RT8479C [RICHTEK]

Two-Stage Hysteretic LED Driver;
RT8479C
型号: RT8479C
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Two-Stage Hysteretic LED Driver

文件: 总15页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT8479C  
Two-Stage Hysteretic LED Driver with Internal MOSFETs  
General Description  
Features  
Two-Stage Topology (Boost + Buck)  
The RT8479C is a two-stage controller with dual  
MOSFETs and consists of a Boost converter (first stage)  
and a Buck converter (second stage). The advantage of  
two-stage topology is highly compatible with ET (Electronic  
Transformer) and extremely high Power Factor  
performance in MR16 / AR111 lighting market fields  
applications.  
Dual MOSFETs Inside  
Wide Input Voltage Range : 4.5V to 36V  
Excellent Power Factor  
Programmable Boost Output Voltage  
Independent Dual Stage Function  
Programmable LED Current with 5% LED Current  
Accuracy  
The first stage is a Boost converter for constant voltage  
output with inductor peak current over-current protection.  
The second stage is a Buck converter for constant output  
current by typical constant peak current regulation.  
Input Under-Voltage Lockout Detection  
Thermal Shutdown Protection  
Ordering Information  
RT8479C  
The RT8479C is equipped with dual output gate drivers  
for internal power MOSFETs.  
Package Type  
SP : SOP-8 (Exposed Pad-Option 2)  
The RT8479C is available in the SOP-8 (Exposed Pad)  
package.  
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Note :  
Applications  
Richtek products are :  
MR16 Lighting  
RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
Suitable for use in SnPb or Pb-free soldering processes.  
Signage andDecorative LEDLighting  
Architectural Lighting  
High Power LED Lighting  
Low Voltage Industrial Lighting  
Indicator and Emergency Lighting  
Automotive LED Lighting  
Simplified Application Circuit  
D5  
L1  
VCC  
C
OUT  
R1  
R2  
RT8479C  
D1  
D2  
R
SENSE  
OVP  
VCC  
LED+  
LED-  
VL  
AC 12V  
VN  
ISN  
D6  
C
IN  
C3  
CREG  
LX1  
C2  
VCOMP  
ACTL  
D3  
D4  
L2  
To  
Dimming  
C1  
LX2  
GND  
Copyright 2014 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8479C-04 August 2014  
www.richtek.com  
1
RT8479C  
Marking Information  
Pin Configurations  
RT8479CGSP : Product Number  
(TOP VIEW)  
RT8479C  
YMDNN : Date Code  
8
7
6
5
GSPYMDNN  
LX1  
OVP  
LX2  
2
3
4
CREG  
VCC  
ISN  
GND  
ACTL  
9
VCOMP  
SOP-8 (Exposed Pad)  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
1
2
3
LX1  
Switch Node. The first stage internal MOSFET Drain.  
Over-Voltage Protection Sense Input.  
OVP  
ACTL  
Analog / PWM Dimming Control Input. Connect to CREG if not used.  
Compensation Node. A compensation network between VCOMP and GND is  
needed.  
4
5
6
VCOMP  
ISN  
LED Negative Current Sense Input.  
Supply Voltage Input. For good bypass, place a ceramic capacitor near the  
VCC pin.  
VCC  
Internal Regulator Output. Place an 1F capacitor between the CREG and  
GND pins.  
7
CREG  
LX2  
8
Switch Node. The second stage internal MOSFET Drain.  
Ground. The exposed pad must be soldered to a large PCB and connected to  
GND for maximum power dissipation.  
9 (Exposed Pad)  
GND  
Function Block Diagram  
ISN VCC  
-130mV  
ACTL  
Logic  
ACTL  
V
Regulator  
CREG  
LX2  
VCC  
UV/OV  
EN2  
EN1  
EN2  
EN1  
Core  
Logic  
OVP  
LX1  
VCOMP  
+
GND  
-
Copyright 2014 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS8479C-04 August 2014  
RT8479C  
Operation  
The RT8479C VCC is supplied from the first stage Boost  
output.  
The first stage is a constant output voltage Boost topology  
and senses the peak inductor current for over-current  
protection with excellent Power Factor.  
The second stage is a constant output current Buck  
topology. The current sense voltage threshold between  
the VCC and ISN pins is only 130mV to reduce power  
loss.  
Copyright 2014 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8479C-04 August 2014  
www.richtek.com  
3
RT8479C  
Absolute Maximum Ratings (Note 1)  
Supply Voltage, VCC to GND ------------------------------------------------------------------------------------------ 0.3V to 45V  
ACTL, CREG, OVP, VCOMP to GND -------------------------------------------------------------------------------- 0.3V to 6V  
LX1, LX2 toGND ----------------------------------------------------------------------------------------------------------- 0.3V to 40V  
VCC to ISN ----------------------------------------------------------------------------------------------------------------- 0.3V to 3V  
Power Dissipation, PD @ TA = 25°C  
SOP-8 (Exposed Pad) --------------------------------------------------------------------------------------------------- 3.44W  
Package Thermal Resistance (Note 2)  
SOP-8 (Exposed Pad), θJA ---------------------------------------------------------------------------------------------- 29°C/W  
SOP-8 (Exposed Pad), θJC --------------------------------------------------------------------------------------------- 2°C/W  
Junction Temperature ----------------------------------------------------------------------------------------------------- 150°C  
Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------------- 260°C  
Storage Temperature Range -------------------------------------------------------------------------------------------- 65°C to 150°C  
ESD Susceptibility (Note 3)  
HBM (Human Body Model)---------------------------------------------------------------------------------------------- 2kV  
MM (Machine Model) ----------------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 4)  
Supply Input Voltage, VCC---------------------------------------------------------------------------------------------- 4.5V to 40V  
Junction Temperature Range-------------------------------------------------------------------------------------------- 40°C to 125°C  
Ambient Temperature Range-------------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VCC = 10VDC, No Load, CLOAD = 1nF, TA = 25°C, unless otherwise specified)  
Parameter  
Supply Voltage  
Symbol  
Test Conditions  
Min  
Typ Max Unit  
CREG UVLO_ ON  
V
V
OVP = 0V  
OVP = 0V  
--  
--  
4.2  
3.9  
--  
--  
V
V
UVLO_ ON  
CREG UVLO_ OFF  
UVLO_ OFF  
Supply Current  
VCC Shutdown Current  
VCC Quiescent Current  
Internal Reference Voltage  
Internal Reference Voltage  
I
V
V
= 3.5V  
--  
--  
--  
10  
1.5  
5
--  
--  
--  
A  
mA  
V
SHDN  
Q
CC  
CC  
I
= 10V  
V
CREG  
I
= 20mA  
--  
--  
4.9  
5
--  
--  
V
CREG  
(I  
CREG  
= 20mA)  
Stage 1 Max On-Time  
High-Level  
Low-Level  
s  
V
V
I
1.85 1.94 2.04  
OVP_H  
OVP_L  
Stage 1 OVP  
V
1.52  
1.6  
1.68  
OVP Pin Leakage Current  
ACTL Turn On Threshold  
ACTL Turn Off Threshold  
--  
--  
--  
1
--  
--  
--  
A  
mV  
mV  
OVP  
V
240  
60  
ACTL_ON  
V
ACTL_OFF  
Copyright 2014 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS8479C-04 August 2014  
RT8479C  
Parameter  
Symbol  
Test Conditions  
Min  
94  
--  
Typ  
97  
--  
Max  
100  
1
Unit  
Sense threshold percentage  
at VACTL = 2.7V  
ACTL Sense Threshold High  
%
ACTL Input Bias Current  
ISN Threshold  
A  
VISN  
VACTL = 3V  
123.5 130 136.5  
mV  
Stage 2 Peak to Peak Sense  
Voltage  
(dV1 + dV2) / 2  
Sink = 100mA  
--  
15  
--  
%
LX1 Internal Switch RDS(ON) RDS(ON)_1  
--  
--  
0.15  
0.2  
--  
--  
LX2 Internal Switch RDS(ON) RDS(ON) _2 Sink = 100mA  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured at TA = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is  
measured at the exposed pad of the package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Copyright 2014 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8479C-04 August 2014  
www.richtek.com  
5
RT8479C  
Typical Application Circuit  
L1  
10µH  
D5  
VCC  
R
R1  
130k  
C
4.7µF  
C
OUT_EC  
220µF  
OUT  
SENSE  
RT8479C  
D1  
D3  
D2  
D4  
250m  
2
6
OVP  
VCC  
LED+  
VL  
AC 12V  
VN  
R2  
10k  
C5  
5
7
ISN  
C
1µF  
D6  
IN  
C3  
4.7µF  
4LED  
LED-  
1
4
3
CREG  
LX1  
C2  
4.7µF  
VCOMP  
ACTL  
L2  
68µH  
For  
Dimming  
Signal  
C1  
0.47µF  
8
LX2  
GND  
9 (Exposed Pad)  
D1,D2, D3, D4, D5, D6 = PMEG4020  
ACTL can be connected to CREG if not used.  
C5 depends on PCB layout and noise immunity.  
Figure 1. Typical MR16 LED Lamp for 5W Application  
Sense Threshold vs. ACTL Voltage  
150  
135  
120  
105  
90  
75  
60  
45  
30  
15  
VCC = 20V, Temp = 25°C  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
ACTL Voltage(V)  
Copyright 2014 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS8479C-04 August 2014  
RT8479C  
Typical Operating Characteristics  
Quiescent Current vs. Temperature  
Quiescent Current vs.VCC  
1.7  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.6  
1.5  
1.4  
1.3  
1.2  
OVP = 5V  
VCC = 4.5V to 30V, OVP = 5V  
1.1  
4
9.2  
14.4  
19.6  
24.8  
30  
-50  
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
VCC (V)  
Operating Current vs. VCC  
Operating Current vs. Temperature  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
VCC = 10V,  
VCC = 4.5V to 30V,  
LX1/LX2 Capacitor = 1nF, OVP = 0V  
LX1/LX2 Capacitor = 1nF, OVP = 0V  
-25  
0
25  
50  
75  
100  
125  
4
9.2  
14.4  
19.6  
24.8  
30  
VCC (V)  
Temperature (°C)  
CREG Voltage vs. VCC  
CREG Voltage vs. Temperature  
7
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
6
5
4
3
2
ICREG = 0mA  
ICREG = 0mA  
ICREG = 20mA  
ICREG = 20mA  
VCC = 4.5V to 30V  
19.8 24.9 30  
VCC = 10V  
100 125  
4.5  
9.6  
14.7  
-25  
0
25  
50  
75  
VCC (V)  
Temperature (°C)  
Copyright 2014 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8479C-04 August 2014  
www.richtek.com  
7
RT8479C  
ISN Threshold vs. Temperature  
ISN Threshold vs. VCC  
150  
140  
130  
120  
110  
100  
150  
140  
130  
120  
110  
100  
90  
VCC = 4.5V to 30V  
19.6 24.8 30  
VCC = 10V  
100 125  
4
9.2  
14.4  
-50  
-25  
0
25  
50  
75  
Temperature (°C)  
VCC (V)  
OVP Hi/Low Level Voltage vs. VCC  
OVP Hi/Low Level Voltage vs. Temperature  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
Hi  
Hi  
Low  
Low  
VCC = 10V  
100 125  
VCC = 4.5V to 30V  
4.5  
9.6  
14.7  
19.8  
24.9  
30  
-50  
-25  
0
25  
50  
75  
VCC (V)  
Temperature (°C)  
LX2_RDS(ON) vs. Temperature  
LX1_RDS(ON) vs. Temperature  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
VCC = 10V  
100 125  
VCC = 10V  
100 125  
-50  
-25  
0
25  
50  
75  
-50  
-25  
0
25  
50  
75  
Temperature (°C)  
Temperature (°C)  
Copyright 2014 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS8479C-04 August 2014  
RT8479C  
ACTL Threshold Voltage vs. VCC  
ACTL Threshold Voltage vs. Temperature  
270  
240  
210  
180  
150  
120  
90  
270  
On  
240  
210  
180  
150  
120  
90  
On  
Off  
Off  
60  
60  
30  
30  
4
8
12  
16  
20  
24  
28  
32  
-50  
-25  
0
25  
50  
75  
100  
125  
VCC (V)  
Temperature (°C)  
LED Current vs. Input Voltage  
LED Current vs. ACTL Voltage  
800  
700  
600  
500  
400  
300  
200  
100  
0
450  
440  
430  
420  
410  
400  
390  
380  
IOUT = 756mA  
IOUT = 382mA  
IOUT = 185mA  
VCC = 7V to 20V, IOUT = 420mA, Load = 4LED  
10 12 14 16 18 20  
0
0.5  
1
1.5  
2
2.5  
3
6
8
Input Voltage (V)  
ACTL Voltage (V)  
LED Current vs. Output Voltage  
PK-Current vs. Temperature  
440  
435  
430  
425  
420  
415  
410  
2500  
2000  
1500  
1000  
500  
VC = 5V  
VC = 0V  
VCC = 10V  
100 125  
Load = 1LED to 6LED  
0
4.5  
7.6  
10.7  
13.8  
16.9  
20  
-50  
-25  
0
25  
50  
75  
Output Voltage (V)  
Temperature (°C)  
Copyright 2014 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8479C-04 August 2014  
www.richtek.com  
9
RT8479C  
Power On from VIN  
CREG UVLO vs. Temperature  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
IOUT  
(500mA/Div)  
UVLO-H  
UVLO-L  
LX2  
(50V/Div)  
VOUT  
(10V/Div)  
VIN  
(10V/Div)  
VIN = 10V, 4LEDs  
Time (25ms/Div)  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Power Off from VIN  
Power On from AC-IN  
IOUT  
(500mA/Div)  
IOUT  
(200mA/Div)  
LX2  
(50V/Div)  
VOUT  
(10V/Div)  
VOUT  
(10V/Div)  
VCC  
(20V/Div)  
VIN  
(10V/Div)  
AC-IN  
(50V/Div)  
VIN = 10V, 4LEDs  
Time (25ms/Div)  
Time (10ms/Div)  
Power Off from AC-IN  
IOUT  
(200mA/Div)  
VOUT  
(10V/Div)  
VCC  
(20V/Div)  
AC-IN  
(50V/Div)  
Time (10ms/Div)  
Copyright 2014 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS8479C-04 August 2014  
RT8479C  
Application Information  
Average Output Current Setting  
The RT8479C consists of a constant output current Buck  
controller and a fixed off-time controlled Boost controller.  
The output current that flows through the LED string is  
set by an external resistor, RSENSE, which is connected  
between the VCC and ISN terminal. The relationship  
between output current, IOUT, and RSENSE is shown below:  
The Boost controller is based on a peak current, fixed off-  
time control architecture and designed to operate up to  
1MHz to use a very small inductor for space constrained  
applications. A high-side current sense resistor is used  
to set the output current of the Buck controller. A 1%  
sense resistor performs a 5% LED current accuracy for  
the best performance.  
IOUT = 130mV / RSENSE  
LED Current Ripple Reduction  
Higher LED current ripple will shorten the LED life time  
and increase heat accumulation of LED. To reduce the  
LEDcurrent ripple, an output capacitor in parallel with the  
LEDshould be added. The typical value of output capacitor  
is 4.7μF.  
Under-Voltage Lockout (UVLO)  
The RT8479C includes an under-voltage lockout function  
with 100mV hysteresis. The internal MOSFET turns off  
when VCC falls below 4.2V (typ.).  
VCC Voltage Setting  
The VCC voltage setting is equipped with an Over-Voltage  
Protection (OVP) function. When the voltage at the OVP  
pin exceeds threshold approximately 1.9V, the power  
switch is turned off. The power switch can be turned on  
again once the voltage at the OVP pin drops below 1.6V.  
CREG Regulator  
The CREG pin requires a capacitor for stable operation  
and to store the charge for the large GATE switching  
currents. Choose a 10V rated low ESR, X7R or X5R,  
ceramic capacitor for best performance. A4.7μF capacitor  
will be adequate for many applications. Place the capacitor  
close to the IC to minimize the trace length to the CREG  
pin and to the IC ground.  
For Boost applications, the output voltage can be set by  
the following equation :  
VCC(MAX) = 1.9 x (1 + R4 / R5)  
An internal current limit on the CREG output protects the  
RT8479C from excessive on-chip power dissipation.  
R4 and R5 are the voltage divider resistors from VOUT to  
GND with the divider center node connected to the OVP  
pin. For MR16 LEDlamp application, the minimum voltage  
of VCC should maintain above 25V for stable operation.  
The CREG pin has set the output to 4.3V (typ.) to protect  
the internal FETs from excessive power dissipation  
caused by not being fully enhanced. If the CREG pin is  
used to drive extra circuits beside RT8479C, the extra  
loads should be limited to less than 10mA.  
Step-Down Converter Inductor Selection  
The RT8479C implemented a simple high efficiency,  
continuous mode inductive step-down converter. The  
inductance L2 in Buck converter is determined by the  
following factors : inductor ripple current, switching  
frequency, VOUT/VIN ratio, internal MOSFET, topology  
specifications, and component parameter. The inductance  
L2 is calculated according to the following equation :  
Internal MOSFET  
There are two drivers, LX1 and LX2, in the RT8479C.  
The driver consists of a CMOS buffer designed to drive  
the internal power MOSFET.  
It features great sink capabilities to optimize switch on  
and off performance without additional external  
components. Whenever the IC supply voltage is lower than  
the under voltage threshold, the internal MOSFET is turned  
off.  
L2 [VCC(MAX) VOUT VISN (RDS2(ON) x IOUT)] x D / [fSW  
x ΔIOUT  
]
where  
fsw is switching frequency (Hz).  
Copyright 2014 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8479C-04 August 2014  
www.richtek.com  
11  
RT8479C  
RDS2(ON) is the low-side switch on-resistance of external  
Check the ILIM setting satisfied the output LED current  
request by the following equation :  
MOSFET (M2). The typical value is 0.35Ω.  
D is the duty cycle = VOUT / VIN  
(IOUT + ΔIOUT) < [2 x L1 x ILIM + tOFF x (VIN VOUT VF)] x  
VIN / [2 x L1 x (VCC)]  
IOUT is the required LED current (A)  
ΔIOUT is the inductor peak-peak ripple current (internally  
Diode Selection  
set to 0.3 x IOUT  
)
To obtain better efficiency, the Schottky diode is  
recommended for its low reverse leakage current, low  
recovery time and low forward voltage. With its low power  
dissipation, the Schottky diode outperforms other silicon  
diodes and increases overall efficiency.  
VCC is the supply input voltage (V)  
VOUT is the total LED forward voltage (V)  
VISN is the voltage cross current sense resistor (V)  
L2 is the inductance (H)  
Input Capacitor selection  
The selected inductor must have saturation current higher  
than the peak output LEDcurrent and continuous current  
rating above the required average output LED current. In  
general, the inductor saturation current should be 1.5  
times the LED current. In order to minimize output current  
ripple, higher values of inductance are recommended at  
higher supply voltages. Because high values of inductance  
has high line resistance, it will cause lower efficiency.  
Input capacitor has to supply peak current to the inductor  
and flatten the current ripple on the input. The low ESR  
condition is required to avoid increasing power loss. The  
ceramic capacitor is recommended due to its excellent  
high frequency characteristic and low ESR, which is  
suitable for the RT8479C. For maximum stability over the  
entire operating temperature range, capacitors with better  
dielectric are suggested.  
Step-Up Converter Inductor Selection  
Thermal Protection  
The RT8479C uses a constant off-time control to provide  
high efficiency step-up converter.  
A thermal protection feature is to protect the RT8479C  
from excessive heat damage. When the junction  
temperature exceeds 150°C, the thermal protection will  
turn off the LX terminal. When the junction temperature  
drops below 125°C, the RT8479C will turn on the LX  
terminal and return to normal operation.  
Following the constant off-time mechanism, the inductance  
L1 is calculated according to the following equation :  
L1 > tOFF x (VCC(MAX) VIN(MIN) + VF) / ILIM  
where  
tOFF is Off-Time. The typical value is 1.5μs.  
Analog Dimming Control  
ILIM is the input current. The typical value is 2A for MR16  
application.  
TheACTL terminal is driven by an external voltage, VACTL  
,
to adjust the output current to an average value set by  
RSENSE. The voltage range for VACTL to adjust the output  
current is from 0.24V to 2.5V. If VACTL becomes larger  
than 2.5V, the output current value will just be determined  
VCC is the supply input voltage (V)  
VIN is the input voltage after bridge diodes (V)  
VF is the forward voltage (V)  
by the external/resistor, RSENSE  
.
L1 is the inductance (H)  
V
0.24  
2.5  
0.13V  
ACTL  
I
=
OUT avg  
R
D = 1 - (VIN / VOUT  
)
SENSE  
fsw = (1 - D) / tOFF  
ACTL Control  
where  
The ACTL pin is the dimming function pin with the DC  
level proportional to the output LED current until ACTL  
clamp voltage that is the max output current (100%).  
D is the operation duty  
fsw is the switching frequency of Boost controller.  
Copyright 2014 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS8479C-04 August 2014  
RT8479C  
Thermal Considerations  
For 5W MR16 LED Lamp application in Figure 1, the  
typical PCB size is 2x2 mm2 with two-layer layout plane.  
For continuous operation, do not exceed absolute  
maximum junction temperature. The maximum power  
dissipation depends on the thermal resistance of the IC  
package, PCB layout, rate of surrounding airflow, and  
difference between junction and ambient temperature. The  
maximum power dissipation can be calculated by the  
following formula :  
Under 25°C room temperature, the case temperature of  
RT8479C is around 65°C. If RT8479C is operated in higher  
output power or smaller PCB size, the thermal plane for  
heat dissipation should be concerned seriously.  
PD(MAX) = (TJ(MAX) TA) / θJA  
where TJ(MAX) is the maximum junction temperature, TA is  
the ambient temperature, and θJA is the junction to ambient  
thermal resistance.  
For recommended operating condition specifications, the  
maximum junction temperature is 125°C. The junction to  
ambient thermal resistance, θJA, is layout dependent. For  
SOP-8 (Exposed Pad) package, the thermal resistance,  
θJA, is 29°C/W on a standard JEDEC 51-7 four-layer  
thermal test board. The maximum power dissipation at TA  
= 25°C can be calculated by the following formula :  
PD(MAX) = (125°C 25°C) / (29°C/W) = 3.44W for  
SOP-8 (Exposed Pad) package  
The maximum power dissipation depends on the operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance, θJA. The derating curve in Figure 2 allows the  
designer to see the effect of rising ambient temperature  
on the maximum power dissipation.  
3.6  
Four-Layer PCB  
3.0  
2.4  
1.8  
1.2  
0.6  
0.0  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 2. Derating Curve of Maximum PowerDissipation  
Copyright 2014 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8479C-04 August 2014  
www.richtek.com  
13  
RT8479C  
Layout Consideration  
Locate input capacitor as  
close to the VCC as  
possible.  
D5  
L1  
VCC  
R1  
R2  
R
OVP  
C15  
SENSE  
C
OUT  
ISN  
C8  
LED+  
D6  
C3  
GND  
C
IN  
L2  
D1  
D3  
D2  
D4  
LED-  
8
7
6
5
LX1  
OVP  
LX2  
VL  
2
3
4
CREG  
VCC  
ISN  
GND  
VN  
ACTL  
9
C5  
C2  
C7  
VCOMP  
C5: VCC-ISN bypass capacitor;  
noise interference like inductive and  
magnetic pick up will be rejected by  
C5.  
C1  
GND  
Figure 3. PCB Layout Guide  
Copyright 2014 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
14  
DS8479C-04 August 2014  
RT8479C  
Outline Dimension  
H
A
Y
M
EXPOSED THERMAL PAD  
(Bottom of Package)  
J
B
X
F
C
I
D
Dimensions In Millimeters Dimensions In Inches  
Symbol  
Min  
Max  
5.004  
4.000  
1.753  
0.510  
1.346  
0.254  
0.152  
6.200  
1.270  
2.300  
2.300  
2.500  
3.500  
Min  
Max  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.000  
5.791  
0.406  
2.000  
2.000  
2.100  
3.000  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.000  
0.228  
0.016  
0.079  
0.079  
0.083  
0.118  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.006  
0.244  
0.050  
0.091  
0.091  
0.098  
0.138  
J
M
X
Y
X
Y
Option 1  
Option 2  
8-Lead SOP (Exposed Pad) Plastic Package  
Richtek Technology Corporation  
14F, No. 8, Tai Yuen 1st Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should  
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot  
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be  
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.  
DS8479C-04 August 2014  
www.richtek.com  
15  

相关型号:

RT8479CGSP

Two-Stage Hysteretic LED Driver
RICHTEK

RT8494

High Voltage High Current LED Driver Controller
RICHTEK

RT8494GS

High Voltage High Current LED Driver Controller
RICHTEK

RT8498

暂无描述
RICHTEK

RT8509

暂无描述
RICHTEK

RT8509A

暂无描述
RICHTEK

RT8510

暂无描述
RICHTEK

RT8511B

暂无描述
RICHTEK

RT8522-10-6M0

Current-compensated Chokes
Schaffner

RT8522-12-5M0

Current-compensated Chokes
Schaffner

RT8522-16-4M0

Current-compensated Chokes
Schaffner

RT8522-20-3M0

Current-compensated Chokes
Schaffner