AD1895AYRSZ [ROCHESTER]

SPECIALTY CONSUMER CIRCUIT, PDSO28, PLASTIC, MO-150AH, SSOP-28;
AD1895AYRSZ
型号: AD1895AYRSZ
厂家: Rochester Electronics    Rochester Electronics
描述:

SPECIALTY CONSUMER CIRCUIT, PDSO28, PLASTIC, MO-150AH, SSOP-28

光电二极管 商用集成电路
文件: 总25页 (文件大小:1582K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
192 kHz Stereo Asynchronous  
Sample Rate Converter  
a
AD1895  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Automatically Senses Sample Frequencies  
No Programming Required  
VDD_IO VDD_CORE  
RESET  
Attenuates Sample Clock Jitter  
3.3 V to 5 V Input and 3.3 V Core Supply Voltages  
Accepts 16-/18-/20-/24-Bit Data  
Up to 192 kHz Sample Rate  
Input/Output Sample Ratios from 7.75:1 to 1:8  
Bypass Mode  
Multiple AD1895 TDM Daisy-Chain Mode  
128 dB Signal-to-Noise and Dynamic Range  
(A-Weighted, 20 Hz to 20 kHz BW)  
Up to –122 dB THD + N  
AD1895  
MUTE_IN  
FS  
OUT  
SDATA_I  
SCLK_I  
LRCLK_I  
SDATA_O  
SCLK_O  
LRCLK_O  
FIFO  
FS  
IN  
SERIAL  
INPUT  
SMODE_IN_0  
SMODE_IN_1  
SMODE_IN_2  
TDM_IN  
SERIAL  
OUTPUT  
FIR  
FILTER  
SMODE_OUT_0  
SMODE_OUT_1  
DIGITAL  
PLL  
BYPASS  
MUTE_OUT  
WLNGTH_OUT_0  
WLNGTH_OUT_1  
Linear Phase FIR Filter  
CLOCK DIVIDER  
MMODE_0  
ROM  
Hardware Controllable Soft Mute  
Supports 256 
؋
 fS, 512 
؋
 fS, or 768 
؋
 fS Master Mode  
Clock  
Flexible 3-Wire Serial Data Port with Left-Justified,  
I2S, Right-Justified (16-, 18-, 20-, 24-Bit), and TDM  
Serial Port Modes  
MCLK_IN  
MMODE_2  
MCLK_OUT  
MMODE_1  
a digital signal processor. The serial output data is dithered down  
to 20, 18, or 16 bits when 20-, 18-, or 16-bit output data is  
selected. The AD1895 sample rate converts the data from the  
serial input port to the sample rate of the serial output port. The  
sample rate at the serial input port can be asynchronous with  
respect to the output sample rate of the output serial port. The  
master clock to the AD1895, MCLK, can be asynchronous to  
both the serial input and output ports.  
Master/Slave Input and Output Modes  
28-Lead SSOP Plastic Package  
APPLICATIONS  
Home Theater Systems, Automotive Audio Systems,  
DVD, DVD-R, CD-R, Set-Top Boxes, Digital Audio  
Effects Processors  
MCLK can either be generated off-chip or on-chip by the AD1895  
master clock oscillator. Since MCLK can be asynchronous to the  
input or output serial ports, a crystal can be used to generate  
MCLK internally to reduce noise and EMI emissions on the  
board. When MCLK is synchronous to either the output or input  
serial port, the AD1895 can be configured in a master mode where  
MCLK is divided down and used to generate the left/right  
and bit clocks for the serial port that is synchronous to MCLK.  
The AD1895 supports master modes of 256 × fS, 512 × fS, and  
768 × fS for both input and output serial ports.  
PRODUCT OVERVIEW  
The AD1895 is a 24-bit, high performance, single-chip, second  
generation asynchronous sample rate converter. Based upon  
Analog Devices’ experience with its first asynchronous sample  
rate converter, the AD1890, the AD1895 offers improved perfor-  
mance and additional features. This improved performance  
includes a THD + N range of –115 dB to –122 dB depending  
on sample rate and input frequency, 128 dB (A-Weighted)  
dynamic range, 192 kHz sampling frequencies for both input and  
output sample rates, improved jitter rejection, and 1:8 upsampling  
and 7.75:1 downsampling ratios. Additional features include  
more serial formats, a bypass mode, and better interfacing to  
digital signal processors.  
Conceptually, the AD1895 interpolates the serial input data by  
a rate of 220 and samples the interpolated data stream by the  
output sample rate. In practice, a 64-tap FIR filter with 220  
polyphases, a FIFO, a digital servo loop that measures the time  
difference between input and output samples within 5 ps, and a  
digital circuit to track the sample rate ratio are used to perform  
the interpolation and output sampling. Refer to the Theory of  
Operation section. The digital servo loop and sample rate ratio  
circuit automatically track the input and output sample rates.  
(continued on page 15)  
The AD1895 has a 3-wire interface for the serial input and  
output ports that supports left-justified, I2S, and right-justified  
(16-, 18-, 20-, 24-bit) modes. Additionally, the serial output  
port supports TDM Mode for daisy-chaining multiple AD1895s to  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
AD1895–SPECIFICATIONS  
TEST CONDITIONS, UNLESS OTHERWISE NOTED.  
Supply Voltages  
VDD_CORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 V  
VDD_IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.0 V or 3.3 V  
Ambient Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25°C  
Input Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.0 MHz  
Input Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 1.000 kHz, 0 dBFS  
Measurement Bandwidth . . . . . . . . . . . . . . . . . . 20 to fS_OUT/2 Hz  
Word Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Bits  
Load Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 pF  
Input Voltage High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 V  
Input Voltage Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8 V  
DIGITAL PERFORMANCE (VDD_CORE = 3.3 V 5%, VDD_IO = 5.0 V 10%)  
Parameter  
Min  
Typ  
Max  
Unit  
Bits  
kHz  
kHz  
RESOLUTION  
24  
SAMPLE RATE @ MCLK_IN = 30 MHz  
SAMPLE RATE (@ OTHER MASTER CLOCKS)1  
6
215  
MCLK_IN/5000 fS_MAX < MCLK_IN/138  
SAMPLE RATE RATIOS  
Upsampling  
Downsampling  
1:8  
7.75:1  
DYNAMIC RANGE2  
(20 Hz to fS_OUT/2, 1 kHz, –60 dBFS Input) A-Weighted  
44.1 kHz: 48 kHz  
48 kHz: 44.1 kHz  
48 kHz: 96 kHz  
44.1 kHz: 192 kHz  
96 kHz: 48 kHz  
192 kHz: 32 kHz  
128  
128  
128  
128  
127  
127  
dB  
dB  
dB  
dB  
dB  
dB  
(20 Hz to fS_OUT/2, 1 kHz, –60 dBFS Input) No Filter  
44.1 kHz: 48 kHz  
48 kHz: 44.1 kHz  
48 kHz: 96 kHz  
44.1 kHz: 192 kHz  
125  
125  
125  
125  
124  
124  
dB  
dB  
dB  
dB  
dB  
dB  
96 kHz: 48 kHz  
192 kHz: 32 kHz  
TOTAL HARMONIC DISTORTION + NOISE2  
(20 Hz to fS_OUT/2, 1 kHz, 0 dBFS Input) No Filter  
Worst-Case (48 kHz: 96 kHz)3  
44.1 kHz: 48 kHz  
48 kHz: 44.1 kHz  
48 kHz: 96 kHz  
44.1 kHz: 192 kHz  
96 kHz: 48 kHz  
192 kHz: 32 kHz  
