UPD78011FGC-XXX-AB8-E3 [RENESAS]

UPD78011FGC-XXX-AB8-E3;
UPD78011FGC-XXX-AB8-E3
型号: UPD78011FGC-XXX-AB8-E3
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

UPD78011FGC-XXX-AB8-E3

光电二极管
文件: 总76页 (文件大小:573K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To our customers,  
Old Company Name in Catalogs and Other Documents  
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology  
Corporation, and Renesas Electronics Corporation took over all the business of both  
companies. Therefore, although the old company name remains in this document, it is a valid  
Renesas Electronics document. We appreciate your understanding.  
Renesas Electronics website: http://www.renesas.com  
April 1st, 2010  
Renesas Electronics Corporation  
Issued by: Renesas Electronics Corporation (http://www.renesas.com)  
Send any inquiries to http://www.renesas.com/inquiry.  
Notice  
1.  
2.  
All information included in this document is current as of the date this document is issued. Such information, however, is  
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please  
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to  
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.  
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights  
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights  
of Renesas Electronics or others.  
3.  
4.  
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of  
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,  
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by  
you or third parties arising from the use of these circuits, software, or information.  
5.  
When exporting the products or technology described in this document, you should comply with the applicable export control  
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas  
Electronics products or the technology described in this document for any purpose relating to military applications or use by  
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and  
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited  
under any applicable domestic or foreign laws or regulations.  
6.  
7.  
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics  
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages  
incurred by you resulting from errors in or omissions from the information included herein.  
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and  
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as  
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular  
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior  
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way  
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an  
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written  
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise  
expressly specified in a Renesas Electronics data sheets or data books, etc.  
“Standard”:  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual  
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.  
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-  
crime systems; safety equipment; and medical equipment not specifically designed for life support.  
“Specific”:  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or  
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare  
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8.  
9.  
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,  
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or  
damages arising out of the use of Renesas Electronics products beyond such specified ranges.  
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have  
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,  
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to  
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a  
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire  
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because  
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system  
manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental  
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable  
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS  
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with  
applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas  
Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this  
document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-  
owned subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
8-BIT SINGLE-CHIP MICROCONTROLLER  
DESCRIPTION  
The µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, and 78018F are the products in the µPD78018F subseries  
within the 78K/0 series.  
Compared with the older µPD78014 subseries, this subseries operates at lower voltage and provides a fuller set of ROM  
and RAM variations.  
A one-time PROM or EPROM product µPD78P018F capable of operating in the same power supply voltage range as  
of the mask ROM product and other development tools are also provided.  
Functions are described in detail in the following User's Manual, which should be read when carring out design  
work.  
µPD78018F, 78018FY Subseries User's Manual: U10659E  
78K/0 Series Users Manual – Instruction  
: U12326E  
FEATURES  
Large on-chip ROM & RAM  
Item  
Program  
Data Memory  
Memory  
(ROM)  
Internal High-  
Internal  
Package  
Buffer RAM  
32 bytes  
Product Name  
Speed RAM Expanded RAM  
µPD78011F  
8K bytes  
512 bytes  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 14 mm)  
64-pin plastic LQFP (12 × 12 mm)  
µPD78012F  
µPD78013F  
µPD78014F  
µPD78015F  
µPD78016F  
µPD78018F  
16K bytes  
24K bytes  
32K bytes  
40K bytes  
48K bytes  
60K bytes  
1024 bytes  
512 bytes  
1024 bytes  
External memory expansion space : 64K bytes  
Minimum instruction execution time can be varied from high-speed (0.4 µs) to ultra-low-speed (122 µs)  
I/O ports: 53 (N-ch open-drain : 4)  
8-bit resolution A/D converter : 8 channels  
Serial interface : 2 channels  
Timer : 5 channels  
Supply voltage : VDD = 1.8 to 5.5 V  
APPLICATION FIELDS  
Cellular phone, pager, VCR, audio, camera, home appliances, etc  
The information in this document is subject to change without notice.  
The mark  
shows major revised points.  
Document No. U10280EJ2V1DS00 (2nd edition)  
Date Published June 1998 N CP(K)  
Printed in Japan  
1994  
©
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
ORDERING INFORMATION  
Part Number  
Package  
µPD78011FCW-×××  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 14 mm)  
64-pin plastic LQFP (12 × 12 mm)  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 14 mm)  
64-pin plastic LQFP (12 × 12 mm)  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 14 mm)  
64-pin plastic LQFP (12 × 12 mm)  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 14 mm)  
64-pin plastic LQFP (12 × 12 mm)  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 14 mm)  
64-pin plastic LQFP (12 × 12 mm)  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 14 mm)  
64-pin plastic LQFP (12 × 12 mm)  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 14 mm)  
64-pin plastic LQFP (12 × 12 mm)  
µPD78011FGC-×××-AB8  
µPD78011FGK-×××-8A8  
µPD78012FCW-×××  
µPD78012FGC-×××-AB8  
µPD78012FGK-×××-8A8  
µPD78013FCW-×××  
µPD78013FGC-×××-AB8  
µPD78013FGK-×××-8A8  
µPD78014FCW-×××  
µPD78014FGC-×××-AB8  
µPD78014FGK-×××-8A8  
µPD78015FCW-×××  
µPD78015FGC-×××-AB8  
µPD78015FGK-×××-8A8  
µPD78016FCW-×××  
µPD78016FGC-×××-AB8  
µPD78016FGK-×××-8A8  
µPD78018FCW-×××  
µPD78018FGC-×××-AB8  
µPD78018FGK-×××-8A8  
Remark ××× indicates a ROM code suffix.  
