RT8471ZSP [RICHTEK]

Hysteretic, High Brightness LED Driver;
RT8471ZSP
型号: RT8471ZSP
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Hysteretic, High Brightness LED Driver

文件: 总15页 (文件大小:237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT8471  
1.2A/1A, Hysteretic, High Brightness LED Driver with  
Internal Switch  
General Description  
Features  
7V to 36V Input Voltage Range  
The RT8471 is a high efficiency, continuous mode inductive  
step-down converter, designed for driving single or multiple  
series connected LEDs from a voltage source higher than  
the LEDvoltage. It operates from an input voltage of 7V to  
36V and employs hysteretic control with a high side current  
sense resistor to set the constant output current.  
Hysteretic Control with High Side Current Sensing  
Internal N-MOSFET with 350mΩ Low RDS(ON)  
1A Output Current (For TSOT-23-5 Only)  
1.2A Output Current (For SOP-8 (Exposed Pad) and  
MSOP-8 (Exposed Pad) Only)  
Up to 97% Efficiency  
The RT8471 includes an output switch and a high side  
output current sensing circuit, which uses an external  
resistor to set the nominal average output current. LED  
brightness control is achieved with PWM dimming from  
an analog or PWM input signal.  
Typical 5% LED Current Accuracy  
Analog or PWM Control Signal for LED Dimming  
300Hz On-Board Ramp Generator  
Input Under Voltage Lockout  
Thermal Shutdown Protection  
The RT8471 is available in a small TSOT-23-5 package or  
a more thermal efficient SOP-8 (Exposed Pad) and MSOP-  
8 (Exposed Pad) packages.  
RoHS Compliant and Halogen Free  
Applications  
Automotive LED Lighting  
Ordering Information  
High Power LED Lighting  
RT8471  
Indicator and Emergency Lighting  
Architectural Lighting  
Package Type  
J5 : TSOT-23-5  
SP : SOP-8 (Exposed Pad-Option 1)  
FP : MSOP-8 (Exposed Pad)  
Low Voltage Industrial Lighting  
Signage andDecorative LEDLighting  
Lead Plating System  
Marking Information  
RT8471GJ5  
G : Green (Halogen Free and Pb Free)  
(for MSOP-8 (Exposed Pad) and  
TSOT-23-5 )  
01= : Product Code  
Z : ECO (Ecological Element with  
Halogen Free and Pb free)  
(for SOP-8 (Exposed Pad) Only)  
01=DNN  
DNN : Date Code  
RT8471ZSP  
Note :  
RT8471ZSP : Product Number  
Richtek products are :  
RT8471  
ZSPYMDNN  
YMDNN : Date Code  
RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
Suitable for use in SnPb or Pb-free soldering processes.  
RT8471GFP  
0D= : Product Code  
YMDNN : Date Code  
0D=YM  
DNN  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8471-02 December 2013  
www.richtek.com  
1
RT8471  
Pin Configurations  
(TOP VIEW)  
VIN  
SENSE  
8
VIN  
SENSE  
GND  
GND  
LX  
5
4
8
7
6
5
SENSE  
GND  
GND  
ADJ  
VIN  
NC  
LX  
2
3
4
7
6
5
2
3
4
GND  
GND  
NC  
NC  
9
2
3
9
LX  
ADJ  
LX  
ADJ  
GND  
MSOP-8 (Exposed Pad)  
TSOT-23-5  
SOP-8 (Exposed Pad)  
Typical Application Circuit  
V
IN  
7V to 36V  
C
IN  
R
S
RT8471  
optional  
VIN  
SENSE  
D
ADJ  
GND  
L
LX  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
SOP-8  
(Exposed Pad)  
MSOP-8  
(Exposed Pad)  
TSOT-23-5  
1
7
5, 6  
LX  
Switch Output Terminal. Drain of internal N-MOSFET.  
Ground. The exposed pad must be soldered to a  
large PCB and connected to GND for maximum  
power dissipation.  
3, 8,  
2, 3,  
2
3
4
GND  
9 (Exposed Pad) 9 (Exposed Pad)  
Dimming Control Input :  
--- Analog signal input for analog PWM dimming.  
--- PWM signal input for digital PWM dimming.  
4
2
4
1
ADJ  
Output Current Sense. Sense LED string current with  
