IRF7821 [RICHTEK]

6A, 24V, 600kHz Step-Down Converter with Synchronous Gate Driver; 6A , 24V , 600kHz的降压转换器与同步闸极驱动器
IRF7821
型号: IRF7821
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

6A, 24V, 600kHz Step-Down Converter with Synchronous Gate Driver
6A , 24V , 600kHz的降压转换器与同步闸极驱动器

晶体 驱动器 转换器 晶体管 开关 脉冲 光电二极管 栅
文件: 总18页 (文件大小:330K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT8298  
6A, 24V, 600kHz Step-Down Converter with Synchronous  
Gate Driver  
General Description  
Features  
z 4.5V to 24V Input Voltage Range  
The RT8298 is a synchronous step-downDC/DC converter  
with an integrated high side internal power MOSFET and  
a gate driver for a low side external power MOSFET. It  
can deliver up to 6A output current from a 4.5V to 24V  
input supply. The RT8298's current mode architecture  
allows the transient response to be optimized over a wider  
input voltage and load range. Cycle-by-cycle current limit  
provides protection against shorted outputs and soft-start  
eliminates input current surge during start-up. The RT8298  
is synchronizable to an external clock with frequency  
ranging from 300kHz to 1.5MHz.  
z 6A Output Current  
z 45mΩ Internal High Side N-MOSFET  
z Current Mode Control  
z 600kHz Switching Frequency  
z Adjustable Output from 0.8V to 15V  
z Up to 95% Efficiency  
z Internal Compensation  
z Stable with Ceramic Capacitors  
z Synchronous External Clock : 300kHz to 1.5MHz  
z Cycle-by-Cycle Current Limit  
z Input Under Voltage Lockout  
z Output Under Voltage Protection  
z Power Good Indicator  
The RT8298 is available in WDFN-14L 4x3 and SOP-8  
(Exposed Pad) packages.  
z Thermal Shutdown Protection  
z RoHS Compliant and Halogen Free  
Applications  
z Point of Load Regulator in Distributed Power System  
z Digital Set top Boxes  
z PersonalDigital Recorders  
z Broadband Communications  
z Flat Panel TVs and Monitors  
Simplified Application Circuit  
RT8298  
VIN  
V
BOOT  
IN  
C
C
C
IN  
BOOT  
L
SW  
BG  
V
OUT  
VCC  
Q1  
R1  
R2  
VCC  
C
OUT  
FB  
Power Good  
Chip Enable  
PGOOD  
EN/SYNC  
GND  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8298-01 November 2011  
www.richtek.com  
1
RT8298  
Ordering Information  
Marking Information  
RT8298  
RT8298ZQW  
Package Type  
04 : Product Code  
QW : WDFN-14L 4x3 (W-Type)  
SP : SOP-8 (Exposed Pad-Option 2)  
YMDNN : Date Code  
04 YM  
DNN  
Lead Plating System  
Z : ECO (Ecological Element with  
Halogen Free and Pb free)  
Note :  
RT8298ZSP  
Richtek products are :  
RT8298ZSP : Product Number  
YMDNN : Date Code  
RT8298  
ZSPYMDNN  
` RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
` Suitable for use in SnPb or Pb-free soldering processes.  
Pin Configurations  
(TOP VIEW)  
14  
13  
12  
11  
10  
9
FB  
PGOOD  
EN/SYNC  
1
2
3
4
5
6
7
GND  
BG  
8
SW  
VIN  
VCC  
2
3
4
7
6
5
BOOT  
VCC  
BG  
EN/SYNC  
FB  
GND  
BOOT  
SW  
SW  
SW  
VIN  
VIN  
VIN  
NC  
GND  
9
GND  
15  
8
WDFN-14L 4x3  
SOP-8 (Exposed Pad)  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS8298-01 November 2011  
RT8298  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
SOP-8  
(Exposed Pad)  
WDFN-14L 4x3  
Feedback Input. This pin is connected to the converter output. It  
is used to set the output of the converter to regulate to the  
desired value via an external resistive divider. The feedback  
reference voltage is 0.808V typically.  
1
6
FB  
Power Good Indicator with Open Drain. (for RT8298ZQW only)  
A 100kΩ pull-high resistor is needed. The output of this pin is  
pulled to low when the FB is lower than 0.75V; otherwise it is  
high impedance.  
2
3
--  
PGOOD  
Enable or External Frequency Synchronization Input. A  
logic-high (2V < EN < 5.5V) enables the converter; a logic-low  
EN/SYNC forces the IC into shutdown mode reducing the supply current to  
less than 3μA. For external frequency synchronization operation,  
the available frequency range is from 300kHz to 1.5MHz.  
7
Power Input. The available input voltage range is from 4.5V to  
4, 5, 6  
7
8
--  
1
VIN  
NC  
SW  
24V. A 22μF or larger input capacitor is needed to reduce  
voltage spikes at the input.  
No Internal Connection.  
Switching Node. Output of the internal high side MOSFET.  
Connect this pin to external low-side N-MOSFET, inductor and  
bootstrap capacitor.  
8, 9, 10  
Bootstrap for High side Gate Driver. Connect a 1μF ceramic  
capacitor between the BOOT pin and SW pin.  
11  
12  
2
3
BOOT  
VCC  
BG  
BG Driver Bias Supply. Decouple with a 1μF X5R/X7R ceramic  
capacitor between the VCC pin and GND.  
Gate Driver Output. Connect this pin to the gate of the external  
low-side N-MOSFET.  
13  
4
14,  
5,  
Ground. The exposed pad must be soldered to a large PCB and  
connected to GND for maximum thermal dissipation.  
GND  
15 (Exposed Pad) 9 (Exposed Pad)  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8298-01 November 2011  
www.richtek.com  
3
RT8298  
Function Block Diagram  
VIN  
V
CC  
VCC  
Internal  
Regulator  
OSC  
Enable  
Comparator  
Slope  
Compensator  
Current Sense  
Amplifier  
+
1.7V  
+
-
R
SENSE  
-
EN/SYNC  
Foldback  
Control  
5k  
3V  
V
CC  
OTP  
BOOT  
SW  
UV Comparator  
45m  
Switch  
Controller  
+
-
V
0.4V  
CC  
Current  
Signal  
6nA  
+
-
+
+
-
0.808V  
COMP  
EA  
BG  
Driver  
V
SS  
Current  
Comparator  
BG  
15pF  
54pF  
300k  
FB  
PGOOD  
Comparator  
1pF  
PGOOD  
0.75V  
+
-
GND  
Operation  
side MOSFET. The output under voltage protection is  
designed to operate in Hiccup mode.  
The RT8298 is a synchronous high voltage Buck Converter  
that can support the input voltage range from 4.5V to 24V  
and the output current can be up to 6A. The RT8298 uses  
a constant frequency, current mode architecture. In normal  
operation, the high side N-MOSFET is turned on when  
the Switch Controller is set by the oscillator (OSC) and is  
turned off when the current comparator resets the Switch  
Controller. While theN-MOSFET is turned off, the external  
low side N-MOSFET is turned on by BG Driver with 5V  
driving voltage from Internal Regulator (VCC) until next  
cycle begins.  
Oscillator (OSC) : The internal oscillator runs at nominal  
frequency 600kHz and can be synchronized by an external  
clock in the range between 300kHz and 1.5MHz from EN/  
SYNC pin.  
PGOOD Comparator : This function is available for  
RT8298ZQW only. When the feedback voltage (VFB) is  
higher than threshold voltage 0.75V, the PGOOD open  
drain output will be high impedance.  
Enable Comparator : Internal 5kΩ resistor and Zener diode  
are used to clamp the input signal to 3V. A1.7V reference  
voltage is for EN logic-high threshold voltage. The EN pin  
can be connected to VIN through a 100kΩ resistor for  
automatic startup.  
High side MOSFET peak current is measured by internal  
RSENSE. The Current Signal is where Slope Compensator  
works together with sensing voltage of RSENSE. The error  
amplifier EA adjusts COMP voltage by comparing the  
feedback signal (VFB) from the output voltage with the  
internal 0.808V reference. When the load current  
increases, it causes a drop in the feedback voltage relative  
to the reference, the COMP voltage then rises to allow  
higher inductor current to match the load current.  
Foldback Control : When VFB is lower than 0.7V, the  
oscillation frequency will be proportional to the feedback  
voltage.  
Soft-Start (SS) : An internal current source (6nA) charges  
an internal capacitor (15pF) to build the soft-start ramp  
voltage (VSS). The VFB voltage will track the internal ramp  
voltage during soft-start interval. The typical soft-start time  
is 2ms.  
UV Comparator : If the feedback voltage (VFB) is lower  
than threshold voltage 0.4V, the UV Comparator's output  
will go high and the Switch Controller will turn off the high  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS8298-01 November 2011  
RT8298  
Absolute Maximum Ratings (Note 1)  
z Supply Input Voltage, VIN ------------------------------------------------------------------------------------------ 0.3V to 26V  
z Switching Voltage, SW -------------------------------------------------------------------------------------------- 0.3V to (VIN + 0.3V)  
z BOOT to SW --------------------------------------------------------------------------------------------------------- 0.3V to 6V  
z All Other Voltage ---------------------------------------------------------------------------------------------------- 0.3V to 6V  
z Power Dissipation, PD @ TA = 25°C  
WDFN-14L 4x3 ------------------------------------------------------------------------------------------------------- 1.667W  
SOP-8 (Exposed Pad) --------------------------------------------------------------------------------------------- 1.333W  
z Package Thermal Resistance (Note 2)  
WDFN-14L 4x3, θJA ------------------------------------------------------------------------------------------------- 60°C/W  
WDFN-14L 4x3, θJC ------------------------------------------------------------------------------------------------- 7.5°C/W  
SOP-8 (Exposed Pad), θJA ---------------------------------------------------------------------------------------- 75°C/W  
SOP-8 (Exposed Pad), θJC --------------------------------------------------------------------------------------- 15°C/W  
z Lead Temperature (Soldering, 10 sec.)------------------------------------------------------------------------- 260°C  
z Junction Temperature ----------------------------------------------------------------------------------------------- 150°C  
z Storage Temperature Range -------------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 3)  
HBM (Human Body Mode) ---------------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------------------ 200V  
Recommended Operating Conditions (Note 4)  
z Supply Input Voltage, VIN ------------------------------------------------------------------------------------------ 4.5V to 24V  
z Junction Temperature Range-------------------------------------------------------------------------------------- 40°C to 125°C  
z Ambient Temperature Range-------------------------------------------------------------------------------------- 40°C to 85°C  
Electrical Characteristics  
(VIN = 12V, TA = 25°C, unless otherwise specified)  
Parameter  
Shutdown Supply Current  
Supply Current  
Symbol  
Test Conditions  
Min  
--  
Typ  
1
Max Unit  
V
V
= 0V  
--  
--  
μA  
mA  
V
EN  
EN  
= 3V, V = 1V  
--  
0.9  
FB  
Feedback Reference Voltage  
Feedback Current  
V
REF  
4.5V V 24V  
0.796 0.808 0.82  
IN  
I
V
= 0.8V  
FB  
--  
--  
--  
--  
--  
--  
--  
4
10  
45  
--  
--  
nA  
mΩ  
A
FB  
High-Side Switch On Resistance  
High-Side Switch Current Limit  
Oscillation Frequency  
R
DS(ON)  
BOOT SW = 4.8V  
10  
--  
f
600  
190  
90  
--  
kHz  
kHz  
%
OSC1  
Short Circuit Oscillation Frequency  
Maximum Duty Cycle  
f
V
V
V
= 0V  
--  
OSC2  
FB  
FB  
FB  
D
MAX  
= 0.6V  
= 1V  
--  
Minimum On-Time  
t
100  
4.2  
--  
ns  
ON  
Input Under Voltage Lockout Threshold  
V
UVLO  
4.4  
V
Input Under Voltage Lockout Threshold  
Hysteresis  
ΔV  
--  
400  
--  
mV  
V
UVLO  
Logic-High  
Logic-Low  
V
IH  
2
--  
--  
5.5  
0.4  
EN Threshold  
Voltage  
V
IL  
--  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8298-01 November 2011  
www.richtek.com  
5
RT8298  
Parameter  
Symbol  
Test Conditions  
Min  
0.3  
--  
Typ  
--  
Max  
Unit  
MHz  
μs  
μA  
°C  
°C  
V
Sync Frequency Range  
f
1.5  
Sync  
EN Turn-Off Delay  
t
10  
1
--  
--  
OFF  
EN Pull Low Current  
V
= 2V  
--  
EN  
Thermal Shutdown  
T
--  
150  
20  
0.75  
40  
--  
--  
SD  
Thermal Shutdown Hysteresis  
Power Good Threshold Rising  
Power Good Threshold Hysteresis  
Power Good Pin Level  
ΔT  
--  
--  
SD  
--  
--  
--  
--  
mV  
V
PGOOD Sink 10mA  
--  
0.125  
--  
BG Driver Bias Supply Voltage  
Gate Driver Sink Impedance  
Gate Driver Source Impedance  
V
4.5  
--  
5
V
CC  
R
Sink  
0.9  
3.3  
--  
Ω
R
Source  
--  
--  
Ω
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect  
device reliability.  
Note 2. θJA is measured at TA = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is  
measured at the exposed pad of the package.  
Note 3. Devices are ESD sensitive. Handling precaution is recommended.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS8298-01 November 2011  
RT8298  
Typical Application Circuit  
For WDFN-14L 4x3 Package  
RT8298  
4, 5, 6  
V
11  
IN  
VIN  
BOOT  
4.5V to 24V  
C
IN  
C
1µF  
BOOT  
22µF  
L
2.2µH  
8, 9, 10  
13  
V
3.3V  
OUT  
SW  
BG  
12  
VCC  
Q1  
C
VCC  
R1  
62k  
1µF  
R3  
100k  
C
OUT  
1
FB  
22µF x 3  
R2  
20k  
2
3
Power Good  
Chip Enable  
PGOOD  
14, 15 (Exposed Pad)  
GND  
EN/SYNC  
For SOP-8 (Exposed Pad) Package  
RT8298  
8
3
V
2
IN  
VIN  
BOOT  
4.5V to 24V  
C
22µF  
C
1µF  
IN  
BOOT  
L
2.2µH  
1
4
V
3.3V  
OUT  
SW  
BG  
VCC  
Q1  
C
1µF  
R1  
VCC  
62k  
C
OUT  
6
FB  
22µF x 3  
Chip Enable  
R2  
20k  
5, 9 (Exposed Pad)  
7
GND  
EN/SYNC  
Table 1. Recommended Component Selection  
R1 (kΩ)  
62  
R2 (kΩ)  
127  
50.5  
30  
L (μH)  
1.5  
VOUT (V)  
COUT (μF)  
22μF x 3  
22μF x 3  
22μF x 3  
22μF x 3  
22μF x 3  
22μF x 3  
1.2  
1.8  
2.5  
3.3  
5
62  
1.5  
62  
2.2  
62  
20  
2.2  
93  
18  
2.8  
8
120  
13.5  
3.6  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8298-01 November 2011  
www.richtek.com  
7
RT8298  
Typical Operating Characteristics  
Output Voltage vs. Input Voltage  
Efficiency vs. Output Current  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
100  
90  
80  
VIN = 6V  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 12V  
IN = 24V  
V
VOUT = 3.3V  
5 6  
VIN = 4.5V to 24V, VOUT = 3.3V, IOUT = 0A  
4
6
8
10 12 14 16 18 20 22 24  
Input Voltage (V)  
0
1
2
3
4
Output Current (A)  
Output Voltage vs. Temperature  
Output Voltage vs. Output Current  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
VIN = 6V  
VIN = 12V  
VIN = 24V  
VIN = 12V, VOUT = 3.3V, IOUT = 0A  
25 50 75 100 125  
VOUT = 3.3V  
4.5 5.5 6  
-50  
-25  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
5
Temperature (°C)  
Output Current (A)  
Switching Frequency vs. Input Voltage  
Switching Frequency vs. Temperature  
650  
640  
630  
620  
610  
600  
590  
580  
570  
560  
550  
650  
640  
630  
620  
610  
600  
590  
580  
570  
560  
550  
VIN = 12V, VOUT = 3.3V, IOUT = 0A  
VOUT = 3.3V, IOUT = 0A  
-50  
-25  
0
25  
50  
75  
100  
125  
4
6
8
10 12 14 16 18 20 22 24  
Input Voltage (V)  
Temperature (°C)  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS8298-01 November 2011  
RT8298  
Current Limit vs. Temperature  
Load Transient Response  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
VOUT  
(100mV/Div)  
IOUT  
(5A/Div)  
9.0  
8.5  
VIN = 12V, VOUT = 3.3V, IOUT = 0A to 6A  
VIN = 12V, VOUT = 3.3V  
8.0  
-50  
-25  
0
25  
50  
75  
100  
125  
Time (250μs/Div)  
Temperature (°C)  
Load Transient Response  
Output Ripple Voltage  
VOUT  
(10mV/Div)  
VOUT  
(100mV/Div)  
VSW  
(10V/Div)  
IOUT  
(5A/Div)  
IL  
(2A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 3A  
VIN = 12V, VOUT = 3.3V, IOUT = 3A to 6A  
Time (250μs/Div)  
Time (1μs/Div)  
Output Ripple Voltage  
Power On from VIN  
VOUT  
(10mV/Div)  
VIN  
(5V/Div)  
VSW  
(10V/Div)  
VOUT  
(2V/Div)  
IL  
IL  
(5A/Div)  
(5A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 6A  
VIN = 12V, VOUT = 3.3V, IOUT = 6A  
Time (2.5ms/Div)  
Time (1μs/Div)  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8298-01 November 2011  
www.richtek.com  
9
RT8298  
Power On from EN  
Power Off from VIN  
VEN  
(5V/Div)  
VIN  
(5V/Div)  
VOUT  
(2V/Div)  
VOUT  
(2V/Div)  
IL  
IL  
(5A/Div)  
(5A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 6A  
Time (5ms/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 6A  
Time (2.5ms/Div)  
Power Off from EN  
External SYNC  
Clock  
(5V/Div)  
VEN  
(5V/Div)  
VLX  
(10V/Div)  
VOUT  
(2V/Div)  
IL  
(5A/Div)  
IL  
VOUT  
(5V/Div)  
(5A/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 6A, Clock = 800kHz  
Time (500ns/Div)  
VIN = 12V, VOUT = 3.3V, IOUT = 6A  
Time (5ms/Div)  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS8298-01 November 2011  
RT8298  
Application Information  
the device again. For external timing control, the EN pin  
can also be externally pulled high by adding a REN resistor  
and CEN capacitor from the VIN pin (see Figure 3).  
Output Voltage Setting  
The resistive divider allows the FB pin to sense the output  
voltage as shown in Figure 1.  
EN  
R
EN  
V
IN  
EN  
V
OUT  
RT8298  
GND  
C
EN  
R1  
FB  
RT8298  
GND  
R2  
Figure 3. Enable Timing Control  
An external MOSFET can be added to implement digital  
control on the EN pin, as shown in Figure 4. In this case,  
a 100kΩ pull-up resistor, REN, is connected between VIN  
pin and the ENpin. MOSFET Q2 will be under logic control  
to pull down the EN pin.  
Figure 1. Output Voltage Setting  
The output voltage is set by an external resistive voltage  
divider according to the following equation :  
R1  
R2  
VOUT = VREF 1+  
R
EN  
100k  
Where VREF is the feedback reference voltage (0.808V  
V
EN  
IN  
typ.).  
RT8298  
GND  
Q2  
EN  
External Bootstrap Diode  
Connect a 1μF low ESR ceramic capacitor between the  
BOOT pin and SW pin. This capacitor provides the gate  
driver voltage for the high side MOSFET.  
Figure 4. Digital Enable Control Circuit  
The chip starts to operate when VIN rises to 4.2V (UVLO  
threshold). During the VIN rising period, if an 8V output  
voltage is set, VIN is lower than the VOUT target value and  
it may cause the chip to shut down. To prevent this  
situation, a resistive voltage divider can be placed between  
the input voltage and ground and connected to the ENpin  
to adjust enable threshold, as shown in Figure 5. For  
example, the setting VOUT is 8V and VIN is from 0V to  
12V, when VIN is higher than 10V, the chip is triggered to  
enable the converter. Assume REN1 = 50kΩ. Then,  
It is recommended to add an external bootstrap diode  
between an external 5V and BOOT pin for efficiency  
improvement when input voltage is lower than 5.5V or duty  
ratio is higher than 65% .The bootstrap diode can be a  
low cost one such as IN4148 or BAT54. The external 5V  
can be a 5V fixed input from system or a 5V output of the  
RT8298.Note that the external boot voltage must be lower  
than 5.5V.  
5V  
(R  
(V  
x V  
)
)
EN1  
EN_T  
R
EN2  
=
V  
IN_S  
EN_T  
BOOT  
where VEN_T is the enable comparator's logic-high reference  
threshold voltage (1.7V) and VIN_S is the target turn on  
input voltage (10V in this example). According to the  
equation, the suggested resistor REN2 is 10.2kΩ.  
RT8298  
1µF  
SW  
Figure 2. External Bootstrap Diode  
Chip Enable Operation  
R
EN1  
V
IN  
EN  
R
The EN pin is the chip enable input. Pulling the EN pin  
low (<0.4V) will shutdown the device. During shutdown  
mode, the RT8298 quiescent current drops to lower than  
3μA. Driving the ENpin high (2V < EN< 5.5V) will turn on  
EN2  
RT8298  
GND  
Figure 5. ResistorDivider for Lockout Threshold Setting  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8298-01 November 2011  
www.richtek.com  
11  
RT8298  
Soft-Start  
Over Temperature Protection  
The RT8298 provides soft-start function. The soft-start  
function is used to prevent large inrush current while  
converter is being powered-up.An internal current source  
(6nA) charges an internal capacitor (15pF) to build a soft-  
start ramp voltage. The VFB voltage will track the internal  
ramp voltage during soft-start interval. The typical soft-  
start time is calculated as follows :  
The RT8298 features an Over Temperature Protection  
(OTP) circuitry to prevent from overheating due to  
excessive power dissipation. The OTP will shut down  
switching operation when junction temperature exceeds  
150°C. Once the junction temperature cools down by  
approximately 20°C, the converter will resume operation.  
To maintain continuous operation, the maximum junction  
temperature should be lower than 125°C.  
(0.808V× 15pF)  
t
=
= 2ms  
SS  
6nA  
Under Voltage Protection  
Operating Frequency and Synchronization  
For the RT8298, it provides Hiccup Mode Under Voltage  
Protection (UVP). When the VFB voltage drops below 0.4V,  
the UVP function will be triggered to shut down switching  
operation. If the UV condition remains for a period, the  
RT8298 will retry every 2ms. When the UV condition is  
removed, the converter will resume operation. The UVP  
is disabled during soft-start period.  
The internal oscillator runs at 600kHz (typ.) when the EN/  
SYNC pin is at logic-high level (>2V). If the EN pin is  
pulled to low-level for 10μs above, the IC will shut down.  
The RT8298 can be synchronized with an external clock  
ranging from 300kHz to 1.5MHz applied to the EN/SYNC  
pin. The external clock duty cycle must be from 10% to  
90%.  
Hiccup Mode  
10µs  
3.5ms (Start-up period)  
VIN = 12V, IOUT = Short  
EN/SYNC  
VOUT  
(1V/Div)  
V
FB  
CLK  
External CLK  
IL  
Foldback  
600kHz  
(5A/Div)  
Figure 6. Startup Sequence Using External Sync Clock  
Time (2.5ms/Div)  
Figure 7. Hiccup Mode Under Voltage Protection  
Figure 6 shows the synchronization operation in startup  
period. When the EN/SYNC is triggered by an external  
clock, the RT8298 enters soft-start phase and the output  
voltage starts to rise. When VFB is lower than 0.7V, the  
oscillation frequency will be proportional to the feedback  
voltage. With higher VFB, the switching frequency is  
relatively higher. After startup period about 3.5ms, the IC  
operates with the same frequency as the external clock.  
Duty Cycle Limitation  
The RT8298 has a maximum duty cycle 90%. The  
minimum input voltage is determined by the maximum  
duty cycle and its minimum operating voltage 4.5V. The  
voltage drops of high side MOSFET and low side MOSFET  
also must be considered for the minimum input voltage.  
The minimum duty cycle can be calculated by the following  
equation :  
Duty Cycle(min) = fSW x tON(min)  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS8298-01 November 2011  
RT8298  
where fsw is the switching frequency, tON (min) is the  
minimum switch on time (100ns). This equation shows  
that the minimum duty cycle increases when the switching  
frequency is increased. Therefore, slower switching  
frequency is necessary to achieve high VIN/VOUT ratio  
application.  
For the ripple current selection, the value of ΔIL= 0.24(IMAX)  
will be a reasonable starting point. The largest ripple  
current occurs at the highest VIN. To guarantee that the  
ripple current stays below the specified maximum, the  
inductor value should be chosen according to the following  
equation :  
⎤ ⎡  
× 1−  
V
f × ΔI  
V
OUT  
V
IN(MAX)  
OUT  
L =  
⎥ ⎢  
External N-MOSFET Selection  
L(MAX)  
⎦ ⎣  
The RT8298 is designed to operate using an external low  
side N-MOSFET. Important parameters for the power  
MOSFETs are the breakdown voltage (BVDSS), threshold  
voltage (VGS_TH), on-resistance (RDS(ON)), total gate charge  
(Qg) and maximum current (ID(MAX)). The gate driver voltage  
is from internal regulator (5V, VCC). Therefore logic level  
N-MOSFET must be used in the RT8298 application. The  
total gate charge (Qg) must be less than 50nC, lower Qg  
characteristics results in lower power losses.Drain-source  
on-resistance (RDS(ON)) should be as small as possible,  
less than 30mΩ is desirable. Lower RDS(ON) results in  
higher efficiency.  
The inductor's current rating (cause a 40°C temperature  
rising from 25°C ambient) should be greater than the  
maximum load current and its saturation current should  
be greater than the short circuit peak current limit. Please  
see Table 3 for the inductor selection reference.  
Table 3. Suggested Inductors for Typical  
Application Circuit  
Component  
Supplier  
Dimensions  
(mm)  
Series  
10 x 10 x 4  
6 x 6 x 3  
Zenithtek  
ZPWM  
WE  
74477  
10 x 10 x 4  
8 x 10 x 4  
Table 2. External N-MOSFET Selection  
TAIYOYUDEN  
NR8040  
Part No.  
Si7114  
Manufacture  
Vishay  
CIN and COUT Selection  
A04474  
ALPHA & OMEGA  
Fairchild  
The input capacitance, CIN, is needed to filter the  
trapezoidal current at the source of the high side MOSFET.  
To prevent large ripple current, a low ESR input capacitor  
sized for the maximum RMS current should be used. The  
approximate RMS current equation is given :  
FDS6670AS  
IRF7821  
International Rectifier  
Inductor Selection  
The inductor value and operating frequency determine the  
ripple current according to a specific input and output  
voltage. The ripple current ΔIL increases with higher VIN  
and decreases with higher inductance.  
V
V
V
IN  
V
OUT  
OUT  
I
= I  
1  
RMS  
OUT(MAX)  
IN  
This formula has a maximum at VIN = 2VOUT, where  
IRMS = IOUT / 2. This simple worst case condition is  
commonly used for design because even significant  
deviations do not offer much relief.  
V
VOUT  
OUT ⎤ ⎡  
× 1−  
⎥ ⎢  
ΔIL =  
f ×L  
V
IN  
⎦ ⎣  
Having a lower ripple current reduces not only the ESR  
losses in the output capacitors but also the output voltage  
ripple. High frequency with small ripple current can reduce  
voltage. For the highest efficiency operation, however, it  
requires a large inductor to achieve this goal.  
Choose a capacitor rated at a higher temperature than  
required. Several capacitors may also be paralleled to  
meet size or height requirements in the design.  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8298-01 November 2011  
www.richtek.com  
13  
RT8298  
Table 4. Suggested Capacitors for CIN and COUT  
Location  
CIN  
Component Supplier  
Part No.  
Capacitance (μF)  
Case Size  
1206  
MURATA  
TDK  
GRM31CR61E106K  
C3225X5R1E106K  
TMK316BJ106ML  
GRM31CR60J476M  
C3225X5R0J476M  
GRM32ER71C226M  
C3225X5R1C22M  
10  
10  
10  
47  
47  
22  
22  
CIN  
1206  
CIN  
TAIYO YUDEN  
MURATA  
TDK  
1206  
COUT  
COUT  
COUT  
COUT  
1206  
1210  
MURATA  
TDK  
1210  
1210  
For the input capacitor, two 10μF low ESR ceramic  
capacitors are recommended. For the recommended  
capacitor, please refer to Table 4 for more details.  
Checking Transient Response  
The regulator loop response can be checked by looking  
at the load transient response. Switching regulators take  
several cycles to respond to a step load change. When a  
step load occurs, VOUT immediately shifts by an amount  
equal to ΔILOAD x ESR also begins to charge or discharge  
COUT generating a feedback error signal for the regulator  
to return VOUT to its steady-state value. During this  
recovery time, VOUT can be monitored for overshoot or  
ringing that would indicate a stability problem.  
The selection of COUT is determined by the required ESR  
to minimize voltage ripple.  
Moreover, the amount of bulk capacitance is also a key  
for COUT selection to ensure that the control loop is stable.  
Loop stability can be checked by viewing the load transient  
response as described in a later section.  
The output ripple, ΔVOUT , is determined by :  
Thermal Considerations  
1
ΔVOUT ≤ ΔIL ESR +  
8fCOUT  
For continuous operation, do not exceed absolute  
maximum junction temperature. The maximum power  
dissipation depends on the thermal resistance of the IC  
package, PCB layout, rate of surrounding airflow, and  
difference between junction and ambient temperature. The  
maximum power dissipation can be calculated by the  
following formula :  
The output ripple will be the highest at the maximum input  
voltage since ΔIL increases with input voltage. Multiple  
capacitors placed in parallel may be needed to meet the  
ESR and RMS current handling requirement.  
Higher values, lower cost ceramic capacitors are now  
becoming available in smaller case sizes. Their high ripple  
current, high voltage rating and low ESR make them ideal  
for switching regulator applications. When a ceramic  
capacitor is used at the input and the power is supplied  
by a wall adapter through long wires, a load step at the  
output can induce ringing at the input, VIN. This ringing  
can couple to the output and be mistaken.Asudden inrush  
of current through the long wires can potentially cause a  
voltage spike at VIN large enough to damage the part.  
PD(MAX) = (TJ(MAX) TA) / θJA  
where TJ(MAX) is the maximum junction temperature, TAis  
the ambient temperature, and θJA is the junction to ambient  
thermal resistance.  
For recommended operating condition specifications of  
the RT8298, the maximum junction temperature is 125°C.  
The junction to ambient thermal resistance, θJA, is layout  
dependent. For SOP-8 (Exposed Pad) package, the  
thermal resistance, θJA, is 75°C/W on a standard JEDEC  
51-7 four-layer thermal test board.  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
14  
DS8298-01 November 2011  
RT8298  
For WDFN-14L 4x3 package, the thermal resistance, θJA,  
is 60°C/W on a standard JEDEC 51-7 four-layer thermal  
test board. The maximum power dissipation at TA = 25°C  
can be calculated by the following formulas :  
Layout Consideration  
Follow the PCB layout guidelines for optimal performance  
of the RT8298.  
` Keep the traces of the main current paths as short and  
PD(MAX) = (125°C 25°C) / (75°C/W) = 1.333W for  
wide as possible.  
SOP-8 (Exposed Pad) package  
` Put the input capacitor as close as possible to the device  
PD(MAX) = (125°C 25°C) / (60°C/W) = 1.667W for  
pins (VINandGND).  
WDFN-14L 4x3 package  
` SW node is with high frequency voltage swing and  
should be kept at small area. Keep analog components  
away from the SW node to prevent stray capacitive noise  
pick-up.  
The maximum power dissipation depends on the operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance, θJA. For the RT8298 package, the derating  
curves in Figure 8 allow the designer to see the effect of  
rising ambient temperature on the maximum power  
dissipation.  
` Connect feedback network behind the output capacitors.  
Keep the loop area small. Place the feedback  
components near the RT8298.  
1.8  
` Connect all analog grounds to a common node and then  
connect the common node to the power ground behind  
the output capacitors.  
Four-Layer PCB  
1.6  
1.4  
1.2  
` An example of PCB layout guide is shown in Figure 9  
WDFN-14L 4x3  
1.0  
and Figure 10 for reference.  
0.8  
SOP-8 (Exposed Pad)  
0.6  
0.4  
0.2  
0.0  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 8.Derating Curves for RT8298 Package  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8298-01 November 2011  
www.richtek.com  
15  
RT8298  
SW should be connected to inductor by  
wide and short trace. Keep sensitive  
components away from this trace.  
Input capacitor must be placed  
as close to the IC as possible.  
V
IN  
GND  
The EN/SYNC must be kept  
C
C
IN  
OUT  
away from noise. The trace  
should be short and shielded  
with a ground trace.  
Q1  
L
BG  
SW  
8
7
6
5
VIN  
V
OUT  
C
BOOT  
2
3
4
BOOT  
VCC  
BG  
GND  
R1  
EN/SYNC  
FB  
C
capacitor must  
be placed as close to  
the IC as possible.  
VCC  
GND  
9
V
OUT  
GND  
R2  
C
VCC  
The feedback components  
must be connected as close  
to the device as possible.  
GND  
Figure 9. PCB Layout Guide for SOP-8 (Exposed Pad)  
The feedback components  
GND  
must be connected as close  
to the device as possible.  
C
capacitor must  
VCC  
R2  
FB  
be placed as close to  
the IC as possible.  
V
OUT  
R1  
14  
1
2
3
4
5
6
7
GND  
R3  
13  
V
BG  
PGOOD  
C
VCC  
CC  
GND  
V
12  
11  
EN/SYNC  
VCC  
BOOT  
VIN  
GND  
SW should be connected  
The EN/SYNC must be kept  
away from noise. The trace  
C
L
BOOT  
10 SW  
IN  
VIN  
VIN  
NC  
to inductor by wide and  
short trace. Keep sensitive  
components away from  
this trace.  
9
SW  
should be short and shielded  
with a ground trace.  
V
OUT  
C
15  
IN  
8
SW  
BG  
Q1  
C
OUT  
Input capacitor must be  
placed as close to the  
IC as possible.  
GND  
Figure 10. PCB Layout Guide for WDFN-14L 4x3  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
16  
DS8298-01 November 2011  
RT8298  
Outline Dimension  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
0.800  
0.050  
0.250  
0.300  
4.100  
3.350  
3.100  
1.750  
Min  
Max  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.180  
3.900  
3.250  
2.900  
1.650  
0.028  
0.000  
0.007  
0.007  
0.154  
0.128  
0.114  
0.065  
0.031  
0.002  
0.010  
0.012  
0.161  
0.132  
0.122  
0.069  
D
D2  
E
E2  
e
0.500  
0.020  
L
0.350  
0.450  
0.014  
0.018  
W-Type 14L DFN 4x3 Package  
Copyright 2011 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS8298-01 November 2011  
www.richtek.com  
17  
RT8298  
H
A
Y
M
EXPOSED THERMAL PAD  
(Bottom of Package)  
J
B
X
F
C
I
D
Dimensions In Millimeters Dimensions In Inches  
Symbol  
Min  
Max  
5.004  
4.000  
1.753  
0.510  
1.346  
0.254  
0.152  
6.200  
1.270  
2.300  
2.300  
2.500  
3.500  
Min  
Max  
A
B
C
D
F
H
I
4.801  
3.810  
1.346  
0.330  
1.194  
0.170  
0.000  
5.791  
0.406  
2.000  
2.000  
2.100  
3.000  
0.189  
0.150  
0.053  
0.013  
0.047  
0.007  
0.000  
0.228  
0.016  
0.079  
0.079  
0.083  
0.118  
0.197  
0.157  
0.069  
0.020  
0.053  
0.010  
0.006  
0.244  
0.050  
0.091  
0.091  
0.098  
0.138  
J
M
X
Y
X
Y
Option 1  
Option 2  
8-Lead SOP (Exposed Pad) Plastic Package  
Richtek Technology Corporation  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should  
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot  
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be  
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.  
www.richtek.com  
18  
DS8298-01 November 2011  

相关型号:

IRF7821GPBF

Power Field-Effect Transistor, 13.6A I(D), 30V, 0.0091ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, HALOGEN AND LEAD FREE, SOP-8
INFINEON

IRF7821PBF

HEXFET㈢Power MOSFET
INFINEON

IRF7821PBF-1

Small Signal Field-Effect Transistor
INFINEON

IRF7821TR

High Frequency Point-of-Load Synchronous Buck Converter for Applications in Networking & Computing Systems.
INFINEON

IRF7821TRPBF

HEXFETPower MOSFET
INFINEON

IRF7821TRPBF-1

Small Signal Field-Effect Transistor
INFINEON

IRF7821UPBF

暂无描述
INFINEON

IRF7821UTRPBF

Power Field-Effect Transistor, 13.6A I(D), 30V, 0.0091ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, LEAD FREE, SOP-8
INFINEON

IRF7822

Power MOSFET for DC-DC Converters
INFINEON

IRF7822PBF

HEXFET㈢ Power MOSFET for DC-DC Converters
INFINEON

IRF7822TR

Power Field-Effect Transistor, 18A I(D), 30V, 0.0065ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, SO-8
INFINEON

IRF7822TRPBF

N-Channel Application-Specific MOSFETs
INFINEON