–115  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
–120  
–119  
–118  
–120  
–122  
–122  
INTERCHANNEL GAIN MISMATCH  
INTERCHANNEL PHASE DEVIATION  
0.0  
dB  
0.0  
Degrees  
dB  
MUTE ATTENUATION (24 BITS WORD WIDTH)(A-WEIGHT)  
–127  
NOTES  
1Lower sampling rates than those given by this formula are possible, but the jitter rejection will decrease.  
2Refer to the Typical Performance Characteristics section for DNR and THD + N numbers over a wide range of input and output sample rates.  
3For any other ratio, minimum THD + N will be better than –115 dB. Please refer to detailed performance plots.  
Specifications subject to change without notice.  
–2–  
REV. B  
AD1895  
DIGITAL TIMING (–40C < TA < +105C, VDD_CORE = 3.3 V 5%, VDD_IO = 5.0 V 10%)  
Parameter1  
Min  
Max  
Unit  
tMCLKI  
fMCLK  
tMPWH  
tMPWL  
MCLK_IN Period  
33.3  
ns  
MHz  
ns  
MCLK_IN Frequency  
MCLK_IN Pulsewidth High  
MCLK_IN Pulsewidth Low  
30.02, 3  
9
12  
ns  
INPUT SERIAL PORT TIMING  
tLRIS  
tSIH  
tSIL  
tDIS  
tDIH  
LRCLK_I Setup to SCLK_I  
SCLK_I Pulsewidth High  
SCLK_I Pulsewidth Low  
SDATA_I Setup to SCLK_I Rising Edge  
SDATA_I Hold from SCLK_I Rising Edge  
8
8
8
8
3
ns  
ns  
ns  
ns  
ns  
OUTPUT SERIAL PORT TIMING  
tTDMS  
tTDMH  
tDOPD  
tDOH  
tLROS  
tLROH  
tSOH  
TDM_IN Setup to SCLK_O Falling Edge  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TDM_IN Hold from SCLK_O Falling Edge  
SDATA_O Propagation Delay from SCLK_O, LRCLK_O  
SDATA_O Hold from SCLK_O  
LRCLK_O Setup to SCLK_O (TDM Mode Only)  
LRCLK_O Hold from SCLK_O (TDM Mode Only)  
SCLK_O Pulsewidth High  
20  
3
5
3
10  
5
tSOL  
tRSTL  
SCLK_O Pulsewidth Low  
RESET Pulsewidth Low  
200  
NOTES  
1Refer to Timing Diagrams section.  
2The maximum possible sample rate is: FSMAX = fMCLK /138.  
3fMCLK of up to 34 MHz is possible under the following conditions: 0°C < TA < 70°C, 45/55 or better MCLK_IN duty cycle.  
Specifications subject to change without notice.  
TIMING DIAGRAMS  
MCLK IN  
LRCLK_I  
tSIH  
tLRIS  
RESET  
SCLK I  
tRSTL  
tDIS  
tSIL  
Figure 2. RESET Timing  
SDATA I  
tDIH  
LRCLK O  
SCLK O  
tMPWH  
tSOH  
tSOL  
tDOPD  
tMPWL  
SDATA O  
LRCLK O  
tDOH  
Figure 3. MCLK_IN Timing  
tLROS  
tLROH  
SCLK O  
TDM IN  
tTDMS  
tTDMH  
Figure 1. Input and Output Serial Port Timing (SCLK_I/O,  
LRCLK_I/O, SDATA_I/O, TDM_IN)  
REV. B  
–3–  
–SPECIFICATIONS  
AD1895  
DIGITAL FILTERS (VDD_CORE = 3.3 V 5%, VDD_IO = 5.0 V 10%)  
Parameter  
Min  
Typ  
Max  
Unit  
Pass Band  
0.4535 fS_OUT  
0.016  
0.5465 fS_OUT  
Hz  
dB  
Hz  
Hz  
dB  
Pass-Band Ripple  
Transition Band  
Stop Band  
Stop-Band Attenuation  
Group Delay  
0.4535 fS_OUT  
0.5465 fS_OUT  
–125  
Refer to the Group Delay Equations Section  
Specifications subject to change without notice.  
DIGITAL I/O CHARACTERISTICS (VDD_CORE = 3.3 V 5%, VDD_IO = 5.0 V 10%)  
Parameter  
Min  
Typ  
Max  
Unit  
Input Voltage High (VIH)  
Input Voltage Low (VIL)  
2.4  
V
V
µA  
µA  
pF  
V
V
mA  
mA  
0.8  
+2  
–2  
Input Leakage (IIH @ VIH = 5 V)  
Input Leakage (IIL @ VIL = 0 V)  
Input Capacitance  
Output Voltage High (VOH @ IOH = –4 mA)  
Output Voltage Low (VOL @ IOL = +4 mA)  
5
10  
VDD_CORE – 0.5  
VDD_CORE – 0.4  
0.2  
0.5  
–4  
+4  
Output Source Current High (IOH  
Output Sink Current Low (IOL  
)
)
Specifications subject to change without notice.  
POWER SUPPLIES  
Parameter  
Min  
Typ  
Max  
Unit  
SUPPLY VOLTAGE  
VDD_CORE  
VDD_IO*  
3.135  
VDD_CORE  
3.3  
3.3/5.0  
3.465  
5.5  
V
V
ACTIVE SUPPLY CURRENT  
I_CORE_ACTIVE  
48 kHz: 48 kHz  
96 kHz: 96 kHz  
192 kHz: 192 kHz  
I_IO_ACTIVE  
20  
26  
43  
2
mA  
mA  
mA  
mA  
POWER-DOWN SUPPLY CURRENT: (ALL CLOCKS STOPPED)  
I_CORE_PWRDN  
I_IO_PWRDN  
0.5  
10  
mA  
µA  
*For 3.3 V tolerant inputs, VDD_IO supply should be set to 3.3 V; however, VDD_CORE supply voltage should not exceed VDD_IO.  
Specifications subject to change without notice.  
REV. B  
–4–  
AD1895  
POWER SUPPLIES (VDD_CORE = 3.3 V 5%, VDD_IO = 5.0 V 10%)  
Parameter  
Min  
Typ  
Max  
Unit  
TOTAL ACTIVE POWER DISSIPATION  
48 kHz: 48 kHz  
96 kHz: 96 kHz  
65  
85  
132  
mW  
mW  
mW  
192 kHz: 192 kHz  
TOTAL POWER-DOWN DISSIPATION (RESET LOW)  
2
mW  
Specifications subject to change without notice.  
TEMPERATURE RANGE  
Parameter  
Min  
Typ  
Max  
Unit  
Specifications Guaranteed  
Functionality Guaranteed  
Storage  
25  
°C  
–40  
–55  
+105  
+150  
°C  
°C  
°C/W  
Thermal Resistance, θJA (Junction to Ambient)  
109  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS*  
Parameter  
Min  
Max  
Unit  
POWER SUPPLIES  
VDD_CORE  
VDD_IO  
–0.3  
–0.3  
+3.6  
+6.0  
V
V
DIGITAL INPUTS  
Input Current  
10  
mA  
V
Input Voltage  
DGND – 0.3  
–40  
VDD_IO + 0.3  
AMBIENT TEMPERATURE (OPERATING)  
+105  
°C  
*Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD1895AYRS  
AD1895AYRSRL  
–40°C to +105°C  
–40°C to +105°C  
28-Lead SSOP  
28-Lead SSOP  
RS-28  
RS-28 on 13" Reel  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD1895 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–5–  
AD1895  
PIN FUNCTION DESCRIPTIONS  
Description  
Pin No.  
IN/OUT (I/O)  
Mnemonic  
1
2
IN  
IN  
NC  
MCLK_IN  
No Connect  
Master Clock or Crystal Input  
3
4
5
6
7
8
OUT  
IN  
IN/OUT  
IN/OUT  
IN  
MCLK_OUT  
SDATA_I  
SCLK_I  
LRCLK_I  
VDD_IO  
Master Clock Output or Crystal Output  
Input Serial Data (at Input Sample Rate)  
Master/Slave Input Serial Bit Clock  
Master/Slave Input Left/Right Clock  
3.3 V/5 V Input/Output Digital Supply Pin  
Digital Ground Pin  
IN  
DGND  
9
IN  
BYPASS  
ASRC Bypass Mode, Active High  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
IN  
IN  
IN  
IN  
IN  
OUT  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
OUT  
IN/OUT  
IN/OUT  
IN  
IN  
IN  
SMODE_IN_0  
SMODE_IN_1  
SMODE_IN_2  
RESET  
Input Port Serial Interface Mode Select Pin 0  
Input Port Serial Interface Mode Select Pin 1  
Input Port Serial Interface Mode Select Pin 2  
Reset Pin, Active Low  
Mute Input Pin—Active High Normally Connected to MUTE_OUT  
Output Mute Control—Active High  
Hardware Selectable Output Wordlength—Select Pin 1  
Hardware Selectable Output Wordlength—Select Pin 0  
Output Port Serial Interface Mode Select Pin 1  
Output Port Serial Interface Mode Select Pin 0  
Serial Data Input* (Only for Daisy-Chain Mode). Ground when not used.  
Digital Ground Pin  
MUTE_IN  
MUTE_OUT  
WLNGTH_OUT_1  
WLNGTH_OUT_0  
SMODE_OUT_1  
SMODE_OUT_0  
TDM_IN  
DGND  
VDD_CORE  
SDATA_O  
LRCLK_O  
SCLK_O  
MMODE_0  
MMODE_1  
MMODE_2  
3.3 V Digital Supply Pin  
Output Serial Data (at Output Sample Rate)  
Master/Slave Output Left/Right Clock  
Master/Slave Output Serial Bit Clock  
Master/Slave Clock Ratio Mode Select Pin 0  
Master/Slave Clock Ratio Mode Select Pin 1  
Master/Slave Clock Ratio Mode Select Pin 2  
*Also used to input matched-phase mode data.  
PIN CONFIGURATION  
NC  
1
2
28 MMODE_2  
27  
26  
25  
24  
23  
22  
21  
20  
MCLK_IN  
MCLK_OUT  
SDATA_I  
MMODE_1  
MMODE_0  
SCLK_O  
LRCLK_O  
SDATA_O  
VDD_CORE  
DGND  
3
4
AD1895  
TOP VIEW  
(NOT TO SCALE  
5
SCLK_I  
)
6
LRCLK_I  
7
VDD_IO  
8
DGND  
BYPASS  
9
TDM_IN  
10  
11  
12  
13  
14  
SMODE_IN_0  
SMODE_IN_1  
SMODE_IN_2  
19 SMODE_OUT_0  
18 SMODE_OUT_1  
17  
16  
15  
WLNGTH_OUT_0  
WLNGTH_OUT_1  
MUTE_OUT  
RESET  
MUTE_IN  
NC = NO CONNECT  
REV. B  
–6–  
Typical Performance Characteristics–AD1895  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
0
2.5  
5.0  
7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
FREQUENCY – kHz  
TPC 1. Wideband FFT Plot (16 k Points) 0 dBFS 1 kHz  
Tone, 48 kHz: 48 kHz (Asynchronous)  
TPC 4. Wideband FFT Plot (16 k Points) 44.1 kHz: 192 kHz,  
0 dBFS 1 kHz Tone  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
0
2.5  
5.0  
7.5  
10.0  
12.5 15.0  
17.5 20.0  
0
2.5  
5.0  
7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
FREQUENCY – kHz  
TPC 2. Wideband FFT Plot (16 k Points) 0 dBFS 1 kHz  
Tone, 44.1 kHz: 48 kHz (Asynchronous)  
TPC 5. Wideband FFT Plot (16 k Points) 48 kHz: 44.1 kHz,  
0 dBFS 1 kHz Tone  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
0
2.5  
5.0  
7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY – kHz  
TPC 3. Wideband FFT Plot (16 k Points) 48 kHz: 96 kHz,  
0 dBFS 1 kHz Tone  
TPC 6. Wideband FFT Plot (16 k Points) 96 kHz: 48 kHz,  
0 dBFS 1 kHz Tone  
REV. B  
–7–  
AD1895  
0
–50  
–60  
–70  
–80  
–90  
–20  
–40  
–60  
–100  
–110  
–80  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–190  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
0
2.5  
5.0  
7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY – kHz  
TPC 7. Wideband FFT Plot (16 k Points) 192 kHz: 48 kHz,  
0 dBFS 1 kHz Tone  
TPC 10. Wideband FFT Plot (16 k Points) 48 kHz: 96 kHz,  
–60 dBFS 1 kHz Tone  
–50  
–50  
–60  
–70  
–60  
–70  
–80  
–90  
–80  
–90  
–100  
–110  
–100  
–110  
–120  
–130  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–190  
–200  
–140  
–150  
–160  
–170  
–180  
–190  
–200  
0
2.5  
5.0  
7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
FREQUENCY – kHz  
TPC 8. Wideband FFT Plot (16 k Points) 48 kHz: 48 kHz  
–60 dBFS 1 kHz Tone (Asynchronous)  
TPC 11. Wideband FFT Plot (16 k Points) 44.1 kHz: 192 kHz,  
–60 dBFS 1 kHz Tone  
–50  
–50  
–60  
–60  
–70  
–80  
–90  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–190  
–200  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–190  
–200  
0
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5  
20.0  
0
2.5  
5.0  
7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
FREQUENCY – kHz  
TPC 12. Wideband FFT Plot (16 k Points) 48 kHz: 44.1 kHz,  
–60 dBFS 1 kHz Tone  
TPC 9. Wideband FFT Plot (16 k Points) 44.1 kHz: 48 kHz,  
–60 dBFS 1 kHz Tone  
REV. B  
–8–  
AD1895  
–50  
–60  
–70  
0
–20  
–80  
–90  
–40  
–60  
–100  
–110  
–120  
–130  
–80  
–100  
–120  
–140  
–140  
–150  
–160  
–170  
–180  
–190  
–200  
–160  
–180  
0
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
0
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
TPC 13. Wideband FFT Plot (16 k Points) 96 kHz: 48 kHz,  
–60 dBFS 1 kHz Tone  
TPC 16. IMD, 10 kHz and 11 kHz, 0 dBFS Tone,  
96 kHz: 48 kHz  
–50  
–60  
–70  
0
–20  
–80  
–90  
–40  
–100  
–110  
–120  
–130  
–140  
–60  
–80  
–100  
–120  
–140  
–150  
–160  
–170  
–180  
–190  
–200  
–160  
–180  
0
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
0
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5  
20.0  
FREQUENCY – kHz  
TPC 14. Wideband FFT Plot (16 k Points) 192 kHz: 48 kHz,  
–60 dBFS 1 kHz Tone  
TPC 17. IMD, 10 kHz and 11 kHz, 0 dBFS Tone,  
48 kHz: 44.1 kHz  
0
0
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
–180  
–180  
–200  
0
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
0
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
TPC 15. IMD, 10 kHz and 11 kHz, 0 dBFS Tone,  
44:1 kHz: 48 kHz  
TPC 18. Wideband FFT Plot (16 k Points) 44.1 kHz: 48 kHz,  
0 dBFS 20 kHz Tone  
REV. B  
–9–  
AD1895  
0
0
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
–180  
–200  
–180  
–200  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY – kHz  
FREQUENCY – kHz  
TPC 19. Wideband FFT Plot (16 k Points) 192 kHz: 192 kHz,  
0 dBFS 80 kHz Tone  
TPC 22. Wideband FFT Plot (16 k Points) 48 kHz: 96 kHz,  
0 dBFS 20 kHz Tone  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
–180  
–200  
–180  
–200  
0
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
0
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
TPC 20. Wideband FFT Plot (16 k Points) 48 kHz: 48 kHz,  
0 dBFS 20 kHz Tone  
TPC 23. Wideband FFT Plot (16 k Points) 96 kHz: 48 kHz,  
0 dBFS 20 kHz Tone  
0
–20  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
0
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5  
20.0  
30000  
66000  
102000  
138000  
174000  
192000  
48000  
84000  
OUTPUT SAMPLE RATE – Hz  
120000  
156000  
FREQUENCY – kHz  
TPC 21. Wideband FFT Plot (16 k Points) 48 kHz: 44:1 kHz,  
0 dBFS 20 kHz Tone  
TPC 24. THD + N vs. Output Sample Rate, fS_IN = 192 kHz,  
0 dBFS 1 kHz Tone  
REV. B  
–10–  
AD1895  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
30000  
66000  
102000  
138000  
174000  
30000  
66000  
102000  
138000  
174000  
192000  
48000  
84000  
OUTPUT SAMPLE RATE – Hz  
120000  
156000  
192000  
48000  
84000  
OUTPUT SAMPLE RATE – Hz  
120000  
156000  
TPC 25. THD + N vs. Output Sample Rate, fS_IN = 48 kHz,  
0 dBFS 1 kHz Tone  
TPC 28. THD + N vs. Output Sample Rate, fS_IN = 96 kHz,  
0 dBFS 1 kHz Tone  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
30000  
66000  
102000  
138000  
174000  
192000  
30000  
66000  
102000  
138000  
174000  
192000  
48000  
84000  
OUTPUT SAMPLE RATE – Hz  
120000  
156000  
48000  
84000  
OUTPUT SAMPLE RATE – Hz  
120000  
156000  
TPC 26. THD + N vs. Output Sample Rate, fS_IN  
44.1 kHz, 0 dBFS 1 kHz Tone  
=
TPC 29. DNR (Unweighted) vs. Output Sample Rate,  
fS_IN = 192 kHz, –60 dBFS 1 kHz Tone  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
30000  
66000  
102000  
138000  
174000  
30000  
66000  
102000  
138000  
174000  
192000  
48000  
84000  
OUTPUT SAMPLE RATE – Hz  
120000  
156000  
192000  
48000  
84000  
OUTPUT SAMPLE RATE – Hz  
120000  
156000  
TPC 30. DNR (Unweighted) vs. Output Sample Rate,  
fS_IN = 32 kHz, –60 dBFS 1 kHz Tone  
TPC 27. THD + N vs. Output Sample Rate, fS_IN = 32 kHz,  
0 dBFS 1 kHz Tone  
REV. B  
–11–  
AD1895  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
30000  
66000  
102000  
138000  
174000  
192000  
30000  
66000  
102000  
138000  
174000  
192000  
48000  
84000  
OUTPUT SAMPLE RATE – Hz  
120000  
156000  
48000  
84000  
OUTPUT SAMPLE RATE – Hz  
120000  
156000  
TPC 34. DNR (Unweighted) vs. Output Sample Rate,  
TPC 31. DNR (Unweighted) vs. Output Sample Rate,  
f
S_IN = 44.1 kHz, –60 dBFS 1 kHz Tone  
f
S_IN = 96 kHz, –60 dBFS 1 kHz Tone  
0.00  
–0.01  
–0.02  
0
–20  
192kHz: 96kHz  
–40  
–60  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
192kHz: 48kHz  
–80  
192kHz: 32kHz  
–100  
–120  
–140  
–0.08  
–0.09  
–0.10  
0
4000  
8000  
12000  
16000  
20000  
24000  
0
10000  
20000  
30000  
40000  
50000  
60000  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 35. Pass-Band Ripple, 192 kHz: 48 kHz  
TPC 32. Digital Filter Frequency Response  
5
4
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
30000  
66000  
102000  
138000  
174000  
192000  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
48000  
84000  
OUTPUT SAMPLE RATE – Hz  
120000  
156000  
INPUT LEVEL – dBFS  
TPC 36. Linearity Error, 48 kHz: 48 kHz, 0 dBFS to  
–140 dBFS Input, 200 Hz Tone  
TPC 33. DNR (Unweighted) vs. Output Sample Rate,  
fS_IN = 48 kHz, –60 dBFS 1 kHz Tone  
REV. B  
–12–  
AD1895  
5
4
5
4
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
INPUT LEVEL – dBFS  
INPUT LEVEL – dBFS  
TPC 40. Linearity Error, 48 kHz: 96 kHz, 0 dBFS to  
–140 dBFS Input, 200 Hz Tone  
TPC 37. Linearity Error, 48 kHz: 44.1 kHz, 0 dBFS to  
–140 dBFS Input, 200 Hz Tone  
5
4
5
4
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
INPUT LEVEL – dBFS  
INPUT LEVEL – dBFS  
TPC 41. Linearity Error, 44.1 kHz: 192 kHz, 0 dBFS to  
–140 dBFS Input, 200 Hz Tone  
TPC 38. Linearity Error, 96 kHz: 48 kHz, 0 dBFS to  
–140 dBFS Input, 200 Hz Tone  
5
4
5
4
3
3
2
1
0
2
1
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
INPUT LEVEL – dBFS  
INPUT LEVEL – dBFS  
TPC 42. Linearity Error, 192 kHz: 44.1 kHz, 0 dBFS to  
–140 dBFS Input, 200 Hz Tone  
TPC 39. Linearity Error, 44.1 kHz: 48 kHz, 0 dBFS to  
–140 dBFS Input, 200 Hz Tone  
REV. B  
–13–  
AD1895  
–110.0  
–110.0  
–112.5  
–112.5  
–115.0  
–117.5  
–120.0  
–122.5  
–125.0  
–127.5  
–130.0  
–132.5  
–135.0  
–115.0  
–117.5  
–120.0  
–122.5  
–125.0  
–127.5  
–130.0  
–132.5  
–135.0  
–137.5  
–140.0  
–137.5  
–140.0  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
INPUT LEVEL – dBFS  
INPUT LEVEL – dBFS  
TPC 43. THD + N vs. Input Amplitude, 48 kHz: 44.1 kHz,  
1 kHz Tone  
TPC 46. THD + N vs. Input Amplitude, 48 kHz: 96 kHz,  
1 kHz Tone  
–110.0  
–112.5  
–110.0  
–112.5  
–115.0  
–117.5  
–120.0  
–122.5  
–125.0  
–127.5  
–130.0  
–132.5  
–135.0  
–115.0  
–117.5  
–120.0  
–122.5  
–125.0  
–127.5  
–130.0  
–132.5  
–135.0  
–137.5  
–140.0  
–137.5  
–140.0  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
INPUT LEVEL – dBFS  
INPUT LEVEL – dBFS  
TPC 44. THD + N vs. Input Amplitude, 96 kHz: 48 kHz,  
1 kHz Tone  
TPC 47. THD + N vs. Input Amplitude, 44.1 kHz: 192 kHz,  
1 kHz Tone  
–110.0  
–112.5  
–110.0  
–112.5  
–115.0  
–117.5  
–120.0  
–122.5  
–125.0  
–127.5  
–130.0  
–132.5  
–135.0  
–115.0  
–117.5  
–120.0  
–122.5  
–125.0  
–127.5  
–130.0  
–132.5  
–135.0  
–137.5  
–140.0  
–137.5  
–140.0  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
INPUT LEVEL – dBFS  
INPUT LEVEL – dBFS  
TPC 45. THD + N vs. Input Amplitude, 44.1 kHz: 48 kHz,  
1 kHz Tone  
TPC 48. THD + N vs. Input Amplitude, 192 kHz: 48 kHz,  
1 kHz Tone  
REV. B  
–14–  
AD1895  
–110  
–110  
–120  
–130  
–140  
–120  
–130  
–140  
–150  
–160  
–150  
–160  
–170  
–180  
–170  
–180  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
20.0  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
20.0  
FREQUENCY – kHz  
FREQUENCY – kHz  
TPC 49. THD + N vs. Frequency Input, 48 kHz: 44.1 kHz,  
0 dBFS  
TPC 51. THD + N vs. Frequency Input, 48 kHz: 96 kHz,  
0 dBFS  
–110  
–110  
–120  
–130  
–140  
–120  
–130  
–140  
–150  
–160  
–150  
–160  
–170  
–180  
–170  
–180  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
20.0  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
20.0  
FREQUENCY – kHz  
FREQUENCY – kHz  
TPC 50. THD + N vs. Frequency Input, 44.1 kHz: 48 kHz,  
0 dBFS  
TPC 52. THD + N vs. Frequency Input, 96 kHz: 48 kHz,  
0 dBFS  
PRODUCT OVERVIEW (continued from page 1)  
Fast Mode, the MUTE_OUT signal is asserted high. Normally,  
the MUTE_OUT is connected to the MUTE_IN pin. The  
MUTE_IN signal is used to softly mute the AD1895 upon  
assertion and softly unmute the AD1895 when it is deasserted.  
The digital servo loop measures the time difference between  
input and output sample rates within 5 ps. This is necessary in  
order to select the correct polyphase filter coefficient. The digital  
servo loop has excellent jitter rejection for both input and output  
sample rates as well as the master clock. The jitter rejection begins  
at less than 1 Hz. This requires a long settling time whenever  
RESET is deasserted or when the input or output sample rate  
changes. To reduce the settling time, upon deassertion of RESET  
or a change in a sample rate, the digital servo loop enters the Fast  
Settling Mode. When the digital servo loop has adequately settled  
in the Fast Mode, it switches into the Normal or Slow Settling  
Mode and continues to settle until the time difference measurement  
between input and output sample rates is within 5 ps. During  
The sample rate converter of the AD1895 can be bypassed  
altogether using the Bypass Mode. In Bypass Mode, the AD1895’s  
serial input data is directly passed to the serial output port with-  
out any dithering. This is useful for passing through nonaudio  
data or when the input and output sample rates are synchronous  
to one another and the sample rate ratio is exactly 1 to 1.  
The AD1895 is a 3.3 V, 5 V input tolerant part and is available  
in a 28-lead SSOP SMD package. The AD1895 is 5 V input  
tolerant only when the VDD_IO supply pin is supplied with 5 V.  
REV. B  
–15–  
AD1895  
ASRC FUNCTIONAL OVERVIEW  
THEORY OF OPERATION  
involve the steps of zero-stuffing (220 –1) a number of samples  
between each fS_IN sample and convolving this interpolated signal  
with a digital low-pass filter to suppress the images. In the time  
domain, it can be seen that fS_OUT selects the closest fS_IN × 220  
sample from the zero-order hold as opposed to the nearest fS_IN  
sample in the case of no interpolation. This significantly reduces  
the resampling error.  
Asynchronous sample rate conversion is converting data from one  
clock source at some sample rate to another clock source at the  
same or different sample rate. The simplest approach to asyn-  
chronous sample rate conversion is the use of a zero-order hold  
between two samplers as shown in Figure 4. In an asynchronous  
system, T2 is never equal to T1 nor is the ratio between T2 and  
T1 rational. As a result, samples at fS_OUT will be repeated or  
dropped, producing an error in the resampling process. The  
frequency domain shows the wide side lobes that result from this  
error when the sampling of fS_OUT is convolved with the attenuated  
images from the sin(x)/x nature of the zero-order hold. The images  
at fS_IN, dc signal images, of the zero-order hold are infinitely  
attenuated. Since the ratio of T2 to T1 is an irrational number,  
the error resulting from the resampling at fS_OUT can never be  
eliminated. However, the error can be significantly reduced  
through interpolation of the input data at fS_IN. The AD1895 is  
conceptually interpolated by a factor of 220.  
IN  
OUT  
INTERPOLATE  
BY N  
LOW-PASS  
FILTER  
ZERO-ORDER  
HOLD  
fS_IN  
fS_OUT  
TIME DOMAIN OF fS_IN SAMPLES  
TIME DOMAIN OUTPUT OFTHE LOW-PASS FILTER  
IN  
ZERO-ORDER  
HOLD  
OUT  
fS_IN = 1/T1  
fS_OUT = 1/T2  
TIME DOMAIN OF fS_OUT RESAMPLING  
ORIGINAL SIGNAL  
SAMPLED AT fS_IN  
TIME DOMAIN OFTHE ZERO-ORDER HOLD OUTPUT  
SIN(X)/X OF ZERO-ORDER HOLD  
Figure 5. Time Domain of the Interpolation and Resampling  
SPECTRUM OF ZERO-ORDER HOLD OUTPUT  
In the frequency domain shown in Figure 6, the interpolation  
expands the frequency axis of the zero-order hold. The images  
from the interpolation can be sufficiently attenuated by a good  
low-pass filter. The images from the zero-order hold are now  
pushed by a factor of 220 closer to the infinite attenuation point  
of the zero-order hold, which is fS_IN × 220. The images at the  
zero-order hold are the determining factor for the fidelity of the  
output at fS_OUT. The worst-case images can be computed from  
the zero-order hold frequency response, maximum image =  
sin (π × F/fS_INTERP)/(π × F/fS_INTERP). F is the frequency of the  
SPECTRUM OF fS_OUT SAMPLING  
fS_OUT  
2 fS_OUT  
FREQUENCY RESPONSE OF fS_OUT CONVOLVEDWITH ZERO-ORDER  
HOLD SPECTRUM  
Figure 4. Zero-Order Hold Being Used by fS_OUT to  
Resample Data from fS_IN  
worst-case image, which would be 220 × fS_IN  
fS_INTERP is fS_IN × 220.  
fS_IN/2 , and  
THE CONCEPTUAL HIGH INTERPOLATION MODEL  
Interpolation of the input data by a factor of 220 involves placing  
(220 –1) samples between each fS_IN sample. Figure 5 shows  
both the time domain and the frequency domain of interpolation  
by a factor of 220. Conceptually, interpolation by 220 would  
The following worst-case images would appear for fS_IN  
=
192 kHz:  
Image at fS_INTERP – 96 kHz = –125.1 dB  
Image at fS_INTERP + 96 kHz = –125.1 dB  
REV. B  
–16–  
AD1895  
rate, fS_IN, the ROM starting address, input data, and length of  
the convolution must be scaled. As the input sample rate rises  
over the output sample rate, the antialiasing filter’s cutoff fre-  
quency has to be lowered because the Nyquist frequency of the  
output samples is less than the Nyquist frequency of the input  
samples. To move the cutoff frequency of the antialiasing filter,  
the coefficients are dynamically altered and the length of the  
convolution is increased by a factor of fS_IN/fS_OUT. This tech-  
nique is supported by the Fourier transform property that if f(t)  
is F(ω), then f(k × t) is F(ω/k). Thus, the range of decimation is  
simply limited by the size of the RAM.  
IN  
INTERPOLATE  
BY N  
LOW-PASS  
FILTER  
ZERO-ORDER  
HOLD  
OUT  
fS_IN  
fS_OUT  
FREQUENCY DOMAIN OF SAMPLES AT fS_IN  
fS_IN  
20  
FREQUENCY DOMAIN OFTHE INTERPOLATION  
2
fS_IN  
THE SAMPLE RATE CONVERTER ARCHITECTURE  
The architecture of the sample rate converter is shown in  
Figure 7. The sample rate converter’s FIFO block adjusts the  
left and right input samples and stores them for the FIR filter’s  
convolution cycle. The fS_IN counter provides the write address to  
the FIFO block and the ramp input to the digital servo loop. The  
ROM stores the coefficients for the FIR filter convolution and  
performs a high order interpolation between the stored coefficients.  
The sample rate ratio block measures the sample rate for dynami-  
cally altering the ROM coefficients and scaling of the FIR filter  
length as well as the input data. The digital servo loop automatically  
tracks the fS_IN and fS_OUT sample rates and provides the RAM  
and ROM start addresses for the start of the FIR filter convolution.  
SIN(X)/X OF ZERO-ORDER HOLD  
FREQUENCY DOMAIN OF fS_OUT RESAMPLING  
20  
2
fS_IN  
20  
FREQUENCY DOMAIN AFTER  
RESAMPLING  
2
fS_IN  
Figure 6. Frequency Domain of the Interpolation and  
Resampling  
ROM A  
ROM B  
RIGHT DATA IN  
LEFT DATA IN  
HIGH  
FIFO  
HARDWARE MODEL  
ORDER  
INTERP  
The output rate of the low-pass filter of Figure 5 would be the  
interpolation rate, 220 × 192000 kHz = 201.3 GHz. Sampling at  
a rate of 201.3 GHz is clearly impractical, not to mention the  
number of taps required to calculate each interpolated sample.  
However, since interpolation by 220 involves zero-stuffing 220–1  
samples between each fS_IN sample, most of the multiplies in  
the low-pass FIR filter are by zero. A further reduction can be  
realized by the fact that since only one interpolated sample is  
taken at the output at the fS_OUT rate, only one convolution  
needs to be performed per fS_OUT period instead of 220 convo-  
lutions. A 64-tap FIR filter for each fS_OUT sample is sufficient  
to suppress the images caused by the interpolation.  
ROM C  
ROM D  
fS_IN  
COUNTER  
DIGITAL  
SERVO LOOP  
SAMPLE RATE RATIO  
FIR FILTER  
fS_IN  
SAMPLE RATE  
RATIO  
L/R DATA OUT  
fS_OUT  
EXTERNAL  
RATIO  
Figure 7. Architecture of the Sample Rate Converter  
The FIFO receives the left and right input data and adjusts the  
amplitude of the data for both the soft muting of the sample rate  
converter and the scaling of the input data by the sample rate  
ratio before storing the samples in the RAM. The input data  
is scaled by the sample rate ratio because as the FIR filter length  
of the convolution increases, so does the amplitude of the convo-  
lution output. To keep the output of the FIR filter from saturating,  
the input data is scaled down by multiplying it by fS_OUT/fS_IN  
when fS_OUT < fS_IN. The FIFO also scales the input data for  
muting and unmuting the AD1895.  
The difficulty with the above approach is that the correct inter-  
polated sample needs to be selected upon the arrival of fS_OUT  
.
Since there are 220 possible convolutions per fS_OUT period, the  
arrival of the fS_OUT clock must be measured with an accuracy  
of 1/201.3 GHz = 4.96 ps. Measuring the fS_OUT period with a  
clock of 201.3 GHz frequency is clearly impossible; instead,  
several coarse measurements of the fS_OUT clock period are made  
and averaged over time.  
Another difficulty with the above approach is the number of  
coefficients required. Since there are 220 possible convolutions  
with a 64-tap FIR filter, there needs to be 220 polyphase coeffi-  
cients for each tap, which requires a total of 226 coefficients. To  
reduce the number of coefficients in ROM, the AD1895 stores a  
small subset of coefficients and performs a high order interpola-  
tion between the stored coefficients. So far, the above approach  
works for the case of fS_OUT > fS_IN. However, in the case when  
the output sample rate, fS_OUT, is less than the input sample  
The RAM in the FIFO is 512 words deep for both left and right  
channels. A small offset of 16 is added to the write address  
provided by the fS_IN counter to prevent the RAM read pointer  
from ever overlapping the write address. The maximum deci-  
mation rate can be calculated from the RAM word depth as  
(512 – 16)/64 taps = 7.75 and a small offset.  
REV. B  
–17–  
AD1895  
10  
0
–10  
–20  
–30  
–40  
SLOW MODE  
–50  
FAST MODE  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–190  
–200  
–210  
–220  
0.01  
0.1  
1
10  
100  
1e3  
1e4  
1e5  
FREQUENCY – Hz  
Figure 8. Frequency Response of the Digital Servo Loop. fS_IN is the x-axis, fS_OUT = 192 kHz, master clock  
frequency is 30 MHz.  
The digital servo loop is essentially a ramp filter that provides  
the initial pointer to the address in RAM and ROM for the start  
of the FIR convolution. The RAM pointer is the integer output  
of the ramp filter, while the ROM is the fractional part. The  
digital servo loop must be able to provide excellent rejection of  
jitter on the fS_IN and fS_OUT clocks as well as measure the arrival  
of the fS_OUT clock within 4.97 ps. The digital servo loop will  
also divide the fractional part of the ramp output by the ratio of  
fS_IN/fS_OUT for the case when fS_IN > fS_OUT, to dynamically alter  
the ROM coefficients.  
The FIR filter is a 64-tap filter in the case of fS_OUT fS_IN and is  
(fS_IN/fS_OUT) × 64 taps for the case when fS_IN > fS_OUT. The FIR  
filter performs its convolution by loading in the starting address  
of the RAM address pointer and the ROM address pointer  
from the digital servo loop at the start of the fS_OUT period.  
The FIR filter then steps through the RAM by decrementing its  
address by 1 for each tap, and the ROM pointer increments its  
address by the (fS_OUT/fS_IN) × 220 ratio for fS_IN > fS_OUT or 220  
for fS_OUT fS_IN. Once the ROM address rolls over, the con-  
volution is completed. The convolution is performed for both  
the left and right channels, and the multiply accumulate circuit  
used for the convolution is shared between the channels.  
The digital servo loop is implemented with a multirate filter. To  
settle the digital servo loop filter quicker upon startup or a change  
in the sample rate, a Fast Mode was added to the filter. When  
the digital servo loop starts up or the sample rate is changed, the  
digital servo loop kicks into Fast Mode to adjust and settle on the  
new sample rate. Upon sensing the digital servo loop settling down  
to some reasonable value, the digital servo loop will kick into  
Normal or Slow Mode. During Fast Mode, the MUTE_OUT  
signal of the sample rate converter is asserted to let the user  
know that they should mute the sample rate converter to avoid  
any clicks or pops. The frequency response of the digital servo  
loop for Fast Mode and Slow Mode are shown in Figure 8.  
The fS_IN/fS_OUT sample rate ratio circuit is used to dynamically  
alter the coefficients in the ROM for the case when fS_IN > fS_OUT  
The ratio is calculated by comparing the output of an fS_OUT  
counter to the output of an fS_IN counter. If fS_OUT > fS_IN, the  
.
ratio is held at 1. If fS_IN > fS_OUT, the sample rate ratio is updated  
if it is different by more than two fS_OUT periods from the previous  
fS_OUT to fS_IN comparison. This is done to provide some  
hysteresis to prevent the filter length from oscillating and causing  
distortion.  
REV. B  
–18–  
AD1895  
OPERATING FEATURES  
RESET and Power-Down  
Upon RESET, or a change in the sample rate between LRCLK_I  
and LRCLK_O, the MUTE_OUT pin will be asserted high. The  