2
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
78K/0 SERIES DEVELOPMENT  
The following shows the products organized according to usage. The names in the parallelograms are subseries  
names.  
Products in mass production  
Products under development  
Y subseries products are compatible with I2C bus.  
Control  
EMI-noise reduced version of µPD78078  
PD78075B  
µPD78075BY  
µPD78078Y  
µPD78070AY  
µ
µ
100-pin  
100-pin  
100-pin  
100-pin  
80-pin  
A timer was added to the µPD78054 and external interface was enhanced  
PD78078  
µPD78070A  
µ
ROM-less version of the PD78078  
Serial I/O of the µPD78078Y was enhanced and the function is limited.  
Serial I/O of the µPD78054 was enhanced and EMI-noise was reduced.  
PD780018AY  
µ
PD780058YNote  
PD780058  
µ
µ
EMI-noise reduced version of the PD78054  
µ
µPD78058F  
PD78054  
µPD78058FY  
80-pin  
µ
UART and D/A converter were enhanced to the PD78014 and I/O was enhanced  
80-pin  
PD78054Y  
PD780034Y  
PD780024Y  
µ
µ
µ
µ
PD780034  
µ
A/D converter of the µPD780024 was enhanced  
64-pin  
PD780024  
64-pin  
64-pin  
µ
µ
Serial I/O of the PD78018F was added and EMI-noise was reduced.  
µ
EMI-noise reduced version of µPD78018F  
PD78014H  
PD78018F  
PD78014  
Low-voltage (1.8 V) operation version of the PD78014, with larger selection of ROM and RAM capacities  
µ
64-pin  
µ
µ
PD78018FY  
PD78014Y  
µ
µ
µ
µ
µ
An A/D converter and 16-bit timer were added to the PD78002  
µ
64-pin  
An A/D converter was added to the PD78002  
µ
PD780001  
64-pin  
µPD78002Y  
Basic subseries for control  
PD78002  
PD78083  
64-pin  
On-chip UART, capable of operating at low voltage (1.8 V)  
42/44-pin  
Inverter control  
64-pin  
64-pin  
µ
A/D converter of the PD780924 was enhanced  
PD780964  
µ
On-chip inverter control circuit and UART. EMI-noise was reduced.  
PD780924  
µ
FIPTM drive  
The I/O and FIP C/D of the µPD78044F were enhanced, Display output total: 53  
The I/O and FIP C/D of the µPD78044H were enhanced, Display output total: 48  
100-pin  
100-pin  
80-pin  
PD780208  
PD780228  
PD78044H  
µ
µ
µ
78K/0  
Series  
µ
An N-ch open drain I/O was added to the PD78044F, Display output total: 34  
80-pin  
PD78044F  
µ
Basic subseries for driving FIP, Display output total: 34  
LCD drive  
100-pin  
100-pin  
100-pin  
PD780308  
PD78064B  
µ
PD780308Y  
PD78064Y  
µ
µ
The SIO of the µPD78064 was enhanced, and ROM, RAM capacity increased  
µ
EMI-noise reduced version of the PD78064  
µ
µ
PD78064  
Basic subseries for driving LCDs, On-chip UART  
IEBusTM supported  
µPD78098B  
80-pin  
80-pin  
EMI-noise reduced version of the µPD78098  
An IEBus controller was added to the µPD78054  
µPD78098  
Meter control  
80-pin  
64-pin  
µPD780973  
On-chip controller/driver for automobile meters  
LV  
µPD78P0914  
On-chip PWM output, LV digital code decoder, and Hsync counter  
Note Under planning  
3
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
The following lists the main functional differences between subseries products.  
Function  
Timer  
ROM  
8-bit 10-bit 8-bit  
A/D A/D D/A  
VDD MIN.  
Value  
External  
Serial Interface  
I/O  
88  
Capacity  
Expansion  
Subseries Name  
8-bit 16-bit Watch WDT  
Control µPD78075B 32K-40K  
4ch 1ch 1ch 1ch 8ch  
2ch 3ch (UART: 1ch)  
1.8 V  
µPD78078  
48K-60K  
µPD78070A  
61  
2.7 V  
1.8 V  
2.7 V  
2.0 V  
1.8 V  
µPD780058 24K-60K  
µPD78058F 48K-60K  
2ch  
2ch 3ch (time division UART: 1ch) 68  
3ch (UART: 1ch)  
69  
51  
53  
µPD78054  
16K-60K  
µPD780034 8K-32K  
µPD780024  
8ch  
3ch (UART: 1ch,  
time division 3-wire: 1ch)  
8ch  
µPD78014H  
2ch  
1.8 V  
2.7 V  
µPD78018F 8K-60K  
µPD78014  
8K-32K  
µPD780001 8K  
1ch  
1ch  
39  
53  
33  
47  
µPD78002  
µPD78083  
8K-16K  
8ch  
1ch (UART: 1ch)  
2ch (UART: 2ch)  
1.8 V  
2.7 V  
Inverter µPD780964 8K-32K  
3ch Note  
1ch  
8ch  
control  
µPD780924  
8ch  
FIP  
µPD780208 32K-60K  
µPD780228 48K-60K  
µPD78044H 32K-48K  
µPD78044F 16K-40K  
µPD780308 48K-60K  
µPD78064B 32K  
2ch 1ch 1ch 1ch 8ch  
3ch  
2ch  
1ch  
74  
72  
68  
2.7 V  
4.5 V  
2.7 V  
drive  
2ch 1ch 1ch  
2ch  
LCD  
drive  
2ch 1ch 1ch 1ch 8ch  
3ch (time division UART: 1ch) 57  
2ch (UART: 1ch)  
2.0 V  
2.7 V  
µPD78064  
µPD78098  
16K-32K  
40K-60K  
IEBus  
2ch 1ch 1ch 1ch 8ch  
3ch 1ch 1ch 1ch 5ch  
2ch 3ch (UART: 1ch)  
69  
supported  
µPD78098B 32K-60K  
Meter control µPD780973 24K-32K  
2ch (UART: 1ch)  
2ch  
56  
54  
4.5 V  
4.5 V  
LV  
µPD78P0914 32K  
6ch  
1ch 8ch  
Note 10-bit timer: 1 channel  
4
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
OVERVIEW OF FUNCTION (1/2)  
Item  
µPD78011F µPD78012F µPD78013F µPD78014F µPD78015F µPD78016F µPD78018F  
Product Name  
ROM  
8K bytes  
16K bytes  
512 bytes  
24K bytes  
32K bytes  
40K bytes  
1024 bytes  
48K bytes  
60K bytes  
High-speed  
RAM  
Internal  
memory  
Expanded  
RAM  
512 bytes  
1024 bytes  
Buffer RAM  
32 bytes  
Memory space  
64K bytes  
General-purpose registers  
Minimum instruction execution time  
8 bits × 32 registers (8 bits × 8 registers × 4 banks)  
On-chip minimum instruction execution time cycle modification function  
When main system  
clock selected  
0.4 µs/0.8 µs/1.6 µs/3.2 µs/6.4 µs (at 10.0 MHz operation)  
When subsystem  
clock selected  
122 µs (at 32.768 kHz operation)  
Instruction set  
• 16-bit operation  
• Multiplication/division (8 bits × 8 bits,16 bits ÷ 8 bits)  
• Bit manipulation (set, reset, test, boolean operation)  
• BCD correction, etc.  
I/O ports  
Total  
: 53  
: 02  
: 47  
• CMOS input  
• CMOS I/O  
• N-channel open-drain I/O  
(15 V withstand voltage)  
: 04  
A/D converter  
Serial interface  
Timer  
• 8-bit resolution × 8 channels  
• Operable over a wide power supply voltage range: AVDD = 1.8 to 5.5 V  
• 3-wire serial I/O/SBI/2-wire serial I/O mode selectable: 1 channel  
• 3-wire mode (on-chip max. 32 bytes automatic data transmit/receive function): 1 channel  
• 16-bit timer/event counter : 1 channel  
• 8-bit timer/event counter  
• Watch timer  
: 2 channels  
: 1 channel  
: 1 channel  
• Watchdog timer  
Timer output  
Clock output  
3 (14-bit PWM output × 1)  
39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz (at main system clock: 10.0 MHz  
operation), 32.768 kHz (at subsystem clock: 32.768 kHz operation)  
2.4 kHz, 4.9 kHz, 9.8 kHz (at main system clock: 10.0 MHz operation)  
Buzzer output  
Vectored  
interrupt  
sources  
Maskable  
Internal : 8  
External : 4  
Internal : 1  
Non-maskable  
Software  
1
5
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
OVERVIEW OF FUNCTION (2/2)  
Item  
µPD78011F µPD78012F µPD78013F µPD78014F µPD78015F µPD78016F µPD78018F  
Product Name  
Test input  
Internal : 1  
External : 1  
Supply voltage  
VDD = 1.8 to 5.5 V  
Operating ambient  
temperature  
TA = –40 to +85°C  
• 64-pin plastic shrink DIP (750 mil)  
• 64-pin plastic QFP (14 × 14 mm)  
• 64-pin plastic LQFP (12 × 12 mm)  
Package  
6
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
TABLE OF CONTENTS  
1. PIN CONFIGURATION (TOP VIEW) ....................................................................................................... 8  
2. BLOCK DIAGRAM................................................................................................................................... 11  
3. PIN FUNCTIONS...................................................................................................................................... 12  
3.1 PORT PINS ........................................................................................................................................................ 12  
3.2 PINS OTHER THAN PORT PINS ...................................................................................................................... 13  
3.3 PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS ............................................. 15  
4. MEMORY SPACE .................................................................................................................................... 17  
5. PERIPHEL HARDWARE FUNCTION FEATURES ................................................................................ 19  
5.1 PORTS ............................................................................................................................................................... 19  
5.2 CLOCK GENERATOR....................................................................................................................................... 20  
5.3 TIMER/EVENT COUNTER ................................................................................................................................ 21  
5.4 CLOCK OUTPUT CONTROL CIRCUIT ............................................................................................................ 23  
5.5 BUZZER OUTPUT CONTROL CIRCUIT........................................................................................................... 23  
5.6 A/D CONVERTER.............................................................................................................................................. 24  
5.7 SERIAL INTERFACES ...................................................................................................................................... 24  
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS .............................................................................. 26  
6.1 INTERRUPT FUNCTIONS ................................................................................................................................. 26  
6.2 TEST FUNCTIONS ............................................................................................................................................ 29  
7. EXTERNAL DEVICE EXPANSION FUNCTIONS.................................................................................... 30  
8. STANDBY FUNCTIONS .......................................................................................................................... 30  
9. RESET FUNCTIONS................................................................................................................................ 30  
10. INSTRUCTION SET ................................................................................................................................. 31  
11. ELECTRICAL SPECIFICATIONS............................................................................................................ 34  
12. CHARACTERISTIC CURVE (REFERENCE VALUES) ........................................................................... 61  
13. PACKAGE DRAWINGS........................................................................................................................... 62  
14. RECOMMENDED SOLDERING CONDITIONS....................................................................................... 65  
APPENDIX A. DEVELOPMENT TOOLS ...................................................................................................... 68  
APPENDIX B. RELATED DOCUMENTS ...................................................................................................... 70  
7
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
1. PIN CONFIGURATION (Top View)  
64-Pin Plastic Shrink DIP (750 mil)  
µPD78011FCW-×××, 78012FCW-×××, 78013FCW-×××,  
µPD78014FCW-×××, 78015FCW-×××, 78016FCW-×××,  
µPD78018FCW-×××  
P20/SI1  
P21/SO1  
P22/SCK1  
P23/STB  
P24/BUSY  
P25/SI0/SB0  
P26/SO0/SB1  
P27/SCK0  
P30/TO0  
P31/TO1  
P32/TO2  
P33/TI1  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AVREF  
2
AVDD  
3
P17/ANI7  
P16/ANI6  
P15/ANI5  
P14/ANI4  
P13/ANI3  
P12/ANI2  
P11/ANI1  
P10/ANI0  
AVSS  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P04/XT1  
XT2  
P34/TI2  
P35/PCL  
P36/BUZ  
P37  
IC  
X1  
X2  
V
SS  
V
DD  
P40/AD0  
P41/AD1  
P42/AD2  
P43/AD3  
P44/AD4  
P45/AD5  
P46/AD6  
P47/AD7  
P50/A8  
P03/INTP3  
P02/INTP2  
P01/INTP1  
P00/INTP0/TI0  
RESET  
P67/ASTB  
P66/WAIT  
P65/WR  
P64/RD  
P63  
P51/A9  
P52/A10  
P53/A11  
P54/A12  
P55/A13  
P62  
P61  
P60  
P57/A15  
P56/A14  
V
SS  
Cautions 1. Always connect the IC (Internally Connected) pin to VSS directly.  
2. Always connect the AVDD pin to VDD.  
3. Always connect the AVSS pin to VSS.  
8
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
64-Pin Plastic QFP (14 × 14 mm)  
µPD78011FGC-×××-AB8, 78012FGC-×××-AB8, 78013FGC-×××-AB8,  
µPD78014FGC-×××-AB8, 78015FGC-×××-AB8, 78016FGC-×××-AB8,  
µPD78018FGC-×××-AB8  
64-Pin Plastic LQFP (12 × 12 mm)  
µPD78011FGK-×××-8A8, 78012FGK-×××-8A8, 78013FGK-×××-8A8,  
µPD78014FGK-×××-8A8, 78015FGK-×××-8A8, 78016FGK-×××-8A8,  
µPD78018FGK-×××-8A8  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P30/TO0  
P31/TO1  
P32/TO2  
P33/TI1  
P34/TI2  
P35/PCL  
P36/BUZ  
P37  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P11/ANI1  
P10/ANI0  
AVSS  
2
3
4
P04/XT1  
XT2  
5
6
IC  
7
X1  
8
X2  
V
SS  
9
VDD  
P40/AD0  
P41/AD1  
P42/AD2  
P43/AD3  
P44/AD4  
P45/AD5  
P46/AD6  
10  
11  
12  
13  
14  
15  
16  
P03/INTP3  
P02/INTP2  
P01/INTP1  
P00/INTP0/TI0  
RESET  
P67/ASTB  
P66/WAIT  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Cautions 1. Always connect the IC (Internally Connected) pin to VSS directly.  
2. Always connect the AVDD pin to VDD.  
3. Always connect the AVSS pin to VSS.  
9
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
A8 to A15  
: Address Bus  
PCL  
: Programmable Clock  
: Read Strobe  
: Reset  
AD0 to AD7  
: Address/Data Bus  
RD  
ANI0 to ANI7 : Analog Input  
RESET  
SB0, SB1  
SCK0, SCK1  
SI0, SI1  
SO0, SO1  
STB  
ASTB  
AVDD  
AVREF  
AVSS  
BUSY  
BUZ  
: Address Strobe  
: Analog Power Supply  
: Analog Reference Voltage  
: Analog Ground  
: Busy  
: Serial Bus  
: Serial Clock  
: Serial Input  
: Serial Output  
: Strobe  
: Buzzer Clock  
TI0 to TI2  
TO0 to TO2  
VDD  
: Timer Input  
IC  
: Internally Connected  
: Timer Output  
: Power Supply  
: Ground  
INTP0 to INTP3 : Interrupt from Peripherals  
P00 to P04  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P47  
P50 to P57  
P60 to P67  
: Port0  
: Port1  
: Port2  
: Port3  
: Port4  
: Port5  
: Port6  
VSS  
WAIT  
: Wait  
WR  
: Write Strobe  
: Crystal (Main System Clock)  
: Crystal (Subsystem Clock)  
X1, X2  
XT1, XT2  
10  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
2. BLOCK DIAGRAM  
TO0/P30  
P00  
16-bit TIMER/  
EVENT COUNTER  
PORT0  
TI0/INTP0/P00  
P01 to P03  
P04  
TO1/P31  
TI1/P33  
8-bit TIMER/  
EVENT COUNTER 1  
PORT1  
PORT2  
PORT3  
PORT4  
PORT5  
PORT6  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P47  
P50 to P57  
P60 to P67  
TO2/P32  
TI2/P34  
8-bit TIMER/  
EVENT COUNTER 2  
WATCHDOG TIMER  
WATCH TIMER  
78K/0  
CPU CORE  
ROM  
SI0/SB0/P25  
SO0/SB1/P26  
SCK0/P27  
SERIAL  
INTERFACE 0  
SI1/P20  
SO1/P21  
SCK1/P22  
STB/P23  
AD0/P40 to  
AD7/P47  
SERIAL  
INTERFACE 1  
A8/P50 to  
A15/P57  
BUSY/P24  
EXTERNAL  
ACCESS  
RAM  
RD/P64  
ANI0/P10 to  
ANI7/P17  
WR/P65  
AVDD  
WAIT/P66  
ASTB/P67  
A/D CONVERTER  
AVSS  
AVREF  
RESET  
X1  
INTP0/P00 to  
INTP3/P03  
INTERRUPT  
CONTROL  
SYSTEM  
CONTROL  
X2  
XT1  
XT2  
BUZZER OUTPUT  
BUZ/P36  
PCL/P35  
CLOCK OUTPUT  
CONTROL  
V
DD  
V
SS  
IC  
(VPP  
)
Remarks 1. Internal ROM & RAM capacity varies depending on the product.  
2. ( ) : µPD78P018F  
11  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
3. PIN FUNCTIONS  
3.1 PORT PINS (1/2)  
Dual-  
Pin Name  
P00  
I/O  
Function  
On Reset  
Function Pin  
INTP0/TI0  
INTP1  
Port 0  
Input  
Input only  
Input  
Input  
5-bit I/O port  
Input/output can be specified bit-wise.  
When used as an input port, on-chip pull-up  
resistor can be used in software.  
Input/  
P01  
P02  
P03  
P04  
output  
INTP2  
INTP3  
Note 1  
Input  
Input only  
XT1  
Input  
Input  
Port 1  
Input/  
P10 to P17  
ANI0 to ANI7  
8-bit input/output port.  
output  
Input/output can be specified bit-wise.  
When used as an input port, on-chip pull-up resistor can be used  
Note 2  
in software.  
Input  
Input  
Input  
Input/  
P20  
Port 2  
SI1  
output  
8-bit input/output port.  
P21  
SO1  
Input/output can be specified bit-wise.  
When used as an input port, on-chip pull-up resistor can be used  
in software.  
P22  
SCK1  
STB  
P23  
P24  
BUSY  
SI0/SB0  
SO0/SB1  
SCK0  
TO0  
P25  
P26  
P27  
Input/  
Port 3  
P30  
output  
8-bit input/output port.  
P31  
TO1  
Input/output can be specified in 1-bit units.  
When used as an input port, on-chip pull-up resistor can be used  
in software.  
P32  
TO2  
P33  
TI1  
P34  
TI2  
P35  
PCL  
P36  
BUZ  
P37  
Input/  
P40 to P47  
Port 4  
AD0 to AD7  
output  
8-bit input/output port.  
Input/output can be specified in 8-bit unit.  
When used as an input port, on-chip pull-up resistor can be used  
in software.  
Test input flag (KRIF) is set to 1 by falling edge detection.  
Notes 1. When using the P04/XT1 pins as an input port, set 1 to bit 6 (FRC) of the processor clock control register  
(PCC). Do not use the on-chip feedback register of the subsystem clock oscillator.  
2. When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog input, on-chip pull-up resistor is  
automatically unused.  
12  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
3.1 PORT PINS (2/2)  
Dual-  
Pin Name  
I/O  
Function  
On Reset  
Input  
Function Pin  
Port 5  
P50 to P57  
Input/  
A8 to A15  
8-bit input/output port.  
LED can be driven directly.  
output  
Input/output can be specified bit-wise.  
When used as an input port, on-chip pull-up resistor can be used in  
software.  
P60  
P61  
P62  
P63  
P64  
P65  
P66  
P67  
Input  
Input/  
Port 6  
N-ch open-drain input/output port.  
output  
8-bit input/output port.  
On-chip pull-up resistor can be  
Input/output can be specified  
specified by mask option.  
bit-wise.  
LED can be driven directly.  
RD  
When used as an input port, on-chip  
pull-up resistor can be used in soft-  
ware.  
WR  
WAIT  
ASTB  
3.2 PINS OTHER THAN PORT PINS (1/2)  
Dual-  
Pin Name  
INTP0  
I/O  
Function  
On Reset  
Input  
Function Pin  
P00/TI0  
P01  
Input  
External interrupt request input by which the effective edge (rising  
edge, falling edge, or both rising edge and falling edge) can be  
specified.  
INTP1  
INTP2  
INTP3  
SI0  
P02  
P03  
Falling edge detection external interrupt request input.  
Serial interface serial data input.  
Input  
Input  
Input  
Input  
Input  
P25/SB0  
P20  
SI1  
SO0  
Output  
Serial interface serial data output.  
P26/SB1  
P21  
SO1  
SB0  
Input  
Serial interface serial data input/output.  
Serial interface serial clock input/output.  
P25/SI0  
P26/SO0  
P27  
/output  
SB1  
Input  
SCK0  
SCK1  
STB  
/output  
P22  
Input  
Input  
Output  
Input  
Serial interface automatic transmit/receive strobe output.  
Serial interface automatic transmit/receive busy input.  
P23  
BUSY  
P24  
13  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
3.2 PINS OTHER THAN PORT PINS (2/2)  
Dual-  
Function Pin  
On Reset  
Input  
Pin Name  
TI0  
I/O  
Function  
External count clock input to 16-bit timer (TM0).  
External count clock input to 8-bit timer (TM1).  
External count clock input to 8-bit timer (TM2).  
16-bit timer (TM0) output (shared as 14-bit PWM output).  
8-bit timer (TM1) output.  
Input  
P00/INTP0  
P33  
TI1  
TI2  
P34  
Output  
Input  
TO0  
P30  
TO1  
P31  
8-bit timer (TM2) output.  
TO2  
P32  
Input  
Input  
PCL  
Clock output (for main system clock, subsystem clock trimming).  
Buzzer output.  
Output  
Output  
P35  
BUZ  
P36  
Input  
AD0 to AD7  
Low-order address/data bus at external memory expansion.  
P40 to P47  
Input  
/output  
Input  
Input  
A8 to A15  
RD  
High-order address bus at external memory expansion.  
External memory read operation strobe signal output.  
External memory write operation strobe signal output.  
Wait insertion at external memory access.  
Output  
Output  
P50 to P57  
P64  
WR  
P65  
Input  
Input  
WAIT  
ASTB  
Input  
P66  
Strobe output which latches the address information output at port 4 and  
port 5 to access external memory.  
Output  
P67  
ANI0 to ANI7  
AVREF  
AVDD  
AVSS  
RESET  
X1  
A/D converter analog input.  
Input  
P10 to P17  
Input  
Input  
A/D converter reference voltage input.  
A/D converter analog power supply. Connected to VDD.  
A/D converter ground potential. Connected to VSS.  
System reset input.  
P04  
Input  
Input  
Main system clock oscillation crystal connection.  
X2  
XT1  
Subsystem clock oscillation crystal connection.  
Input  
Input  
XT2  
VDD  
Positive power supply.  
VSS  
Ground potential.  
IC  
Internal connection. Connected to VSS directly.  
14  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
3.3 PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS  
The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1.  
For the input/output circuit configuration of each type, refer to Figure 3-1.  
Table 3-1. Input/Output Circuit Type of Each Pin  
Input/output  
Circuit Type  
Pin Name  
I/O  
Recommended Connection when Not Used  
P00/INTP0/TI0  
P01/INTP1  
P02/INTP2  
P03/INTP3  
P04/XT1  
2
Input  
Connected to VSS .  
8-A  
Input/output  
Individually connected to VSS via resistor.  
16  
Input  
Connected to VDD or VSS.  
P10/ANI0 to P17/ANI7  
P20/SI1  
11  
Input/output  
Individually connected to VDD or VSS via resisitor.  
8-A  
5-A  
8-A  
5-A  
8-A  
10-A  
P21/SO1  
P22/SCK1  
P23/STB  
P24/BUSY  
P25/SI0/SB0  
P26/SO0/SB1  
P27/SCK0  
P30/TO0  
5-A  
P31/TO1  
P32/TO2  
P33/TI1  
8-A  
5-A  
P34/TI2  
P35/PCL  
P36/BUZ  
P37  
P40/AD0 to P47/AD7  
P50/A8 to P57/A15  
P60 to P63  
P64/RD  
5-E  
5-A  
13-B  
5-A  
Individually connected to VDD via resistor.  
Individually connected to VDD or VSS via resistor.  
Individually connected to VDD via resistor.  
Individually connected to VDD or VSS via resistor.  
P65/WR  
P66/WAIT  
P67/ASTB  
RESET  
2
Input  
XT2  
16  
Leave open.  
AVREF  
Connected to VSS .  
Connected to VDD .  
Connected to VSS .  
Connected to VSS directly.  
AVDD  
AVSS  
IC  
15  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Figure 3-1. Pin Input/Output Circuits  
VDD  
Type 2  
Type 10-A  
pull-up  
P-ch  
enable  
VDD  
P-ch  
IN  
data  
IN / OUT  
IN / OUT  
IN / OUT  
open drain  
N-ch  
output disable  
Schmitt-Triggered Input with Hysteresis Characteristic  
Type 5-A  
Type 11  
VDD  
VDD  
pull-up  
enable  
pull-up  
enable  
P-ch  
P-ch  
VDD  
data  
VDD  
P-ch  
P-ch  
data  
N-ch  
output  
disable  
Comparator  
IN / OUT  
P-ch  
N-ch  
output  
disable  
N-ch  
+
REF (Threshold Voltage)  
V
input  
enable  
input  
enable  
Type 5-E  
Type 13-B  
VDD  
VDD  
Mask  
Option  
pull-up  
enable  
P-ch  
VDD  
P-ch  
data  
N-ch  
output disable  
data  
VDD  
IN / OUT  
output  
disable  
N-ch  
RD  
P-ch  
Middle-High Voltage Input Buffer  
VDD  
Type 8-A  
Type 16  
feedback  
cut-off  
pull-up  
enable  
P-ch  
VDD  
P-ch  
P-ch  
data  
IN / OUT  
output  
disable  
N-ch  
XT1  
XT2  
16  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
4. MEMORY SPACE  
The memory maps of the µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, and 78018F are shown in Figure  
4-1 and 4-2.  
Figure 4-1. Memory Map (µPD78011F, 78012F, 78013F, 78014F)  
FFFFH  
Special Function Registers  
(SFR) 256 × 8 Bits  
FF00H  
FEFFH  
General-Purpose Registers  
32 × 8 Bits  
FEE0H  
FEDFH  
Internal High-Speed RAMNote  
mmmmH  
nnnnH  
mmmmH – 1  
Use Prohibited  
Program Area  
CALLF Entry Area  
Program Area  
FAE0H  
FADFH  
Data  
1000H  
0FFFH  
Buffer RAM 32 × 8 Bits  
Memory  
Space  
FAC0H  
FABFH  
Use Prohibited  
0800H  
07FFH  
FA80H  
FA7FH  
Program  
Memory  
Space  
0080H  
007FH  
External Memory  
nnnnH + 1  
nnnnH  
CALLT Table Area  
Vector Table Area  
0040H  
003FH  
Internal ROMNote  
0000H  
0000H  
Note Intermal ROM and internal high-speed RAM capacities vary depending on the product (refer to the  
table below).  
Internal High-Speed RAM  
Intenal ROM End Address  
Start Address  
mmmmH  
Product Name  
nnnnH  
FD00H  
µPD78011F  
µPD78012F  
µPD78013F  
µPD78014F  
1FFFH  
3FFFH  
5FFFH  
7FFFH  
FB00H  
17  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Figure 4-2. Memory Map (µPD78015F, 78016F, 78018F)  
FFFFH  
Special Function Registers  
(SFR) 256 × 8 Bits  
FF00H  
FEFFH  
General-Purpose Registers  
32 × 8 Bits  
FEE0H  
FEDFH  
Internal High-Speed RAMNote  
mmmmH  
mmmmH–1  
Use Prohibited  
FAE0H  
FADFH  
Data  
Memory  
Space  
Buffer RAM 32 × 8 Bits  
FAC0H  
FABFH  
nnnnH  
Program Area  
Use Prohibited  
FA80H  
FA7FH  
1000H  
0FFFH  
Use Prohibited  
CALLF Entry Area  
F800H  
F7FFH  
0800H  
Program  
07FFH  
Internal Expanded RAMNote  
Memory  
Space  
Program Area  
kkkkH  
kkkkH – 1  
0080H  
007FH  
External Memory  
Internal ROMNote  
nnnnH + 1  
nnnnH  
CALLT Table Area  
Vector Table Area  
0040H  
003FH  
0000H  
0000H  
Note Intermal ROM, internal high-speed RAM, and internal expanded RAM capacities vary depending on the  
product (refer to the table below).  
Internal High-Speed RAM  
Start Address  
Internal Expanded RAM  
Start Address  
kkkkH  
Intenal ROM End Address  
nnnnH  
Product Name  
mmmmH  
FB00H  
µPD78015F  
µPD78016F  
µPD78018F  
9FFFH  
BFFFH  
EFFFH  
F600H  
F400H  
18  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
5. PERIPHERAL HARDWARE FUNCTION FEATURES  
5.1 PORTS  
The I/O port has the following three types  
• CMOS input (P00, P04)  
:
2
• CMOS input/output (P01 to P03, port 1 to port 5, P64 to P67)  
• N-ch open-drain input/output(15V withstand voltage) (P60 to P63)  
: 47  
:
4
Total  
: 53  
Table 5-1. Functions of Ports  
Port Name  
Port 0  
Pin Name  
Function  
P00, P04  
Dedicated Input port  
P01 to P03  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used in software.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used in software.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used in software.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used in software.  
Input/output ports. Input/output can be specified in 8-bit units.  
When used as an input port, pull-up resistor can be used in software.  
Test input flag (KRIF) is set to 1 by falling edge detection.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used in software.  
LED can be driven directly.  
Port 1  
Port 2  
Port 3  
Port 4  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P47  
Port 5  
Port 6  
P50 to P57  
P60 to P63  
P64 to P67  
N-ch open-drain input/output port. Input/output can be specified bit-wise.  
On-chip pull-up resistor can be specified by mask option.  
LED can be driven directly.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used in software.  
19  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
5.2 CLOCK GENERATOR  
There are two types of clock generator: main system clock and subsystem clock.  
The minimum instruction exection time can be changed.  
• 0.4µs/0.8µs/1.6µs/3.2µs/6.4µs (Main system clock: at 10.0 MHz operation)  
• 122µs (Subsystem clock: at 32.768 KHz operation)  
Figure 5-1. Clock Generator Block Diagram  
Watch Timer  
Clock Output  
Function  
XT1/P04  
Subsystem  
Clock  
Oscillator  
fXT  
XT2  
Prescaler  
Main  
X1  
X2  
fX  
Clock to  
Peripheral  
Hardware  
System  
Clock  
Prescaler  
Oscillator  
fX  
fX  
fX  
fX  
2
22  
23  
24  
STOP  
Wait  
Control  
Circuit  
Standby  
Control  
Circuit  
CPU Clock  
(fCPU)  
Selector  
INTP0  
Sampling Clock  
20  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
5.3 TIMER/EVENT COUNTER  
The following five channels are incorporated in the timer/event counter.  
• 16-bit timer/event counter  
• 8-bit timer/event counter  
• Watch timer  
: 1 channel  
: 2 channels  
: 1 channel  
: 1 channel  
• Watchdog timer  
Table 5-2. Operation of Timer/Event Counter  
8-bit Timer/Event  
Counter  
16-bit Timer/Event  
Counter  
Watch Timer  
Watchdog Timer  
Operation  
mode  
Interval timer  
1 channel  
1 channel  
1 output  
1 output  
1 input  
1 output  
2
2 channels  
1 channel  
1 channel  
Externanal event counter  
Timer output  
2 channels  
1
Functions  
2 outputs  
PWM output  
Pulse width mesurement  
Sqare wave output  
Interrupt request  
Test input  
2 outputs  
1
2
1 input  
Figure 5-2. 16-bit Timer/Enent Counter Block Diagram  
Internal Bus  
16-Bit Compare  
Register (CR00)  
INTTM0  
PWM  
Pulse  
Output  
Control  
Circuit  
Output  
Control  
Circuit  
Match  
TO0/P30  
fX/2  
fX/22  
fX/23  
16-Bit Timer  
Register (TM0)  
Selector  
Selector  
Edge  
Detector  
Clear  
TI0/INTP0/P00  
INTP0  
16-Bit Capture  
Register (CR01)  
Internal Bus  
21  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Figure 5-3. 8-bit Timer/Enent Counter Block Diagram  
Internal Bus  
INTIM1  
8-Bit Compare  
Register (CR10)  
8-Bit Compare  
Register (CR20)  
Output  
TO2/P32  
INTTM2  
Selector  
Match  
Control  
Circuit  
fX/22 to fX/210  
8-Bit Timer  
Register 1 (TM1)  
Selector  
Selector  
fX/212  
8-Bit Timer  
Register 2 (TM2)  
Selector  
TI1/P33  
Clear  
Clear  
fX/22 to fX/210  
Selector  
fX/212  
TI2/P34  
Output  
Control  
Circuit  
TO1/P31  
Internal Bus  
Figure 5-4. Watch Timer Block Diagram  
fW  
214  
Selector  
5-Bit Counter  
fX/28  
fXT  
fW  
Selector  
INTWT  
Prescaler  
Selector  
fW  
213  
fW  
24  
fW  
25  
fW  
fW  
27  
fW  
28  
fW  
29  
26  
Selector  
INTTM3  
22  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Figure 5-5. Watchdog Timer Block Diagram  
fX  
24  
Prescaler  
fX  
26  
fX  
27  
fX  
28  
fX  
29  
fX  
210  
fX  
212  
fX  
25  
INTWDT  
Maskable  
Interrupt Request  
Control  
Circuit  
Selector  
RESET  
8-Bit Counter  
INTWDT  
Non-Maskable  
Interrupt Request  
5.4 CLOCK OUTPUT CONTROL CIRCUIT  
The clock with the following frequencies can be output for clock output.  
• 39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz (Main system clock: at 10.0 MHz operation)  
• 32.768 kHz (Subsystem clock: at 32.768 kHz operation)  
Figure 5-6. