AD5270BCPZ-20-RL7 [ROCHESTER]

20K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO10, 3 X 3 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, LFCSP-10;
AD5270BCPZ-20-RL7
型号: AD5270BCPZ-20-RL7
厂家: Rochester Electronics    Rochester Electronics
描述:

20K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO10, 3 X 3 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, LFCSP-10

光电二极管 转换器 电阻器
文件: 总25页 (文件大小:1854K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1024-/256-Position, 1% Resistor Tolerance Error,  
SPI Interface and 50-TP Memory Digital Rheostat  
Data Sheet  
AD5270/AD5271  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
DD  
Single-channel, 1024-/256-position resolution  
20 kΩ, 50 kΩ, 100 kΩ nominal resistance  
Maximum 1ꢀ nominal resistor tolerance error  
50-times programmable (50-TP) wiper memory  
Rheostat mode temperature coefficient: 5 ppm/°C  
2.7 V to 5.5 V single-supply operation  
2.5 V to 2.75 V dual-supply operation for ac or bipolar  
operations  
SPI-compatible interface  
Wiper setting readback  
Power on refreshed from 50-TP memory  
Thin LFCSP, 10-lead, 3 mm × 3 mm × 0.8 mm package  
Compact MSOP, 10-lead, 3 mm × 4.9 mm × 1.1 mm package  
POWER-ON  
RESET  
AD5270/AD5271  
RDAC  
REGISTER  
SCLK  
SYNC  
DIN  
A
10/8  
SERIAL  
INTERFACE  
W
50-TP  
MEMORY  
BLOCK  
SDO  
APPLICATIONS  
V
EXT_CAP  
GND  
SS  
Figure 1.  
Mechanical rheostat replacements  
Op-amp: variable gain control  
Instrumentation: gain, offset adjustment  
Programmable voltage to current conversions  
Programmable filters, delays, time constants  
Programmable power supply  
Sensor calibration  
The AD5270/AD5271 device wiper settings are controllable  
through the SPI digital interface. Unlimited adjustments are  
allowed before programming the resistance value into the  
50-TP memory. The AD5270/AD5271 do not require any  
external voltage supply to facilitate fuse blow and there are  
50 opportunities for permanent programming. During 50-TP  
activation, a permanent blow fuse command freezes the resistance  
position (analogous to placing epoxy on a mechanical trimmer).  
GENERAL DESCRIPTION  
The AD5270/AD52711 are single-channel, 1024-/256-position  
digital rheostats that combine industry leading variable resistor  
performance with nonvolatile memory (NVM) in a compact  
package.  
The AD5270/AD5271 ensure less than 1% end-to-end resistor  
tolerance error and offer 50-times programmable (50-TP) memory.  
The guaranteed industry leading low resistor tolerance error  
feature simplifies open-loop applications as well as precision  
calibration and tolerance matching applications.  
The AD5270/AD5271 are available in a 3 mm × 3 mm, 10-lead  
LFCSP package and in a 10-lead MSOP package. The parts are  
guaranteed to operate over the extended industrial temperature  
range of −40°C to +125°C.  
1 Protected by U.S.Patent Number 7688240  
Rev. F  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2009–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5270/AD5271  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Shift Register............................................................................... 18  
RDAC Register............................................................................ 18  
50-TP Memory Block ................................................................ 18  
Write Protection ......................................................................... 18  
RDAC and 50-TP Read Operation .......................................... 19  
Shut-Down Mode....................................................................... 20  
Resistor Performance Mode...................................................... 20  
Reset............................................................................................. 20  
SDO Pin and Daisy-Chain Operation..................................... 21  
RDAC Architecture.................................................................... 21  
Programming the Variable Resistor......................................... 22  
EXT_CAP Capacitor.................................................................. 22  
Terminal Voltage Operating Range ......................................... 22  
Power-Up Sequence ................................................................... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—AD5270 .......................................... 3  
Electrical Characteristics—AD5271 .......................................... 5  
Interface Timing Specifications.................................................. 7  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
Test Circuits..................................................................................... 17  
Theory of Operation ...................................................................... 18  
Serial Data Interface................................................................... 18  
REVISION HISTORY  
3/13—Rev. E to Rev. F  
Added LFCSP Throughout ..............................................................1  
Changed OTP to 50-TP Throughout..............................................1  
Changes to Product Title, Features, and General Description....1  
Changes to Table 1.............................................................................3  
Added Table 3; Renumbered Sequentially .....................................4  
Changes to Table 4.............................................................................5  
Added Table 6 ....................................................................................6  
Changes to Table 8 and Table 9........................................................9  
Added Figure 6 and changes to Table 10..................................... 10  
Replaced Typical Performance Characteristics Section ............ 11  
Changes to Figure 44...................................................................... 21  
Updated Outline Dimensions....................................................... 23  
Changes to Ordering Guide.......................................................... 24  
Changed Resistor Noise Density, RAW = 20 kΩ from 50 nV/√Hz  
to 13 nV/√Hz; Table 1...................................................................... 4  
Changed Resistor Noise Density, RAW = 20 kΩ from 50 nV/√Hz  
to 13 nV/√Hz; Table 4...................................................................... 6  
Updated Outline Dimensions....................................................... 23  
12/10—Rev. D to Rev. E  
Changes to SDO Pin Description................................................. 10  
Changes to SDO Pin and Daisy-Chain Operation Section....... 21  
11/10—Rev. C to Rev. D  
Changes to Figure 25...................................................................... 14  
3/10—Rev. 0 to Rev. A  
9/10—Rev. B to Rev. C  
Changes to Product Title and General Description.....................1  
Changes to Theory of Operation Section...................................14  
10/09—Revision 0: Initial Version  
Changes to Figure 3 Caption........................................................... 7  
Changes to Figure 4 Caption........................................................... 8  
Deleted Daisy-Chain Operation Section, Added SDO Pin and  
Daisy-Chain Operation Section ................................................... 21  
5/10—Rev. A to Rev. B  
Rev. F | Page 2 of 24  
 
Data Sheet  
AD5270/AD5271  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—AD5270  
VDD = 2.7 V to 5.5 V, VSS = 0 V; VDD = 2.5 V to 2.75 V, V SS = −2.5 V to −2.75 V; −40°C < TA < +125°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
R-INL  
Test Conditions/Comments  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
Resistor Integral Nonlinearity2, 3  
10  
−1  
−1  
−1  
−1  
Bits  
LSB  
LSB  
LSB  
LSB  
RAW = 20 kΩ, |VDD − VSS| = 3.0 V to 5.5 V  
RAW = 20 kΩ, |VDD − VSS| = 2.7 V to 3.0 V  
RAW = 50 kΩ, 100 kΩ  
+1  
+1.5  
+1  
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
R-Perf Mode4  
R-DNL  
+1  
−1  
0.5  
15  
5
+1  
%
See Table 2 and Table 3  
Normal Mode  
%
Resistance Temperature Coefficient5, 6  
Wiper Resistance  
Code = full scale  
Code = zero scale  
ppm/°C  
35  
70  
RESISTOR TERMINALS  
Terminal Voltage Range5, 7  
Capacitance5 A  
VSS  
VDD  
V
f = 1 MHz, measured to GND, code =  
half scale  
f = 1 MHz, measured to GND, code =  
half scale  
90  
40  
pF  
Capacitance5 W  
pF  
Common-Mode Leakage Current5  
VA = VW  
50  
nA  
DIGITAL INPUTS  
Input Logic5  
High  
VINH  
VINL  
IIN  
2.0  
V
V
µA  
pF  
Low  
0.8  
Input Current  
Input Capacitance5  
DIGITAL OUTPUT  
Output Voltage5  
High  
1
5
CIN  
VOH  
VOL  
RPULL_UP = 2.2 kΩ to VDD  
RPULL_UP = 2.2 kΩ to VDD  
VDD − 0.1  
V
Low  
VDD = 2.7 V to 5.5 V, VSS = 0 V  
VDD = 2.5 V to 2.75 V, VSS = −2.5 V to −2.75 V  
0.4  
0.6  
+1  
V
V
µA  
pF  
Tristate Leakage Current  
Output Capacitance5  
POWER SUPPLIES  
Single-Supply Power Range  
Dual-Supply Power Range  
Supply Current  
Positive  
−1  
5
VSS = 0 V  
2.7  
2.5  
5.5  
2.75  
V
V
IDD  
ISS  
1
µA  
µA  
Negative  
−1  
50-TP Store Current5, 8  
Positive  
Negative  
IDD_OTP_STORE  
ISS_OTP_STORE  
4
−4  
mA  
mA  
OTP Read Current5, 9  
Positive  
Negative  
IDD_OTP_READ  
ISS_OTP_READ  
500  
µA  
µA  
−500  
Rev. F | Page 3 of 24  
 
 
 
AD5270/AD5271  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1  
Max  
Unit  
µW  
dB  
Power Dissipation10  
Power Supply Rejection Ratio5  
VIH = VDD or VIL = GND  
ΔVDD/ΔVSS = 5 V 10%  
5.5  
PSRR  
RAW = 20 kΩ  
RAW = 50 kΩ  
RAW = 100 kΩ  
−66  
−75  
−78  
−55  
−67  
−70  
DYNAMIC CHARACTERISTICS5, 11  
Bandwidth  
−3 dB, RAW = 10 kΩ, Terminal W,  
see Figure 42  
kHz  
RAW = 20 kΩ  
RAW = 50 kΩ  
RAW = 100 kΩ  
300  
120  
60  
Total Harmonic Distortion  
Resistor Noise Density  
VA = 1 V rms, f = 1 kHz,  
code = half scale  
RAW = 20 kΩ  
RAW = 50 kΩ  
RAW= 100 kΩ  
Code = half scale, TA = 25°C  
RAW = 20 kΩ  
RAW = 50 kΩ  
dB  
−90  
−88  
−85  
nV/√Hz  
13  
25  
32  
RAW = 100 kΩ  
1 Typical specifications represent average readings at 25°C, VDD = 5 V, and VSS = 0 V.  
2 Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions.  
3 The maximum current in each code is defined by IAW = (VDD − 1)/RAW  
.
4 The terms resistor performance mode and R-Perf mode are used interchangeably. See the Resistor Performance Mode section.  
5 Guaranteed by design and not subject to production test.  
6 See Figure 25 for more details.  
7 Resistor Terminal A and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground referenced bipolar  
signal adjustment.  
8 Different from operating current, the supply current for the fuse program lasts approximately 55 ms.  
9 Different from operating current, the supply current for the fuse read lasts approximately 500 ns.  
10  
P
is calculated from (IDD × VDD) + (ISS × VSS).  
DISS  
11 All dynamic characteristics use VDD = +2.5 V, VSS = −2.5 V.  
Table 2. AD5270—20 kΩ Resistor Performance Mode Code Range  
Resistor Tolerance Per Code  
|VDD − VSS| = 4.5 V to 5.5 V  
|VDD − VSS| = 2.7 V to 4.5 V  
R-TOLERANCE  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
From 0x078 to 0x3FF  
From 0x037 to 0x3FF  
From 0x028 to 0x3FF  
From 0x0BE to 0x3FF  
From 0x055 to 0x3FF  
From 0x037 to 0x3FF  
Table 3. AD5270—50 kΩ and 100 kΩ Resistor Performance Mode Code Range  
Resistor Tolerance Per Code  
RAW = 50 kΩ  
RAW = 100 kΩ  
R-TOLERANCE  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
From 0x078 to 0x3FF  
From 0x055 to 0x3FF  
From 0x032 to 0x3FF  
From 0x04B to 0x3FF  
From 0x032 to 0x3FF  
From 0x019 to 0x3FF  
Rev. F | Page 4 of 24  
 
 
 
Data Sheet  
AD5270/AD5271  
ELECTRICAL CHARACTERISTICS—AD5271  
VDD = 2.7 V to 5.5 V, VSS = 0 V; VDD = 2.5 V to 2.75 V, VSS = −2.5 V to −2.75 V; −40°C < TA < +125°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1 Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
Resistor Integral Nonlinearity2, 3  
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
R-Perf Mode4  
Normal Mode  
Resistance Temperature Coefficient5, 6  
Wiper Resistance  
8
−1  
−1  
Bits  
LSB  
LSB  
R-INL  
R-DNL  
+1  
+1  
See Table 5 and Table 6  
−1  
VSS  
0.5  
15  
+1  
%
%
Code = full scale  
Code = zero scale  
5
ppm/°C  
35  
70  
RESISTOR TERMINALS  
Terminal Voltage Range5, 7  
Capacitance5 A  
VDD  
V
pF  
f = 1 MHz, measured to GND, code =  
half scale  
f = 1 MHz, measured to GND, code =  
half scale  
90  
40  
Capacitance5 W  
pF  
Common-Mode Leakage Current5  
VA = VW  
50  
nA  
DIGITAL INPUTS  
Input Logic5  
High  
VINH  
VINL  
IIN  
2.0  
V
V
µA  
pF  
Low5  
0.8  
Input Current  
Input Capacitance5  
DIGITAL OUTPUT  
Output Voltage5  
High  
1
5
CIN  
VOH  
VOL  
RPULL_UP = 2.2 kΩ to VDD  
RPULL_UP = 2.2 kΩ to VDD  
VDD − 0.1  
V
Low  
VDD = 2.7 V to 5.5 V, VSS = 0 V  
VDD = 2.5 V to 2.75 V, VSS = −2.5 V to −2.75 V  
0.4  
0.6  
+1  
V
V
µA  
pF  
Tristate Leakage Current  
Output Capacitance5  
POWER SUPPLIES  
Single-Supply Power Range  
Dual-Supply Power Range  
Supply Current  
−1  
5
VSS = 0 V  
2.7  
2.5  
5.5  
2.75  
V
V
Positive  
Negative  
50-TP Store Current5, 8  
IDD  
ISS  
1
µA  
µA  
−1  
Positive  
Negative  
IDD_OTP_STORE  
ISS_OTP_STORE  
4
−4  
mA  
mA  
OTP Read Current5, 9  
Positive  
Negative  
Power Dissipation10  
Power Supply Rejection Ratio5  
IDD_OTP_READ  
ISS_OTP_READ  
500  
5.5  
µA  
µA  
µW  
dB  
−500  
VIH = VDD or VIL = GND  
ΔVDD/ΔVSS = 5 V 10%  
RAW = 20 kΩ  
RAW = 50 kΩ  
RAW = 100 kΩ  
PSRR  
−66  
−75  
−78  
−55  
−67  
−70  
Rev. F | Page 5 of 24  
 
