.5  
4.0  
4.5  
5.0  
50 25  
0
25  
50  
75  
100 125  
OUTPUT VOLTAGE Volts  
OUTPUT VOLTAGE Volts  
TEMPERATURE –  
°C  
Figure 11. Receiver Output Low  
Voltage vs. Output Current  
Figure 12. Receiver Output High  
Voltage vs. Output Current  
Figure 13. Receiver Output High  
Voltage vs. Temperature  
0.4  
96  
84  
72  
60  
48  
36  
24  
12  
0
2.4  
2.3  
I = 8mA  
0.3  
2.2  
0.2  
2.1  
2.0  
0.1  
50 25  
0
25  
50  
75  
100 125  
0
1
2
3
4
50 25  
0
25  
50  
75  
100 125  
TEMPERATURE –  
°C  
OUTPUT VOLTAGE Volts  
TEMPERATURE °C  
Figure 15. Driver Differential Out-  
put Voltage vs. Output Current  
Figure 14. Receiver Output Low  
Voltage vs. Temperature  
Figure 16. Driver Differential Output  
Voltage vs. Temperature, RL = 54  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
DRIVER ENABLED  
DRIVER DISABLED  
0
1
2
3
4
5
0
1
2
3
4
50  
25  
0
25  
50  
75  
100 125  
OUTPUT VOLTAGE Volts  
OUTPUT VOLTAGE Volts  
TEMPERATURE – °C  
Figure 18. Driver Output High  
Voltage vs. Output Current  
Figure 17. Driver Output Low  
Voltage vs. Output Current  
Figure 19. Supply Current vs.  
Temperature  
REV. A  
–5–  
ADM485Typical Performance Characteristics  
5
4
3
2
1
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
100  
90  
10  
0%  
1
V
1
V
5n  
s
50 25  
0
25  
50  
75  
100 125  
50 25  
0
25  
50  
75  
100 125  
TEMPERATURE – °C  
TEMPERATURE – °C  
Figure 22. Unloaded Driver  
Differential Outputs  
Figure 20. Receiver tPLH–tPHL, vs.  
Temperature  
Figure 21. Driver Skew vs.  
Temperature  
100  
90  
100  
100  
90  
90  
10  
10  
10  
0%  
0%  
0%  
1
V
1
V
500m  
V
500m  
V
1
V
1
V
5
H
5
10ns  
5
H
5
10ns  
5n  
s
O
O
Figure 23. Loaded Driver  
Differential Outputs  
Figure 24. Driver/Receiver Propa-  
gation Delays Low to High  
Figure 25. Driver/Receiver Propaga-  
tion Delays High to Low  
RT  
RT  
D
D
R
R
R
R
D
D
Figure 26. Typical RS-485 Network  
–6–  
REV. A  
ADM485  
APPLICATIONS INFORMATION  
ure 26. An RS-485 transmission line can have as many as 32 trans-  
ceivers on the bus. Only one driver can transmit at a particular time  
but multiple receivers may be enabled simultaneously.  
Differential Data Transmission  
Differential data transmission is used to reliably transmit data at  
high rates over long distances and through noisy environments.  
Differential transmission nullifies the effects of ground shifts  
and noise signals which appear as common-mode voltages  
on the line. There are two main standards approved by the  
Electronics Industries Association (EIA) which specify the elec-  
trical characteristics of transceivers used in differential data  
transmission.  
As with any transmission line, it is important that reflections are  
minimized. This may be achieved by terminating the extreme  
ends of the line using resistors equal to the characteristic imped-  
ance of the line. Stub lengths of the main line should also be  
kept as short as possible. A properly terminated transmission  
line appears purely resistive to the driver.  
Thermal Shutdown  
The RS-422 standard specifies data rates up to 10 MBaud and  
line lengths up to 4000 ft. A single driver can drive a transmis-  
sion line with up to 10 receivers.  
The ADM485 contains thermal shutdown circuitry which pro-  
tects the part from excessive power dissipation during fault con-  
ditions. Shorting the driver outputs to a low impedance source  
can result in high driver currents. The thermal sensing circuitry  
detects the increase in die temperature and disables the driver  
outputs. The thermal sensing circuitry is designed to disable the  
driver outputs when a die temperature of 150°C is reached. As  
the device cools, the drivers are reenabled at 140°C.  
In order to cater for true multipoint communications, the  
RS-485 standard was defined. This standard meets or exceeds  
all the requirements of RS-422 but also allows for up to 32  
drivers and 32 receivers to be connected to a single bus. An  
extended common-mode range of –7 V to +12 V is defined. The  
most significant difference between RS-422 and RS-485 is the  
fact that the drivers may be disabled thereby allowing more than  
one (32 in fact) to be connected to a single line. Only one driver  
should be enabled at time, but the RS-485 standard contains  
additional specifications to guarantee device safety in the event  
of line contention.  
Propagation Delay  
The ADM485 features very low propagation delay ensuring  
maximum baud rate operation. The driver is well balanced en-  
suring distortion free transmission.  
Another important specification is a measure of the skew be-  
tween the complementary outputs. Excessive skew impairs the  
noise immunity of the system and increases the amount of elec-  
tromagnetic interference (EMI).  
Cable and Data Rate  
The transmission line of choice for RS-485 communications is a  
twisted pair. Twisted pair cable tends to cancel common-mode  
noise and also causes cancellation of the magnetic fields gener-  
ated by the current flowing through each wire, thereby, reducing  
the effective inductance of the pair.  
Receiver Open-Circuit Fail Safe  
The receiver input includes a fail-safe feature which guarantees  
a logic high on the receiver when the inputs are open circuit or  
floating.  
The ADM485 is designed for bidirectional data communica-  
tions on multipoint transmission lines. A typical application  
showing a multipoint transmission network is illustrated in Fig-  
Table III. Comparison of RS-422 and RS-485 Interface Standards  
Specification  
RS-422  
RS-485  
Transmission Type  
Differential  
4000 ft.  
2 V  
Differential  
4000 ft.  
1.5 V  
Maximum Cable Length  
Minimum Driver Output Voltage  
Driver Load Impedance  
100 Ω  
54 Ω  
Receiver Input Resistance  
Receiver Input Sensitivity  
Receiver Input Voltage Range  
No of Drivers/Receivers Per Line  
4 kmin  
200 mV  
–7 V to +7 V  
1/10  
12 kmin  
200 mV  
–7 V to +12 V  
32/32  
REV. A  
–7–  
ADM485  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead SOIC (SO-8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
؋
 45؇  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
8؇  
0؇  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
SEATING  
PLANE  
8-Lead Plastic DIP (N-8)  
8
1
5
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
4
0.325 (8.25)  
0.300 (7.62)  
0.430 (10.92)  
0.348 (8.84)  
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
0.210  
(5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
8-Lead Cerdip (Q-8)  
0.055 (1.4) MAX  
0.005 (0.13) MIN  
8
5
0.310 (7.87)  
0.220 (5.59)  
PIN 1  
1
4
0.320 (8.13)  
0.290 (7.37)  
0.405 (10.29) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200  
(5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
15°  
0°  
0.023 (0.58)  
0.014 (0.36)  
0.100  
(2.54)  
BSC  
0.070 (1.78)  
0.030 (0.76)  
SEATING  
PLANE  
–8–  
REV. A  

相关型号:

ADM485JNZ1

Meets EIA RS-485 standard
ADI

ADM485JR

+5 V Low Power EIA RS-485 Transceiver
ADI

ADM485JR-REEL

Meets EIA RS-485 standard
ADI

ADM485JR-REEL

LINE TRANSCEIVER, PDSO8, MS-012AA, SOIC-8
ROCHESTER

ADM485JR-REEL7

Meets EIA RS-485 standard
ADI

ADM485JR-REEL7

LINE TRANSCEIVER, PDSO8, MS-012AA, SOIC-8
ROCHESTER

ADM485JRZ

5 V, Low Power, 5 Mbps, Half Duplex EIA RS-485 Transceiver
ADI

ADM485JRZ-REEL

5 V, Low Power, 5 Mbps, Half Duplex EIA RS-485 Transceiver
ADI

ADM485JRZ-REEL1

Meets EIA RS-485 standard
ADI

ADM485JRZ-REEL7

暂无描述
ADI

ADM485JRZ-REEL7

LINE TRANSCEIVER, PDSO8, LEAD FREE, MS-012AA, SOIC-8
ROCHESTER

ADM485JRZ-REEL71

Meets EIA RS-485 standard
ADI