MUTE_OUT pin will remain asserted high until the digital servo  
loop’s internal Fast Settling Mode has completed. When the digital  
servo loop has switched to Slow Settling Mode, the MUTE_OUT  
pin will deassert. While MUTE_OUT is asserted, the MUTE_IN  
pin should be asserted as well to prevent any major distortion in  
the audio output samples.  
When RESET is asserted low, the AD1895 will turn off the  
master clock input to the AD1895, MCLK_IN, initialize all of its  
internal registers to their default values, and three-state all of the  
I/O pins. While RESET is active low, the AD1895 is consuming  
minimum power. For the lowest possible power consumption  
while RESET is active low, all of the input pins to the AD1895  
should be static.  
Master Clock  
When RESET is deasserted, the AD1895 begins its initialization  
routine where all locations in the FIFO are initialized to zero,  
MUTE_OUT is asserted high, and any I/O pins configured as  
outputs are enabled. The mute control counter, which controls  
the soft mute attenuation of the input samples, is initialized to  
maximum attenuation, –127 dB (see Mute Control section).  
A digital clock connected to the MCLK_IN pin or a fundamental  
or third overtone crystal connected between MCLK_IN and  
MCLK_OUT can be used to generate the master clock, MCLK_IN.  
The MCLK_IN pin can be 5 V input tolerant just like any of  
the other AD1895 input pins. A fundamental mode crystal can  
be inserted between MCLK_IN and MCLK_OUT for master  
clock frequency generation up to 27 MHz. For master clock  
frequency generation with a crystal beyond 27 MHz, it is recom-  
mended that the user use a third overtone crystal and add an  
LC filter at the output of MCLK_OUT to filter out the fundamental,  
do not notch filter the fundamental. Please refer to your quartz  
crystal supplier for values for external capacitors and inductor  
components.  
When asserting RESET and deasserting RESET, the RESET  
should be held low for a minimum of five MCLK_IN cycles.  
During power-up, the RESET should be held low until the power  
supplies have stabilized. It is recommended that the AD1895 be  
reset when changing modes.  
Power Supply and Voltage Reference  
The AD1895 is designed for 3 V operation with 5 V input toler-  
ance on the input pins. VDD_CORE is the 3 V supply that is used  
to power the core logic of the AD1895 and to drive the output  
pins. VDD_IO is used to set the input voltage tolerance of the  
input pins. In order for the input pins to be 5 V input tolerant,  
VDD_IO must be connected to a 5 V supply. If the input pins do  
not have to be 5 V input tolerant, then VDD_IO can be connected  
to VDD_CORE. VDD_IO should never be less than VDD_CORE.  
VDD_CORE and VDD_IO should be bypassed with 100 nF  
ceramic chip capacitors as close to the pins as possible to minimize  
power supply and ground bounce caused by inductance in the  
traces. A bulk aluminium electrolytic capacitor of 47 µF should  
also be provided on the same PC board as the AD1895.  
AD1895  
MCLK_IN  
MCLK_OUT  
R
C1  
C2  
Figure 9a. Fundamental Mode Circuit Configuration  
Digital Filter Group Delay  
The filter group delay is given by the equation:  
AD1895  
MCLK_IN  
MCLK_OUT  
R
16  
fS _ IN  
32  
fS _ IN  
GD =  
GD =  
+
+
seconds for fS _OUT > fS _ IN  
fS _ IN  
16  
fS _ IN  
32  
×
seconds for fS _OUT < fS _ IN  
f
f
S _ IN   
S _OUT   
1nF  
L1  
C1  
C2  
Mute Control  
When the MUTE_IN pin is asserted high, the MUTE_IN control  
will perform a soft mute by linearly decreasing the input data to the  
AD1895 FIFO to almost zero, –127 dB attenuation. When  
MUTE_IN is deasserted low, the MUTE_IN control will linearly  
decrease the attenuation of the input data to 0 dB. A 12-bit counter,  
clocked by LRCLK_I, is used to control the mute attenuation.  
Therefore, the time it will take from the assertion of MUTE_IN  
to –127 dB full mute attenuation is 4096/LRCLK_I seconds.  
Likewise, the time it will take to reach 0 dB mute attenuation from  
the deassertion of MUTE_IN is 4096/LRCLK_I seconds.  
Figure 9b. Third Overtone Circuit Configuration  
There are, of course, maximum and minimum operating fre-  
quencies for the AD1895 master clock. The maximum master  
clock frequency at which the AD1895 is guaranteed to operate is  
30 MHz. 30 MHz is more than sufficient to sample rate convert  
sampling frequencies of 192 kHz + 12%. The minimum required  
frequency for the master clock generation for the AD1895 depends  
upon the input and output sample rates. The master clock has  
to be at least 138 times greater than the maximum input or  
output sample rate.  
REV. B  
–19–  
AD1895  
Serial Data Ports—Data Format  
Table III. When the output word width is less than 24 bits, dither is  
added to the truncated bits. The Right-Justified Serial Data Out  
Mode assumes 64 SCLK_O cycles per frame, divided evenly  
for left and right. The AD1895 also supports 16-bit, 32-clock  
packed input and output serial data in LJ, RJ, and I2S format.  
The Serial Data Input Port Mode is set by the logic levels on the  
SMODE_IN_0/SMODE_IN_1/SMODE_IN_2 pins. The serial  
data input port modes available are left justified, I2S, and right  
justified (RJ), 16, 18, 20, or 24 bits, as defined in Table I.  
Table I. Serial Data Input Port Mode  
SMODE_IN_[0:2]  
Table II. Serial Data Output Port Mode  
SMODE_OUT_[0:2]  
1
0
Interface Format  
Interface Format  
2
1
0
0
0
1
1
0
1
0
1
Left Justified (LJ)  
I2S  
TDM Mode  
Right Justified (RJ)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Left Justified  
I2S  
Undefined  
Undefined  
Right Justified, 16 Bits  
Right Justified, 18 Bits  
Right Justified, 20 Bits  
Right Justified, 24 Bits  
Table III. Word Width  
WLNGTH_OUT_[0:1]  
1
0
Word Width  
The Serial Data Output Port Mode is set by the logic levels on the  
SMODE_OUT_0/SMODE_OUT_1 and WLNGTH_OUT_0/  
WLNGTH_OUT_1 pins. The serial mode can be changed to left  
justified, I2S, right justified, or TDM as defined in the Table II. The  
output word width can be set by using the WLNGTH_OUT_0/  
WLNGTH_OUT_1 pins as shown in  
0
0
1
1
0
1
0
1
24 Bits  
20 Bits  
18 Bits  
16 Bits  
The following timing diagrams show the serial mode formats.  
RIGHT CHANNEL  
LEFT CHANNEL  
LRCLK  
SCLK  
LSB  
MSB  
LEFT-JUSTIFIED MODE – 16 BITSTO 24 BITS PER CHANNEL  
MSB  
LSB  
SDATA  
LRCLK  
SCLK  
LEFT CHANNEL  
RIGHT CHANNEL  
MSB  
LSB  
MSB  
LSB  
SDATA  
2
I S MODE – 16 BITSTO 24 BITS PER CHANNEL  
RIGHT CHANNEL  
LEFT CHANNEL  
LRCLK  
SCLK  
MSB  
LSB  
RIGHT-JUSTIFIED MODE – SELECT NUMBER OF BITS PER CHANNEL  
MSB  
LSB  
SDATA  
LRCLK  
SCLK  
LSB  
MSB  
LSB  
MSB  
SDATA  
TDM MODE – 16 BITSTO 24 BITS PER CHANNEL  
1/fs  
NOTES  
1. LRCLK NORMALLY OPERATES AT ASSOCIATIVE INPUT OR OUTPUT SAMPLE FREQUENCY (fs)  
2. SCLK FREQUENCY IS NORMALLY 64 LRCLK EXCEPT FOR TDM MODE,WHICH IS N 64 fs,  
WHERE N = NUMBER OF STEREO CHANNELS INTHE TDM CHAIN. IN MASTER MODE, N = 4  
Figure 10. Input/Output Serial Data Formats  
REV. B  
–20–  
AD1895  
TDM MODE APPLICATION  
of the next AD1895, a large shift register is created and is  
clocked by SCLK_O.  
In TDM Mode, several AD1895s can be daisy-chained together  
and connected to the serial input port of a SHARC® DSP. The  
AD1895 contains a 64-bit parallel load shift register. When the  
LRCLK_O pulse arrives, each AD1895 parallel loads its left and  
right data into the 64-bit shift register. The input to the shift  
register is connected to TDM_IN, while the output is connected  
to SDATA_O. By connecting the SDATA_O to the TDM_IN  
The number of AD1895s that can be daisy-chained together is  
limited by the maximum frequency of SCLK_O, which is about  
25 MHz. For example, if the output sample rate, fS, is 48 kHz,  
up to eight AD1895s could be connected since 512 × fS is less  
than 25 MHz. In Master/TDM Mode, the number of AD1895s  
that can be daisy-chained is fixed to four.  
LRCLK  
SCLK  
SHARC  
DSP  
AD1895  
AD1895  
AD1895  
DR0  
TDM_IN  
SDATA_O  
TDM_IN  
SDATA_O  
TDM_IN  
SDATA_O  
RFS0  
LRCLK_O  
SCLK_O  
LRCLK_O  
SCLK_O  
LRCLK_O  
SCLK_O  
RCLK0  
SLAVE-1  
SLAVE-2  
SLAVE-n  
M2  
0
M1  
M0  
0
M2  
0
M1  
M0  
0
M2  
0
M1  
M0  
0
STANDARD MODE  
0
0
0
Figure 11. Daisy-Chain Configuration for TDM Mode (All AD1895s Being Clock-Slaves)  
SHARC  
DSP  
AD1895  
AD1895  
AD1895  
DR0  
TDM_IN  
SDATA_O  
LRCLK_O  
SCLK_O  
TDM_IN  
SDATA_O  
TDM_IN  
SDATA_O  
RFS0  
LRCLK_O  
SCLK_O  
LRCLK_O  
SCLK_O  
RCLK0  
SLAVE-n  
CLOCK-MASTER  
SLAVE-1  
M2  
M1  
M0  
M2  
0
M1  
M0  
0
M2  
0
M1  
M0  
0
STANDARD MODE  
0
0
1
1
0
Figure 12. Daisy-Chain Configuration for TDM Mode (First AD1895 Being Clock-Master)  
SHARC is a registered trademark of Analog Devices, Inc.  
REV. B  
–21–  
AD1895  
Serial Data Port Master Clock Modes  
Table IV. Serial Data Port Clock Modes  
MMODE_0/  
MMODE_1/  
MMODE_2  
Either of the AD1895 serial ports can be configured as a  
master serial data port. However, only one serial port can be  
a master, while the other has to be a slave. In Master Mode, the  
AD1895 requires a 256 × fS, 512 fS, or 768 × fS master clock  
(MCLK_IN). For a maximum master clock frequency of 30 MHz,  
the maximum sample rate is limited to 96 kHz. In Slave Mode,  
sample rates up to 192 kHz can be handled.  
2
1
0
Interface Format  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Both Serial Ports Are in Slave Mode  
Output Serial Port Is Master with 768 × fS_OUT  
Output Serial Port Is Master with 512 × fS_OUT  
Output Serial Port Is Master with 256 × fS_OUT  
Undefined  
Input Serial Port Is Master with 768 × fS_IN  
Input Serial Port Is Master with 512 × fS_IN  
Input Serial Port Is Master with 256 × fS_IN  
When either of the serial ports is operated in Master Mode, the  
master clock is divided down to derive the associated left/right  
subframe clock (LRCLK) and serial bit clock (SCLK). The master  
clock frequency can be selected for 256, 512, or 768 times the  
input or output sample rate. Both the input and output serial  
ports will support Master Mode LRCLK and SCLK generation  
for all serial modes, left justified, I2S, right justified, and TDM  
for the output serial port.  
Bypass Mode  
When the BYPASS pin is asserted high, the input data bypasses  
the sample rate converter and is sent directly to the serial output  
port. Dithering of the output data when the word length is set  
to less than 24 bits is disabled. This mode is ideal when the  
input and output sample rates are the same and LRCLK_I and  
LRCLK_O are synchronous with respect to each other. This  
mode can also be used for passing through nonaudio data,  
since no processing is performed on the input data in this mode.  
REV. B  
–22–  
AD1895  
OUTLINE DIMENSIONS  
28-Lead Shrink Small Outline Package [SSOP]  
(RS-28)  
Dimensions shown in millimeters  
10.50  
10.20  
9.90  
28  
15  
5.60 8.20  
5.30 7.80  
5.00 7.40  
PIN 1  
14  
1
1.85  
1.75  
1.65  
0.10  
COPLANARITY  
2.00 MAX  
0.25  
0.09  
8ꢀ  
4ꢀ  
0ꢀ  
0.95  
0.75  
0.55  
0.65  
BSC  
0.38  
0.22  
0.05  
MIN  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-150AH  
REV. B  
–23–  
AD1895  
Revision History  
Location  
Page  
9/02—Data Sheet changed from REV. A to REV. B.  
Changes to SPECIFICATIONS (Digital Performance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Changes to SPECIFICATIONS (Digital Timing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Replaced TPCs 1–52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Additions to RESET and Power-Down section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Changes to Figures 9a and 9b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Additions to Serial Data Ports––Data Format section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
–24–  
REV. B  

相关型号:

AD1895AYRSZRL

192 kHZ Stereo Asynchronous Sample Rate Converter
ADI

AD1895JRS

IC SPECIALTY CONSUMER CIRCUIT, PDSO28, SSOP-28, Consumer IC:Other
ADI

AD1895YRS

192 kHz Stereo Asynchronous Sample Rate Converter
ADI

AD1895YRSRL

192 kHz Stereo Asynchronous Sample Rate Converter
ADI

AD1896

192 kHz Stereo Asynchronous Sample Rate Converter
ADI

AD1896AYRS

192 kHz Stereo Asynchronous Sample Rate Converter
ADI

AD1896AYRSRL

192 kHz Stereo Asynchronous Sample Rate Converter
ADI

AD1896AYRSZ

192 kHz Stereo Asynchronous Sample Rate Converter
ADI

AD1896AYRSZRL

暂无描述
ADI

AD1896YRS

192 kHz Stereo Asynchronous Sample Rate Converter
ADI

AD1896YRSRL

192 kHz Stereo Asynchronous Sample Rate Converter
ADI

AD1928

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI