AD1896YRS [ADI]

192 kHz Stereo Asynchronous Sample Rate Converter; 192 kHz立体声异步采样速率转换器
AD1896YRS
型号: AD1896YRS
厂家: ADI    ADI
描述:

192 kHz Stereo Asynchronous Sample Rate Converter
192 kHz立体声异步采样速率转换器

转换器 消费电路 商用集成电路 光电二极管
文件: 总28页 (文件大小:1448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
192 kHz Stereo Asynchronous  
Sample Rate Converter  
a
AD1896*  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Automatically Senses Sample Frequencies  
No Programming Required  
GRPDLYS RESET VDD_IO VDD_CORE  
Attenuates Sample Clock Jitter  
3.3 V–5 V Input and 3.3 V Core Supply Voltages  
Accepts 16-/18-/20-/24-Bit Data  
Up to 192 kHz Sample Rate  
Input/Output Sample Ratios from 7.75:1 to 1:8  
Bypass Mode  
Multiple AD1896 TDM Daisy-Chain Mode  
Multiple AD1896 Matched-Phase Mode  
142 dB Signal-to-Noise and Dynamic Range  
(A-Weighted, 20 Hz–20 kHz BW)  
Up to –133 dB THD + N  
AD1896  
MUTE_I  
FS  
OUT  
SDATA_I  
SCLK_I  
LRCLK_I  
FIFO  
SDATA_O  
SCLK_O  
LRCLK_O  
FS  
IN  
SERIAL  
INPUT  
SMODE_IN_0  
SMODE_IN_1  
SMODE_IN_2  
TDM_IN  
SERIAL  
OUTPUT  
FIR  
FILTER  
SMODE_O_0  
SMODE_O_1  
DIGITAL  
PLL  
BYPASS  
MUTE_O  
WLNGTH_O_0  
WLNGTH_O_1  
CLOCK DIVIDER  
MSMODE_0  
ROM  
Linear Phase FIR Filter  
Hardware Controllable Soft Mute  
Supports 256 fS, 512 fS, or 768 fS Master  
Mode Clock  
MCLK_I  
MSMODE_2  
MCLK_O  
MSMODE_1  
Flexible 3-Wire Serial Data Port with Left-Justified,  
I2S, Right-Justified (16-,18-, 20-, 24-Bits), and  
TDM Serial Port Modes  
Master/Slave Input and Output Modes  
28-Lead SSOP Plastic Package  
port supports TDM mode for daisy-chaining multiple AD1896s to  
a digital signal processor. The serial output data is dithered down  
to 20, 18, or 16 bits when 20-, 18-, or 16-bit output data is se-  
lected. The AD1896 sample rate converts the data from the  
serial input port to the sample rate of the serial output port. The  
sample rate at the serial input port can be asynchronous with  
respect to the output sample rate of the output serial port. The  
master clock to the AD1896, MCLK, can be asynchronous to  
both the serial input and output ports.  
APPLICATIONS  
Home Theater Systems, Studio Digital Mixers,  
Automotive Audio Systems, DVD, Set-Top Boxes,  
Digital Audio Effects Processors, Studio-to-Transmitter  
Links, Digital Audio Broadcast Equipment,  
DigitalTape Varispeed Applications  
MCLK can be generated either off-chip or on-chip by the AD1896  
master clock oscillator. Since MCLK can be asynchronous to the  
input or output serial ports, a crystal can be used to generate  
MCLK internally to reduce noise and EMI emissions on the  
board. When MCLK is synchronous to either the output or input  
serial port, the AD1896 can be configured in a master mode where  
MCLK is divided down and used to generate the left/right  
and bit clocks for the serial port that is synchronous to MCLK.  
The AD1896 supports master modes of 256 ¥ fS, 512 ¥ fS,  
and 768 ¥ fS for both input and output serial ports.  
PRODUCT OVERVIEW  
The AD1896 is a 24-bit, high performance, single-chip, second-  
generation asynchronous sample rate converter. Based on Analog  
Devices experience with its first asynchronous sample rate  
converter, the AD1890, the AD1896 offers improved performance  
and additional features. This improved performance includes a  
THD + N range of –117 dB to –133 dB depending on the sample  
rate and input frequency, 142 dB (A-Weighted) dynamic range,  
192 kHz sampling frequencies for both input and output sample  
rates, improved jitter rejection, and 1:8 upsampling and 7.75:1  
downsampling ratios. Additional features include more serial  
formats, a bypass mode, better interfacing to digital signal pro-  
cessors, and a matched-phase mode.  
Conceptually, the AD1896 interpolates the serial input data by  
a rate of 220 and samples the interpolated data stream by the  
output sample rate. In practice, a 64-tap FIR filter with 220  
polyphases, a FIFO, a digital servo loop that measures the time  
difference between the input and output samples within 5 ps,  
and a digital circuit to track the sample rate ratio are used to  
perform the interpolation and output sampling. Refer to the  
Theory of Operation section. The digital servo loop and sample  
rate ratio circuit automatically track the input and output  
sample rates.  
The AD1896 has a 3-wire interface for the serial input and  
output ports that supports left-justified, I2S, and right-justified  
(16-, 18-, 20-, 24-bit) modes. Additionally, the serial output  
*Patents pending.  
(Continued on Page 17)  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD1896–SPECIFICATIONS  
TEST CONDITIONS, UNLESS OTHERWISE NOTED.  
Supply Voltages  
VDD_CORE  
VDD_IO  
Ambient Temperature  
Input Clock  
Input Signal  
Measurement Bandwidth  
Word Width  
3.3 V  
5.0 V or 3.3 V  
25°C  
30.0 MHz  
1.000 kHz, 0 dBFS  
20 to fS_OUT/2 Hz  
24 Bits  
Load Capacitance  
Input Voltage High  
Input Voltage Low  
50 pF  
2.4 V  
0.8 V  
Specifications subject to change without notice.  
DIGITAL PERFORMANCE (VDD_CORE = 3.3 V 5%, VDD_IO = 5.0 V 10%)  
Parameter  
Min  
Typ  
Max  
Unit  
Resolution  
24  
Bits  
kHz  
kHz  
Sample Rate @ MCLK_I = 30 MHz  
Sample Rate (@ Other Master Clocks)1  
Sample Rate Ratios  
6
215  
MCLK_I/5000 fS < MCLK_I/138  
Upsampling  
1:8  
7.75:1  
7.0:1  
Downsampling (Short GRPDLYS)  
Downsampling (Long GRPDLYS)  
Dynamic Range2  
(20 Hz to fS_OUT/2, 1 kHz, –60 dBFS Input) A-Weighted  
Worst-Case (192 kHz:48 kHz)  
44.1 kHz:48 kHz  
48 kHz:44.1 kHz  
48 kHz:96 kHz  
44.1 kHz:192 kHz  
96 kHz:48 kHz  
192 kHz:32 kHz  
132  
142  
141  
142  
141.5  
140  
140  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
(20 Hz to fS_OUT/2, 1 kHz, –60 dBFS Input) No Filter  
Worst-Case (192 kHz:48 kHz)  
44.1 kHz:48 kHz  
48 kHz:44.1 kHz  
48 kHz:96 kHz  
132  
139  
139  
139  
137  
137  
138  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
44.1 kHz:192 kHz  
96 kHz:48 kHz  
192 kHz:32 kHz  
Total Harmonic Distortion + Noise2  
(20 Hz to fS_OUT/2, 1 kHz, 0 dBFS Input) No Filter  
Worst-Case (32 kHz:48 kHz)3  
44.1 kHz:48 kHz  
–117  
–123  
–124  
–120  
–123  
–132  
–133  
0.0  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
48 kHz:44.1 kHz  
48 kHz:96 kHz  
44.1 kHz:192 kHz  
96 kHz:48 kHz  
192 kHz:32 kHz  
Interchannel Gain Mismatch  
Interchannel Phase Deviation  
Mute Attenuation (24 Bits Word Width) (A-Weighted)  
0.0  
–144  
Degrees  
dB  
NOTES  
1Lower sampling rates than given by this formula are possible, but the jitter rejection will decrease.  
2Refer to the Typical Performance Characteristics section for DNR and THD + N numbers over wide range of input and output sample rates.  
3For any other sample rate ratio, the minimum THD + N will be better than –117 dB. Please refer to detailed performance plots.  
Specifications subject to change without notice.  
–2–  
REV. A  
AD1896  
DIGITAL TIMING (–40C < TA < +105C, VDD_CORE = 3.3 V 5%, VDD_IO = 5.0 V 10%)  
Parameter1  
Min  
Typ  
Max  
Unit  
tMCLKI  
fMCLK  
tMPWH  
tMPWL  
MCLK_I Period  
33.3  
ns  
MHz  
ns  
MCLK_I Frequency  
MCLK_I Pulsewidth High  
MCLK_I Pulsewidth Low  
30.02, 3  
9
12  
ns  
Input Serial Port Timing  
tLRIS  
tSIH  
tSIL  
LRCLK_I Setup to SCLK_I  
SCLK_I Pulsewidth High  
SCLK_I Pulsewidth Low  
SDATA_I Setup to SCLK_I Rising Edge  
SDATA_I Hold from SCLK_I Rising Edge  
8
8
8
8
3
ns  
ns  
ns  
ns  
ns  
tDIS  
tDIH  
Propagation Delay from MCLK_I Rising Edge to SCLK_I Rising Edge  
(Serial Input Port MASTER)  
Propagation Delay from MCLK_I Rising Edge to LRCLK_I Rising Edge  
(Serial Input Port MASTER)  
12  
12  
ns  
ns  
Output Serial Port Timing  
tTDMS  
tTDMH  
tDOPD  
tDOH  
tLROS  
tLROH  
tSOH  
TDM_IN Setup to SCLK_O Falling Edge  
TDM_IN Hold from SCLK_O Falling Edge  
SDATA_O Propagation Delay from SCLK_O, LRCLK_O  
SDATA_O Hold from SCLK_O  
LRCLK_O Setup to SCLK_O (TDM Mode Only)  
LRCLK_O Hold from SCLK_O (TDM Mode Only)  
SCLK_O Pulsewidth High  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
3
5
3
10  
5
tSOL  
tRSTL  
SCLK_O Pulsewidth Low  
RESET Pulsewidth Low  
200  
Propagation Delay from MCLK_I Rising Edge to SCLK_O Rising Edge  
(Serial Output Port MASTER)  
Propagation Delay from MCLK_I Rising Edge to LRCLK_O Rising Edge  
12  
12  
ns  
ns  
(Serial Output Port MASTER)  
NOTES  
1Refer to Timing Diagrams section.  
2The maximum possible sample rate is: FSMAX = fMCLK /138.  
3fMCLK of up to 34 MHz is possible under the following conditions: 0C < TA < 70C, 45/55 or better MCLK_I duty cycle.  
Specifications subject to change without notice.  
–3–  
REV. A  
AD1896  
TIMING DIAGRAMS  
MCLK I  
LRCLK_I  
tSIH  
tLRIS  
SCLK I  
RESET  
tDIS  
tSIL  
tRSTL  
SDATA I  
Figure 2. RESET Timing  
tDIH  
LRCLK O  
tSOH  
tMPWH  
SCLK O  
tSOL  
tDOPD  
SDATA O  
tDOH  
tMPWL  
tLROS  
Figure 3. MCLK_I Timing  
LRCLK O  
SCLK O  
tLROH  
tTDMS  
TDM IN  
tTDMH  
Figure 1. Input and Output Serial Port Timing (SCLK I/O,  
LRCLK I/O, SDATA I/O, TDM_IN)  
–4–  
REV. A  
AD1896  
DIGITAL FILTERS (VDD_CORE = 3.3 V 5%, VDD_IO = 5.0 V 10%)  
Parameter  
Min  
Typ  
Max  
Unit  
Pass-Band  
0.4535 fS_OUT  
± 0.016  
0.5465 fS_OUT  
Hz  
dB  
Hz  
Hz  
dB  
Pass-Band Ripple  
Transition Band  
Stop-Band  
Stop-Band Attenuation  
Group Delay  
0.4535 fS_OUT  
0.5465 fS_OUT  
–125  
Refer to the Group Delay Equations section.  
Specifications subject to change without notice.  
DIGITAL I/O CHARACTERISTICS (VDD_CORE = 3.3 V 5%, VDD_IO = 5.0 V 10%)  
Parameter  
Min  
Typ  
Max  
Unit  
Input Voltage High (VIH)  
2.4  
Input Voltage Low (VIL)  
0.8  
+2  
–2  
+150  
–150  
10  
V
Input Leakage (IIH @ VIH = 5 V)1  
Input Leakage (IIL @ VIL = 0 V)1  
Input Leakage (IIH @ VIH = 5 V)2  
Input Leakage (IIL @ VIL = 0 V)2  
Input Capacitance  
mA  
mA  
mA  
mA  
pF  
V
V
mA  
mA  
5
Output Voltage High (VOH @ IOH = –4 mA)  
Output Voltage Low (VOL @ IOL = +4 mA)  
Output Source Current High (IOH  
VDD_CORE – 0.5  
VDD_CORE – 0.4  
0.2  
0.5  
–4  
+4  
)
Output Sink Current Low (IOL  
)
NOTES  
1All input pins except GRPDLYS.  
2GRPDLYS pin only.  
Specifications subject to change without notice.  
POWER SUPPLIES  
Parameter  
Min  
Typ  
Max  
Unit  
Supply Voltage  
VDD_CORE  
VDD_IO*  
3.135  
VDD_CORE  
3.3  
3.3/5.0  
3.465  
5.5  
V
V
Active Supply Current  
I_CORE_ACTIVE  
48 kHz:48 kHz  
96 kHz:96 kHz  
192 kHz:192 kHz  
I_IO_ACTIVE  
20  
26  
43  
2
mA  
mA  
mA  
mA  
Power-Down Supply Current: (All Clocks Stopped)  
I_CORE_PWRDN  
I_IO_PWRDN  
0.5  
10  
mA  
mA  
*For 3.3 V tolerant inputs, VDD_IO supply should be set to 3.3 V; however, VDD_CORE supply voltage should not exceed VDD_IO.  
Specifications subject to change without notice.  
–5–  
REV. A  
AD1896  
POWER SUPPLIES (VDD_CORE = 3.3 V 5%, VDD_IO = 5.0 V 10%)  
Parameter  
Min  
Typ  
Max  
Unit  
Total Active Power Dissipation  
48 kHz:48 kHz  
96 kHz:96 kHz  
192 kHz:192 kHz  
Total Power-Down Dissipation: (RESET LO)  
65  
85  
132  
2
mW  
mW  
mW  
mW  
Specifications subject to change without notice.  
TEMPERATURE RANGE  
Parameter  
Min  
Typ  
Max  
Unit  
Specifications Guaranteed  
Functionality Guaranteed  
Storage  
25  
C  
C  
C  
C/W  
–40  
–55  
+105  
+150  
Thermal Resistance, qJA (Junction to Ambient)  
109  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS*  
Parameter  
Min  
Max  
Unit  
Power Supplies  
VDD_CORE  
–0.3  
–0.3  
+3.6  
+6.0  
V
V
VDD_IO  
Digital Inputs  
Input Current  
Input Voltage  
Ambient Temperature (Operating)  
± 10  
VDD_IO + 0.3  
+105  
mA  
V
C  
DGND – 0.3  
–40  
*Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD1896AYRS  
AD1896AYRSRL  
–40C to +105C  
–40C to +105C  
28-Lead SSOP  
28-Lead SSOP  
RS-28  
RS-28 on 13" Reel  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD1896 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–6–  
REV. A  
AD1896  
PIN CONFIGURATION  
GRPDLYS  
1
2
28 MMODE_2  
27  
26  
25  
24  
23  
22  
21  
20  
MCLK_IN  
MCLK_OUT  
SDATA_I  
MMODE_1  
MMODE_0  
SCLK_O  
LRCLK_O  
SDATA_O  
VDD_CORE  
DGND  
3
4
AD1896  
TOP VIEW  
(NOT TO SCALE  
5
SCLK_I  
)
6
LRCLK_I  
7
VDD_IO  
8
DGND  
BYPASS  
9
TDM_IN  
10  
11  
12  
13  
14  
SMODE_IN_0  
SMODE_IN_1  
SMODE_IN_2  
19 SMODE_OUT_0  
18 SMODE_OUT_1  
17  
16  
15  
WLNGTH_OUT_0  
WLNGTH_OUT_1  
MUTE_OUT  
RESET  
MUTE_IN  
PIN FUNCTION DESCRIPTIONS  
Description  
Pin No.  
IN/OUT  
Mnemonic  
1
2
3
4
5
6
7
8
IN  
IN  
GRPDLYS  
MCLK_IN  
MCLK_OUT  
SDATA_I  
SCLK_I  
LRCLK_I  
Group Delay High = Short, Low = Long  
Master Clock or Crystal Input  
OUT  
IN  
IN/OUT  
IN/OUT  
IN  
Master Clock Output or Crystal Output  
Input Serial Data (at Input Sample Rate)  
Master/Slave Input Serial Bit Clock  
Master/Slave Input Left/Right Clock  
3.3 V/5 V Input/Output Digital Supply Pin  
Digital Ground Pin  
VDD_IO  
DGND  
IN  
9
IN  
IN  
IN  
IN  
IN  
IN  
OUT  
IN  
IN  
IN  
IN  
IN  
IN  
BYPASS  
ASRC Bypass Mode, Active High  
Input Port Serial Interface Mode Select Pin 0  
Input Port Serial Interface Mode Select Pin 1  
Input Port Serial Interface Mode Select Pin 2  
Reset Pin, Active Low  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
SMODE_IN_0  
SMODE_IN_1  
SMODE_IN_2  
RESET  
MUTE_IN  
MUTE_OUT  
WLNGTH_OUT_1  
WLNGTH_OUT_0  
SMODE_OUT_1  
SMODE_OUT_0  
TDM_IN  
DGND  
VDD_CORE  
SDATA_O  
LRCLK_O  
SCLK_O  
MMODE_0  
MMODE_1  
MMODE_2  
Mute Input Pin—Active High Normally Connected to MUTE_OUT  
Output Mute Control, Active High  
Hardware Selectable Output Wordlength—Select Pin 1  
Hardware Selectable Output Wordlength—Select Pin 0  
Output Port Serial Interface Mode Select Pin 1  
Output Port Serial Interface Mode Select Pin 0  
Serial Data Input* (Only for Daisy-Chain Mode). Ground when not used.  
Digital Ground Pin  
3.3 V Digital Supply Pin  
Output Serial Data (at Output Sample Rate)  
Master/Slave Output Left/Right Clock  
IN  
OUT  
IN/OUT  
IN/OUT  
IN  
IN  
IN  
Master/Slave Output Serial Bit Clock  
Master/Slave Clock Ratio Mode Select Pin 0  
Master/Slave Clock Ratio Mode Select Pin 1  
Master/Slave Clock Ratio Mode Select Pin 2  
*Also used to input matched-phase mode data.  
REV. A  
–7–  
AD1896–Typical Performance Characteristics  
0
–20  
–40  
0
–20  
–40  
–60  
–80  
–60  
–80  
–100  
–100  
–120  
–140  
–160  
–180  
–200  
–120  
–140  
–160  
–180  
–200  
10  
20  
30  
40  
50  
60  
70  
80  
90  
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
FREQUENCY – kHz  
TPC 1. Wideband FFT Plot (16k Points) 0 dBFS 1 kHz Tone,  
48 kHz:48 kHz (Asynchronous)  
TPC 4. Wideband FFT Plot (16k Points) 44.1 kHz:192 kHz,  
0 dBFS 1 kHz Tone  
0
–20  
–40  
0
–20  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
5.0  
2.5  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5 20.0  
FREQUENCY – kHz  
TPC 2. Wideband FFT Plot (16k Points) 0 dBFS 1 kHz Tone,  
44.1 kHz:48 kHz (Asynchronous)  
TPC 5. Wideband FFT Plot (16k Points) 48 kHz:44.1 kHz,  
0 dBFS 1 kHz Tone  
0
–20  
–40  
–60  
–80  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
5
10  
15  
20  
25  
30  
35  
40  
45  
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
FREQUENCY – kHz  
TPC 3. Wideband FFT Plot (16k Points) 48 kHz:96 kHz,  
0 dBFS 1 kHz Tone  
TPC 6. Wideband FFT Plot (16k Points) 96 kHz:48 kHz,  
0 dBFS 1 kHz Tone  
–8–  
REV. A  
AD1896  
0
–20  
–50  
–60  
–70  
–40  
–80  
–90  
–60  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–190  
–200  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY – kHz  
TPC 7. Wideband FFT Plot (16k Points) 192 kHz:48 kHz,  
0 dBFS 1 kHz Tone  
TPC 10. Wideband FFT Plot (16k Points) 48 kHz:96 kHz,  
–60 dBFS 1 kHz Tone  
–50  
–60  
–70  
–80  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–190  
–200  
–170  
–180  
–190  
–200  
2.5  
5.0  
7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
10  
20  
30  
40  
50  
60  
70  
80  
90  
FREQUENCY – kHz  
TPC 8. Wideband FFT Plot (16k Points) –60 dBFS 1 kHz  
Tone, 48 kHz:48 kHz (Asynchronous)  
TPC 11. Wideband FFT Plot (16k Points) 44.1 kHz:192 kHz,  
–60 dBFS 1 kHz Tone  
–50  
–60  
–50  
–60  
–70  
–80  
–90  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–190  
–200  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–190  
–200  
2.5  
5.0  
7.5  
10.0 12.5  
15.0  
17.5  
20.0  
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
FREQUENCY – kHz  
TPC 9. Wideband FFT Plot (16k Points) 44.1 kHz:48 kHz,  
–60 dBFS 1 kHz Tone  
TPC 12. Wideband FFT Plot (16k Points) 48 kHz:44.1 kHz,  
–60 dBFS 1 kHz Tone  
REV. A  
–9–  
AD1896  
–50  
–60  
–70  
–80  
–90  
0
–20  
–40  
–60  
–80  
–100  
–110  
–120  
–130  
–100  
–120  
–140  
–150  
–160  
–170  
–140  
–160  
–180  
–180  
–190  
–200  
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
TPC 13. Wideband FFT Plot (16k Points) 96 kHz:48 kHz,  
–60 dBFS 1 kHz Tone  
TPC 16. IMD, 10 kHz and 11 kHz 0 dBFS Tone  
96 kHz:48 kHz  
–50  
–60  
0
–20  
–70  
–80  
–40  
–90  
–60  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–190  
–200  
–80  
–100  
–120  
–140  
–160  
–180  
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
2.5  
5.0  
7.5  
10.0  
12.5 15.0  
17.5  
20.0  
FREQUENCY – kHz  
TPC 14. Wideband FFT Plot (16k Points) 192 kHz:48 kHz,  
–60 dBFS 1 kHz Tone  
TPC 17. IMD, 10 kHz and 11 kHz 0 dBFS Tone  
48 kHz:44.1 kHz  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
2.5  
5.0  
7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
TPC 15. IMD, 10 kHz and 11 kHz 0 dBFS Tone  
44:1 kHz:48 kHz  
TPC 18. Wideband FFT Plot (16k Points) 44.1 kHz:48 kHz,  
0 dBFS 20 kHz Tone  
–10–  
REV. A  
AD1896  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
10  
20  
30  
40  
50  
60  
70  
80  
90  
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY – kHz  
FREQUENCY – kHz  
TPC 19. Wideband FFT Plot (16k Points) 192 kHz:192 kHz,  
0 dBFS 80 kHz Tone  
TPC 22. Wideband FFT Plot (16k Points) 48 kHz:96 kHz,  
0 dBFS 20 kHz Tone  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
2.5  
5.0  
7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
2.5  
5.0  
7.5  
10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY – kHz  
TPC 20. Wideband FFT Plot (16k Points) 48 kHz:48 kHz,  
0 dBFS 20 kHz Tone  
TPC 23. Wideband FFT Plot (16k Points) 96 kHz:48 kHz,  
0 dBFS 20 kHz Tone  
0
–20  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
30  
55  
80  
105  
130  
155  
180  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
20.0  
FREQUENCY – kHz  
OUTPUT SAMPLE RATE – kHz  
TPC 21. Wideband FFT Plot (16k Points) 48 kHz:44:1 kHz,  
0 dBFS 20 kHz Tone  
TPC 24. THD + N vs. Output Sample Rate, fS_IN = 192 kHz,  
0 dBFS 1 kHz Tone  
REV. A  
–11–  
AD1896  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
30  
55  
80  
105  
130  
155  
180  
30  
55  
80  
105  
130  
155  
180  
OUTPUT SAMPLE RATE – kHz  
OUTPUT SAMPLE RATE – kHz  
TPC 25. THD + N vs. Output Sample Rate, fS_IN = 48 kHz,  
0 dBFS 1 kHz Tone  
TPC 28. THD + N vs. Output Sample Rate, fS_IN = 96 kHz,  
0 dBFS 1 kHz Tone  
–130  
–131  
–132  
–133  
–134  
–135  
–136  
–137  
–138  
–139  
–140  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
30  
55  
80  
105  
130  
155  
180  
30  
55  
80  
105  
130  
155  
180  
OUTPUT SAMPLE RATE – kHz  
OUTPUT SAMPLE RATE – kHz  
TPC 26. THD + N vs. Output Sample Rate, fS_IN = 44.1 kHz,  
0 dBFS 1 kHz Tone  
TPC 29. DNR vs. Output Sample Rate, fS_IN = 192 kHz,  
–60 dBFS 1 kHz Tone  
–135  
–136  
–137  
–138  
–139  
–140  
–141  
–142  
–143  
–144  
–145  
–119  
–121  
–123  
–125  
–127  
–129  
–131  
–133  
–135  
30  
55  
80  
105  
130  
155  
180  
30  
55  
80  
105  
130  
155  
180  
OUTPUT SAMPLE RATE – kHz  
OUTPUT SAMPLE RATE – kHz  
TPC 27. THD + N vs. Output Sample Rate, fS_IN = 32 kHz,  
0 dBFS 1 kHz Tone  
TPC 30. DNR vs. Output Sample Rate, fS_IN = 32 kHz,  
–60 dBFS 1 kHz Tone  
–12–  
REV. A  
AD1896  
–135  
–136  
–137  
–138  
–139  
–140  
–130  
–131  
–132  
–133  
–134  
–135  
–136  
–137  
–138  
–139  
–140  
30  
55  
80  
105  
130  
155  
180  
30  
55  
80  
105  
130  
155  
180  
OUTPUT SAMPLE RATE – kHz  
OUTPUT SAMPLE RATE – kHz  
TPC 34. DNR vs. Output Sample Rate, fS_IN = 44.1 kHz,  
–60 dBFS 1 kHz Tone  
TPC 31. DNR vs. Output Sample Rate, fS_IN = 96 kHz,  
–60 dBFS 1 kHz Tone  
0.00  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
0
–20  
–40  
–60  
192kHz:96kHz  
192kHz:48kHz  
–80  
–100  
–120  
–140  
192kHz:32kHz  
–0.08  
192kHz:48kHz  
–0.09  
–0.10  
0
10  
20  
30  
40  
50  
60  
0
2
4
6
8
10 12 14 16 18 20 22 24  
FREQUENCY – kHz  
FREQUENCY – kHz  
TPC 32. Digital Filter Frequency Response  
TPC 35. Pass-Band Ripple, 192 kHz:48 kHz  
5
4
–135  
–136  
–137  
–138  
–139  
–140  
–141  
–142  
–143  
–144  
–145  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
30  
55  
80  
105  
130  
155  
180  
INPUT LEVEL – dBFS  
OUTPUT SAMPLE RATE – kHz  
TPC 36. Linearity Error, 48 kHz:48 kHz, 0 dBFS to  
–140 dBFS Input, 200 Hz Tone  
TPC 33. DNR vs. Output Sample Rate, fS_IN = 48 kHz,  
–60 dBFS 1 kHz Tone  
REV. A  
–13–  
AD1896  
5
4
5
4
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
0
140  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
60  
40  
20  
INPUT LEVEL – dBFS  
INPUT LEVEL – dBFS  
TPC 40. Linearity Error, 48 kHz:96 kHz, 0 dBFS to  
–140 dBFS Input, 200 Hz Tone  
TPC 37. Linearity Error, 48 kHz:44.1 kHz, 0 dBFS to  
–140 dBFS Input, 200 Hz Tone  
5
4
5
4
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
0
0
140  
120  
100  
80  
60  
40  
20  
140  
120  
100  
80  
60  
40  
20  
INPUT LEVEL – dBFS  
INPUT LEVEL – dBFS  
TPC 41. Linearity Error, 44.1 kHz:192 kHz, 0 dBFS to  
–140 dBFS Input, 200 Hz Tone  
TPC 38. Linearity Error, 96 kHz:48 kHz, 0 dBFS to  
–140 dBFS Input, 200 Hz Tone  
5
4
5
4
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
0
140  
120  
100  
80  
60  
40  
20  
0
140  
120  
100  
80  
60  
40  
20  
INPUT LEVEL – dBFS  
INPUT LEVEL – dBFS  
TPC 42. Linearity Error, 192 kHz:44:1 kHz, 0 dBFS to  
–140 dBFS Input, 200 Hz Tone  
TPC 39. Linearity Error, 44.1 kHz:48 kHz, 0 dBFS to  
–140 dBFS Input, 200 Hz Tone  
–14–  
REV. A  
AD1896  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
–175  
–180  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
–175  
–180  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
INPUT LEVEL – dBFS  
INPUT LEVEL – dBFS  
TPC 46. THD + N vs. Input Amplitude, 48 kHz:96 kHz,  
1 kHz Tone  
TPC 43. THD + N vs. Input Amplitude, 48 kHz:44.1 kHz,  
1 kHz Tone  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
–175  
–180  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
–175  
–180  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
INPUT LEVEL – dBFS  
INPUT LEVEL – dBFS  
TPC 47. THD + N vs. Input Amplitude, 44.1 kHz:192 kHz,  
1 kHz Tone  
TPC 44. THD + N vs. Input Amplitude, 96 kHz:48 kHz,  
1 kHz Tone  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
–175  
–180  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
–175  
–180  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
INPUT LEVEL – dBFS  
INPUT LEVEL – dBFS  
TPC 48. THD + N vs. Input Amplitude, 192 kHz:48 kHz,  
1 kHz Tone  
TPC 45. THD + N vs. Input Amplitude, 44.1 kHz:48 kHz,  
1 kHz Tone  
REV. A  
–15–  
AD1896  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–150  
–155  
–160  
–165  
–170  
–175  
–180  
–165  
–170  
–175  
–180  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
20.0  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
20.0  
FREQUENCY – kHz  
FREQUENCY – kHz  
TPC 49. THD + N vs. Frequency Input, 48 kHz:44.1 kHz,  
0 dBFS  
TPC 51. THD + N vs. Frequency Input, 48 kHz:96 kHz,  
0 dBFS  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
–175  
–180  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
–175  
–180  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
20.0  
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
20.0  
FREQUENCY – kHz  
FREQUENCY – kHz  
TPC 52. THD + N vs. Frequency Input, 96 kHz:48 kHz,  
0 dBFS  
TPC 50. THD + N vs. Frequency Input, 44.1 kHz:48 kHz,  
0 dBFS  
–16–  
REV. A  
AD1896  
(Continued from Page 1)  
However, when multiple AD1896s are used with the same serial  
input port clock and the same serial output port clock, the hys-  
teresis causes different group delays between multiple AD1896s.  
A phase-matching mode feature was added to the AD1896 to  
address this problem. In phase-matching mode, one AD1896,  
the master, transmits its sample rate ratio to the other AD1896s,  
the slaves, so that the group delay between the multiple AD1896s  
remains the same.  
The digital servo loop measures the time difference between  
the input and output sample rates within 5 ps. This is necessary  
in order to select the correct polyphase filter coefficient. The  
digital servo loop has excellent jitter rejection for both input and  
output sample rates as well as the master clock. The jitter rejec-  
tion begins at less than 1 Hz. This requires a long settling  
time whenever RESET is deasserted or when the input or  
output sample rate changes. To reduce the settling time, upon  
deassertion of RESET or a change in a sample rate, the digital  
servo loop enters the fast settling mode. When the digital servo  
loop has adequately settled in the fast mode, it switches into the  
normal or slow settling mode and continues to settle until the  
time difference measurement between input and output sample  
rates is within 5 ps. During fast mode, the MUTE_OUT signal  
is asserted high. Normally, the MUTE_OUT is connected to the  
MUTE_IN pin. The MUTE_IN signal is used to softly mute  
the AD1896 upon assertion and softly unmute the AD1896  
when it is deasserted.  
The group delay of the AD1896 can be adjusted for short or  
long delay. An address offset is added to the write pointer of the  
FIFO in the sample rate converter. This offset is set to 16 for  
short delay and 64 for long delay. In long delay, the group delay  
is effectively increased by 48 input sample clocks.  
The sample rate converter of the AD1896 can be bypassed  
altogether using the bypass mode. In bypass mode, the AD1896’s  
serial input data is directly passed to the serial output port with-  
out any dithering. This is useful for passing through nonaudio  
data or when the input and output sample rates are synchronous  
to one another and the sample rate ratio is exactly 1 to 1.  
The sample rate ratio circuit is used to scale the filter length of  
the FIR filter for decimation. Hysteresis in measuring the  
sample rate ratio is used to avoid oscillations in the scaling of  
the filter length, which would cause distortion on the output.  
The AD1896 is a 3.3 V, 5 V input tolerant part and is available  
in a 28-lead SSOP package. The AD1896 is 5 V input-tolerant  
only when the VDD_IO supply pin is supplied with 5 V.  
REV. A  
–17–  
AD1896  
ASRC FUNCTIONAL OVERVIEW  
THEORY OF OPERATION  
between each fS_IN sample and convolving this interpolated  
signal with a digital low-pass filter to suppress the images. In the  
time domain, it can be seen that fS_OUT selects the closest fS_IN ¥ 220  
sample from the zero-order hold as opposed to the nearest fS_IN  
sample in the case of no interpolation. This significantly reduces  
the resampling error.  
Asynchronous sample rate conversion is converting data from  
one clock source at some sample rate to another clock source at  
the same or a different sample rate. The simplest approach to an  
asynchronous sample rate conversion is the use of a zero-order  
hold between the two samplers shown in Figure 4. In an asyn-  
chronous system, T2 is never equal to T1 nor is the ratio between  
T2 and T1 rational. As a result, samples at fS_OUT will be repeated  
or dropped producing an error in the resampling process. The  
frequency domain shows the wide side lobes that result from  
this error when the sampling of fS_OUT is convolved with the  
attenuated images from the sin(x)/x nature of the zero-order  
hold. The images at fS_IN, dc signal images, of the zero-order  
hold are infinitely attenuated. Since the ratio of T2 to T1 is an  
irrational number, the error resulting from the resampling at  
fS_OUT can never be eliminated. However, the error can be sig-  
nificantly reduced through interpolation of the input data at  
fS_IN. The AD1896 is conceptually interpolated by a factor of 220.  
IN  
OUT  
INTERPOLATE  
BY N  
LOW-PASS  
FILTER  
ZERO-ORDER  
HOLD  
f
f
S_OUT  
S_IN  
TIME DOMAIN OF f  
SAMPLES  
S_IN  
TIME DOMAIN OUTPUT OFTHE LOW-PASS FILTER  
IN  
ZERO-ORDER  
HOLD  
OUT  
f
= 1/T1  
f
= 1/T2  
S_IN  
TIME DOMAIN OF f  
RESAMPLING  
S_OUT  
S_OUT  
ORIGINAL SIGNAL  
SAMPLED AT f  
S_IN  
TIME DOMAIN OFTHE ZERO-ORDER HOLD OUTPUT  
Figure 5. Time Domain of the Interpolation and  
Resampling  
SIN(X)/X OF ZERO-ORDER HOLD  
SPECTRUM OF ZERO-ORDER HOLD OUTPUT  
In the frequency domain shown in Figure 6, the interpolation  
expands the frequency axis of the zero-order hold. The images  
from the interpolation can be sufficiently attenuated by a good  
low-pass filter. The images from the zero-order hold are now  
pushed by a factor of 220 closer to the infinite attenuation point  
of the zero-order hold, which is fS_IN ¥ 220. The images at the  
zero-order hold are the determining factor for the fidelity of the  
output at fS_OUT. The worst-case images can be computed from  
the zero-order hold frequency response, maximum image =  
sin (p ¥ F/fS_INTERP)/(p ¥ F/fS_INTERP). F is the frequency of the  
worst-case image that would be 220 ¥ fS_IN ± fS_IN/2 , and  
fS_INTERP is fS_IN ¥ 220.  
SPECTRUM OF f  
SAMPLING  
S_OUT  
2 f  
f
S_OUT  
S_OUT  
FREQUENCY RESPONSE OF f  
HOLD SPECTRUM  
CONVOLVEDWITH ZERO-ORDER  
S_OUT  
Figure 4. Zero-Order Hold Being Used by fS_OUT to  
Resample Data from fS_IN  
THE CONCEPTUAL HIGH INTERPOLATION MODEL  
Interpolation of the input data by a factor of 220 involves placing  
(220 – 1) samples between each fS_IN sample. Figure 5 shows  
both the time domain and the frequency domain of interpolation  
by a factor of 220. Conceptually, interpolation by 220 would  
involve the steps of zero-stuffing (220 – 1) number of samples  
The following worst-case images would appear for fS_IN  
192 kHz:  
=
Image at fS_INTERP – 96 kHz = –125.1 dB  
Image at fS_INTERP + 96 kHz = –125.1 dB  
–18–  
REV. A  
AD1896  
the output samples is less than the Nyquist frequency of the  
input samples. To move the cutoff frequency of the antialiasing  
filter, the coefficients are dynamically altered and the length  
of the convolution is increased by a factor of (fS_IN/fS_OUT).  
This technique is supported by the Fourier transform property  
that if f(t) is F(w), then f(k ¥ t) is F(w/k). Thus, the range of  
decimation is simply limited by the size of the RAM.  
IN  
INTERPOLATE  
BY N  
LOW-PASS  
FILTER  
ZERO-ORDER  
HOLD  
OUT  
f
f
S_OUT  
S_IN  
FREQUENCY DOMAIN OF SAMPLES AT f  
S_IN  
f
S_IN  
THE SAMPLE RATE CONVERTER ARCHITECTURE  
The architecture of the sample rate converter is shown in  
Figure 7. The sample rate converter’s FIFO block adjusts the  
left and right input samples and stores them for the FIR filter’s  
convolution cycle. The fS_IN counter provides the write address  
to the FIFO block and the ramp input to the digital servo  
loop. The ROM stores the coefficients for the FIR filter convo-  
lution and performs a high order interpolation between the  
stored coefficients. The sample rate ratio block measures the  
sample rate for dynamically altering the ROM coefficients and  
scaling of the FIR filter length as well as the input data. The  
digital servo loop automatically tracks the fS_IN and fS_OUT  
sample rates and provides the RAM and ROM start addresses  
for the start of the FIR filter convolution.  
20  
FREQUENCY DOMAIN OFTHE INTERPOLATION  
SIN(X)/X OF ZERO-ORDER HOLD  
2
f  
S_IN  
FREQUENCY DOMAIN OF f  
RESAMPLING  
20  
S_OUT  
2
f  
S_IN  
20  
FREQUENCY DOMAIN AFTER  
RESAMPLING  
2
f  
S_IN  
ROM A  
ROM B  
RIGHT DATA IN  
LEFT DATA IN  
HIGH  
FIFO  
Figure 6. Frequency Domain of the Interpolation and  
Resampling  
ORDER  
INTERP  
ROM C  
ROM D  
HARDWARE MODEL  
f
DIGITAL  
SERVO LOOP  
S_IN  
The output rate of the low-pass filter of Figure 5 would be the  
interpolation rate, 220 ¥ 192000 kHz = 201.3 GHz. Sampling at  
a rate of 201.3 GHz is clearly impractical, not to mention the  
number of taps required to calculate each interpolated sample.  
However, since interpolation by 220 involves zero-stuffing 220– 1  
samples between each fS_IN sample, most of the multiplies in  
the low-pass FIR filter are by zero. A further reduction can be  
realized by the fact that since only one interpolated sample is  
taken at the output at the fS_OUT rate, only one convolution  
needs to be performed per fS_OUT period instead of 220 convo-  
lutions. A 64-tap FIR filter for each fS_OUT sample is sufficient  
to suppress the images caused by the interpolation.  
COUNTER  
SAMPLE RATE RATIO  
FIR FILTER  
L/R DATA OUT  
f
S_IN  
SAMPLE RATE  
RATIO  
f
S_OUT  
EXTERNAL  
RATIO  
Figure 7. Architecture of the Sample Rate Converter  
The FIFO receives the left and right input data and adjusts the  
amplitude of the data for both the soft muting of the sample rate  
converter and the scaling of the input data by the sample rate  
ratio before storing the samples in the RAM. The input data is  
scaled by the sample rate ratio because as the FIR filter length  
of the convolution increases, so does the amplitude of the  
convolution output. To keep the output of the FIR filter from  
saturating, the input data is scaled down by multiplying it by  
(fS_OUT/fS_IN) when fS_OUT < fS_IN. The FIFO also scales the input  
data for muting and unmuting of the AD1896.  
The difficulty with the above approach is that the correct inter-  
polated sample needs to be selected upon the arrival of fS_OUT  
.
Since there are 220 possible convolutions per fS_OUT period, the  
arrival of the fS_OUT clock must be measured with an accuracy  
of 1/201.3 GHz = 4.96 ps. Measuring the fS_OUT period with a  
clock of 201.3 GHz frequency is clearly impossible; instead,  
several coarse measurements of the fS_OUT clock period are made  
and averaged over time.  
The RAM in the FIFO is 512 words deep for both left and right  
channels. An offset to the write address provided by the fS_IN  
counter is added to prevent the RAM read pointer from ever  
overlapping the write address. The offset is selectable by the  
GRPDLYS, group delay select, signal. A small offset, 16, is  
added to the write address pointer when GRPDLYS is high,  
and a large offset, 64, is added to the write address pointer when  
GRPDLYS is low. Increasing the offset of the write address pointer  
is useful for applications when small changes in the sample rate  
ratio between fS_IN and fS_OUT are expected. The maximum deci-  
mation rate can be calculated from the RAM word depth and  
GRPDLYS as (512 – 16)/64 taps = 7.75 for short group delay and  
(512 – 64)/64 taps = 7 for long group delay.  
Another difficulty with the above approach is the number of  
coefficients required. Since there are 220 possible convolutions  
with a 64-tap FIR filter, there needs to be 220 polyphase coeffi-  
cients for each tap, which requires a total of 226 coefficients. To  
reduce the amount of coefficients in ROM, the AD1896 stores a  
small subset of coefficients and performs a high order interpola-  
tion between the stored coefficients. So far the above approach  
works for the case of fS_OUT > fS_IN. However, in the case when  
the output sample rate, fS_OUT, is less than the input sample  
rate, fS_IN, the ROM starting address, input data, and the length  
of the convolution must be scaled. As the input sample rate  
rises over the output sample rate, the antialiasing filter’s cutoff  
frequency has to be lowered because the Nyquist frequency of  
REV. A  
–19–  
AD1896  
10  
0
–10  
–20  
–30  
–40  
SLOW MODE  
–50  
FAST MODE  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–190  
–200  
–210  
–220  
0.01  
0.1  
1
10  
100  
1e3  
1e4  
1e5  
FREQUENCY – Hz  
Figure 8. Frequency Response of the Digital Servo Loop. fS_IN Is the X-Axis, fS_OUT = 192 kHz, Master Clock  
Frequency Is 30 MHz.  
The digital servo loop is essentially a ramp filter that provides  
the initial pointer to the address in RAM and ROM for the start  
of the FIR convolution. The RAM pointer is the integer output  
of the ramp filter while the ROM is the fractional part. The  
digital servo loop must be able to provide excellent rejection of  
jitter on the fS_IN and fS_OUT clocks as well as measure the arrival  
of the fS_OUT clock within 4.97 ps. The digital servo loop will  
also divide the fractional part of the ramp output by the ratio of  
fS_IN/fS_OUT for the case when fS_IN > fS_OUT, to dynamically alter  
the ROM coefficients.  
The FIR filter is a 64-tap filter in the case of fS_OUT fS_IN and is  
(fS_IN/fS_OUT)¥ 64 taps for the case when fS_IN > fS_OUT. The FIR  
filter performs its convolution by loading in the starting address  
of the RAM address pointer and the ROM address pointer  
from the digital servo loop at the start of the fS_OUT period.  
The FIR filter then steps through the RAM by decrementing its  
address by 1 for each tap, and the ROM pointer increments its  
address by the (fS_OUT/fS_IN) ¥ 220 ratio for fS_IN > fS_OUT or 220  
for fS_OUT fS_IN. Once the ROM address rolls over, the con-  
volution is completed. The convolution is performed for both  
the left and right channels, and the multiply accumulate circuit  
used for the convolution is shared between the channels.  
The digital servo loop is implemented with a multirate filter. To  
settle the digital servo loop filter quicker upon start-up or a change  
in the sample rate, a “fast mode” was added to the filter. When  
the digital servo loop starts up or the sample rate is changed, the  
digital servo loop kicks into “fast mode” to adjust and settle  
on the new sample rate. Upon sensing the digital servo loop  
settling down to some reasonable value, the digital servo loop  
will kick into “normal” or “slow mode.” During “fast mode”  
the MUTE_OUT signal of the sample rate converter is asserted  
to let the user know that they should mute the sample rate  
converter to avoid any clicks or pops. The frequency response of  
the digital servo loop for “fast mode” and “slow mode” are  
shown in Figure 8.  
The fS_IN/fS_OUT sample rate ratio circuit is used to dynamically  
alter the coefficients in the ROM for the case when fS_IN  
fS_OUT. The ratio is calculated by comparing the output of an  
fS_OUT counter to the output of an fS_IN counter. If fS_OUT  
S_IN, the ratio is held at one. If fS_IN > fS_OUT, the sample rate  
>
>
f
ratio is updated if it is different by more than two fS_OUT periods  
from the previous fS_OUT to fS_IN comparison. This is done to  
provide some hysteresis to prevent the filter length from oscillat-  
ing and causing distortion.  
–20–  
REV. A  
AD1896  
However, the hysteresis of the fS_OUT/fS_IN ratio circuit can cause  
phase mismatching between two AD1896s operating with the  
same input clock and the same output clock. Since the hyster-  
esis requires a difference of more than two fS_OUT periods for the  
fS_OUT/fS_IN ratio to be updated, two AD1896s may have dif-  
ferences in their ratios from 0 to 4 fS_OUT period counts. The  
fS_OUT/fS_IN ratio adjusts the filter length of the AD1896, which  
corresponds directly with the group delay. Thus, the magnitude  
in the phase difference will depend upon the resolution of the  
fS_OUT and fS_IN counters. The greater the resolution of the  
counters, the smaller the phase difference error will be.  
Digital Filter Group Delay  
The group delay of the digital filter may be selected by the logic  
pin GRPDLYS. As mentioned in the Theory of Operation section,  
this pin is particularly useful in varispeed applications. The  
GRPDLYS pin has an internal pull-up resistor of approximately  
33 kW to VDD_CORE. When GRPDLYS is high, the filter group  
delay will be short and is given by the equation:  
16  
fS_IN  
32  
fS_IN  
GDS =  
GDS =  
+
+
seconds for fS_OUT > fS_IN  
16  
fS_IN  
Ê 32 ˆ Ê fS_IN  
fS_IN  
ˆ
¥
seconds for fS_OUT < fS_IN  
The fS_IN and fS_OUT counters of the AD1896 have three bits of  
extra resolution over the AD1890, which reduces the phase  
mismatch error by a factor of 8. However, an additional feature  
was added to the AD1896 to eliminate the phase mismatching  
completely. One AD1896 can set the fS_OUT/fS_IN ratio of other  
AD1896s by transmitting its fS_OUT/fS_IN ratio through the  
serial output port.  
Á
˜
Á
˜
¯
fS_OUT  
Ë
Ë
¯
For short filter group delay, the GRPDLYS pin can be left open.  
When GRPDLYS is low, the group delay of the filter will be  
long and is given by the equation:  
64  
fS_IN  
32  
fS_IN  
GDL =  
GDL =  
+
+
seconds for fS_OUT > fS_IN  
OPERATING FEATURES  
RESET and Power-Down  
64  
fS_IN  
Ê 32 ˆ Ê fS_IN  
fS_IN  
ˆ
¥
seconds for fS_OUT < fS_IN  
When RESET is asserted low, the AD1896 will turn off the  
master clock input to the AD1896, MCLK_I, initialize all of its  
internal registers to their default values, and three-state all of the  
I/O pins. While RESET is active low, the AD1896 is consuming  
minimum power. For the lowest possible power consumption  
while RESET is active low, all of the input pins to the AD1896  
should be static.  
Á
˜
Á
˜
¯
fS_OUT  
Ë
Ë
¯
NOTE: For the long group delay mode, the decimation ratio is  
limited to less than 7:1.  
Mute Control  
When the MUTE_IN pin is asserted high, the MUTE_IN control  
will perform a soft mute by linearly decreasing the input data to  
the AD1896 FIFO to zero, –144 dB attenuation. When MUTE_IN  
is deasserted low, the MUTE_IN control will linearly decrease  
the attenuation of the input data to 0 dB. A 12-bit counter,  
clocked by LRCLK_I, is used to control the mute attenuation.  
Therefore, the time it will take from the assertion of MUTE_IN  
to –144 dB full mute attenuation is 4096/LRCLK_I seconds.  
Likewise, the time it will take to reach 0 dB mute attenuation from  
the deassertion of MUTE_IN is 4096/LRCLK_I seconds.  
When RESET is deasserted, the AD1896 begins its initialization  
routine where all locations in the FIFO are initialized to zero,  
MUTE_OUT is asserted high, and any I/O pins configured as  
outputs are enabled. When RESET is deasserted, the master  
serial port clock pins SCLK_I/O and LRCLK_I/O become  
active after 1024 MCLK-I cycles. The mute control counter,  
which controls the soft mute attenuation of the input samples,  
is initialized to maximum attenuation, –144 dB (see the Mute  
Control section).  
Upon RESET, or a change in the sample rate between LRCLK_I  
and LRCLK_O, the MUTE_OUT pin will be asserted high. The  
MUTE_OUT pin will remain asserted high until the digital  
servo loop’s internal fast settling mode has completed. When  
the digital servo loop has switched to slow settling mode, the  
MUTE_OUT pin will deassert. While MUTE_OUT is asserted,  
the MUTE_IN pin should be asserted as well to prevent any  
major distortion in the audio output samples.  
When asserting RESET and deasserting RESET, the RESET  
should be held low for a minimum of five MCLK_I cycles.  
During power-up, the RESET should be held low until the  
power supplies have stabilized. It is recommended that the  
AD1896 be reset when changing modes.  
Power Supply and Voltage Reference  
The AD1896 is designed for 3 V operation with 5 V input toler-  
ance on the input pins. VDD_CORE is the 3 V supply that is  
used to power the core logic of the AD1896 and to drive the  
output pins. VDD_IO is used to set the input voltage tolerance  
of the input pins. In order for the input pins to be 5 V input  
tolerant, VDD_IO must be connected to a 5 V supply. If the  
input pins do not have to be 5 V input tolerant, then  
VDD_IO can be connected to VDD_CORE. VDD_IO should  
never be less than VDD_CORE. VDD_CORE and VDD_IO  
should be bypassed with 100 nF ceramic chip capacitors, as  
close to the pins as possible, to minimize power supply and  
ground bounce caused by inductance in the traces. A bulk alu-  
minium electrolytic capacitor of 47 mF should also be provided  
on the same PC board as the AD1896.  
Master Clock  
A digital clock connected to the MCLK_I pin or a fundamental  
or third overtone crystal connected between MCLK_I and  
MCLK_O can be used to generate the master clock, MCLK_I.  
The MCLK_I pin can be 5 V input tolerant just like any of the  
other AD1896 input pins. A fundamental mode crystal can be  
inserted between MCLK_I and MCLK_O for master clock  
frequency generation up to 27 MHz. For master clock fre-  
quency generation with a crystal beyond 27 MHz, it is  
recommended that the user use a third overtone crystal and to  
add an LC filter at the output of MCLK_O to filter out the  
fundamental, do not notch filter the fundamental. Please refer  
to your quartz crystal supplier for values for external capaci-  
tors and inductor components.  
REV. A  
–21–  
AD1896  
Table I. Serial Data Input Port Mode  
AD1896  
SMODE_IN_[0:2]  
Interface Format  
MCLK_I  
MCLK_O  
R
2
1
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Left Justified  
I2S  
Undefined  
Undefined  
Right Justified, 16 Bits  
Right Justified, 18 Bits  
Right Justified, 20 Bits  
Right Justified, 24 Bits  
C1  
C2  
Figure 9a. Fundamental-Mode Circuit Configuration  
The serial data output port mode is set by the logic levels on the  
SMODE_OUT_0/SMODE_OUT_1 and WLNGTH_OUT_0/  
WLNGTH_OUT_1 pins. The serial mode can be changed to  
left justified, I2S, right justified, or TDM as defined in the fol-  
lowing table. The output word width can be set by using the  
WLNGTH_OUT_0/WLNGTH_OUT_1 pins as shown in  
Table III. When the output word width is less than 24 bits, dither  
is added to the truncated bits. The right justified serial data out  
mode assumes 64 SCLK_O cycles per frame, divided evenly for  
left and right. Please note that 8 bits of each 32-bit subframe are  
used for transmitting matched-phase mode data. Please refer to  
Figure 14. The AD1896 also supports 16-bit, 32-clock packed  
input and output serial data in LJ and I2S format.  
AD1896  
MCLK_I  
MCLK_O  
R
1nF  
L1  
C1  
C2  
Figure 9b. Third-Overtone Circuit Configuration  
There are, of course, maximum and minimum operating fre-  
quencies for the AD1896 master clock. The maximum master  
clock frequency at which the AD1896 is guaranteed to operate is  
30 MHz. A frequency of 30 MHz is more than sufficient to  
sample rate convert sampling frequencies of 192 kHz + 12%.  
The minimum required frequency for the master clock generation  
for the AD1896 depends upon the input and output sample  
rates. The master clock has to be at least 138 times greater than  
the maximum input or output sample rate.  
Table II. Serial Data Output Port Mode  
SMODE_OUT_[0:1]  
Interface Format  
1
0
0
0
1
1
0
1
0
1
Left Justified (LJ)  
I2S  
TDM Mode  
Right Justified (RJ)  
Serial Data Ports—Data Format  
The serial data input port mode is set by the logic levels on the  
SMODE_IN_0/SMODE_IN_1/SMODE_IN_2 pins. The serial  
data input port modes available are left justified, I2S, and right  
justified (RJ), 16, 18, 20, or 24 bits as defined in Table I.  
Table III. Word Width  
WLNGTH_OUT_[0:1]  
Word Width  
1
0
0
0
1
1
0
1
0
1
24 Bits  
20 Bits  
18 Bits  
16 Bits  
The following timing diagrams show the serial mode formats.  
–22–  
REV. A  
AD1896  
RIGHT CHANNEL  
LSB  
LEFT CHANNEL  
LRCLK  
SCLK  
MSB  
MSB  
LSB  
SDATA  
LEFT-JUSTIFIED MODE – 16 BITSTO 24 BITS PER CHANNEL  
LRCLK  
SCLK  
LEFT CHANNEL  
RIGHT CHANNEL  
MSB  
LSB  
MSB  
LSB  
SDATA  
2
I S MODE – 16 BITS TO 24 BITS PER CHANNEL  
RIGHT CHANNEL  
LEFT CHANNEL  
LRCLK  
SCLK  
MSB  
LSB  
RIGHT-JUSTIFIED MODE – SELECT NUMBER OF BITS PER CHANNEL  
MSB  
LSB  
SDATA  
LRCLK  
SCLK  
LSB  
MSB  
LSB  
MSB  
SDATA  
TDM MODE – 16 BITS TO 24 BITS PER CHANNEL  
1/f  
s
NOTES  
1
2
LRCLK NORMALLY OPERATES AT ASSOCIATIVE INPUT OR OUTPUT SAMPLE FREQUENCY (f ).  
s
SCLK FREQUENCY IS NORMALLY 64 LRCLK EXCEPT FOR TDM MODEWHICH IS N 64 f ,  
s
WHERE N = NUMBER OF STEREO CHANNELS INTHE TDM CHAIN, IN MASTER MODE N = 4.  
PLEASE NOTETHAT 8 BITS OF EACH 32-BIT SUBFRAME ARE USED FORTRANSMITTING  
MATCHED-PHASE MODE DATA. PLEASE REFERTO FIGURE 14.  
3
Figure 10. Input/Output Serial Data Formats  
TDM MODE APPLICATION  
of the next AD1896, a large shift register is created, which is  
clocked by SCLK_O.  
In TDM mode, several AD1896s can be daisy-chained together  
and connected to the serial input port of a SHARC DSP. The  
AD1896 contains a 64-bit parallel load shift register. When the  
LRCLK_O pulse arrives, each AD1896 parallel loads its left and  
right data into the 64-bit shift register. The input to the shift  
register is connected to TDM_IN, while the output is connected  
to SDATA_O. By connecting the SDATA_O to the TDM_IN  
The number of AD1896s that can be daisy-chained together is  
limited by the maximum frequency of SCLK_O, which is about  
25 MHz. For example, if the output sample rate, fS, is 48 kHz,  
up to eight AD1896s could be connected since 512 ¥ fS is less  
than 25 MHz. In master/TDM mode, the number of AD1896s  
that can be daisy-chained is fixed to four.  
LRCLK  
SCLK  
SHARC  
DSP  
AD1896  
AD1896  
AD1896  
DR0  
TDM_IN  
SDATA_O  
TDM_IN  
SDATA_O  
TDM_IN  
SDATA_O  
RFS0  
LRCLK_O  
SCLK_O  
LRCLK_O  
SCLK_O  
LRCLK_O  
SCLK_O  
RCLK0  
PHASE-MASTER  
SLAVE-1  
SLAVE-n  
M2  
M1  
M0  
M2  
M1  
M0  
M2  
M1  
M0  
STANDARD MODE  
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
MATCHED-PHASE MODE  
Figure 11. Daisy-Chain Configuration for TDM Mode (All AD1896s Being Clock-Slaves)  
REV. A  
–23–  
AD1896  
SHARC  
DSP  
AD1896  
AD1896  
AD1896  
DR0  
TDM_IN  
SDATA_O  
TDM_IN  
SDATA_O  
TDM_IN  
SDATA_O  
RFS0  
LRCLK_O  
SCLK_O  
LRCLK_O  
SCLK_O  
LRCLK_O  
SCLK_O  
RCLK0  
CLOCK-MASTER  
AND  
PHASE-MASTER  
SLAVE-n  
SLAVE-1  
M2  
M1  
M0  
M2  
M1  
M0  
M2  
M1  
M0  
STANDARD MODE  
0
1
0
0
0
0
0
1
1
0
1
0
0
0
0
MATCHED-PHASE MODE  
Figure 12. Daisy-Chain Configuration for TDM Mode (First AD1896 Being Clock-Master)  
MATCHED-PHASE MODE (NON-TDM MODE) APPLICATION  
LRCLK (f  
)
I
S_IN  
SCLK  
I
SDOm  
SDO1  
SDO2  
AD1896  
AD1896  
AD1896  
AD1896  
PHASE-MASTER  
SLAVE1  
TDM_IN  
SLAVE2  
TDM_IN  
SLAVEn  
TDM_IN  
TDM_IN  
SDATA_I  
LRCLK_I  
SCLK_I  
MCLK  
SDATA_I  
LRCLK_I  
SCLK_I  
MCLK  
SDATA_I  
LRCLK_I  
SCLK_I  
MCLK  
SDATA_I  
SDATA_O  
LRCLK_O  
SCLK_O  
SDATA_O  
LRCLK_O  
SCLK_O  
SDOn  
SDATA_O  
LRCLK_O  
SCLK_O  
SDATA_O  
LRCLK_O  
LRCLK_I  
SCLK_O  
SCLK_I  
MCLK  
RESET  
RESET  
RESET  
RESET  
M2 M1 M0  
M2 M1 M0  
M2 M1 M0  
M2 M1 M0  
1
0
0
1
0
0
1
0
0
0
0
0
LRCLK (f  
)
O
S_OUT  
SCLK (64f  
)
O
S_OUT  
MCLK  
RESET  
Figure 13. Typical Configuration for Matched-Phase Mode Operation  
Serial Data Port Master Clock Modes  
Table IV. Serial Data Port Clock Modes  
MMODE_0/  
Either of the AD1896 serial ports can be configured as a master  
serial data port. However, only one serial port can be a master  
while the other has to be a slave. In master mode, the AD1896  
requires a 256 ¥ fS, 512 ¥ fS, or 768 ¥ fS master clock (MCLK_I).  
For a maximum master clock frequency of 30 MHz, the maxi-  
mum sample rate is limited to 96 kHz. In slave mode, sample  
rates up to 192 kHz can be handled.  
MMODE_1/  
MMODE_2  
Interface Format  
2
1
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Both serial ports are in slave mode.  
Output serial port is master with 768 ¥ fS_OUT  
.
.
.
When either of the serial ports is operated in master mode, the  
master clock is divided down to derive the associated left/  
right subframe clock (LRCLK) and serial bit clock (SCLK).  
The master clock frequency can be selected for 256, 512, or 768  
times the input or output sample rate. Both the input and out-  
put serial ports will support master mode LRCLK and SCLK  
generation for all serial modes, left justified, I2S, right justified, and  
TDM for the output serial port.  
Output serial port is master with 512 ¥ fS_OUT  
Output serial port is master with 256 ¥ fS_OUT  
Matched-phase Mode  
Input serial port is master with 768 ¥ fS_IN  
Input serial port is master with 512 ¥ fS_IN  
Input serial port is master with 256 ¥ fS_IN  
.
.
.
–24–  
REV. A  
AD1896  
Matched-Phase Mode  
configured as the master, while the rest of the AD1896s in the  
chain would be configured as slaves with their MMODE_2,  
MMODE_1, and MMODE_0 pins set to 100, respectively.  
Please note that in the left-justified, I2S, and TDM modes,  
the lower eight bits of each channel subframe are used to  
transmit the matched-phase data. In right-justified mode, the  
upper eight bits are used to transmit the matched-phase data.  
This is shown in Figures 14a and 14b.  
The matched-phase mode is the mode discussed in the Theory of  
Operation section that eliminates the phase mismatch between  
multiple AD1896s. The master AD1896 device transmits  
its fS_OUT/fS_IN ratio through the SDATA_O pin to the slave  
AD1896’s TDM_IN pins. The slave AD1896s receive the  
transmitted fS_OUT/fS_IN ratio and use the transmitted fS_OUT  
fS_IN ratio instead of their own internally derived fS_OUT/fS_IN  
/
ratio. The master device can have both its serial ports in slave  
mode as depicted or either one in master mode. The slave  
AD1896s must have their MMODE_2, MMODE_1, and  
MMODE_0 pins set to 100, respectively. LRCLK_I and  
LRCLK_O may be asynchronous with respect to each other in  
this mode. Another requirement of the matched-phase mode is  
that there must be 32 SCLK_O cycles per subframe. The  
AD1896 will support the matched-phase mode for all serial  
output data formats, left justified, I2S, right justified, and  
TDM. In the case of TDM, the AD1896 shown in the TDM  
mode operation figure with its TDM_IN tied to ground would be  
Bypass Mode  
When the BYPASS pin is asserted high, the input data bypasses  
the sample rate converter and is sent directly to the serial output  
port. Dithering of the output data when the word length is set  
to less than 24 bits is disabled. This mode is ideal when the  
input and output sample rates are the same and LRCLK_I and  
LRCLK_O are synchronous with respect to each other. This  
mode can also be used for passing through non-AUDIO data  
since no processing is performed on the input data in this mode.  
MATCHED-PHASE  
AUDIO DATA LEFT CHANNEL, 24 BITS  
DATA, 8 BITS  
MATCHED-PHASE  
AUDIO DATA RIGHT CHANNEL, 24 BITS  
DATA, 8 BITS  
Figure 14a. Matched-Phase Data Transmission (Left-Justified, I2S, and TDM Mode)  
MATCHED-PHASE  
DATA, 8 BITS  
AUDIO DATA LEFT CHANNEL,  
16 BITS – 24 BITS  
MATCHED-PHASE  
DATA, 8 BITS  
AUDIO DATA RIGHT CHANNEL,  
16 BITS – 24 BITS  
Figure 14b. Matched-Phase Data Transmission (Right-Justified Mode)  
REV. A  
–25–  
AD1896  
OUTLINE DIMENSIONS  
28-Lead Shrink Small Outline Package [SSOP]  
(RS-28)  
Dimensions shown in millimeters  
10.50  
10.20  
9.90  
28  
15  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
14  
1
1.85  
1.75  
1.65  
0.10  
COPLANARITY  
2.00 MAX  
0.25  
0.09  
8؇  
4؇  
0؇  
0.95  
0.75  
0.55  
0.65  
BSC  
0.38  
0.22  
0.05  
MIN  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-150AH  
–26–  
REV. A  
AD1896  
Revision History  
Location  
Page  
3/03—Data Sheet changed from REV. 0 to REV. A.  
Edits to DIGITAL PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to DIGITAL TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Edits to RESETand Power-Down section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Edits to Figures 9a and 9b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Edits to Serial Data Ports—Data Format section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Edits to Figure 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Update to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
REV. A  
–27–  
–28–  

相关型号:

AD1896YRSRL

192 kHz Stereo Asynchronous Sample Rate Converter
ADI

AD1928

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

AD1928YSTZ

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

AD1928YSTZ-RL

2 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec
ADI

AD1933

8-Channel DAC with PLL and Differential Outputs, 192 kHz, 24 Bits
ADI

AD1933WBSTZ

8-Channel DAC with PLL and Differential Outputs, 192 kHz, 24 Bits
ADI

AD1933WBSTZ-RL

8-Channel DAC with PLL and Differential Outputs, 192 kHz, 24 Bits
ADI

AD1933YSTZ

8-Channel DAC with PLL and Differential Outputs, 192 kHz, 24 Bits
ADI

AD1933YSTZ-RL

8-Channel DAC with PLL and Differential Outputs, 192 kHz, 24 Bits
ADI

AD1934

8-Channel DAC with PLL, 192 kHz, 24 Bits
ADI

AD1934WBSTZ

8-Channel DAC with PLL, 192 kHz, 24 Bits
ADI

AD1934WBSTZ-RL

8-Channel DAC with PLL, 192 kHz, 24 Bits
ADI