AD5270/AD5271  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1 Max  
Unit  
DYNAMIC CHARACTERISTICS5, 11  
Bandwidth  
−3 dB, RAW = 10 kΩ, Terminal W, see Figure 42  
RAW = 20 kΩ  
RAW = 50 kΩ  
kHz  
300  
120  
60  
RAW = 100 kΩ  
Total Harmonic Distortion  
Resistor Noise Density  
VA = 1 V rms, f = 1 kHz, code = half scale  
RAW = 20 kΩ  
RAW = 50 kΩ  
RAW = 100 kΩ  
Code = half scale, TA = 25°C  
RAW = 20 kΩ  
dB  
−90  
−88  
−85  
nV/√Hz  
13  
25  
32  
RAW = 50 kΩ  
RAW = 100 kΩ  
1 Typical specifications represent average readings at 25°C, VDD = 5 V, and VSS = 0 V.  
2 Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions.  
3 The maximum current in each code is defined by IAW = (VDD − 1)/RAW  
.
4 The terms resistor performance mode and R-Perf mode are used interchangeably. See the Resistor Performance Mode section.  
5 Guaranteed by design and not subject to production test.  
6 See Figure 25 for more details.  
7 Resistor Terminal A and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground referenced bipolar  
signal adjustment.  
8 Different from operating current, the supply current for the fuse program lasts approximately 55 ms.  
9 Different from operating current, the supply current for the fuse read lasts approximately 500 ns.  
10  
P
is calculated from (IDD × VDD) + (ISS × VSS).  
DISS  
11 All dynamic characteristics use VDD = +2.5 V, VSS = −2.5 V.  
Table 5. AD5271—20 kΩ Resistor Performance Mode Code Range  
Resistor Tolerance per Code  
|VDD − VSS| = 4.5 V to 5.5 V  
|VDD − VSS| = 2.7 V to 4.5 V  
R-TOLERANCE  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
From 0x1E to 0xFF  
From 0x0F to 0xFF  
From 0x06 to 0xFF  
From 0x32 to 0xFF  
From 0x19 to 0xFF  
From 0x0E to 0xFF  
Table 6. AD5271—50 kΩ and 100 kΩ Resistor Performance Mode Code Range  
Resistor Tolerance per Code  
RAW = 50 kΩ  
RAW = 100 kΩ  
R-TOLERANCE  
1% R-Tolerance  
2% R-Tolerance  
3% R-Tolerance  
From 0x1E to 0xFF  
From 0x14 to 0xFF  
From 0x0A to 0xFF  
From 0x14 to 0xFF  
From 0x0F to 0xFF  
From 0x0A to 0xFF  
Rev. F | Page 6 of 24  
 
 
 
 
Data Sheet  
AD5270/AD5271  
INTERFACE TIMING SPECIFICATIONS  
VDD = 2.5 V to 5.5 V, VSS = 0 V; VDD = 2.5 V, VSS = −2.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 7.  
Parameter  
Limit1  
20  
10  
10  
15  
5
Unit  
Test Conditions/Comments  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge setup time  
Data setup time  
2
t1  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
μs max  
ns max  
μs max  
ms max  
ms max  
ms max  
t2  
t3  
t4  
t5  
t6  
t7  
5
1
Data hold time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
SYNC rising edge to next SCLK fall ignored  
SCLK rising edge to SDO valid  
RDAC register write command execute time  
RDAC register write command execute time  
Memory readback execute time  
Memory program time  
3, 4  
t8  
500  
15  
450  
2
600  
6
350  
0.6  
2
t9  
5
t10  
tRDAC_R-PERF  
tRDAC_NORMAL  
tMEMORY_READ  
tMEMORY_PROGRAM  
tRESET  
Reset 50-TP restore time  
Power-on 50-TP restore time  
6
tPOWER-UP  
1 All input signals are specified with tr = tf = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
2 Maximum SCLK frequency is 50 MHz.  
3 Refer to tRDAC_R-PER and tRDAC_NORMAL for RDAC register write operations.  
4 Refer to t  
t
MEMORY_READ and MEMORY_PROGRAM for memory commands operations.  
5 RPULL_UP = 2.2 kΩ to VDD with a capacitance load of 168 pF.  
6 Maximum time after VDD − VSS is equal to 2.5 V.  
Shift Register and Timing Diagrams  
DB9 (MSB)  
DB0 (LSB)  
C3  
C1  
C0  
D9  
D7  
D6  
D5  
D4  
D3  
D0  
D8  
0
0
C2  
D2  
D1  
DATA BITS  
CONTROL BITS  
Figure 2. Shift Register Content  
t7  
t4  
t2  
t1  
SCLK  
SYNC  
t9  
t8  
t3  
t5  
D1  
t6  
DIN  
0
0
C3  
C2  
D7  
D6  
D5  
D2  
D0  
SDO  
Figure 3. Write Timing Diagram (CPOL = 0, CPHA = 1)  
Rev. F | Page 7 of 24  
 
 
 
 
 
 
AD5270/AD5271  
Data Sheet  
SCLK  
t9  
SYNC  
DIN  
0
0
C3  
D0  
D0  
0
0
C3  
t10  
C3  
D1  
D0  
SDO  
X
X
D1  
D0  
Figure 4. Read Timing Diagram (CPOL = 0, CPHA = 1)  
Rev. F | Page 8 of 24  
Data Sheet  
AD5270/AD5271  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 8.  
Parameter  
Rating  
VDD to GND  
VSS to GND  
VDD to VSS  
–0.3 V to +7.0 V  
+0.3 V to −7.0 V  
7 V  
VA, VW to GND  
VSS − 0.3 V, VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
7 V  
THERMAL RESISTANCE  
Digital Input and Output Voltage to GND  
EXT_CAP to VSS  
IA, IW  
θJA is defined by JEDEC specification JESD-51 and the value is  
dependent on the test board and test environment.  
Continuous  
Table 9. Thermal Resistance  
RAW = 20 kΩ  
RAW = 50 kΩ, 100 kΩ  
Pulsed1  
Frequency > 10 kHz  
Frequency ≤ 10 kHz  
Operating Temperature Range4  
Maximum Junction Temperature  
(TJ Maximum)  
3 mA  
2 mA  
1
Package Type  
10-Lead LFCSP  
10-Lead MSOP  
θJA  
50  
θJC  
3
N/A  
Unit  
°C/W  
°C/W  
MCC2/d3  
MCC2/√d3  
−40°C to +125°C  
150°C  
135  
1 JEDEC 2S2P test board, still air (0 m/s air flow).  
ESD CAUTION  
Storage Temperature Range  
Reflow Soldering  
−65°C to +150°C  
Peak Temperature  
260°C  
Time at Peak Temperature  
Package Power Dissipation  
20 sec to 40 sec  
(TJ max − TA)/θJA  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A and W terminals at a given  
resistance.  
2 Maximum continuous current.  
3 Pulse duty factor.  
4 Includes programming of 50-TP memory.  
Rev. F | Page 9 of 24  
 
 
 
 
 
 
 
 
 
AD5270/AD5271  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
10  
9
V
1
2
3
4
5
SYNC  
DD  
A
SCLK  
DIN  
AD5270/  
AD5271  
(EXPOSED  
PAD)  
8
W
V
7
SDO  
GND  
SS  
V
1
2
3
4
5
10  
9
SYNC  
SCLK  
DIN  
DD  
A
AD5270/  
AD5271  
6
EXT_CAP  
8
W
TOP VIEW  
V
7
NOTES  
SS  
EXT_CAP  
SDO  
GND  
(Not to Scale)  
1. THE EXPOSED PAD IS LEFT FLOATING  
OR IS TIED TO V  
6
.
SS  
Figure 6. LFCSP Pin Configuration  
Figure 5. MSOP Pin Configuration  
Table 10. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
VDD  
A
W
Positive Power Supply. Decouple this pin with 0.1 μF ceramic capacitors and 10 μF capacitors.  
Terminal A of RDAC. VSS ≤ VA ≤ VDD.  
Wiper Terminal of RDAC. VSS ≤ VW ≤ VDD.  
Negative Supply. Connect to 0 V for single-supply applications. Decouple this pin with 0.1 μF ceramic  
capacitors and 10 μF capacitors.  
VSS  
5
EXT_CAP  
External Capacitor. Connect a 1 μF capacitor between EXT_CAP and VSS. This capacitor must have a voltage  
rating of ≥7 V.  
6
7
GND  
SDO  
Ground Pin, Logic Ground Reference.  
Serial Data Output. This pin can be used to clock data from the shift register in daisy-chain mode or in  
readback mode. This open-drain output requires an external pull-up resistor even if it is not use.  
8
DIN  
Serial Data Line. This pin is used in conjunction with the SCLK line to clock data into or out of the 16-bit input  
register.  
9
SCLK  
SYNC  
Serial Clock Input. Data is clocked into the shift register on the falling edge of the serial clock input. Data can  
be transferred at rates up to 50 MHz.  
10  
Falling Edge Synchronization Signal. This is the frame synchronization signal for the input data. When SYNC  
goes low, it enables the shift register and data is transferred in on the falling edges of the subsequent clocks.  
The selected register is updated on the rising edge of SYNC following the 16th clock cycle. If SYNC is taken  
high before the 16th clock cycle, the rising edge of SYNC acts as an interrupt, and the write sequence is  
ignored by the RDAC.  
EPAD  
Exposed Pad  
Leave floating or connected to VSS.  
Rev. F | Page 10 of 24  
 
Data Sheet  
AD5270/AD5271  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.8  
0.8  
0.6  
0.4  
0.2  
+125°C  
R
= 20kΩ  
T
= 25°C  
AW  
A
20kΩ  
50kΩ  
100kΩ  
+25°C  
–40°C  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
0
–0.2  
–0.4  
0
256  
512  
768  
1023  
0
128  
256  
384  
512  
640  
768  
896  
1023  
CODE (Decimal)  
CODE (Decimal)  
Figure 7. R-INL in R-Perf Mode vs. Code vs. Temperature (AD5270)  
Figure 10. R-INL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5270)  
0.6  
0.2  
T
= 25°C  
A
R
= 20kΩ  
AW  
0.1  
0
0.4  
0.2  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.2  
–0.4  
–0.6  
–40°C  
256  
+25°C  
512  
+125°C  
768  
20kΩ  
50kΩ  
100kΩ  
0
256  
512  
CODE (Decimal)  
768  
1023  
0
128  
384  
640  
896  
1023  
CODE (Decimal)  
Figure 11. R-DNL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5270)  
Figure 8. R-DNL in R-Perf Mode vs. Code vs. Temperature (AD5270)  
0.6  
0.50  
+125°C  
+25°C  
–40°C  
20kΩ  
50kΩ  
100kΩ  
T
= 25°C  
A
R
= 20kΩ  
AW  
0.40  
0.30  
0.20  
0.4  
0.2  
0
–0.2  
–0.4  
0.10  
0
–0.10  
0
256  
512  
768  
1023  
0
128  
256  
384  
512  
640  
768  
896  
1023  
CODE (Decimal)  
CODE (Decimal)  
Figure 9. R-INL in Normal Mode vs. Code vs. Temperature (AD5270)  
Figure 12. R-INL in Normal Mode vs. Code vs. Nominal Resistance (AD5270)  
Rev. F | Page 11 of 24  
 
AD5270/AD5271  
Data Sheet  
0.15  
0.15  
0.10  
+125°C  
+25°C  
–40°C  
T
= 25°C  
20kΩ  
50kΩ  
100kΩ  
R
= 20kΩ  
A
AW  
0.10  
0.05  
0
0.05  
0
–0.05  
–0.05  
–0.10  
–0.10  
–0.15  
–0.20  
–0.15  
0
256  
512  
768  
1023  
0
128  
256  
384  
512  
640  
768  
896  
1023  
CODE (Decimal)  
CODE (Decimal)  
Figure 13. R-DNL in Normal Mode vs. Code vs. Temperature (AD5270)  
Figure 16. R-DNL in Normal Mode vs. Code vs. Nominal Resistance (AD5270)  
0.15  
0.20  
+125°C  
+25°C  
–40°C  
T
= 25°C  
20kΩ  
A
R
= 20kΩ  
AW  
100kΩ  
0.15  
0.10  
0.05  
0.10  
0.05  
0
0
–0.05  
–0.10  
–0.05  
–0.10  
0
64  
128  
192  
255  
0
64  
128  
192  
255  
CODE (Decimal)  
CODE (Decimal)  
Figure 17. R-INL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5271)  
Figure 14. R-INL in R-Perf Mode vs. Code vs. Temperature (AD5271)  
0.06  
0.15  
+125°C  
+25°C  
–40°C  
R
= 20kΩ  
T
= 25°C  
AW  
A
0.04  
0.02  
0.10  
0.05  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
0
–0.05  
–0.10  
–0.15  
20kΩ  
100kΩ  
–0.14  
0
64  
128  
192  
255  
0
64  
128  
CODE (Decimal)  
192  
255  
CODE (Decimal)  
Figure 18. R-DNL in R-Perf Mode vs. Code vs. Nominal Resistance (AD5271)  
Figure 15. R-DNL in R-Perf Mode vs. Code vs. Temperature (AD5271)  
Rev. F | Page 12 of 24  
Data Sheet  
AD5270/AD5271  
0.10  
0.15  
0.10  
0.05  
0
+125°C  
+25°C  
–40°C  
20kΩ  
100kΩ  
T
= 25°C  
R
= 20kΩ  
A
AW  
0.08  
0.06  
0.04  
0.02  
0
–0.05  
–0.10  
–0.02  
0
64  
128  
192  
255  
0
64  
128  
192  
255  
CODE (Decimal)  
CODE (Decimal)  
Figure 22. R-INL in Normal Mode vs. Code vs. Nominal Resistance (AD5271)  
Figure 19. R-INL in Normal Mode vs. Code vs. Temperature (AD5271)  
0.010  
0.03  
+125°C  
+25°C  
–40°C  
T
= 25°C  
100kΩ  
20kΩ  
R
= 20kΩ  
A
AW  
0.008  
0.006  
0.02  
0.01  
0
0.004  
0.002  
0
–0.01  
–0.02  
–0.002  
–0.03  
0
64  
128  
192  
255  
0
64  
128  
192  
255  
CODE (Decimal)  
CODE (Decimal)  
Figure 23. R-DNL in Normal Mode vs. Code vs. Nominal Resistance (AD5271)  
Figure 20. R-DNL in Normal Mode vs. Code vs. Temperature (AD5271)  
1.0  
500  
400  
I
= 5V  
DD  
0.8  
0.6  
0.4  
300  
200  
I
I
= 3V  
DD  
100  
I
= 3V  
0
SS  
–100  
–200  
–300  
–400  
–500  
= 5V  
SS  
0.2  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VOLTAGE (V)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100 110  
TEMPERATURE (°C)  
Figure 24. Supply Current IDD vs. Digital Input Voltage  
Figure 21. Supply Current (IDD, ISS) vs. Temperature  
Rev. F | Page 13 of 24  
AD5270/AD5271  
Data Sheet  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
7
6
5
4
3
2
V
/V = 5V/0V  
DD SS  
V
/V = 5V/0V  
DD SS  
20kΩ  
50kΩ  
100kΩ  
20kΩ  
50kΩ  
100kΩ  
1
0
0
0
0
256  
64  
512  
128  
768  
192  
1023 AD5270  
255 AD5271  
0
0
256  
64  
512  
128  
768  
192  
1023 AD5270  
255 AD5271  
CODE (Decimal)  
CODE (Decimal)  
Figure 28. Theoretical Maximum Current vs. Code  
Figure 25. Tempco ΔRWA/ΔT vs. Code  
0
0
AD5270 (AD5271)  
0x200 (0x80)  
0x100 (0x40)  
0x080 (0x20)  
0x040 (0x10)  
0x020 (0x08)  
0x010 (0x04)  
0x008 (0x02)  
0x004 (0x01)  
AD5270 (AD5271)  
0x200 (0x80)  
–10  
–20  
–10 0x100 (0x40)  
0x080 (0x20)  
–20  
0x040 (0x10)  
–30  
–40  
–50  
–60  
–70  
0x020 (0x08)  
–30  
0x010 (0x04)  
0x008 (0x02)  
–40  
0x004 (0x01)  
0x002  
0x001  
0x002  
–50  
0x001  
–60  
1k  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26. 20 kΩ Gain vs. Code vs. Frequency  
Figure 29. 100 kΩ Gain vs. Code vs. Frequency  
0
–10  
–20  
–30  
0
V
/V = 5V/0V  
DD SS  
AD5270 (AD5271)  
0x200 (0x80)  
CODE = HALF SCALE  
–10  
0x100 (0x40)  
0x080 (0x20)  
0x040 (0x10)  
0x020 (0x08)  
0x010 (0x04)  
50kΩ  
100kΩ  
20kΩ  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0x008 (0x02)  
0x004 (0x01)  
–40  
–50  
–60  
0x002  
0x001  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 27. 50 kΩ Gain vs. Code vs. Frequency  
Figure 30. PSRR vs. Frequency  
Rev. F | Page 14 of 24  
 
Data Sheet  
AD5270/AD5271  
0
0
–10  
–20  
20kΩ  
50kΩ  
100kΩ  
V
/V = 5V/0V  
DD SS  
V
/V = 5V/0V  
DD SS  
CODE = HALF SCALE  
NOISE BW = 22kHz  
V
CODE = HALF SCALE  
fIN = 1kHz  
= 1V rms  
NOISE BW = 22kHz  
–20  
–40  
–60  
IN  
20kΩ  
50kΩ  
100kΩ  
–30  
–40  
–50  
–60  
–70  
–80  
–80  
–90  
–100  
–100  
0.001  
100  
1k  
10k  
0.01  
0.1  
)
1
100k  
VOLTAGE (V  
FREQUENCY (Hz)  
RMS  
Figure 31. THD + N vs. Frequency  
Figure 34. THD + N vs. Amplitude  
0.03  
0.02  
0.01  
0
0.0010  
0.0005  
0
V
/V = 5V/0V  
DD SS  
= 200µA  
20kΩ  
50kΩ  
100kΩ  
I
AW  
CODE = HALF SCALE  
–0.01  
–0.0005  
–0.0010  
–0.0015  
–0.02  
–0.03  
–0.04  
–1  
4
9
14  
19  
–10  
0
10  
20  
30  
40  
50  
60  
TIME (µs)  
TIME (µs)  
Figure 32. Maximum Glitch Energy  
Figure 35. Digital Feedthrough  
45  
40  
70  
11.25  
10.00  
8.75  
15.5  
T
= 25°C  
A
V
/V = 5V/0V  
DD SS  
20kΩ  
50kΩ  
100kΩ  
20kΩ  
50kΩ  
100kΩ  
60  
50  
40  
30  
20  
10  
0
15.0  
12.5  
10.0  
7.5  
5.0  
2.5  
0
35  
30  
7.50  
6.25  
25  
20  
5.00  
3.75  
2.50  
15  
10  
1.25  
0
5
0
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
V
TEMPERATURE (°C)  
DD  
Figure 36. Maximum Code Loss vs. Temperature  
Figure 33. Maximum Code Loss vs. Voltage  
Rev. F | Page 15 of 24  
AD5270/AD5271  
Data Sheet  
8
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
V
/V = 5V/0V  
= 10µA  
DD SS  
I
AW  
CODE = HALF SCALE  
7
6
5
4
–0.001  
–0.002  
0
100 200 300 400 500 600 700 800 900 1000  
OPERATION AT 150°C (Hours)  
0.07  
0.09  
0.11  
0.13  
0.15  
0.17  
TIME (Seconds)  
Figure 37. VEXT_CAP Waveform While Writing Fuse  
Figure 38. Long-Term Drift Accelerated Average by Burn-In  
Rev. F | Page 16 of 24  
Data Sheet  
AD5270/AD5271  
TEST CIRCUITS  
Figure 39 to Figure 43 define the test conditions used in the Specifications section.  
DUT  
DUT  
I
W
1GΩ  
W
W
A
A
V
V
V
MS  
MS  
Figure 42. Gain vs. Frequency  
Figure 39. Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
DUT  
GND  
VMS  
R
=
=
WA  
I
I
W
CM  
+2.75V  
–2.75V  
W
CODE = 0x00  
DUT  
A
RWA  
I
W
R
W
2
A
W
GND  
V
NC  
GND  
–2.75V  
MS  
NC = NO CONNECT  
+2.75V  
Figure 40. Wiper Resistance  
Figure 43. Common Leakage Current  
V+ = V ±10%  
DD  
V
V
MS  
PSRR (dB) = 20 LOG  
DD  
ΔV  
ΔV  
%
%
MS  
DD  
I
W
PSS (%/%) =  
V
DD  
W
V+  
A
V
MS  
Figure 41. Power Supply Sensitivity (PSS, PSRR)  
Rev. F | Page 17 of 24  
 
 
 
 
AD5270/AD5271  
Data Sheet  
THEORY OF OPERATION  
The AD5270 and AD5271 are designed to operate as true  
variable resistors for analog signals within the terminal voltage  
range of VSS < VTERM < VDD. The RDAC register contents deter-  
mine the resistor wiper position. The RDAC register acts as a  
scratchpad register, which allows unlimited changes of resistance  
settings. The RDAC register can be programmed with any position  
setting using the SPI interface. When a desirable wiper position  
is found, this value can be stored in a 50-TP memory register.  
Thereafter, the wiper position is always restored to that position  
for subsequent power-up. The storing of 50-TP data takes approx-  
imately 350 ms; during this time, the AD5270/AD5271 lock to  
prevent any changes from taking place.  
RDAC REGISTER  
The RDAC register directly controls the position of the digital  
rheostat wiper. For example, when the RDAC register is loaded  
with all zeros, the wiper is connected to Terminal A of the variable  
resistor. The RDAC register is a standard logic register and  
there is no restriction on the number of changes allowed. The  
basic mode of setting the variable resistor wiper position  
(programming the RDAC register) is accomplished by loading  
the serial data input register with Command 1 (see Table 11) and  
with the desired wiper position data.  
50-TP MEMORY BLOCK  
The AD5270/AD5271 contain an array of 50-TP programmable  
memory registers, which allow the wiper position to be pro-  
grammed up to 50 times. Table 13 shows the memory map.  
When the desired wiper position is determined, the user can  
load the serial data input register with Command 3 (see Table 11)  
which stores the wiper position data in a 50-TP memory  
register. The first address to be programmed is Location 0x01  
(see Table 13); the AD5270/AD5271 increments the 50-TP  
memory address for each subsequent program until the memory  
is full. Programming data to 50-TP consumes approximately  
4 mA for 55 ms, and takes approximately 350 ms to complete,  
during which time the shift register locks to prevent any changes  
from occurring. Bit C3 of the control register can be polled to  
verify that the fuse program command was completed properly.  
No change in supply voltage is required to program the 50-TP  
memory; however, a 1 μF capacitor on the EXT_CAP pin is  
required (see Figure 46). Prior to 50-TP activation, the AD5270  
and the AD5271 preset to midscale on power up.  
The AD5270/AD5271 also feature a patented 1% end-to-end  
resistor tolerance. This simplifies precision, rheostat mode, and  
open-loop applications where knowledge of absolute resistance  
is critical.  
SERIAL DATA INTERFACE  
SYNC  
The AD5270/AD5271 contain a serial interface (  
, SCLK,  
DIN , and SDO), which is compatible with SPI interface standards,  
as well as most DSPs. This device allows writing of data via the  
serial interface to every register.  
SHIFT REGISTER  
For the AD5270/AD5271, the shift register is 16 bits wide, as  
shown in Figure 2. The 16-bit word consists of two unused bits,  
which should be set to zero, followed by four control bits and  
10 RDAC data bits (note that for the AD5271 only, the lower  
two RDAC data bits are don’t care if the RDAC register is read  
from or written to). Data is loaded MSB first (Bit 15). The four  
control bits determine the function of the software command as  
listed in Table 11. Figure 3 shows a timing diagram of a typical  
AD5270/AD5271 write sequence.  
WRITE PROTECTION  
At power-up, the serial data input register write commands for  
both the RDAC register and the 50-TP memory registers are  
disabled. The RDAC write protect bit, C1, of the control register  
(see Table 13 and Table 14) is set to 0 by default. This disables  
any change of the RDAC register content regardless of the  
software commands, except that the RDAC register can be  
refreshed from the 50-TP memory using the software reset,  
Command 4. To enable programming of the RDAC register, the  
write protect bit (Bit C1), of the control register must first be  
programmed by loading the serial data input register with  
Command 7. To enable programming of the 50-TP memory,  
the program enable bit (Bit C0) of the control register, which is  
set to 0 by default, must first be set to 1.  
SYNC  
The write sequence begins by bringing the  
line low. The  
SYNC  
pin must be held low until the complete data-word is  
SYNC  
loaded from the DIN pin. When  
returns high, the serial  
data-word is decoded according to the instructions in Table 11.  
The command bits (Cx) control the operation of the digital  
potentiometer. The data bits (Dx) are the values that are loaded  
into the decoded register. The AD5270/AD5271 have an internal  
counter that counts a multiple of 16 bits (a frame) for proper  
operation. For example, AD5270/AD5271 each works with a  
32-bit word but do not work properly with a 31-bit or 33-bit  
word. The AD5270/AD5271 do not require a continuous SCLK  
SYNC  
when  
digital input buffers, operate all serial interface pins close to the  
DD supply rails.  
is high. To minimize power consumption in the  
V
Rev. F | Page 18 of 24  
 
 
 
 
 
 
Data Sheet  
AD5270/AD5271  
Data from the selected memory location is clocked out of the  
SDO pin during the next SPI operation. A binary encoded  
version address of the most recently programmed wiper memory  
location can be read back using Command 6 (see Table 11). This  
can be used to monitor the spare memory status of the 50-TP  
memory block.  
RDAC AND 50-TP READ OPERATION  
A serial data output SDO pin is available for readback of the  
internal RDAC register or 50-TP memory contents. The  
contents of the RDAC register can be read back through SDO  
by using Command 2 (see Table 11). Data from the RDAC  
register is clocked out of the SDO pin during the last 10 clocks  
of the next SPI operation.  
Table 12 provides a sample listing for the sequence of serial data  
input (DIN) words with the serial data output appearing at the  
SDO pin in hexadecimal format for a write and read to both the  
RDAC register and the 50-TP memory (Memory Location 20).  
It is possible to read back the contents of any of the 50-TP  
memory registers through SDO by using Command 5. The  
lower six LSB bits, D0 to D5 of the data byte, select which  
memory location is to be read back, as shown in Table 13.  
Table 11. Command Operation Truth Table  
Command[DB13:DB10]  
Data[DB9:DB0]1  
D9 D8 D7 D6 D5 D4 D3 D2  
Command  
Number  
C3  
0
C2  
0
C1  
0
C0  
0
D1 D0 Operation  
NOP: do nothing.  
0
1
X
X
X
X
X
X
X
X
X
X
0
0
0
1
D9 D8 D7 D6 D5 D4 D3 D2  
D12 D02 Write contents of serial register  
data to RDAC.  
2
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Read contents of RDAC wiper  
register.  
3
X
Store wiper setting: store RDAC  
setting to 50-T P.  
4
X
Software reset: refresh RDAC with  
last 50-TP memory stored value.  
53  
6
D5 D4 D3 D2  
D1  
X
D0 Read contents of 50-TP from SDO  
output in the next frame.  
X
X
X
X
X
X
X
X
Read address of last 50-TP  
programmed memory location.  
74  
D2  
D1  
D0  
Write contents of serial register  
data to control register.  
8
9
1
1
0
0
0
0
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Read contents of control register.  
Software shutdown.  
D0  
D0 = 0; normal mode.  
D0 = 1; device placed in shutdown  
mode.  
1 X is don’t care.  
2 AD5271 = don’t care.  
3 See Table 15 for 50-TP memory map.  
4 See Table 14 for bit details.  
Rev. F | Page 19 of 24  
 
 
 
 
 
 
AD5270/AD5271  
Data Sheet  
SHUT-DOWN MODE  
RESISTOR PERFORMANCE MODE  
The AD5270/AD5271 can be shut down by executing the  
software shutdown command, Command 9 (see Table 11), and  
setting the LSB to 1. This feature places the RDAC in a zero-  
power-consumption state where Terminal Ax is open circuited  
and the Wiper Terminal Wx remains connected. It is possible to  
execute any command from Table 11 while the AD5270/AD5271  
are in shutdown mode. The parts can be taken out of shutdown  
mode by executing Command 9 and setting the LSB to 0 or by a  
software reset, Command 4 (see Table 11).  
This mode activates a new, patented 1% end-to-end resistor  
tolerance that ensures a 1% resistor tolerance error on each  
code, that is, code = half scale, RWA = 10 kΩ 100 Ω. See Table 2,  
Table 3, Table 5, and Table 6 to verify which codes achieve 1%  
resistor tolerance. The resistor performance mode is activated by  
programming Bit C2 of the control register.  
RESET  
The AD5270/AD5271 can be reset through software by executing  
Command 4 (see Table 11). The reset command loads the  
RDAC register with the contents of the most recently programmed  
50-TP memory location. The RDAC register loads with  
midscale if no 50-TP memory location has been previously  
programmed.  
Table 12. Write and Read to RDAC and 50-TP Memory  
DIN  
SDO1  
Action  
0x1C03 0xXXXX Enable update of the wiper position and the 50-TP memory contents through the digital interface.  
0x0500 0x1C03 Write 0x100 to the RDAC register; wiper moves to ¼ full-scale position.  
0x0800 0x0500 Prepares data read from RDAC register.  
0x0C00 0x100  
Stores RDAC register content into the 50-TP memory. A 16-bit word appears out of SDO, where the last 10-bits contain  
the contents of the RDAC register (0x100).  
0x1800 0x0C00 Prepares data read of last programmed 50-TP memory monitor location.  
0x0000 0xXX19 NOP Instruction 0 sends a 16-bit word out of SDO, where the six LSBs last six bits contain the binary address of the last  
programmed 50-TP memory location, for example, 0x19 (see Table 13).  
0x1419 0x0000 Prepares data read from Memory Location 0x19.  
0x2000 0x0100 Prepares data read from the control register. Sends a 16-bit word out of SDO, where the last 10-bits contain the  
contents of Memory Location 0x19.  
0x0000 0xXXXX NOP Instruction 0 sends a 16-bit word out of SDO, where the last four bits contain the contents of the control register.  
If Bit C3 = 1, the fuse program command successful.  
1 X is don’t care.  
Table 13. Control Register Bit Map  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
0
0
0
0
0
0
C3  
C2  
C1  
C0  
Table 14. Control Register Bit Description  
Bit Name  
Description  
C0  
50-TP program enable  
0 = 50-TP program disabled (default)  
1 = enable device for 50-TP program  
RDAC register write protect  
0 = wiper position frozen to value in 50-TP memory (default)1  
1 = allow update of wiper position through digital interface  
R-performance enable  
0 = RDAC resistor tolerance calibration enabled (default)  
1 = RDAC resistor tolerance calibration disabled  
50-TP memory program success bit  
C1  
C2  
C3  
0 = fuse program command unsuccessful (default)  
1 = fuse program command successful  
1 Wiper position frozen to the last value programmed in the 50-TP memory. The wiper is frozen to midscale if the 50-TP memory has not been previously programmed.  
Rev. F | Page 20 of 24  
 
 
 
 
 
 
 
 
Data Sheet  
AD5270/AD5271  
Table 15. Memory Map  
Data Byte[DB9:DB8]1  
Command Number  
D9  
X
D8  
X
D7  
X
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Register Contents  
5
Reserved  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
0
0
1
0
1
1
0
0
0
1
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
1st programmed wiper location (0x01)  
2nd programmed wiper location (0x02)  
3rd programmed wiper location (0x03)  
4th programmed wiper location (0x04)  
10th programmed wiper location (0xA)  
20th programmed wiper location (0x14)  
30th programmed wiper location (0x1E)  
40th programmed wiper location (0x28)  
50th programmed wiper location (0x32)  
X
X
X
0
1
1
0
0
1
0
1 X is don’t care.  
V
DD  
SDO PIN AND DAISY-CHAIN OPERATION  
R
2.2k  
AD5270/  
AD5271  
U1  
AD5270/  
AD5271  
U2  
SDO  
P
The serial data output pin (SDO) serves two purposes: it can be  
used to read the contents of the wiper setting and 50-TP values  
using Command 2 and Command 5, respectively (see Table 11),  
or the SDO pin can be used in daisy-chain mode. Data is clocked  
out of SDO on the rising edge of SCLK. The SDO pin contains  
an open-drain N-channel FET that requires a pull-up resistor.  
To place the pin in high impedance and mini-mize the power  
dissipation when the pin is used, the 0x8001 data word followed  
by Command 0 should be sent to the part. Table 16 provides a  
sample listing for the sequence of the serial data input (DIN).  
Daisy chaining minimizes the number of port pins required  
from the controlling IC. As shown in Figure 44, the user must  
tie the SDO pin of one package to the DIN pin of the next  
package. The user may need to increase the clock period because  
the pull-up resistor and the capacitive loading at the SDO-to-  
DIN interface may require additional time delay between  
subsequent devices. When two AD5270/AD5271 devices are  
daisy-chained, 32 bits of data are required. The first 16 bits go to  
U2, and the second 16 bits go to U1.  
MOSI  
SS  
DIN  
DIN  
SDO  
µC  
SCLK  
SYNC  
SCLK  
SYNC SCLK  
Figure 44. Daisy-Chain Configuration Using SDO  
RDAC ARCHITECTURE  
To achieve optimum performance, Analog Devices has patented  
the RDAC segmentation architecture for all the digital potentio-  
meters. In particular, the AD5270/AD5271 employ a three-stage  
segmentation approach as shown in Figure 45.The AD5270/  
AD5271 wiper switch is designed with the transmission gate  
CMOS topology.  
A
R
L
L
Table 16. Minimize Power Dissipation at the SDO Pin  
R
R
R
M
M
DIN  
SDO1  
Action  
0xXXXX 0xXXXX  
0x8001 0xXXXX  
Last user command sent to the digipot.  
Prepares the SDO pin to be placed in  
high impedance mode.  
S
W
8-/10-BIT  
ADDRESS  
DECODER  
R
W
0x0000 High  
The SDO pin is placed in high  
W
Impedance impedance.  
R
W
1 X is don’t care.  
SYNC  
Keep the  
pin low until all 32 bits are clocked to their  
Figure 45. Simplified RDAC Circuit  
SYNC  
respective serial registers. The  
complete the operation.  
pin is then pulled high to  
Rev. F | Page 21 of 24  
 
 
 
 
 
 
 
 
AD5270/AD5271  
Data Sheet  
PROGRAMMING THE VARIABLE RESISTOR  
TERMINAL VOLTAGE OPERATING RANGE  
Rheostat Operation—1% Resistor Tolerance  
The positive VDD and negative VSS power supplies of the  
AD5270/AD5271 define the boundary conditions for proper  
2-terminal digital resistor operation. Supply signals present on  
Terminal A and Terminal W that exceed VDD or VSS are clamped  
by the internal forward-biased diodes, see Figure 47.  
The nominal resistance between Terminal W and Terminal A, RWA,  
is 20 kΩ, 50 kΩ, or 100 kΩ and has 1024-/256-tap points accessed  
by the wiper terminal. The 10-/8-bit data in the RDAC latch is  
decoded to select one of the 1024 or 256 possible wiper settings.  
The AD5270 and AD5271 contain an internal 1ꢀ resistor  
tolerance calibration feature that can be disabled or enabled,  
enabled by default, or by programming Bit C2 of the control  
register (see Table 13 and Table 14).  
V
DD  
A
The digitally programmed output resistance between the W  
terminal and the A terminal, RWA, is calibrated to give a  
maximum of 1ꢀ absolute resistance error over both the full  
supply and temperature ranges. As a result, the general  
equations for determining the digitally programmed output  
resistance between the W terminal and the A terminal are the  
following:  
W
V
SS  
Figure 47. Maximum Terminal Voltages Set by VDD and VSS  
For the AD5270  
The ground pins of the AD5270/AD5271 devices are primarily  
used as digital ground references. To minimize the digital ground  
bounce, join the AD5270/AD5271 ground terminal remotely  
to the common ground. The digital input control signals to the  
AD5270/AD5271 must be referenced to the device ground pin  
(GND), and must satisfy the logic level defined in the  
D
RWA(D)   
RWA  
(1)  
(2)  
1024  
For the AD5271  
D
RWA (D)   
RWA  
256  
Specifications section. An internal level shift circuit ensures that  
the common-mode voltage range of the three terminals extends  
from VSS to VDD, regardless of the digital input level.  
where:  
D is the decimal equivalent of the binary code loaded in the  
10-/8-bit RDAC register.  
R
WA is the end-to-end resistance.  
POWER-UP SEQUENCE  
Because there are diodes to limit the voltage compliance at  
Terminal A and Terminal W (see Figure 47), it is important to  
power VDD/VSS first before applying any voltage to Terminal A  
and Terminal W; otherwise, the diode is forward-biased such  
that VDD/VSS are powered unintentionally. The ideal power-up  
sequence is VSS, GND, VDD, digital inputs, VA, and VW. The  
order of powering VA, VW, and the digital inputs is not  
important as long as they are powered after VDD/VSS.  
In the zero-scale condition, a finite total wiper resistance of  
120 Ω is present. Regardless of which setting the part is oper-  
ating in, take care to limit the current between Terminal A to  
Terminal W to the maximum continuous current of 3 mA or  
a pulse current specified in Table 8. Otherwise, degradation or  
possible destruction of the internal switch contact can occur.  
EXT_CAP CAPACITOR  
A 1 μF capacitor to VSS must be connected to the EXT_CAP  
pin, as shown in Figure 46, on power-up and throughout the  
operation of the AD5270/AD5271.  
As soon as VDD is powered, the power-on preset activates which  
first sets the RDAC to midscale and then restores the last pro-  
grammed 50-TP value to the RDAC register.  
AD5270/  
AD5271  
50_OTP  
MEMORY  
EXT_CAP  
BLOCK  
C1  
1µF  
V
SS  
V
SS  
Figure 46. EXT_CAP Hardware Setup  
Rev. F | Page 22 of 24  
 
 
 
 
 
 
Data Sheet  
AD5270/AD5271  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 48. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
10  
6
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
0.50  
0.40  
0.30  
0.20 MIN  
1
5
BOTTOM VIEW  
TOP VIEW  
PIN 1  
INDICATOR  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 49. 10-Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
Rev. F | Page 23 of 24  
 
AD5270/AD5271  
Data Sheet  
ORDERING GUIDE  
Model1  
RAW (kΩ)  
20  
20  
50  
50  
100  
100  
20  
100  
20  
Resolution  
1,024  
1,024  
1,024  
1,024  
1,024  
1,024  
1,024  
1,024  
256  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
Evaluation Board  
Package Option  
Branding  
D1X  
D1X  
DDP  
DDP  
D1W  
D1W  
DDY  
DDX  
DE0  
AD5270BRMZ-20  
AD5270BRMZ-20-RL7  
AD5270BRMZ-50  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
CP-10-9  
CP-10-9  
RM-10  
RM-10  
RM-10  
RM-10  
CP-10-9  
CP-10-9  
AD5270BRMZ-50-RL7  
AD5270BRMZ-100  
AD5270BRMZ-100-RL7  
AD5270BCPZ-20-RL7  
AD5270BCPZ-100-RL7  
AD5271BRMZ-20  
AD5271BRMZ-20-RL7  
AD5271BRMZ-100  
AD5271BRMZ-100-RL7  
AD5271BCPZ-20-RL7  
AD5271BCPZ-100-RL7  
EVAL-AD5270SDZ  
20  
256  
256  
256  
256  
DE0  
100  
100  
20  
DDZ  
DDZ  
DE2  
100  
256  
DE1  
1 Z = RoHS Compliant Part.  
©2009–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08077-0-3/13(F)  
Rev. F | Page 24 of 24  
 
 

相关型号:

AD5270BCPZ100-R2

IC,DIGITAL POTENTIOMETER,LLCC,10PIN,PLASTIC
ADI

AD5270BCPZ20-R2

IC,DIGITAL POTENTIOMETER,LLCC,10PIN,PLASTIC
ADI

AD5270BCPZ20-U1

IC,DIGITAL POTENTIOMETER,LLCC,10PIN,PLASTIC
ADI

AD5270BRMZ-100

1024-/256-Position, 1% Resistor Tolerance Error, SPI Interface and 50-TP Memory Digital Rheostat
ADI

AD5270BRMZ-100-RL7

1024-/256-Position, 1% Resistor Tolerance Error, SPI Interface and 50-TP Memory Digital Rheostat
ADI

AD5270BRMZ-20

1024-/256-Position, 1% Resistor Tolerance Error, SPI Interface and 50-TP Memory Digital Rheostat
ADI

AD5270BRMZ-20-RL7

1024-/256-Position, 1% Resistor Tolerance Error, SPI Interface and 50-TP Memory Digital Rheostat
ADI

AD5270BRMZ-20-U1

IC,DIGITAL POTENTIOMETER,TSSOP,10PIN,PLASTIC
ADI

AD5270BRMZ-50

1024-/256-Position, 1% Resistor Tolerance Error, SPI Interface and 50-TP Memory Digital Rheostat
ADI

AD5270BRMZ-50-RL7

1024-/256-Position, 1% Resistor Tolerance Error, SPI Interface and 50-TP Memory Digital Rheostat
ADI

AD5270BRMZ100-U1

IC,DIGITAL POTENTIOMETER,TSSOP,10PIN,PLASTIC
ADI

AD5271

单通道、1%电阻容差、256位数字可变电阻器
ADI