X28HC256JM-15T1 [RENESAS]

32KX8 EEPROM 5V, 150ns, PQCC32, PLASTIC, MS-016AE, LCC-32;
X28HC256JM-15T1
型号: X28HC256JM-15T1
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

32KX8 EEPROM 5V, 150ns, PQCC32, PLASTIC, MS-016AE, LCC-32

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 内存集成电路
文件: 总17页 (文件大小:491K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
X28HC256  
256k, 32k x 8-Bit  
Data Sheet  
September 21, 2011  
FN8108.3  
5V, Byte Alterable EEPROM  
Features  
The X28HC256 is a second generation high performance  
CMOS 32k x 8 EEPROM. It is fabricated with Intersil’s  
proprietary, textured poly floating gate technology, providing  
a highly reliable 5V only nonvolatile memory.  
• Access time: 70ns  
• Simple byte and page write  
- Single 5V supply  
- No external high voltages or VP-P control circuits  
- Self-timed  
The X28HC256 supports a 128-byte page write operation,  
effectively providing a 24µs/byte write cycle, and enabling  
the entire memory to be typically rewritten in less than 0.8  
seconds. The X28HC256 also features DATA Polling and  
Toggle Bit Polling, two methods of providing early end of  
write detection. The X28HC256 also supports the JEDEC  
standard Software Data Protection feature for protecting  
against inadvertent writes during power-up and power-down.  
- No erase before write  
- No complex programming algorithms  
- No overerase problem  
• Low power CMOS  
- Active: 60mA  
- Standby: 500µA  
Endurance for the X28HC256 is specified as a minimum  
1,000,000 write cycles per byte and an inherent data  
retention of 100 years.  
• Software data protection  
- Protects data against system level inadvertent writes  
• High speed page write capability  
• Highly reliable Direct Writecell  
- Endurance: 1,000,000 cycles  
- Data retention: 100 years  
• Early end of write detection  
- DATA polling  
- Toggle bit polling  
• Pb-free available (RoHS compliant)  
Block Diagram  
256kBIT  
EEPROM  
ARRAY  
X BUFFERS  
LATCHES AND  
DECODER  
A
TO A  
14  
0
ADDRESS  
INPUTS  
I/O BUFFERS  
Y BUFFERS  
LATCHES AND  
DECODER  
AND LATCHES  
I/O TO I/O  
0
7
DATA INPUTS/OUTPUTS  
CE  
CONTROL  
LOGIC AND  
TIMING  
OE  
WE  
V
CC  
SS  
V
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2005-2007, 2010, 2011. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
X28HC256  
Ordering Information  
ACCESS TIME TEMP. RANGE  
PART NUMBER  
X28HC256J-15*  
PART MARKING  
(ns)  
(°C)  
PACKAGE  
PKG. DWG. #  
N32.45x55  
N32.45x55  
N32.45x55  
N32.45x55  
E28.6  
X28HC256J-15 HY  
X28HC256J-15 ZHY  
X28HC256JI-15 HY  
X28HC256JI-15 ZHY  
X28HC256P-15 HY  
0 to +70  
32 Ld PLCC  
X28HC256JZ-15* (Note)  
X28HC256JI-15*, **  
0 to +70  
32 Ld PLCC (Pb-free)  
32 Ld PLCC  
-40 to +85  
-40 to +85  
0 to +70  
X28HC256JIZ-15* (Note)  
X28HC256P-15****  
32 Ld PLCC (Pb-free)  
28 Ld PDIP  
X28HC256PZ-15*** (Note) X28HC256P-15 HYZ  
X28HC256PI-15**** X28HC256PI-15 HY  
X28HC256PIZ-15*** (Note) X28HC256PI-15 HYZ  
0 to +70  
28 Ld PDIP (Pb-free)  
28 Ld PDIP  
E28.6  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
0 to +70  
E28.6  
28 Ld PDIP (Pb-free)  
28 Ld SOIC (300 mil)  
28 Ld SOIC (300 mil) (Pb-free)  
32 Ld PLCC  
E28.6  
X28HC256SI-15*  
X28HC256SI-15 HY  
X28HC256SI-15 HYZ  
X28HC256J-12 HY  
X28HC256J-12 ZHY  
X28HC256JI-12 HY  
X28HC256JI-12 ZHY  
X28HC256P-12 HY  
MDP0027  
MDP0027  
N32.45x55  
N32.45x55  
N32.45x55  
N32.45x55  
E28.6  
X28HC256SIZ-15 (Note)  
X28HC256J-12*  
X28HC256JZ-12* (Note)  
X28HC256JI-12*  
0 to +70  
32 Ld PLCC (Pb-free)  
32 Ld PLCC  
-40 to +85  
-40 to +85  
0 to +70  
X28HC256JIZ-12* (Note)  
X28HC256P-12****  
32 Ld PLCC (Pb-free)  
28 Ld PDIP  
X28HC256PZ-12*** (Note) X28HC256P-12 HYZ  
X28HC256PI-12**** X28HC256PI-12 HY  
X28HC256PIZ-12*** (Note) X28HC256PI-12 HYZ  
0 to +70  
28 Ld PDIP (Pb-free)  
28 Ld PDIP  
E28.6  
-40 to +85  
-40 to +85  
0 to +70  
E28.6  
28 Ld PDIP (Pb-free)  
28 Ld SOIC (300 mils)  
28 Ld SOIC (300 mils) (Pb-free)  
28 Ld SOIC (300 mils)  
28 Ld SOIC (300 mils) (Pb-free)  
32 Ld PLCC (Pb-free)  
32 Ld PLCC  
E28.6  
X28HC256S-12  
X28HC256S-12 HY  
X28HC256S-12 HYZ  
X28HC256SI-12 HY  
X28HC256SI-12 HYZ  
X28HC256J-90 ZHY  
X28HC256JI-90 HY  
X28HC256JI-90 ZHY  
X28HC256P-90 HY  
120  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
N32.45x55  
N32.45x55  
N32.45x55  
E28.6  
X28HC256SZ-12 (Note)  
X28HC256SI-12  
0 to +70  
-40 to +85  
-40 to +85  
0 to +70  
X28HC256SIZ-12 (Note)  
X28HC256JZ-90* (Note)  
X28HC256JI-90*  
-40 to +85  
-40 to +85  
0 to +70  
X28HC256JIZ-90* (Note)  
X28HC256P-90****  
32 Ld PLCC (Pb-free)  
28 Ld PDIP  
90  
X28HC256PZ-90*** (Note) X28HC256P-90 HYZ  
0 to +70  
28 Ld PDIP (Pb-free)  
28 Ld PDIP (Pb-free)  
28 Ld SOIC (300 mils)  
28 Ld SOIC (300 mils)  
28 Ld SOIC (300 mils) (Pb-free)  
E28.6  
X28HC256PIZ-90 (Note)  
X28HC256S-90  
X28HC256PI-90 HYZ  
X28HC256S-90 HY  
X28HC256SI-90 HY  
X28HC256SI-90 HYZ  
-40 to +85  
0 to +70  
E28.6  
MDP0027  
MDP0027  
MDP0027  
X28HC256SI-90  
-40 to +85  
-40 to +85  
X28HC256SIZ-90 (Note)  
*Add "T1" suffix for tape and reel.  
**Add "T2" suffix for tape and reel.  
***Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.  
****Part at Prenotification (will become obsolete).  
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100%  
matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN8108.3  
September 21, 2011  
2
X28HC256  
Pinouts  
X28HC256  
(28 LD FLATPACK, PDIP, SOIC)  
TOP VIEW  
X28HC256  
(32 LD PLCC, LCC)  
TOP VIEW  
A
A
1
28  
27  
26  
25  
24  
23  
22  
V
CC  
14  
12  
2
WE  
4
3
2
1 32 31 30  
29  
3
A
A
A
A
A
A
A
A
A
13  
7
6
5
4
3
2
1
0
A
A
A
A
A
A
A
5
6
7
8
9
A
8
6
5
4
3
2
1
0
4
A
8
28  
27  
26  
25  
24  
23  
22  
21  
A
9
5
A
9
A
11  
6
A
11  
NC  
OE  
7
OE  
X28HC256  
X28HC256  
8
21  
20  
19  
18  
17  
16  
15  
A
10  
A
10  
11  
12  
13  
10  
9
CE  
I/O  
CE  
I/O  
10  
11  
12  
13  
14  
7
NC  
I/O  
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
6
5
4
3
0
1
2
I/O  
0
6
14 15 16 17 18 19 20  
I/O  
V
SS  
Pin Descriptions  
Pin Names  
SYMBOL  
A0 to A14  
I/O0 to I/O7  
WE  
DESCRIPTION  
Address Inputs  
Data Input/Output  
Write Enable  
Chip Enable  
Output Enable  
+5V  
Addresses (A to A )  
0
14  
The Address inputs select an 8-bit memory location during a  
read or write operation.  
Chip Enable (CE)  
The Chip Enable input must be LOW to enable all read/write  
operations. When CE is HIGH, power consumption is  
reduced.  
CE  
OE  
VCC  
Output Enable (OE)  
VSS  
Ground  
The Output Enable input controls the data output buffers,  
and is used to initiate read operations.  
NC  
No Connect  
Data In/Data Out (I/O to I/O )  
0
7
Device Operation  
Data is written to or read from the X28HC256 through the I/O  
pins.  
Read  
Read operations are initiated by both OE and CE LOW. The  
read operation is terminated by either CE or OE returning  
HIGH. This two line control architecture eliminates bus  
contention in a system environment. The data bus will be in  
a high impedance state when either OE or CE is HIGH.  
Write Enable (WE)  
The Write Enable input controls the writing of data to the  
X28HC256.  
Write  
Write operations are initiated when both CE and WE are  
LOW and OE is HIGH. The X28HC256 supports both a CE  
and WE controlled write cycle. That is, the address is latched  
by the falling edge of either CE or WE, whichever occurs  
last. Similarly, the data is latched internally by the rising edge  
of either CE or WE, whichever occurs first. A byte write  
operation, once initiated, will automatically continue to  
completion, typically within 3ms.  
FN8108.3  
September 21, 2011  
3
X28HC256  
cease, and the device will be accessible for additional read  
Page Write Operation  
and write operations.  
The page write feature of the X28HC256 allows the entire  
memory to be written in typically 0.8 seconds. Page write  
allows up to one hundred twenty-eight bytes of data to be  
consecutively written to the X28HC256, prior to the  
commencement of the internal programming cycle. The host  
can fetch data from another device within the system during  
a page write operation (change the source address), but the  
page address (A7 through A14) for each subsequent valid  
write cycle to the part during this operation must be the same  
as the initial page address.  
DATA Polling I/O  
DATA Polling can effectively halve the time for writing to the  
X28HC256. The timing diagram in Figure 2 illustrates the  
sequence of events on the bus. The software flow diagram in  
Figure 3 illustrates one method of implementing the routine.  
The Toggle Bit I/O  
The Toggle Bit can eliminate the chore of saving and fetching  
the last address and data in order to implement DATA Polling.  
This can be especially helpful in an array comprised of  
multiple X28HC256 memories that is frequently updated.  
The timing diagram in Figure 4 illustrates the sequence of  
events on the bus. The software flow diagram in Figure 5  
illustrates a method for polling the Toggle Bit.  
The page write mode can be initiated during any write  
operation. Following the initial byte write cycle, the host can  
write an additional one to one hundred twenty-seven bytes in  
the same manner as the first byte was written. Each  
successive byte load cycle, started by the WE HIGH to LOW  
transition, must begin within 100µs of the falling edge of the  
preceding WE. If a subsequent WE HIGH to LOW transition  
is not detected within 100µs, the internal automatic  
Hardware Data Protection  
The X28HC256 provides two hardware features that protect  
nonvolatile data from inadvertent writes.  
programming cycle will commence. There is no page write  
window limitation. Effectively the page write window is  
infinitely wide, so long as the host continues to access the  
device within the byte load cycle time of 100µs.  
• Default VCC Sense—All write functions are inhibited when  
VCC is 3.5V typically.  
Write Operation Status Bits  
Write Inhibit—Holding either OE LOW, WE HIGH, or CE  
HIGH will prevent an inadvertent write cycle during power-up  
and power-down, maintaining data integrity.  
The X28HC256 provides the user two write operation status  
bits. These can be used to optimize a system write cycle  
time. The status bits are mapped onto the I/O bus as shown  
in Figure 1.  
I/O  
DP  
TB  
5
4
3
2
1
0
RESERVED  
TOGGLE BIT  
DATA POLLING  
FIGURE 1. STATUS BIT ASSIGNMENT  
DATA Polling (I/O )  
7
The X28HC256 features DATA Polling as a method to indicate  
to the host system that the byte write or page write cycle has  
completed. DATA Polling allows a simple bit test operation to  
determine the status of the X28HC256. This eliminates  
additional interrupt inputs or external hardware. During the  
internal programming cycle, any attempt to read the last byte  
written will produce the complement of that data on I/O7 (i.e.,  
write data = 0xxx xxxx, read data = 1xxx xxxx). Once the  
programming cycle is complete, I/O7 will reflect true data.  
Toggle Bit (I/O )  
6
The X28HC256 also provides another method for  
determining when the internal write cycle is complete. During  
the internal programming cycle I/O6 will toggle from HIGH to  
LOW and LOW to HIGH on subsequent attempts to read the  
device. When the internal cycle is complete the toggling will  
FN8108.3  
September 21, 2011  
4
X28HC256  
LAST  
WRITE  
WE  
CE  
OE  
V
IH  
V
OH  
HIGH Z  
I/O  
7
V
OL  
X28HC256  
READY  
A
TO A  
14  
An  
An  
An  
An  
An  
An  
An  
0
FIGURE 2. DATA POLLING BUS SEQUENCE  
WRITE DATA  
WRITES  
NO  
COMPLETE?  
YES  
SAVE LAST DATA  
AND ADDRESS  
READ LAST  
ADDRESS  
IO  
7
NO  
COMPARE?  
YES  
X28HC256  
READY  
FIGURE 3. DATA POLLING SOFTWARE FLOW  
FN8108.3  
September 21, 2011  
5
X28HC256  
LAST  
WRITE  
WE  
CE  
OE  
V
OH  
HIGH Z  
I/O  
6
*
*
V
OL  
X28C512, X28C513  
READY  
* I/O6 Beginning and ending state of I/O6 will vary.  
FIGURE 4. TOGGLE BIT BUS SEQUENCE  
¬
The internal software data protection circuit is enabled after  
the first write operation, utilizing the software algorithm. This  
circuit is nonvolatile, and will remain set for the life of the  
device unless the reset command is issued.  
LAST WRITE  
YES  
Once the software protection is enabled, the X28HC256 is  
also protected from inadvertent and accidental writes in the  
powered-up state. That is, the software algorithm must be  
issued prior to writing additional data to the device.  
LOAD ACCUM  
FROM ADDR n  
Software Algorithm  
Selecting the software data protection mode requires the  
host system to precede data write operations by a series of  
three write operations to three specific addresses. Refer to  
Figures 6 and 7 for the sequence. The three-byte sequence  
opens the page write window, enabling the host to write from  
one to one hundred twenty-eight bytes of data. Once the  
page load cycle has been completed, the device will  
automatically be returned to the data protected state.  
COMPARE  
ACCUM WITH  
ADDR n  
NO  
COMPARE  
OK?  
YES  
X28C256  
READY  
FIGURE 5. TOGGLE BIT SOFTWARE FLOW  
Software Data Protection  
The X28HC256 offers a software-controlled data protection  
feature. The X28HC256 is shipped from Intersil with the  
software data protection NOT ENABLED; that is, the device  
will be in the standard operating mode. In this mode data  
should be protected during power-up/down operations  
through the use of external circuits. The host would then  
have open read and write access of the device once VCC  
was stable.  
The X28HC256 can be automatically protected during  
power-up and power-down (without the need for external  
circuits) by employing the software data protection feature.  
FN8108.3  
September 21, 2011  
6
X28HC256  
Software Data Protection  
V
CC  
(V  
)
CC  
0V  
DATA  
ADDRESS  
AA  
5555  
55  
2AAA  
A0  
5555  
WRITES  
OK  
WRITE  
PROTECTED  
t
WC  
CE  
t  
BYTE  
OR  
BLC MAX  
WE  
AGE  
FIGURE 6. TIMING SEQUENCE—BYTE OR PAGE WRITE  
Regardless of whether the device has previously been  
protected or not, once the software data protection algorithm  
is used and data has been written, the X28HC256 will  
automatically disable further writes unless another command  
is issued to cancel it. If no further commands are issued the  
X28HC256 will be write protected during power-down and  
after any subsequent power-up.  
WRITE DATA AA  
TO ADDRESS  
5555  
WRITE DATA 55  
TO ADDRESS  
2AAA  
Note: Once initiated, the sequence of write operations  
should not be interrupted.  
WRITE DATA A0  
TO ADDRESS  
5555  
Resetting Software Data Protection  
BYTE/PAGE  
LOAD ENABLED  
In the event the user wants to deactivate the software data  
protection feature for testing or reprogramming in an  
EEPROM programmer, the following six step algorithm will  
reset the internal protection circuit. After tWC, the X28HC256  
will be in standard operating mode.  
WRITE DATA XX  
TO ANY  
ADDRESS  
OPTIONAL  
BYTE/PAGE  
LOAD OPERATION  
WRITE LAST  
BYTE TO  
LAST ADDRESS  
Note: Once initiated, the sequence of write operations  
should not be interrupted.  
AFTER t  
WC  
RE-ENTERS DATA  
PROTECTED STATE  
FIGURE 7. WRITE SEQUENCE FOR SOFTWARE DATA  
PROTECTION  
V
CC  
AA  
5555  
55  
2AAA  
80  
5555  
AA  
5555  
55  
2AAA  
20  
5555  
STANDARD  
OPERATING  
MODE  
DATA  
ADDRESS  
t
WC  
CE  
WE  
FIGURE 8. RESET SOFTWARE DATA PROTECTION TIMING SEQUENCE  
FN8108.3  
September 21, 2011  
7
X28HC256  
System Considerations  
WRITE DATA AA  
TO ADDRESS  
5555  
Because the X28HC256 is frequently used in large memory  
arrays, it is provided with a two line control architecture for  
both read and write operations. Proper usage can provide  
the lowest possible power dissipation, and eliminate the  
possibility of contention where multiple I/O pins share the  
same bus.  
WRITE DATA 55  
TO ADDRESS  
2AAA  
To gain the most benefit, it is recommended that CE be  
decoded from the address bus and be used as the primary  
device selection input. Both OE and WE would then be  
common among all devices in the array. For a read  
operation, this assures that all deselected devices are in  
their standby mode, and that only the selected device(s)  
is/are outputting data on the bus.  
WRITE DATA 80  
TO ADDRESS  
5555  
WRITE DATA AA  
TO ADDRESS  
5555  
Because the X28HC256 has two power modes, standby and  
active, proper decoupling of the memory array is of prime  
concern. Enabling CE will cause transient current spikes.  
The magnitude of these spikes is dependent on the output  
capacitive loading of the l/Os. Therefore, the larger the array  
sharing a common bus, the larger the transient spikes. The  
voltage peaks associated with the current transients can be  
suppressed by the proper selection and placement of  
decoupling capacitors. As a minimum, it is recommended that  
a 0.1µF high frequency ceramic capacitor be used between  
WRITE DATA 55  
TO ADDRESS  
2AAA  
WRITE DATA 20  
TO ADDRESS  
5555  
VCC and VSS at each device. Depending on the size of the  
array, the value of the capacitor may have to be larger.  
In addition, it is recommended that a 4.7µF electrolytic bulk  
capacitor be placed between VCC and VSS for each eight  
devices employed in the array. This bulk capacitor is  
employed to overcome the voltage droop caused by the  
inductive effects of the PC board traces.  
AFTER t  
,
WC  
RE-ENTERS  
UNPROTECTED  
STATE  
FIGURE 9. WRITE SEQUENCE FOR RESETTING SOFTWARE  
DATA PROTECTION  
FN8108.3  
September 21, 2011  
8
X28HC256  
Absolute Maximum Ratings  
Thermal Information  
Voltage on any Pin with Respect to VSS . . . . . . . . . . . . . -1V to +7V  
DC Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
Temperature Under Bias . . . . . . . . . . . . . . . . . . . . . .-10°C to +85°C  
X28HC256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +135°C  
X28HC256I, X28HC256M . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
*Pb-free PDIPs can be used for through hole wave solder  
processing only. They are not intended for use in Reflow solder  
processing applications.  
Operating Conditions  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
Industrial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Military . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-55°C to +125°C  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V ± 10%  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
DC Electrical Specifications Over Recommended Operating Conditions, Unless Otherwise Specified.  
LIMITS  
TYP  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
(Note 1)  
MAX  
UNIT  
V
CC Active Current  
ICC  
CE = OE = VIL, WE = VIH, All I/O’s = open,  
address inputs = .4V/2.4V levels @ f = 10MHz  
30  
60  
mA  
(TTL Inputs)  
V
CC Standby Current  
ISB1  
CE = VIH, OE = VIL, All I/O’s = open, other inputs = VIH  
1
2
mA  
µA  
(TTL Inputs)  
VCC Standby Current  
(CMOS Inputs)  
ISB2  
CE = VCC - 0.3V, OE = GND, All I/Os = open, other  
inputs = VCC - 0.3V  
200  
500  
Input Leakage Current  
Output Leakage Current  
Input LOW Voltage  
Input HIGH Voltage  
Output LOW Voltage  
Output HIGH Voltage  
NOTES:  
ILI  
VIN = VSS to VCC  
10  
10  
µA  
µA  
V
ILO  
VOUT = VSS to VCC, CE = VIH  
V
lL (Note 2)  
IH (Note 2)  
VOL  
-1  
2
0.8  
V
VCC + 1  
0.4  
V
IOL = 6mA  
V
VOH  
IOH = -4mA  
2.4  
V
1. Typical values are for TA = +25°C and nominal supply voltage.  
2. VIL min. and VIH max. are for reference only and are not tested.  
Power-Up Timing  
PARAMETER  
SYMBOL  
PUR, (Note 3)  
PUW, (Note 3)  
MAX  
100  
5
UNIT  
µs  
Power-up to read  
Power-up to write  
NOTE:  
t
t
ms  
3. This parameter is periodically sampled and not 100% tested.  
Capacitance  
T
= +25°C, f = 1MHz, VCC = 5V.  
A
SYMBOL  
TEST  
CONDITIONS  
VI/O = 0V  
VIN = 0V  
MAX  
UNIT  
CI/O (Note 9)  
Input/output capacitance  
Input capacitance  
10  
6
pF  
pF  
CIN (Note 9)  
FN8108.3  
September 21, 2011  
9
 
 
 
X28HC256  
Endurance and Data Retention  
PARAMETER  
MIN  
MAX  
UNIT  
Cycles  
Years  
Endurance  
1,000,000  
100  
Data retention  
AC Conditions of Test  
Symbol Table  
Input pulse levels  
0V to 3V  
WAVEFORM  
INPUTS  
OUTPUTS  
Input rise and fall times  
Input and output timing levels  
5ns  
Must be  
steady  
Will be  
steady  
1.5V  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
Mode Selection  
CE  
OE  
WE  
MODE  
Read  
Write  
I/O  
DOUT  
DIN  
POWER  
active  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
L
L
H
L
H
L
active  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
H
X
X
Standby and write High Z  
inhibit  
standby  
N/A  
Center Line  
is High  
Impedance  
X
X
L
X
H
Write inhibit  
Write inhibit  
X
Equivalent AC Load Circuit  
5V  
1.92kΩ  
OUTPUT  
1.37kΩ  
30pF  
AC Electrical Specifications Over Recommended Operating Conditions, Unless Otherwise Specified.  
X28HC256-70 X28HC256-90 X28HC256-12  
X28HC256-15  
PARAMETER  
Read Cycle Time  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNIT  
ns  
t
RC (Note 5)  
70  
90  
120  
150  
Chip Enable Access Time  
Address Access Time  
t
CE (Note 5)  
70  
70  
35  
90  
90  
40  
120  
120  
50  
150  
150  
50  
ns  
tAA (Note 5)  
tOE  
ns  
Output Enable Access Time  
CE LOW to Active Output  
OE LOW to Active Output  
CE HIGH to High Z Output  
OE HIGH to High Z Output  
Output Hold from Address Change  
ns  
tLZ (Note 4)  
tOLZ (Note 4)  
tHZ (Note 4)  
tOHZ (Note4)  
tOH  
0
0
0
0
0
0
0
0
ns  
ns  
35  
35  
40  
40  
50  
50  
50  
50  
ns  
ns  
0
0
0
0
ns  
FN8108.3  
September 21, 2011  
10  
X28HC256  
Read Cycle  
ADDRESS  
CE  
t
RC  
t
CE  
t
OE  
OE  
V
IH  
WE  
t
t
OHZ  
OLZ  
t
t
t
t
HZ  
LZ  
OH  
AA  
HIGH Z  
DATA VALID  
DATA VALID  
DATA I/O  
NOTES:  
4. tLZ min., tHZ, tOLZ min. and tOHZ are periodically sampled and not 100% tested, tHZ and tOHZ are measured with CL = 5pF, from the point when  
CE, OE return HIGH (whichever occurs first) to the time when the outputs are no longer driven.  
5. For faster 256k products, refer to X28VC256 product line.  
Write Cycle Limits  
TYP  
PARAMETER  
SYMBOL  
WC (Note 7)  
tAS  
MIN  
(Note 6)  
MAX  
UNIT  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
µs  
Write Cycle Time  
Address Setup Time  
Address Hold Time  
Write Setup Time  
Write Hold Time  
t
3
5
0
50  
0
tAH  
tCS  
tCH  
0
CE Pulse Width  
tCW  
50  
0
OE HIGH Setup Time  
OE HIGH Hold Time  
WE Pulse Width  
tOES  
tOEH  
0
tWP  
50  
50  
WE HIGH Recovery (page write only)  
tWPH (Note 8)  
Data Valid  
tDV  
tDS  
tDH  
1
Data Setup  
50  
0
Data Hold  
Delay to Next Write After Polling is True  
Byte Load Cycle  
t
DW (Note 8)  
tBLC  
10  
0.15  
100  
NOTES:  
6. Typical values are for TA = +25°C and nominal supply voltage.  
7. tWC is the minimum cycle time to be allowed from the system perspective unless polling techniques are used. It is the maximum time the device  
requires to automatically complete the internal write operation.  
8. tWPH and tDW are periodically sampled and not 100% tested.  
FN8108.3  
September 21, 2011  
11  
 
 
 
X28HC256  
WE Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AH  
AS  
t
t
CS  
CH  
CE  
OE  
t
t
OEH  
OES  
t
WP  
WE  
DATA IN  
DATA VALID  
HIGH Z  
t
t
DH  
DS  
DATA OUT  
CE Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AH  
AS  
t
CW  
CE  
OE  
t
OES  
t
OEH  
t
t
t
CS  
CH  
WE  
DATA VALID  
DATA IN  
t
DS  
DH  
HIGH Z  
DATA OUT  
FN8108.3  
September 21, 2011  
12  
X28HC256  
Page Write Cycle  
OE  
(NOTE 9)  
CE  
t
t
BLC  
WP  
WE  
t
WPH  
ADDRESS  
(NOTE 10)  
LAST BYTE  
BYTE n + 2  
I/O  
BYTE 0  
BYTE 1  
BYTE 2  
BYTE n  
BYTE n + 1  
t
WC  
*For each successive write within the page write operation, A7 to A15 should be the same or  
writes to an unknown address could occur.  
NOTES:  
9. Between successive byte writes within a page write operation, OE can be strobed LOW: e.g. this can be done with CE and WE HIGH to fetch  
data from another memory device within the system for the next write; or with WE HIGH and CE LOW effectively performing a polling operation.  
10. The timings shown above are unique to page write operations. Individual byte load operations within the page write must conform to either the  
CE or WE controlled write cycle timing.  
DATA Polling Timing Diagram (Note 11)  
ADDRESS  
CE  
A
A
A
n
n
n
WE  
t
t
OEH  
OES  
OE  
t
DW  
D
= X  
D
= X  
D = X  
OUT  
I/O  
7
IN  
OUT  
t
WC  
FN8108.3  
September 21, 2011  
13  
X28HC256  
Toggle Bit Timing Diagram (Note 11)  
CE  
WE  
t
OES  
t
OEH  
OE  
t
DW  
HIGH Z  
I/O  
*
6
*
t
WC  
* I/O6 beginning and ending state will vary, depending upon actual tWC  
.
NOTE:  
11. Polling operations are by definition read cycles and are therefore subject to read cycle timings.  
FN8108.3  
September 21, 2011  
14  
 
X28HC256  
Plastic Leaded Chip Carrier Packages (PLCC)  
0.042 (1.07)  
0.056 (1.42)  
PIN (1)  
IDENTIFIER  
0.004 (0.10)  
C
N32.45x55 (JEDEC MS-016AE ISSUE A)  
0.042 (1.07)  
0.048 (1.22)  
32 LEAD PLASTIC LEADED CHIP CARRIER PACKAGE  
0.050 (1.27) TP  
ND  
0.025 (0.64)  
0.045 (1.14)  
R
INCHES  
MILLIMETERS  
C
L
SYMBOL  
MIN  
MAX  
MIN  
3.18  
MAX  
3.55  
NOTES  
A
A1  
D
0.125  
0.060  
0.485  
0.447  
0.188  
0.585  
0.547  
0.238  
0.140  
0.095  
0.495  
0.453  
0.223  
0.595  
0.553  
0.273  
-
1.53  
2.41  
-
D2/E2  
D2/E2  
12.32  
11.36  
4.78  
12.57  
11.50  
5.66  
-
C
L
D1  
D2  
E
3
E1  
E
4, 5  
NE  
14.86  
13.90  
6.05  
15.11  
14.04  
6.93  
-
VIEW “A”  
E1  
E2  
N
3
4, 5  
0.015 (0.38)  
MIN  
28  
7
28  
7
6
A1  
A
ND  
NE  
7
7
D1  
D
9
9
SEATING  
PLANE  
0.020 (0.51) MAX  
3 PLCS  
-C-  
Rev. 0 7/98  
NOTES:  
0.026 (0.66)  
0.032 (0.81)  
0.050 (1.27)  
MIN  
1. Controlling dimension: INCH. Converted millimeter dimen-  
sions are not necessarily exact.  
2. Dimensions and tolerancing per ANSI Y14.5M-1982.  
3. Dimensions D1 and E1 do not include mold protrusions. Al-  
lowable mold protrusion is 0.010 inch (0.25mm) per side.  
Dimensions D1 and E1 include mold mismatch and are mea-  
sured at the extreme material condition at the body parting  
line.  
0.013 (0.33)  
0.021 (0.53)  
0.025 (0.64)  
MIN  
(0.12)  
0.005  
M
A S - B S D S  
-C-  
4. To be measured at seating plane  
contact point.  
VIEW “A” TYP.  
5. Centerline to be determined where center leads exit plastic  
body.  
6. “N” is the number of terminal positions.  
7. ND denotes the number of leads on the two shorts sides of the  
package, one of which contains pin #1. NE denotes the num-  
ber of leads on the two long sides of the package.  
FN8108.3  
September 21, 2011  
15  
X28HC256  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
A1  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN8108.3  
September 21, 2011  
16  
X28HC256  
Dual-In-Line Plastic Packages (PDIP)  
E28.6 (JEDEC MS-011-AB ISSUE B)  
N
28 LEAD DUAL-IN-LINE PLASTIC PACKAGE  
E1  
INCHES  
MILLIMETERS  
INDEX  
1
2
3
N/2  
AREA  
SYMBOL  
MIN  
MAX  
0.250  
-
MIN  
-
MAX  
6.35  
-
NOTES  
-B-  
-C-  
A
A1  
A2  
B
-
4
-A-  
0.015  
0.125  
0.014  
0.030  
0.008  
1.380  
0.005  
0.600  
0.485  
0.39  
3.18  
0.356  
0.77  
0.204  
4
D
E
0.195  
0.022  
0.070  
0.015  
1.565  
-
4.95  
0.558  
1.77  
0.381  
39.7  
-
-
BASE  
PLANE  
A2  
A
-
SEATING  
PLANE  
B1  
C
8
L
C
L
-
D1  
B1  
eA  
A1  
A
D1  
e
D
35.1  
5
eC  
C
B
D1  
E
0.13  
15.24  
12.32  
5
eB  
0.010 (0.25) M  
C
B S  
0.625  
0.580  
15.87  
14.73  
6
NOTES:  
E1  
e
5
1. Controlling Dimensions: INCH. In case of conflict between English and  
Metric dimensions, the inch dimensions control.  
0.100 BSC  
0.600 BSC  
2.54 BSC  
15.24 BSC  
-
eA  
eB  
L
6
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
-
0.700  
0.200  
-
17.78  
5.08  
7
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication No. 95.  
0.115  
2.93  
4
9
4. Dimensions A, A1 and L are measured with the package seated in  
N
28  
28  
JEDEC seating plane gauge GS-3.  
Rev. 1 12/00  
5. D, D1, and E1 dimensions do not include mold flash or protrusions.  
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).  
eA  
6. E and  
ular to datum  
7. eB and eC are measured at the lead tips with the leads unconstrained.  
C must be zero or greater.  
are measured with the leads constrained to be perpendic-  
-C-  
.
e
8. B1 maximum dimensions do not include dambar protrusions. Dambar  
protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,  
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8108.3  
September 21, 2011  
17  

相关型号:

X28HC256JM-70

5 Volt, Byte Alterable EEPROM
INTERSIL

X28HC256JM-70

5 Volt, Byte Alterable E2PROM
XICOR

X28HC256JM-70

32KX8 EEPROM 5V, 70ns, PQCC32, PLASTIC, LCC-32
RENESAS

X28HC256JM-90

5 Volt, Byte Alterable EEPROM
INTERSIL

X28HC256JM-90

LOW POWER CMOS EEPROM with hi-speed page write capability 256K EEPROM
ROCHESTER

X28HC256JM-90

5 Volt, Byte Alterable E2PROM
XICOR

X28HC256JM-90

32KX8 EEPROM 5V, 90ns, PQCC32, PLASTIC, MS-016AE, LCC-32
RENESAS

X28HC256JM-90T1

EEPROM, 32KX8, 90ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32
XICOR

X28HC256JM-90T2

32KX8 EEPROM 5V, 90ns, PQCC32, PLASTIC, MS-016AE, LCC-32
RENESAS

X28HC256JMB-12

5 Volt, Byte Alterable EEPROM
INTERSIL

X28HC256JMB-12

5 Volt, Byte Alterable E2PROM
XICOR

X28HC256JMB-15

5 Volt, Byte Alterable EEPROM
INTERSIL