an external resistor connected between VIN and  
SENSE.  
SENSE  
5
1
8
7
VIN  
NC  
Supply Input Voltage.  
--  
5, 6  
No Internal Connection.  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS8471-02 December 2013  
RT8471  
Function Block Diagram  
VIN  
Regulator  
UVLO  
Bandgap  
SENSE  
UVLO  
V
CC  
1.25V  
+
-
LX  
UVLO  
Dimming  
Ramp Gen.  
GND  
Dimming  
+
-
ADJ  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8471-02 December 2013  
www.richtek.com  
3
RT8471  
Absolute Maximum Ratings (Note 1)  
Supply Input Voltage, VIN ------------------------------------------------------------------------------------- 0.3V to 40V  
Switch Voltage, LX --------------------------------------------------------------------------------------------- 0.3V to (VIN + 0.7V)  
Sense Voltage, SENSE -------------------------------------------------------------------------------------- (VIN 5V) to (VIN + 0.3V)  
All Other Pins ----------------------------------------------------------------------------------------------------- 0.3V to 6V  
PowerDissipation, PD @ TA = 25°C  
TSOT-23-5 (Two-layer PCB) ---------------------------------------------------------------------------------- 0.37W  
TSOT-23-5 (Four-layer PCB) --------------------------------------------------------------------------------- 0.43W  
SOP-8 (Exposed pad, Two-layer PCB)-------------------------------------------------------------------- 2.35W  
SOP-8 (Exposed pad, Four-layer PCB)------------------------------------------------------------------- 3.26W  
MSOP-8 (Exposed pad, Two-layer PCB) ----------------------------------------------------------------- 1.38W  
MSOP-8 (Exposed pad, Four-layer PCB) ---------------------------------------------------------------- 2.1W  
Package Thermal Resistance (Note 2)  
TSOT-23-5, θJA (Two-layer PCB) ---------------------------------------------------------------------------- 264.4°C/W  
TSOT-23-5, θJC (Two-layer PCB) ---------------------------------------------------------------------------- 21.8°C/W  
TSOT-23-5, θJA (Four-layer PCB) --------------------------------------------------------------------------- 230.6°C/W  
TSOT-23-5, θJC (Four-layer PCB) --------------------------------------------------------------------------- 21.8°C/W  
SOP-8 (Exposed pad, Two-layer PCB), θJA -------------------------------------------------------------- 42.5°C/W  
SOP-8 (Exposed pad, Two-layer PCB), θJC -------------------------------------------------------------- 3.4°C/W  
SOP-8 (Exposed pad, Four-layer PCB), θJA ------------------------------------------------------------- 30.6°C/W  
SOP-8 (Exposed pad, Four-layer PCB), θJC ------------------------------------------------------------- 3.4°C/W  
MSOP-8 (Exposed pad, Two-layer PCB), θJA ----------------------------------------------------------- 72°C/W  
MSOP-8 (Exposed pad, Two-layer PCB), θJC ----------------------------------------------------------- 11.9°C/W  
MSOP-8 (Exposed pad, Four-layer PCB), θJA ---------------------------------------------------------- 47.4°C/W  
MSOP-8 (Exposed pad, Four-layer PCB), θJC ---------------------------------------------------------- 11.9°C/W  
Junction Temperature ------------------------------------------------------------------------------------------ 150°C  
Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------- 260°C  
Storage Temperature Range --------------------------------------------------------------------------------- 65°C to 150°C  
ESD Susceptibility (Note 3)  
