ADF7011BRUZ-RL7 [ROCHESTER]

SPECIALTY TELECOM CIRCUIT, PDSO24, MO-153AD, TSSOP-24;
ADF7011BRUZ-RL7
型号: ADF7011BRUZ-RL7
厂家: Rochester Electronics    Rochester Electronics
描述:

SPECIALTY TELECOM CIRCUIT, PDSO24, MO-153AD, TSSOP-24

光电二极管
文件: 总25页 (文件大小:1242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance ISM Band  
ASK/FSK/GFSK Transmitter IC  
ADF7011  
FEATURES  
GENERAL DESCRIPTION  
Single Chip Low Power UHF Transmitter  
Frequency Band  
433 MHz to 435 MHz  
The ADF7011 is a low power OOK/ASK/FSK/GFSK UHF  
transmitter designed for use in ISM band systems. It contains  
and integrated VCO and Σ-fractional-N PLL. The output  
power, channel spacing, and output frequency are program-  
mable with four 24-bit registers. The fractional-N PLL enables  
the user to select any channel frequency within the European  
433 MHz and 868 MHz bands, allowing the use of the ADF7011  
in frequency hopping systems. The fractional-N also allows the  
transmitter to operate in the less congested sub-bands of the  
868 MHz to 870 MHz SRD band.  
868 MHz to 870 MHz  
On-Chip VCO and Fractional-N PLL  
2.3 V to 3.6 V Supply Voltage  
Programmable Output Power  
–16 dBm to +12 dBm, 0.3 dB Steps  
Data Rates up to 76.8 kbps  
Low Current Consumption  
29 mA at +10 dBm at 433.92 MHz  
Power-Down Mode (<1 A)  
24-Lead TSSOP Package Hooks to External VCO for  
< 1.4 GHz Operation  
It is possible to choose from the four different modulation  
schemes: Binary or Gaussian Frequency Shift Keying (FSK/  
GFSK), Amplitude Shift Keying (ASK), or On/Off Keying  
(OOK). The device also features a crystal compensation register  
that can provide 1 ppm resolution in the output frequency.  
Indirect temperature compensation of the crystal can be accom-  
plished inexpensively using this register.  
APPLICATIONS  
Low Cost Wireless Data Transfer  
Wireless Metering  
Remote Control/Security Systems  
Keyless Entry  
Control of the four on-chip registers is via a simple 3-wire inter-  
face. The devices operate with a power supply ranging from  
2.3 V to 3.6 V and can be powered down when not in use.  
FUNCTIONAL BLOCK DIAGRAM  
C
REG  
VCO  
CLK  
CPV  
CP  
GND  
GND  
OUT  
DD  
C
VCO  
OSC1  
OSC2  
CP  
VCO  
IN  
OUT  
V
DD  
OOK/ASK  
PA  
CLK  
RF  
OUT  
VCO  
RF  
GND  
DV  
DD  
R  
PFD/  
CHARGE  
PUMP  
D
GND  
C
REG  
LDO  
REGULATOR  
OOK/ASK  
FSK/GFSK  
TxCLK  
FRACTIONAL-N  
SIGMA-DELTA  
TxDATA  
LOCK DETECT  
MUXOUT  
LE  
DATA  
CLK  
MUXOUT  
FREQUENCY  
COMPENSATION  
ADF7011  
SERIAL  
INTERFACE  
R
SET  
CENTER  
FREQUENCY  
CE  
TEST  
A
GND  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
(VDD = 2.3 V to 3.6 V, GND = 0 V, TA = TMIN to TMAX, unless otherwise noted.  
ADF7011–SPECIFICATIONS1 Typical specifications are at VDD = 3 V, TA = 25؇C, FPFD = 4 MHz @ 433 MHz,  
FPFD = 22.1184/5.)  
Parameter  
Min  
Typ  
Max  
Unit  
RF CHARACTERISTICS  
Output Frequency Ranges  
Lower SRD Band  
Upper SRD Band  
Phase Frequency Detector Frequency  
433  
868  
3.4  
435  
870  
20  
MHz  
MHz  
MHz  
TRANSMISSION PARAMETERS  
Transmit Rate2  
FSK  
ASK  
0.3  
0.3  
0.3  
76.8  
9.6  
76.8  
kbits/s  
kbits/s  
kbits/s  
GFSK  
Frequency Shift Keying  
FSK Separation3  
1
4.88  
110  
620  
kHz using 3.625 MHz PFD  
kHz using 20 MHz PFD  
Gaussian Filter t  
Amplitude Shift Keying Depth  
On/Off Keying  
0.5  
28  
40  
dB  
dB  
Output Power (No Filtering)4  
868 MHz  
3
10  
dBm  
dBm  
433 MHz  
Output Power Variation  
Max Power Setting  
Max Power Setting  
Max Power Setting  
Programmable Step Size  
–16 dBm to +12 dBm  
9
12  
11  
9.5  
dBm VDD = 3.6 V  
dBm VDD = 3.0 V  
dBm VDD = 2.3 V  
0.3125  
dB  
LOGIC INPUTS  
VINH, Input High Voltage  
VINL, Input Low Voltage  
IINH/IINL, Input Current  
0.7 VDD  
DVDD – 0.4  
2.3  
V
V
µA  
pF  
MHz  
0.2 VDD  
1  
10  
50  
C
IN, Input Capacitance  
Control Clock Input  
LOGIC OUTPUTS  
VOH, Output High Voltage  
VOL, Output Low Voltage  
CLKOUT Rise/Fall Time  
CLKOUT Mark: Space Ratio  
V, IOH = 500 µA  
0.4  
3.6  
V, IOL = 500 µA  
16  
50:50  
ns FCLK = 4.8 MHz into 10 pF  
POWER SUPPLIES  
Voltage Supply  
DVDD  
V
Transmit Current Consumption  
433 MHz  
0 dBm (1 mW)  
10 dBm (10 mW)  
868 MHz  
17  
29  
mA  
mA  
0 dBm (1 mW)  
3 dBm (2 mW)  
19  
20.5  
34  
mA  
mA  
mA  
10 dBm (10 mW)  
Crystal Oscillator Block Current  
Consumption  
Regulator Current Consumption  
Power-Down Mode  
Low Power Sleep Mode  
190  
280  
µA  
µA  
0.2  
1
µA  
–2–  
REV. 0  
ADF7011  
Parameter  
Min  
Typ  
Max  
Unit  
PHASE-LOCKED LOOP  
VCO Gain 433 MHz/868 MHz  
40/80  
MHz/V @ 868 MHz  
Phase Noise (In-Band)5 433 MHz  
Phase Noise (Out-of-Band)6  
–81  
–90  
–83  
–95  
dBc/Hz @ 5 kHz offset  
dBc/Hz @ 1 MHz offset  
dBc/Hz @ 5 kHz offset  
dBc/Hz @ 1 MHz offset  
100 kHz loop BW  
Phase Noise (In-Band)7 868 MHz  
Phase Noise (Out-of-Band)8  
Spurious9, 10  
47–74, 87.5–118, 174–230, 470–862 MHz  
9 kHz – 1 GHz  
–54  
–36  
–30  
dBm  
dBm  
Above 1 GHz  
dBm. Assumes external harmonic filter.  
Harmonics10  
Second Harmonic, 433 MHz/868 MHz  
Third Harmonic, 433 MHz/868 MHz  
Other Harmonics, 433 MHz/868 MHz  
–23/–28  
–25/–29  
–26/–40  
–20/–23  
–22/–25  
–23/–35  
dBc  
dBc  
dBc  
REFERENCE INPUT  
Crystal Reference  
433 MHz  
1.7  
3.4  
22.1184  
22.1184  
MHz  
MHz  
868 MHz  
External Oscillator  
Frequency  
Input Level, High Voltage  
Input Level, Low Voltage  
3.4  
0.7 VDD  
40  
MHz  
V
V
0.2 VDD  
FREQUENCY COMPENSATION  
Pull In Range of Register  
1
100  
ppm  
PA CHARACTERISTICS  
RF Output Impedance  
868 MHz  
16 – j33  
25 – j2.6  
, ZREF = 50 ꢀ  
, ZREF = 50 ꢀ  
433 MHz  
TIMING INFORMATION  
Chip Enabled to Regulator Ready10  
Crystal Oscillator to CLKOUT OK  
4 MHz Crystal  
50  
200  
+85  
µs  
1.8  
2.2  
ms  
ms  
22.1184 MHz Crystal  
TEMPERATURE RANGE – TA  
–40  
C  
NOTES  
1Operating temperature range is as follows: –40C to +85C.  
2Datarates should be limited to adhere to edge of band requirements in accordance with ETSI 300-220  
3Frequency Deviation = (PFD Frequency Mod Deviation )/212  
.
GFSK Frequency Deviation = (PFD Frequency 2m)/212 where m = Mod Control.  
4 The output power is limited by the spurious requirements of ETSI at +55C. The addition of an output filter (see Applications section) will allow increased output  
levels to >10 dBm at both 433 MHz and 868 MHz  
5 VDD = 3 V, PFD = 4 MHz, PA = 10 dBm  
6 VDD = 3 V, Loop Filter BW = 100 kHz  
7 VDD = 3 V, PFD = 4.42368 MHz, PA = 3 dBm  
8 VDD = 3 V, Loop Filter BW = 100 kHz  
9 These spurious levels are based on a maximum output power of +3 dBm for 868 MHz and +10 dBm for 433 MHz. It assumes a PFD frequency of <5 MHz.  
Recommended PFD frequencies are 4.42368 MHz (22.1184/5) for 868 MHz, and 4 MHz for 433 MHz operation. Compliance for higher output powers will require  
an external filter. See Applications section.  
10 Not production tested. Based on characterization.  
Specifications subject to change without notice.  
REV. 0  
–3–  
ADF7011  
(VDD = 3 V ؎ 10%; VGND = 0 V, TA = 25؇C, unless otherwise noted.)  
TIMING CHARACTERISTICS  
Limit at  
TMIN to TMAX  
(B Version)  
Parameter  
Unit  
Test Conditions/Comments  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
DATA to CLOCK Setup Time  
DATA to CLOCK Hold Time  
CLOCK High Duration  
CLOCK Low Duration  
CLOCK to LE Setup Time  
LE Pulsewidth  
Guaranteed by design but not production tested.  
Specifications subject to change without notice.  
t3  
t4  
CLOCK  
t1  
t2  
DB0 (LSB)  
(CONTROL BIT C1)  
DB1  
DATA  
LE  
DB23 (MSB)  
DB22  
DB2  
(CONTROL BIT C2)  
t6  
t5  
Figure 1. Timing Diagram  
ABSOLUTE MAXIMUM RATINGS1, 2  
(TA = 25°C, unless otherwise noted.)  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
VDD to GND3 . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to + 7 V  
CPVDD to GND . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to + 7 V  
Digital I/O Voltage to GND . . . . . . . –0.3 V to DVDD + 0.3 V  
Operating Temperature Range  
Industrial (B Version) . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +125°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 125°C  
TSSOP JA Thermal Impedance . . . . . . . . . . . . . . 150.4°C/W  
Lead Temperature, Soldering  
2 This device is a high performance RF integrated circuit with an ESD rating of  
<1 kV and is ESD sensitive. Proper precautions should be taken for handling and  
assembly.  
3 GND = VCOGND = CPGND = RFGND = DGND = AGND = 0 V.  
ORDERING GUIDE  
Temperature  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . . 235°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240°C  
Model  
Range  
Package Option  
ADF7011BRU  
ADF7011BRU-REEL  
ADF7011BRU-REEL7 –40ºC to +85ºC  
–40ºC to +85ºC  
–40ºC to +85ºC  
RU-24 (TSSOP)  
RU-24 (TSSOP)  
RU-24 (TSSOP)  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADF7011 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
–4–  
REV. 0  
ADF7011  
PIN CONFIGURATION  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
R
C
REG  
SET  
CPV  
C
VCO  
DD  
3
CP  
VCO  
GND  
IN  
TSSOP  
4
CP  
A
GND  
OUT  
5
CE  
RF  
RF  
DV  
OUT  
GND  
DD  
ADF7011  
6
DATA  
CLK  
TOP VIEW  
(Not to Scale)  
7
8
LE  
TEST  
TxDATA  
TxCLK  
MUXOUT  
9
16 VCO  
GND  
10  
11  
12  
15  
14  
13  
OSC1  
OSC2  
CLK  
D
GND  
OUT  
PIN FUNCTION DESCRIPTIONS  
Pin No. Mnemonic  
Function  
1
RSET  
External Resistor to Set Change Pump Current and Some Internal Bias Currents. Use 4.7 kas default:  
9.5  
RSET  
ICP MAX  
=
So, with RSET = 4.7 k, ICP MAX = 2.02 mA.  
2
CPVDD  
Charge Pump Supply. This should be biased at the same level as RFOUT and DVDD. The pin should be  
decoupled with a 0.1 µF capacitor as close to the pin as possible.  
3
4
CPGND  
CPOUT  
Charge Pump Ground.  
Charge Pump Output. This output generates current pulses that are integrated in the loop filter. The  
integrated current changes the control voltage on the input to the VCO.  
5
6
7
8
CE  
Chip Enable. A logic low applied to this pin powers down the part. This must be high for the part to  
function. This is the only way to power down the regulator circuit.  
DATA  
CLK  
LE  
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This is a  
high impedance CMOS input.  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched  
into the 24-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one  
of the four latches, the latch being selected using the control bits.  
9
TxDATA  
TxCLK  
Digital data to be transmitted is input on this pin.  
10  
GFSK Only. This clock output is used to synchronize microcontroller data to the TxDATA pin of the  
ADF7011. The clock is provided at the same frequency as the data rate.  
11  
MUXOUT  
This multiplexer output allows either the digital lock detect (most common), the scaled RF, or the scaled  
reference frequency to be accessed externally. Used commonly for system debug. See the Function Regis-  
ter Map.  
12  
13  
DGND  
Ground Pin for the RF Digital Circuitry.  
CLKOUT  
The Divided Down Crystal Reference with 50:50 Mark-Space Ratio. May be used to drive the clock  
input of a microcontroller. To reduce spurious components in the output spectrum, the sharp edges can  
be reduced with a series RC. For 4.8 MHz output clock, a series 50 into 10 pF will reduce spurs to  
< –50 dBc. Defaults on power-up to divide by 16.  
14  
OSC2  
Oscillator Pin. If a single-ended reference (such as a TCXO) is used, it should be applied to this pin.  
When using an external signal generator, a 51 resistor should be tied from this pin to ground. The  
XOE bit in the R register should set high when using an external reference.  
REV. 0  
–5–  
ADF7011  
PIN FUNCTION DESCRIPTIONS (continued)  
Pin No. Mnemonic  
Function  
15  
OSC1  
Oscillator Pin. For use with crystal reference only. This is three-stated when an external reference oscilla-  
tor is used.  
16  
17  
VCOGND  
TEST  
Voltage Controlled Oscillator Ground.  
Input to the RF Fractional-N Divider. This pin allows the user to connect an external VCO to the part.  
Disabling the internal VCO activates this pin. If the internal VCO is used, this pin should be grounded.  
18  
DVDD  
Positive Supply for the Digital Circuitry. This must be between 2.3 V and 3.6 V. Decoupling capacitors  
to the analog ground plane should be placed as close as possible to this pin.  
19  
20  
RFGND  
RFOUT  
Ground for Output Stage of Transmitter.  
The modulated signal is available at this pin. Output power levels are from –16 dBm to +12 dBm. The  
output should be impedance matched to the desired load using suitable components. See the RF Output  
Stage section.  
21  
22  
AGND  
Ground Pin for the RF Analog Circuitry.  
VCOIN  
The tuning voltage on this pin determines the output frequency of the Voltage Controlled Oscillator  
(VCO). The higher the tuning voltage, the higher the output frequency.  
23  
24  
CVCO  
CREG  
A 0.22 µF capacitor should be added to reduce noise on VCO bias lines. Tied to the CREG pin.  
A 2.2 µF capacitor should be added at CREG, tied to GND, to reduce regulator noise and improve  
stability. A reduced capacitor will improve regulator power-on time but may cause higher spurious  
components.  
–6–  
REV. 0  
Typical Performance Characteristics–ADF7011  
RL = 10.0dBm  
885.000MHz  
868.000MHz  
V
= 3V  
DD  
PFD FREQUENCY = 19.2MHz  
LOOP BW = 100kHz  
V
= 3V  
DD  
PFD FREQUENCY = 19.2MHz  
LOOP BW = 100kHz  
RBW = 1kHz  
851.000MHz  
–20.00s  
5.00s  
5.00s/DIV  
30.00s  
868.3MHz  
SPAN 5.000MHz  
TPC 1. FSK Modulated Signal, FDEVIATION = 58 kHz,  
Data Rate = 19.2 kbps, 10 dBm  
TPC 4. PLL Settling Time, 852 MHz to 878 MHz,  
23 s ( 400 kHz)  
+10dBm  
RL = 10.0dBm  
V
= 3V  
DD  
–2dBm  
PFD FREQUENCY = 19.2MHz  
LOOP BW = 1MHz  
RBW = 3kHz  
V
= 3V  
DD  
PFD FREQUENCY = 19.2MHz  
LOOP BW = 100kHz  
RBW = 100kHz  
–36dBm  
@ 200kHz  
+19.2MHz  
–61dBc  
868.3MHz  
SPAN 500kHz  
RBW 100kHz  
868.3MHz  
SPAN 50.00MHz  
TPC 2. OOK Modulated Signal, Data Rate = 4.8 kbps,  
4 dBm  
TPC 5. PFD Spurious/Fractional Spurious Components  
+10dBm  
+10dBm  
SECOND HARMONIC  
–22dBc  
V
= 3V  
DD  
PFD FREQUENCY = 19.2MHz  
LOOP BW = 100kHz  
RBW = 30Hz  
THIRD HARMONIC  
–34dBc  
PN @ 4kHz  
80dBc/Hz  
START 800MHz  
RBW 1.0MHz  
STOP 7.750GHz  
868.3MHz  
SPAN 10.00kHz  
TPC 3. Harmonic Levels at 10 dBm Output Power.  
See Figure 15.  
TPC 6. In-Band Phase Noise  
REV. 0  
–7–  
ADF7011  
110  
100  
90  
C1 FREQ  
1.6MHz  
V
= 3V  
DD  
C1 RISE  
144.8ns  
C1 FALL  
145.6ns  
C1 +DUTY  
49.385%  
T
= 25C  
A
80  
70  
60  
50  
40  
Ch1 500mV  
M 200ns  
885  
895  
905  
915  
925  
935  
945  
FREQUENCY (MHz)  
TPC 10. Typical VCO Gain  
TPC 7. 1.6 MHz CLOCKOUT Waveform  
20  
15  
V
DD  
= 2.2V  
+10dBm  
V
= 3.0V  
= 3.6V  
DD  
V
= 3V  
DD  
V
DD  
PFD FREQUENCY = 19.2MHz  
LOOP BW = 100kHz  
RBW = 10Hz  
10  
LOW RANGE  
MID RANGE  
5
0
+1.6MHz  
–53dBc  
HIGH RANGE  
–5  
–10  
–15  
–20  
–25  
–30  
868.3MHz  
SPAN 5.00MHz  
40  
60  
80  
100  
120  
PA SETTING (Modulation Register)  
TPC 11. PA Output Programmability, TA = 25°C  
TPC 8. Spurious Signal Generated by CLOCKOUT  
0
44  
42  
–5  
–10  
–15  
–20  
–25  
40  
38  
36  
34  
32  
30  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
FREQUENCY (GHz)  
SUPPLYVOLTAGE (V)  
TPC 9. N-Divider Input Sensitivity  
TPC 12. IDD vs. VDD @ 10 dBm  
–8–  
REV. 0  
ADF7011  
REGISTER MAPS  
RF R REGISTER  
CONTROL  
BITS  
CLK  
11-BIT FREQUENCY ERROR CORRECTION  
4-BIT R-VALUE  
RESERVED  
OUT  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
C1 (0)  
F1 C2 (0)  
R2  
R1  
CL4 CL3 CL2 CL1  
X1  
R4  
R3  
R2  
R1  
F11 F10 F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
RF N REGISTER  
CONTROL  
BITS  
8-BIT INTEGER-N  
12-BIT FRACTIONAL-N  
DB19  
DB14 DB13  
DB3  
M2  
DB22 DB21 DB20  
DB17  
N4  
DB8  
M7  
DB6 DB5  
M5 M4  
DB4  
M3  
DB2 DB1  
M1  
DB23  
DB18  
N5  
DB16 DB15  
N3 N2  
DB12 DB11 DB10 DB9  
M11 M10 M9 M8  
DB7  
M6  
DB0  
LDP V1  
N8  
N7  
N6  
N1  
C1 (1)  
M12  
C2 (0)  
MODULATION REGISTER  
INDEX  
COUNTER  
GFSK MOD  
CONTROL  
MODULATION  
SCHEME  
CONTROL  
BITS  
MODULATION DEVIATION  
POWER AMPLIFIER  
DB13  
DB22  
IC2  
DB21 DB20  
DB18 DB17 DB16 DB15  
DB12  
D2  
DB11 DB10  
DB8 DB7 DB6 DB5 DB4 DB3  
DB1  
DB23  
P1  
DB19  
DB14  
D4  
DB9  
P6  
DB2  
S1  
DB0  
C1 (0)  
C2 (1)  
IC1  
MC3 MC2 MC1  
D7  
D6  
D5  
D3  
D1  
P7  
P5  
P4  
P3  
P2  
P1  
S2  
FUNCTION REGISTER  
CHARGE  
PUMP  
CONTROL  
BITS  
FAST LOCK  
TEST MODES  
MUXOUT  
DB19  
T5  
DB14  
DB10  
DB9  
DB23 DB22 DB21 DB20  
T9 T8 T7 T6  
DB15  
T1  
DB2  
PD1  
DB1  
DB0  
DB17 DB16  
DB13 DB12 DB11  
DB8 DB7 DB6 DB5  
I1  
DB3  
PD2  
DB18  
T4  
DB4  
PD3  
M1  
T3  
T2  
M4  
M3  
VP1 CP4 CP3 CP2 CP1  
C1 (1)  
C2 (1)  
M2  
REV. 0  
–9–  
ADF7011  
RF R Register  
CONTROL  
BITS  
CLK  
4-BIT R-VALUE  
11-BIT FREQUENCY ERROR CORRECTION  
RESERVED  
DB23 DB22  
OUT  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB21  
DB0  
C1 (0)  
F1 C2 (0)  
R2  
R1  
CL4 CL3 CL2 CL1  
X1  
R4  
R3  
R2  
R1  
F11  
F10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
X1  
XOE  
F-COUNTER  
F11  
...........  
F3  
F2  
F1  
OFFSET  
0
1
XTAL OSCILLATOR ON  
XTAL OSCILLATOR OFF  
0
0
0
0
0
...........  
...........  
...........  
...........  
...........  
1
1
.
0
0
1
1
.
0
0
1
0
.
1
0
1023  
1022  
.
1  
0  
.........................................................................................................................................................  
1
1
...........  
...........  
...........  
...........  
...........  
1
1
.
0
0
1
1
.
0
0
1
0
.
1
0
1  
2  
.
1023  
1024  
1
1
e.g., F-COUNTER OFFSET = 1, FRACTIONAL OFFSET = 1/215  
RF R COUNTER  
DIVIDE RATIO  
R1  
R4  
R3  
R2  
0
0
0
0
.
0
0
0
1
.
0
1
1
0
.
1
0
1
0
.
1
2
3
4
.
CLK  
DIVIDE RATIO  
OUT  
CL3  
CL2  
CL4  
CL1  
0
0
0
0
.
.
.
1
0
0
0
1
.
.
.
1
0
1
1
0
.
.
.
0
1
0
1
0
.
.
.
0
2
4
6
8
.
.
.
1
.
.
1
.
.
0
.
.
0
.
.
12  
1
1
1
1
1
1
0
1
1
1
0
1
13  
14  
15  
.
.
24  
1
1
1
1
1
1
0
1
1
1
0
1
26  
28  
30  
–10–  
REV. 0  
ADF7011  
RF N Register  
CONTROL  
BITS  
12-BIT FRACTIONAL-N  
8-BIT INTEGER-N  
DB19  
DB14 DB13  
DB3  
M2  
DB22 DB21 DB20  
DB17  
N4  
DB8  
M7  
DB6 DB5 DB4  
M5 M4 M3  
DB2 DB1  
M1  
DB23  
DB18  
N5  
DB16 DB15  
DB12 DB11 DB10 DB9  
M11 M10 M9 M8  
DB7  
M6  
DB0  
LDP V1  
N8 N7  
N6  
N3  
N2  
N1  
C1 (1)  
M12  
C2 (0)  
e.g., SETTING F = 0 IN FSK MODE TURNS ON THE  
-WHILE THE PLL IS AN INTEGER VALUE  
MODULUS  
DIVIDE RATIO  
M12  
M11  
M10  
..........  
M3  
M2  
M1  
0
0
0
.
.
.
0
0
0
.
.
.
0
0
0
.
.
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
1
1
1
.
.
.
0
0
1
.
.
.
0
1
0
.
.
.
4
5
6
.
.
.
1
1
1
1
0
0
4092  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
4093  
4094  
4095  
e.g., MODULUS DIVIDE RATIO = 2048 –> FRACTION 1/2  
N COUNTER  
DIVIDE RATIO  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1  
0
0
0
0
.
0
0
0
0
.
0
1
1
1
.
1
0
0
0
.
1
0
0
0
.
1
0
0
0
.
1
0
0
1
.
1
0
1
0
.
31  
32  
33  
34  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
0
1
253  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
254  
255  
VCO BAND  
(MHz)  
V1  
0
1
866–870  
433–435  
THE N VALUE CHOSEN IS A MINIMUM OF  
2
P
+ 3P + 3. FOR PRESCALER = 8/9, THIS  
MEANS A MINIMUM N DIVIDE OF 91.  
LOCK DETECT  
PRECISION  
LDP  
0
1
3 CYCLES < 15ns  
5 CYCLES < 15ns  
REV. 0  
–11–  
ADF7011  
Modulation Register  
MODULATION CONTROL  
SCHEM  
INDEX  
COUNTER  
GFSK MOD  
CONTROL  
MODULATION DEVIATION  
POWER AMPLIFIER  
E
BITS  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
P1 IC2 IC1 MC3 MC2 MC1 D7 D6 D5 D4 D3 D2 D1 P7 P6 P5 P4 P3 P2 P1 S2 S1 C2 (1) C1 (0)  
MODULATION  
SCHEME  
S2  
S1  
0
0
1
1
0
1
0
1
FSK  
GFSK  
ASK  
OOK  
POWER AMPLIFIER OUTPUT LEVEL  
IF AMPLITUDE SHIFT KEYING SELECTED, TxDATA = 0  
P7  
P6  
.
P2  
P1  
D7  
D6  
.
D2  
D1  
0
0
0
.
0
1
1
.
1
1
1
1
1
0
1
1
.
1
0
0
.
0
1
1
1
1
.
X
0
0
.
1
0
0
.
1
0
0
.
X
0
1
.
1
0
1
.
1
0
1
.
PA OFF  
16.0dBm  
161(10/32)  
.
1631(10/32)  
6dBm  
61(10/32)  
.
61(10/32)  
2dBm  
21(10/32)  
.
0
0
0
.
0
1
1
.
1
1
1
1
1
0
1
1
.
1
0
0
.
0
1
1
1
1
.
X
0
0
.
1
0
0
.
1
0
0
.
X
0
1
.
1
0
1
.
1
0
1
.
PA OFF  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
16.0dBm  
161(10/32)  
.
1631(10/32)  
6dBm  
61(10/32)  
.
61(10/32)  
2dBm  
21(10/32)  
.
12dBm  
P1  
RF PRESCALER  
1
1
12dBm  
1
1
0
1
4/5  
8/9  
IF FREQUENCY SHIFT KEYING SELECTED  
12  
/2  
F
= F  
PFD  
STEP  
D7.  
.
.
.
D3  
D2  
D1  
F DEVIATION  
PLL MODE  
1 F  
2 F  
3 F  
0 .  
0 .  
.
.
.
.
.
.
.
0
0
0
0
0
0
1
1
0
1
0
1
.
.
.
STEP  
STEP  
STEP  
0 .  
0 .  
.
.
.
.
1
.
1
.
1
...............  
127 F  
1 .  
.
.
.
STEP  
IF GAUSSIAN FREQUENCY SHIFT KEYING SELECTED  
D7  
D3  
D2  
D1  
DIVIDER FACTOR  
INDEX  
COUNTER  
IC2  
IC1  
0
0
0
0
.
0
0
0
0
.
0
0
1
1
.
0
1
0
1
.
0
1
2
3
......  
127  
0
0
1
1
0
1
0
1
16  
32  
64  
128  
1
1
1
1
GFSK MOD  
CONTROL  
MC3  
MC2  
MC1  
0
0
0
0
0
1
0
1
.
.
.
.
1
1
1
7
–12–  
REV. 0  
ADF7011  
Function Register  
CONTROL  
BITS  
CHARGE  
PUMP  
FAST LOCK  
TEST MODES  
MUXOUT  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
DB7 DB6  
DB5  
I1  
DB4  
PD3  
DB3  
PD2  
DB2  
PD1  
DB1  
DB0  
T9  
T8  
T7  
T6  
T5  
T4  
T3  
T2  
T1  
M4  
M3  
M2  
M1  
VP1  
CP4  
CP3  
C2  
C1  
C2 (1) C1 (1)  
I1  
0
DATA INVERT  
DATA  
VP1  
0
VCO DISABLE  
VCO ON  
1
DATA  
1
VCO OFF  
CP4  
CP FLOCK DOWN  
PD1  
PLL ENABLE  
0
1
BLEED OFF  
BLEED ON  
0
1
PLL OFF  
PLL ON  
CP3  
CP FLOCK UP  
PD2  
PA ENABLE  
PA OFF  
0
1
BLEED OFF  
BLEED ON  
0
1
PA ON  
CP2  
CP1  
R
I
(mA)  
CP  
SET  
2.7kꢆ  
4.7kꢆ  
10kꢆ  
0
0
1
1
0
1
0
1
0.50  
1.50  
2.51  
3.51  
0.29  
0.87  
1.44  
2.02  
0.14  
0.41  
0.68  
0.95  
PD3  
CLK  
ENABLE  
OUT  
0
1
CLK  
CLK  
OFF  
ON  
OUT  
OUT  
M4  
M3  
M2  
M1  
MUXOUT  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
LOGIC LOW  
LOGIC HIGH  
THREE-STATE  
REGULATOR READY (DEFAULT)  
DIGITAL LOCK DETECT  
ANALOG LOCK DETECT  
R DIVIDER / 2 OUTPUT  
N DIVIDER / 2 OUTPUT  
RF R DIVIDER OUTPUT  
RF N DIVIDER OUTPUT  
DATA RATE  
LOGIC LOW  
LOGIC LOW  
LOGIC LOW  
NORMAL TEST MODES  
-TEST MODES  
REV. 0  
–13–  
ADF7011  
Default Values for Registers  
R REGISTER  
CONTROL  
BITS  
11-BIT FREQUENCY ERROR CORRECTION  
4-BIT R-VALUE  
RESERVED  
DB23 DB22  
CLK  
OUT  
DB20 DB19  
DB21  
1
DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
1
DB7 DB6  
DB5 DB4 DB3 DB2 DB1  
DB0  
C1 (0)  
C2 (0)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
N REGISTER  
CONTROL  
BITS  
8-BIT INTEGER-N  
12-BIT FRACTIONAL-N  
DB23  
0
DB18  
0
DB16 DB15  
DB12 DB11 DB10 DB9  
DB7  
0
DB0  
DB19  
0
DB14 DB13  
DB3  
0
DB22 DB21 DB20  
DB17  
0
DB8  
0
DB6 DB5 DB4  
DB2 DB1  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
C2 (0) C1 (1)  
1
MODULATION REGISTER  
INDEX  
COUNTER  
CONTROL  
BITS  
GFSK MOD  
CONTROL  
MODULATION  
SCHEME  
MODULATION DEVIATION  
POWER AMPLIFIER  
DB13  
DB22  
0
DB18 DB17 DB16 DB15  
DB12  
0
DB11 DB10  
DB8 DB7 DB6 DB5 DB4  
DB3  
DB2  
DB1  
DB23  
DB21 DB20  
DB19  
0
DB14  
0
DB9  
1
DB0  
0
0
0
0
0
0
0
0
1
C1 (0)  
0
0
0
0
0
0
0
C2 (1)  
1
FUNCTION REGISTER  
CONTROL  
BITS  
CHARGE  
PUMP  
FAST LOCK  
TEST MODES  
MUXOUT  
DB19  
0
DB14  
DB10  
0
DB9  
0
DB23 DB22 DB21 DB20  
DB15  
0
DB2  
0
DB1  
DB0  
DB17 DB16  
DB13 DB12 DB11  
DB8 DB7 DB6 DB5  
DB3  
DB18  
0
DB4  
1
0
0
0
0
0
0
0
0
0
1
1
0
1
0
C1 (1)  
C2 (1)  
1
–14–  
REV. 0  
ADF7011  
CIRCUIT DESCRIPTION  
Prescaler, Phase Frequency Detector (PFD), and  
Reference Input Section  
Charge Pump  
The on-board crystal oscillator circuitry (Figure 2), allows the  
use of an inexpensive quartz crystal as the PLL reference. The  
oscillator circuit is enabled by setting XOE low. It is enabled by  
default on power-up and is disabled by bringing CE low. Two  
parallel resonant capacitors are required for oscillation at the  
correct frequency; the value of these is dependant on the crystal  
specification. Errors in the crystal can be corrected using the  
error correction register within the R register. A single-ended  
reference (TCXO, CXO) may be used. The CMOS levels should  
be applied to OSC2, with XOE set high.  
The dual-modulus prescaler (P/P + 1) divides the RF signal  
from the VCO to a lower frequency that is manageable by the  
CMOS counters.  
The PFD takes inputs from the R Counter and the N Counter  
(N = Int + Fraction) and produces an output proportional to the  
phase and frequency difference between them. Figure 4 is a  
simplified schematic.  
V
P
CHARGE  
PUMP  
UP  
HI  
D1 Q1  
U1  
OSC2  
10pF  
R DIVIDER  
CLR1  
100kꢆ  
10pF  
100kꢆ  
NC  
OSC1 500kꢆ  
BUFFER  
CP  
U3  
SW1  
XTAL OSCILLATOR  
DISABLED  
TO R COUNTER AND  
CLK DIVIDE  
OUT  
CLR2  
Figure 2. Oscillator Circuit on the ADF7011  
CLKOUT Divider and Buffer  
DOWN  
HI  
D2 Q2  
U2  
The CLKOUT circuit takes the reference clock signal from the  
oscillator section above and supplies a divided down 50:50 mark-  
space signal to the CLKOUT pin. An even divide from 2 to 30 is  
available. This divide is set by the four MSBs in the R register.  
On power-up, the CLKOUT defaults to divide by 16.  
N DIVIDER  
CP  
GND  
R DIVIDER  
DV  
DD  
N DIVIDER  
CLK  
OUT  
ENABLE BIT  
CP OUTPUT  
DIVIDER  
1 TO 15  
DIVIDE  
BY 2  
Figure 4. PFD Stage  
The PFD includes a delay element that sets the width of the  
CLK  
OUT  
OSC1  
antibacklash pulse. The typical value for this in the ADF7011 is  
3 ns. This pulse ensures that there is no dead zone in the PFD  
transfer function and minimizes phase noise and reference spurs.  
Figure 3. CLKOUT Stage  
The output buffer to CLKOUT is enabled by setting Bit DB4 in  
the function register high. On power-up, this bit is set high.  
The output buffer can drive up to a 20 pF load with a 10% rise  
time at 4.8 MHz. Faster edges can result in some spurious  
feedthrough to the output. A small series resistor (50 ) can be  
MUXOUT and Lock Detect  
The MUXOUT pin allows the user to access various internal  
points in the ADF7011. The state of MUXOUT is controlled  
by Bits M1 to M4 in the function register.  
Regulator Ready  
used to slow the clock edges to reduce these spurs at FCLK  
.
This is the default setting on MUXOUT after the transmitter  
has been powered up. The power-up time of the regulator is  
typically 50 µs. Since the serial interface is powered from the  
regulator, it is necessary for the regulator to be at its nominal  
voltage before the ADF7011 can be programmed. The status  
of the regulator can be monitored at MUXOUT. Once the  
Regulator Ready signal on MUXOUT is high, programming of  
the ADF7011 may begin.  
R Counter  
The 4-bit R Counter divides the reference input frequency by  
an integer from 1 to 15. The divided down signal is presented  
as the reference clock to the phase frequency detector (PFD).  
The divide ratio is set in the R register. Maximizing the PFD  
frequency reduces the N value. Having a higher PFD will  
result in a higher level of spurious components. A PFD of  
close to 4 MHz is recommended. This reduces the noise multi-  
plied at a rate of 20 log(N) to the output, as well as reduces  
occurrences of spurious components. The R register defaults  
to R = 1 on power-up.  
REV. 0  
–15–  
ADF7011  
DV  
DD  
REGULATOR READY  
DIGITAL LOCK DETECT  
ANALOG LOCK DETECT  
R COUNTER/2 OUTPUT  
N COUNTER/2 OUTPUT  
R COUNTER OUTPUT  
N COUNTER OUTPUT  
MUX  
CONTROL  
MUXOUT  
DGND  
Figure 5. MUXOUT Stage  
Digital Lock Detect  
Digital lock detect is active high. The lock detect circuit is con-  
tained at the PFD. When the phase error on five consecutive  
cycles is less than 15 ns, lock detect is set high. Lock detect  
remains high until 25 ns phase error is detected at the PFD.  
Since no external components are needed for digital lock detect,  
it is more widely used than analog lock detect.  
CHARGE  
PUMP OUT  
VCO  
Analog Lock Detect  
Figure 6. Typical Loop Filter Configuration––Third  
Order Integrator  
This N-channel open-drain lock detect should be operated with  
an external pull-up resistor of 10 knominal. When lock has been  
detected, this output will be high with narrow low-going pulses.  
In FSK, the loop should be designed so that the loop bandwidth  
(LBW) is approximately five times the data rate. Widening  
the LBW excessively reduces the time spent jumping between  
frequencies but may cause insufficient spurious attenuation.  
Voltage Regulator  
The ADF7011 requires a stable voltage source for the VCO and  
modulation blocks. The on-board regulator provides 2.2 V  
using a band gap reference. A 2.2 µF capacitor from CREG to  
ground is used to improve stability of the regulator over a sup-  
ply ranging from 2.3 V to 3.6 V. The regulator consumes less  
than 400 µA and can only be powered down using the chip  
enable (CE) pin. Bringing CE low disables the regulator and  
also erases all values held in the registers. The serial interface  
operates off the regulator supply; therefore, to write to the part,  
the user must have CE high. Regulator status can be monitored  
using the Regulator Ready signal from MUXOUT.  
For ASK systems, the wider the loop BW the better. The sud-  
den large transition between two power levels will result in VCO  
pulling and can cause a wider output spectrum than is desired.  
By widening the loop BW to >10 times the data rate, the amount  
of the VCO pulling is reduced since the loop will quickly settle  
back to the correct frequency. The wider LBW may restrict the  
output power and data rate of ASK based systems, compared  
with FSK based systems.  
Narrow-loop bandwidths may result in the loop taking long  
periods of time to attain lock. Careful design of the loop filter is  
critical in obtaining accurate FSK/GFSK modulation.  
Loop Filter  
The loop filter integrates the current pulses from the charge  
pump to form a voltage that tunes the output of the VCO to the  
desired frequency. It also attenuates spurious levels generated  
by the PLL. A typical loop filter design is shown in Figure 6.  
For GFSK, it is recommended that an LBW of 2.0 to 2.5 times  
the data rate be used to ensure sufficient samples are taken of  
the input data while filtering system noise.  
–16–  
REV. 0  
ADF7011  
Voltage Controlled Oscillator (VCO)  
LOW  
MED  
An on-chip VCO is included on the transmitter. The VCO con-  
verts the control voltage generated by the loop filter into an output  
frequency that is sent to the antenna via the power amplifier  
(PA). The VCO has a typical gain of 80 MHz/V and operates  
from 866 MHz to 870 MHz. The PD1 bit in the function regis-  
ter is the active high bit that turns on the VCO. A frequency  
divided by 2 is included to allow operation in the lower 450 MHz  
band. To enable operation in the lower band, the V1 bit in the  
N Register should be set to 1.  
HIGH  
The VCO needs an external 220 nF between the VCO and the  
regulator to reduce internal noise.  
P5  
P1  
P7, P6  
Figure 8. Output Stage  
VCO CONTROL BIT  
Serial Interface  
The serial interface allows the user to program the four 24-bit  
registers using a 3-wire interface (CLK, Data, and Load Enable).  
The serial interface consists of a level shifter, a 24-bit shift regis-  
ter, and four latches. Signals should be CMOS compatible. The  
serial interface is powered by the regulator, and therefore is  
inactive when CE is low.  
TO PA AND  
N DIVIDER  
MUX  
VCO  
DIVIDE  
BY 2  
LOOP FILTER  
220nF  
Table I. C2, C1 Truth Table  
C
PIN  
REG  
C2  
C1  
Data Latch  
0
0
1
1
0
1
0
1
R Register  
N Register  
Modulation Register  
Function Register  
VCO SELECT BIT  
Figure 7. Voltage Controlled Oscillator  
RF Output Stage  
The RF output stage consists of a DAC with a number of cur-  
rent sources to adjust the output power level. To set up the  
power level  
Data is clocked into the shift register, MSB first, on the rising  
edge of each clock (CLK). Data is transferred to one of four  
latches on the rising edge of LE. The destination latch is deter-  
mined by the value of the two control bits (C2 and C1). These  
are the two LSBs, DB1 and DB0, as shown in the timing dia-  
gram of Figure 1.  
FSK GFSK: The output power is set using the modulation  
Register by entering a 7-bit number into Bits P1–P7. The  
two MSBs set the range of the output stage, while the five  
LSBs set the output power in the selected range.  
V
DD  
ASK: The output power as set up for FSK is the output  
power for a TxDATA of 1. The output power for a zero  
data bit is set up the same way but using Bits D1–D7.  
L1  
PA  
The output stage is powered down by setting Bit PD2 in the  
function register to zero.  
L2  
C1  
RF  
50ꢆ  
OUT  
Figure 9. Output Stage Matching  
REV. 0  
–17–  
ADF7011  
The resolution of each register is the smallest amount that the  
output frequency can be changed by changing the LSB of the  
register.  
0.00  
0.0  
0.20  
0.50  
1.00  
2.00  
5.00  
25 – j2.6  
433MHz  
Changing the Output Frequency  
The fractional part of the N register changes the output fre-  
quency by  
5.00  
0.20  
150  
140  
130  
PFD Frequency × FractionalRegisterValue  
30  
40  
212  
16 – j33  
868MHz  
2.00  
The frequency error correction contained in the R register  
changes the output frequency by  
0.50  
50  
120  
1.00  
60  
110  
70  
PFD Frequency × Error CorrectionRegisterValue  
100  
80  
90  
215  
Figure 10. Output Impedance on Smith Chart  
Fractional-N  
N Counter and Error Correction  
The ADF7011 consists of a 15-bit -fractional-N divider.  
The N Counter divides the output frequency to the output  
stage back to the PFD frequency. It consists of a prescaler,  
integer, and fractional part.  
By default, this will be set to 0. The user can calibrate the system  
and set this by writing a twos complement number to Bits F1–F11  
in the R register. This can be used to compensate for initial error,  
temperature drift, and aging effects in the crystal reference.  
Integer-N Register  
The integer part of the N Counter contains the prescaler and A  
and B Counters. It is eight bits wide and offers a divide of  
P2 + 3P + 3 to 255.  
The prescaler can be 4/5 or 8/9. A prescaler setting of 8/9 is  
recommended for 868 MHz operation. A prescaler setting of  
4/5 is recommended for 433 MHz operation.  
The combination of the integer (255) and the fractional (31767/  
31768) gives a maximum N Divider of 256. The minimum  
usable PFD is  
The output frequency of the PLL is  
8 × Fractional + Error  
(
)
Maximum Required Output Frequency  
PFD Frequency × Int +  
215  
255 + 1  
(
)
For use in the European 868 MHz to 870 MHz band, there is a  
restriction to using a minimum PFD of 3.4 MHz to allow the  
user to have a center frequency of 870 MHz.  
REFERENCE IN  
PFD/  
CHARGE  
PUMP  
R  
VCO  
PFD Frequency  
The PFD frequency is the number of times a comparison is  
made between the reference frequency and the feedback signal  
from the output.  
N  
THIRD ORDER  
-MODULATOR  
The higher the PFD frequency, the more often a comparison is  
made at the PFD. This means that the frequency lock time will  
be reduced when jumping from one frequency to another by  
increasing the PFD. Having a PFD of > 5 MHz will reduce the  
available output power due to EN300-220 spurious regulations.  
FRACTIONAL-N  
INTEGER-N  
Figure 11. Fractional-N PLL  
Fractional-N Registers  
The fractional part is made up of a 15-bit divide, made up of a  
12-bit N value in the N register summed with a 10-bit value  
(plus sign bit) in the R register that is used for error correction,  
as shown in Figure 12.  
M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1  
12-BIT NVALUE  
F10 F9  
F8  
F7  
F6  
F5  
F4  
F3  
N2  
F2  
N1  
F1  
N0  
10-BIT (SIGN) ERROR CORRECTION  
N14 N13 N12 N11 N10 N9  
N8 N7  
N6 N5  
N4 N3  
15-BIT FRACTIONAL N REGISTER  
Figure 12. Fractional Components  
–18–  
REV. 0  
ADF7011  
MODULATION SCHEMES  
Setting Up the ADF7011 for GFSK  
Frequency Shift Keying (FSK)  
To set up the frequency deviation, set the PFD and the mod  
control Bits MC1 to MC3.  
Frequency shift keying is implemented by setting the N value  
for the center frequency and then toggling this with the TxDATA  
line. The deviation from the center frequency is set using Bits  
D1–D7 in the modulation register. The deviation from the  
center frequency in Hz is  
PFD Frequency × 2m  
GFSKDEVIATION Hz =  
(
)
212  
where m is mod control (Bits MC1 to MC3 in the modulation  
register).  
PFD Frequency × Modulation Number  
FSKDEVIATION Hz =  
(
)
212  
To set up the GFSK data rate  
PFD Frequency  
Divider Factor × Index Counter  
The modulation number is a number from 1 to 127 (Bits D1–  
D7 in modulation register). FSK is selected by setting Bits S1  
and S2 to zero in the modulation register.  
Data Rate bits/s =  
(
)
Amplitude Shift Keying (ASK)  
Amplitude shift keying is implemented by switching the output  
stage between two discrete power levels. This is implemented by  
toggling the DAC, which controls the output level between two  
7-bit values set up in the modulation register. A zero TxDATA  
bit sends Bits D1–D7 to the DAC. A high TxDATA bit sends  
Bits P1–P7 to the DAC. A maximum modulation depth of 30 dB  
is possible. ASK is selected by setting Bit S2 = 1 and Bit S1 = 0.  
CHEAP AT CRYSTAL  
INTERNAL VCO USING  
SPIRAL INDUCTORS  
GAIN 70 MHz/V–90 MHz/V  
PA STAGE  
،R  
PFD/  
CHARGE  
PUMP  
VCO  
FSK DEVIATION  
FREQUENCY  
On-Off Keying (OOK)  
On-off keying is implemented by switching the output stage to a  
certain power level for a high TxDATA bit and switching the  
output stage off for a zero. Due to feedthrough effects, a maximum  
modulation depth of 33 dB is specified. For OOK, the transmitted  
power for a high input is programmed using Bits P1–P7 in the  
modulation register. OOK is selected by setting Bits S1 and S2  
to 1 in the modulation register.  
–F  
DEV  
THIRD ORDER  
-⌬  
MODULATOR  
+F  
DEV  
TxDATA  
FRACTIONAL-N  
INTEGER-N  
Figure 13. FSK Implementation  
CHOOSING CHANNELS FOR BEST SYSTEM  
PERFORMANCE  
The fractional-N PLL allows the selection of any channel within  
868 MHz to 870 MHz to a resolution of <l00 Hz, as well as  
facilitating frequency hopping systems.  
Gaussian Frequency Shift Keying (GFSK)  
Gaussian frequency shift keying reduces the bandwidth occupied  
by the transmitted spectrum by digitally prefiltering the TxDATA.  
A TxCLK output line is provided from the ADF7011 for syn-  
chronization of TxDATA from the microcontroller. The TxCLK  
line may be connected to the clock input of an external shift  
register that clocks data to the transmitter at exact data rate.  
Careful selection of the RF transmit channels must be made to  
achieve best spurious performance. The architecture of frac-  
tional-N results in some level of the nearest integer channel  
moving through the loop to the RF output. These “beat-note”  
spurs are not attenuated by the loop if the desired RF channel  
and the nearest integer channel are separated by a frequency of  
less than the loop BW.  
SHIFT  
ANTENNA  
DATA FROM  
REGISTER  
TxDATA  
MICROCONTROLLER  
ADF7011  
The occurrence of beat-note spurs is rare, as the integer frequen-  
cies are at multiples of the reference, which is typically >4 MHz.  
The beat-note spurs can be significantly reduced in amplitude  
by avoiding very small or very large values in the fractional  
register. By having a channel 1 MHz away from an integer fre-  
quency, a 100 kHz loop filter will reduce the level to < –45 dBc.  
When using an external VCO, the Fast Lock (bleed) function will  
reduce the spurs to < –60 dBc for the same conditions above.  
TxCLK  
Figure 14. TxCLK Pin Synchronizing Data for GFSK  
REV. 0  
–19–  
ADF7011  
APPLICATION EXAMPLES  
Application Example 1  
In order to meet the ETSI requirement EN300-220, the maxi-  
mum output power without using a filter is +3 dBm. This is  
because the spurious levels scale with output power. Utilizing a  
PFD frequency of 4.42 MHz will reduce the level of the refer-  
ence spurs, and place the first spur in a –36 dBm bin, 4.4 MHz  
below the carrier. ADIsimPLL should be used to design the  
loop filter, aiming for a loop bandwidth of five times the data  
rate for FSK. ASK modulation requires a loop BW > 1 MHz to  
minimize spectral occupancy.  
Operating Frequency  
Output Power  
Current Consumption  
Modulation  
433.92 MHz  
+10 dBm  
<30 mA  
ASK/FSK  
This system should be set up as shown Figure 15. The spurious  
levels using a crystal frequency of 4 MHz are sufficiently low so  
as not to require any band-pass filtering of the output. However,  
2 dB of attenuation will be required at 541.50 MHz in order  
to comply with ES-300-220. This can be achieved easily with  
the harmonic filter. The harmonic filter can be designed at the  
output of the matching network with 50 impedance, or it  
may be integrated into the matching network. The ADF7011  
will allow multichannel operation in the 433 MHz band. If  
FSK modulation is used, the BW should be about five times  
the data rate. In the case of ASK modulation, a minimum  
data rate of 1 MHz should be used to minimize the occupied  
spectrum. The free design tool, ADIsimPLL, should be down-  
loaded from www.analog.com/pll to ascertain the values of the  
filter components.  
Application Example 3  
Operating Frequency  
Output Power  
Current Consumption  
Modulation  
868.3 MHz  
+10 dBm  
<40 mA  
ASK/FSK  
In order to meet the ETSI requirements at +10 dBm output  
power, it is necessary to add an inexpensive GigaFILT from  
Murata at the output. This will reduce the prescaler and refer-  
ence spurious levels to –54 dBm, and also reduce the harmonic  
levels to within the –30 dBm level. Given that the insertion  
loss is 2 dB, it is necessary to use the maximum +12 dBm  
power from the ADF7011 to achieve an antenna port level of  
+10 dBm. The filter layout is important to ensure that there is  
margin in the output spectrum; filter data sheet guidelines  
should be adhered to.  
Application Example 2  
Operating Frequency  
Output Power  
868.3 MHz  
+3 dBm  
Current Consumption  
Modulation  
<25 mA  
ASK/FSK  
–20–  
REV. 0  
ADF7011  
2.2F  
220nF  
DV  
CPV  
DD  
C
C
REG  
DD  
VCO  
R
SET  
12nH  
6.8nH  
4.7kꢆ  
10pF  
RF  
LC FILTER  
3.9pF  
OUT  
VCO  
CP  
OUT  
IN  
VCO  
IN  
ADF7011  
TxDATA  
LE  
CLK  
DATA  
CE  
OSC2  
OSC1  
4MHz  
33pF 33pF  
MUXOUT CLK  
TEST  
GND  
OUT  
LOCK DETECT  
2MHZ CLOCK  
50ꢆ  
DECOUPLING CAPACITORS HAVE  
BEEN OMITTED FOR CLARITY.  
Figure 15. Application Diagram—433 MHz Operation with +10 dBm Output Power  
2.2F  
220nF  
DV  
CPV  
DD  
C
C
REG  
DD  
VCO  
R
SET  
12nH  
6.8nH  
4.7kꢆ  
10pF  
RF  
OUT  
VCO  
CP  
OUT  
IN  
VCO  
IN  
ADF7011  
TxDATA  
LE  
CLK  
DATA  
CE  
OSC2  
OSC1  
R = 5  
22.1184MHz  
33pF 33pF  
MUXOUT CLK  
TEST  
GND  
OUT  
LOCK DETECT  
4.84MHZ CLOCK  
50ꢆ  
DECOUPLING CAPACITORS HAVE  
BEEN OMITTED FOR CLARITY.  
Figure 16. Application Diagram—868 MHz Operation with +3 dBm Output Power  
REV. 0  
–21–  
ADF7011  
2.2F  
220nF  
DV  
CPV  
DD  
C
C
REG  
DD  
VCO  
R
SET  
12nH  
6.8nH  
4.7kꢆ  
10pF  
RF  
OUT  
VCO  
CP  
OUT  
IN  
VCO  
IN  
MURATA GigaFILT  
DFCB2869MLEJAA-TT1  
ADF7011  
TxDATA  
LE  
CLK  
DATA  
CE  
OSC2  
OSC1  
R = 5  
22.1184MHz  
33pF 33pF  
MUXOUT CLK  
TEST  
GND  
OUT  
LOCK DETECT  
4.84MHZ CLOCK  
50ꢆ  
DECOUPLING CAPACITORS HAVE  
BEEN OMITTED FOR CLARITY.  
Figure 17. Application Diagram—868 MHz Operation with +10 dBm Output Power  
–22–  
REV. 0  
ADF7011  
OUTLINE DIMENSIONS  
24-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-24)  
Dimensions shown in millimeters  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20  
MAX  
0.15  
0.05  
0.75  
0.60  
0.45  
8ꢃ  
0ꢃ  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153AD  
REV. 0  
–23–  
–24–  

相关型号:

ADF7012

Multichannel ISM Band FSK/GFSK/OOK/GOOK/ASK Transmitter
ADI

ADF7012BRU

Multichannel ISM Band FSK/GFSK/OOK/GOOK/ASK Transmitter
ADI

ADF7012BRU

SPECIALTY TELECOM CIRCUIT, PDSO24, MO-153AD, TSSOP-24
ROCHESTER

ADF7012BRU-REEL

Multichannel ISM Band FSK/GFSK/OOK/GOOK/ASK Transmitter
ADI

ADF7012BRU-REEL7

Multichannel ISM Band FSK/GFSK/OOK/GOOK/ASK Transmitter
ADI

ADF7012BRU-U1

IC,RF MODULATOR,CMOS,TSSOP,24PIN,PLASTIC
ADI

ADF7012BRUZ

Multichannel ISM Band FSK/GFSK/OOK/GOOK/ASK Transmitter
ADI

ADF7012BRUZ

SPECIALTY TELECOM CIRCUIT, PDSO24, ROHS COMPLIANT, MO-153AD, TSSOP-24
ROCHESTER

ADF7012BRUZ-REEL7

SPECIALTY TELECOM CIRCUIT, PDSO24, MO-153AD, TSSOP-24
ADI

ADF7012BRUZ-RL

Multichannel ISM Band FSK/GFSK/OOK/GOOK/ASK Transmitter
ADI

ADF7012BRUZ-RL

SPECIALTY TELECOM CIRCUIT, PDSO24, ROHS COMPLIANT, MO-153AD, TSSOP-24
ROCHESTER

ADF7012BRUZ-RL7

Multichannel ISM Band FSK/GFSK/OOK/GOOK/ASK Transmitter
ADI