HBM (Human Body Model)----------------------------------------------------------------------------------- 2kV  
MM (Machine Model) ------------------------------------------------------------------------------------------ 200V  
Recommended Operating Conditions (Note 4)  
Supply Input Voltage, VIN ------------------------------------------------------------------------------------- 7V to 36V  
Junction Temperature Range--------------------------------------------------------------------------------- 40°C to 125°C  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS8471-02 December 2013  
RT8471  
Electrical Characteristics  
(VIN = 12V, TA = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Measure on SENSE Pin with  
Respecting to VIN. ADJ is  
Floating.  
Mean Current Sense Threshold  
Voltage  
VSENSE  
95  
100  
105  
mV  
Sense Threshold Hysteresis  
VSENSE  
--  
--  
--  
--  
±15  
350  
0.01  
5.2  
--  
500  
10  
--  
%
m  
A  
V
Low Side Switch On-Resistance  
Low Side Switch Leakage Current  
RDS(ON)  
VLX = 12V, VADJ = 0V  
VIN Rising  
Under Voltage Lockout Threshold VUVLO  
Under Voltage Lockout Threshold  
Hysteresis  
VUVLO  
--  
400  
--  
mV  
Hz  
V
Ramp Frequency  
fRAMP  
Logic-High VADJ, H  
Logic-Low VADJ, L  
--  
300  
--  
--  
1.4  
--  
--  
ADJ Input Threshold  
Voltage  
--  
0.2  
1.3  
Analog Dimming Range  
0.3  
--  
V
V
Logic-High  
Logic-Low  
--  
1.2  
0.4  
1.3  
--  
Analog Dimming  
Threshold Voltage  
0.3  
Minimum Switch On-Time  
Minimum Switch Off-Time  
tON(MIN)  
LX Switch On  
--  
--  
210  
170  
--  
--  
ns  
ns  
tOFF(MIN) LX Switch Off  
Quiescent Input Current with  
Output Off  
IVIN, Off  
IVIN, On  
VADJ = 0V  
--  
--  
450  
--  
--  
A  
A  
Quiescent Input Current with  
Output Switching  
ADJ is Floating, fSW = 250kHz,  
VIN = 8V  
1000  
Internal Propagation Delay  
Sense Pin Input Current  
Thermal Shutdown  
tPD  
--  
--  
--  
--  
25  
300  
150  
30  
--  
--  
--  
--  
ns  
nA  
C  
ISENSE  
TSD  
VSENSE = VIN 0.1V  
Thermal Shutdown Hysteresis  
TSD  
C  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured in natural convection at TA = 25°C on a two-layer and four-layer test board of JEDEC 51 thermal  
measurement standard. For SOP-8 (Exposed Pad) and MSOP-8 (Exposed Pad) the measurement case position of θJC  
is on the exposed pad of the package. For TSOT-23-5, the measurement case position of θJC is on the lead of the  
package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8471-02 December 2013  
www.richtek.com  
5
RT8471  
Typical Operating Characteristics  
Output Current vs. Input Voltage  
Output Current Deviation vs. Input Voltage  
4
1.04  
1 LED  
2 LED  
3 LED  
4 LED  
5 LED  
6 LED  
7 LED  
8 LED  
1 LED  
2 LED  
3 LED  
4 LED  
5 LED  
6 LED  
7 LED  
8 LED  
9 LED  
10 LED  
3
1.03  
2
1.02  
1
1.01  
0  
1.00  
9 LED  
10 LED  
-1  
0.99  
-2  
0.98  
-3  
0.97  
ILED = 1A, L = 33μH  
ILED = 1A, L = 33μH  
30 40  
-4  
0.96  
0
10  
20  
0
10  
20  
30  
40  
Input Voltage (V)  
Input Voltage (V)  
Switching Frequency vs. Input Voltage  
Duty Cycle vs. Input Voltage  
900  
800  
700  
600  
1
100  
10 LED  
9 LED  
8 LED  
7 LED  
6 LED  
5 LED  
10 LED  
9 LED  
8 LED  
7 LED  
6 LED  
5 LED  
4 LED  
3 LED  
2 LED  
1 LED  
90  
80  
70  
60  
500 4 LED  
3 LED  
50  
400  
300  
200  
100  
0
2 LED  
1 LED  
40  
30  
20  
10  
ILED = 1A, L = 33μH  
ILED = 1A, L = 33μH  
30 40  
0
0
10  
20  
0
10  
20  
30  
40  
Input Voltage (V)  
Input Voltage (V)  
Efficiency vs. Input Voltage  
LX Switch On-Resistance vs. Temperature  
620  
100  
9LED  
7 LED  
95  
560  
500  
440  
380  
320  
260  
3 LED  
90  
1 LED  
85  
80  
75  
ILED = 1A, L = 33μH  
30 40  
70  
-50  
-25  
0
25  
50  
75  
100 125 150  
0
10  
20  
Temperature (°C)  
Input Voltage (V)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS8471-02 December 2013  
RT8471  
Quiescent Input Current vs. Input Voltage  
Quiescent Input Current vs. Input Voltage  
1200  
1000  
800  
600  
400  
200  
0
500  
495  
490  
485  
480  
475  
470  
VADJ = 2V  
VADJ = 0V  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
Input Voltage (V)  
Input Voltage (V)  
Output Current vs. PWM Duty Cycle  
Output Current vs. PWM Duty Cycle  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
RS = 0.1Ω, fDimming = 500Hz  
RS = 0.1Ω, fDimming = 10kHz  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
PWM Duty Cycle (%)  
Ramp Frequency vs. Temperature  
PWM Duty Cycle (%)  
Output Current vs. ADJ Voltage  
1200  
1000  
800  
600  
400  
200  
0
330  
325  
320  
315  
310  
305  
300  
295  
290  
R = 100mΩ  
R = 150mΩ  
R = 350mΩ  
VIN = 12V, 1LED  
1.4 1.7  
0.2  
0.5  
0.8  
1.1  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temperature ( C)  
ADJ Voltage (V)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8471-02 December 2013  
www.richtek.com  
7
RT8471  
Digital Dimming from ADJ On  
Digital Dimming from ADJ Off  
VADJ  
VADJ  
(2V/Div)  
(2V/Div)  
IOUT  
(500mA/Div)  
IOUT  
(500mA/Div)  
VIN = 12V, RS = 0.1Ω, fDimming = 500Hz, 1 LED  
Time (5μs/Div)  
VIN = 12V, RS = 0.1Ω, fDimming = 500Hz, 1 LED  
Time (5μs/Div)  
Power Off from VIN  
Power On from VIN  
VIN  
VIN  
(5V/Div)  
(5V/Div)  
IOUT  
(500mA/Div)  
IOUT  
(500mA/Div)  
RS = 0.1Ω, 1 LED  
RS = 0.1Ω, 1 LED  
Time (1ms/Div)  
Time (1ms/Div)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS8471-02 December 2013  
RT8471  
Application Information  
Analog Dimming Control  
The RT8471 is a simple high efficiency, continuous mode  
inductive step-down converter. The device operates with  
an input voltage range from 7V to 36V and delivers up to  
1.2A of output current. A high side current sense resistor  
sets the output current. Adedicated PWM dimming input  
enables pulsed LED dimming over a wide range of  
brightness levels. A high side current sensing scheme  
and an onboard current setting circuitry minimize the  
number of external components. A 1% sense resistor  
performs a ±5% LED current accuracy for the best  
performance.  
The ADJ terminal can be driven by an external voltage  
(VADJ) to adjust the average output current. The average  
output current is given by :  
V
0.4  
0.8  
0.1V  
R
ADJ  
I
=
OUTavg  
S   
where VADJ is ranged from 0.4V to 1.2V. When VADJ is  
larger than 1.2V, the output current value will only depend  
on the external resistor (RS).  
Digital Dimming Control  
APulse Width Modulated (PWM) signal can drive theADJ  
terminal directly. Notice that the PWM signal logic high  
level must be above 1.4V and the logic low level must be  
below 0.2V at the ADJ terminal. It's recommended to  
maintain the PWM dimming at low frequency (ex. 500Hz  
) in order to obtain a linear dimming curve.  
Under Voltage Lockout (UVLO)  
The RT8471 includes a UVLO feature with 400mV  
hysteresis. The internal MOSFET turns off when VIN falls  
below 4.8V (typ.).  
Setting Average Output Current  
The RT8471 output current which flows through the LEDs  
is set by an external resistor (RS) connected between the  
VINand SENSE terminal. The relationship between output  
current (IOUT) and RS is shown as below :  
PWM Soft-Start Behavior  
The RT8471 features an optional PWM soft-start behavior  
that allows for gradual brightness transition. This is  
achieved by simply connecting an external capacitor  
between theADJ pin andGND.An internal current source  
will then charge this capacitor for soft-start behavior,  
resulting in steady LED current increase and decrease  
during power on and power off, as shown in Figure 1.  
0.1V  
I
=
(A)  
OUTavg  
R
S
1.2V  
Internal  
V
RAMP  
0.4V  
0V  
V
ADJ  
1.2A  
I
LED  
0A  
Figure 1. PWM Soft-Start Behavior Mechanism  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8471-02 December 2013  
www.richtek.com  
9
RT8471  
The capacitor can be selected according to below  
equation :  
LIL  
tOFF  
VOUT VD VSEN IOUT RL  
C = 1.5 x 10-6 x tSS  
tOFF(MIN)(170ns typ.)  
where tss is the soft-start period.  
where  
VD is the rectifier diode forward voltage (V)  
VSEN is the voltage cross current sense resistor (V)  
RL is the inductor DC resistance (Ω)  
L is the inductance (H)  
LED Current Ripple Reduction  
Higher LED current ripple will shorten the LED life time  
and increase heat accumulation of LED. There are two  
ways to reduce the LED current ripple. One way is by  
increasing the inductance to lower LED current ripple in  
absence of an output capacitor. The other way is by adding  
an output capacitor in parallel with the LED. This will then  
allow the use of a smaller inductor.  
The saturation current of the selected inductor must be  
higher than the peak output LED current, and the  
continuous current rating must be above the average output  
LED current. In general, the inductor saturation current  
should be 1.5 times the LED current. In order to reduce  
the output current ripple, a higher inductance is  
recommended at higher supply voltages. However, it could  
also cause a higher line resistance and result in a lower  
efficiency.  
Inductor Selection  
The inductance is determined by inductor current ripple,  
switching frequency, duty ratio, circuit specifications and  
component parameters, as expressed in the following  
equation :  
D
fSW IL  
L > VIN VOUT VSEN RDS(ON) IOUT  
Diode selection  
To obtain better efficiency, the Schottky diode is  
recommended for its low reverse leakage current, low  
recovery time and low forward voltage. With its low power  
dissipation, the Schottky diode outperforms other silicon  
where  
fSW is the switching frequency (Hz)  
RDS(ON) is the low side switch on-resistance of internal  
MOSFET ( = 0.35Ω typical)  
diodes and increase overall efficiency.  
D is the duty cycle determined by VOUT/VIN  
IOUT is the required LED current (A)  
Input Capacitor selection  
Input capacitor has to supply peak current to the inductor  
and flatten the current ripple on the input. The low ESR  
condition is required to avoid increasing power loss. The  
ceramic capacitor is recommended due to its excellent  
high frequency characteristic and low ESR, which are  
suitable for the RT8471. For maximum stability over the  
entire operating temperature range, capacitors with better  
dielectric are suggested.  
ΔIL is the inductor peak-peak ripple current (internally set  
to 0.3 x IOUT  
)
VIN is the input supply voltage (V)  
VOUT is the total LED forward voltage (V)  
Besides, the selected inductance has also to satisfy the  
limit of the minimum switch on/off time. The calculated  
on time must be greater than 210ns of the minimum on  
time, and the off time must be greater than 170ns of the  
minimum off time. The following equation can be used to  
verify the suitability of the inductor value.  
Thermal Protection  
A thermal protection feature is included to protect the  
RT8471 from excessive heat damage. When the junction  
temperature exceeds a threshold of 150°C, the thermal  
protection will turn off the LX terminal. When the junction  
temperature drops below 120°C, the RT8471 will turn back  
on the LX terminal and return to normal operations.  
LI  
L
t
ON  
V
IN  
V  
I  
R
R R  
SEN L DS(ON)  
OUT OUT  
t  
(210ns typ.)  
ON(MIN)  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS8471-02 December 2013  
RT8471  
Thermal Considerations  
The maximum power dissipation depends on the operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance, θJA. The derating curves in Figure 2 allow the  
designer to see the effect of rising ambient temperature  
on the maximum power dissipation.  
For continuous operation, do not exceed absolute  
maximum junction temperature. The maximum power  
dissipation depends on the thermal resistance of the IC  
package, PCB layout, rate of surrounding airflow, and  
difference between junction and ambient temperature. The  
maximum power dissipation can be calculated by the  
following formula :  
4.0  
SOP-8 (Exposed Pad, Four-Layer PCB)  
SOP-8 (Exposed Pad, Two-Layer PCB)  
MSOP-8 (Exposed Pad, Four-Layer PCB)  
3.5  
PD(MAX) = (TJ(MAX) TA) / θJA  
MSOP-8 (Exposed Pad, Two-Layer PCB)  
3.0  
TSOT23-5 (Four-Layer PCB)  
where TJ(MAX) is the maximum junction temperature, TAis  
the ambient temperature, and θJA is the junction to ambient  
thermal resistance.  
TSOT23-5 (Two-Layer PCB)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
For recommended operating condition specifications, the  
maximum junction temperature is 125°C. The junction to  
ambient thermal resistance, θJA, is layout dependent. For  
TSOT-23-5 packages, the thermal resistance, θJA, is  
264.4°C/W on a standard JEDEC 51-3 two-layer thermal  
test board and 230.6°C/W on a standard JEDEC 51-7 four-  
layer thermal test board. For SOP-8 (Exposed pad)  
package, the thermal resistance, θJA, is 42.5°C/W on a  
standard JEDEC 51-7 two-layer thermal test board, and  
30.6°C/W on a standard JEDEC 51-7 four-layer thermal  
test board. For MSOP-8 (Exposed pad) package, the  
thermal resistance, θJA, is 72°C/W on a standard JEDEC  
51-7 two-layer thermal test board, and 47.4°C/W on a  
standard JEDEC 51-7 four-layer thermal test board. The  
maximum power dissipation at TA = 25°C can be calculated  
by the following formulas :  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 2. Derating Curves of Maximum Power  
Dissipation  
PD(MAX) = (125°C 25°C) / (264.4°C/W) = 0.37W for  
TSOT-23-5 package (Two-Layer PCB)  
PD(MAX) = (125°C 25°C) / (230.6°C/W) = 0.43W for  
TSOT-23-5 package (Four-Layer PCB)  
PD(MAX) = (125°C 25°C) / (42.5°C/W) = 2.35W for  
SOP-8 (Exposed pad, Two-Layer PCB) package  
PD(MAX) = (125°C 25°C) / (30.6°C/W) = 3.26W for  
SOP-8 (Exposed pad, Four-Layer PCB) package  
PD(MAX) = (125°C 25°C) / (72°C/W) = 1.38W for  
MSOP-8 (Exposed pad, Two-Layer PCB) package  
PD(MAX) = (125°C 25°C) / (47.4°C/W) = 2.1W for  
MSOP-8 (Exposed pad, Four-Layer PCB) package  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8471-02 December 2013  
www.richtek.com  
11  
RT8471  
Layout Considerations  
For best performance of the RT8471, please abide the  
following layout guide.  
The capacitor CIN, CADJ and external resistor, RS, must  
be placed as close as possible to the VIN and SENSE  
pins of the device respectively.  
TheGNDshould be connected to a strong ground plane.  
Keep the main current traces as short and wide as  
possible.  
The inductor (L) should be mounted as close to the  
device with low resistance connections.  
The ADJ pin trace need to be kept far away from LX  
terminal.  
Place the resistor R as close as  
S
possible to VIN and SENSE pins.  
R
S
V
IN  
LED+  
C
VIN  
SENSE  
IN  
5
4
GND  
D
2
3
Place the capacitor  
as close as  
possible to the ADJ  
pin.  
1
Place the capacitor  
as close as  
possible to VIN pin.  
C
C
ADJ  
IN  
LX  
ADJ  
GND  
C
ADJ  
L
LED-  
Figure 3. PCB Layout Guide  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS8471-02 December 2013  
RT8471  
Outline Dimension  
H
D
L
B
C
A
b
A1  
e
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
0.039  
0.004  
0.071  
0.022  
0.118  
0.122  
0.041  
0.010  
0.024  
A
A1  
B
b
0.700  
0.000  
1.397  
0.300  
2.591  
2.692  
0.838  
0.080  
0.300  
1.000  
0.100  
1.803  
0.559  
3.000  
3.099  
1.041  
0.254  
0.610  
0.028  
0.000  
0.055  
0.012  
0.102  
0.106  
0.033  
0.003  
0.012  
C
D
e
H
L
TSOT-23-5 Surface Mount Package  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8471-02 December 2013  
www.richtek.com  
13  
RT8471  
H
A
Y
M
EXPOSED THERMAL PAD  
(Bottom of Package)  
J
B
X
F
C
I
D
Dimensions In Millimeters Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.000  
5.791  
0.406  
2.000  
2.000  
2.100  
3.000  
5.004  
4.000  
1.753  
0.510  
1.346  
0.254  
0.152  
6.200  
1.270  
2.300  
2.300  
2.500  
3.500  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.000  
0.228  
0.016  
0.079  
0.079  
0.083  
0.118  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.006  
0.244  
0.050  
0.091  
0.091  
0.098  
0.138  
J
M
X
Y
X
Y
Option 1  
Option 2  
8-Lead SOP (Exposed Pad) Plastic Package  
Copyright 2013 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
14  
DS8471-02 December 2013  
RT8471  
D
U
L
EXPOSED THERMAL PAD  
(Bottom of Package)  
E
V
E1  
e
A2  
A
A1  
b
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
1.100  
0.150  
0.950  
0.380  
3.100  
Min  
Max  
0.043  
0.006  
0.037  
0.015  
0.122  
A
A1  
A2  
b
0.810  
0.000  
0.750  
0.220  
2.900  
0.032  
0.000  
0.030  
0.009  
0.114  
D
e
0.650  
0.026  
E
4.800  
2.900  
0.400  
1.300  
1.500  
5.000  
3.100  
0.800  
1.700  
1.900  
0.189  
0.114  
0.197  
0.122  
E1  
L
0.016  
0.051  
0.059  
0.031  
0.067  
0.075  
U
V
8-Lead MSOP (Exposed Pad) Plastic Package  
Richtek Technology Corporation  
14F, No. 8, Tai Yuen 1st Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should  
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot  
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be  
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.  
DS8471-02 December 2013  
www.richtek.com  
15  

相关型号:

RT8479C

Two-Stage Hysteretic LED Driver
RICHTEK

RT8479CGSP

Two-Stage Hysteretic LED Driver
RICHTEK

RT8494

High Voltage High Current LED Driver Controller
RICHTEK

RT8494GS

High Voltage High Current LED Driver Controller
RICHTEK

RT8498

暂无描述
RICHTEK

RT8509

暂无描述
RICHTEK

RT8509A

暂无描述
RICHTEK

RT8510

暂无描述
RICHTEK

RT8511B

暂无描述
RICHTEK

RT8522-10-6M0

Current-compensated Chokes
Schaffner

RT8522-12-5M0

Current-compensated Chokes
Schaffner

RT8522-16-4M0

Current-compensated Chokes
Schaffner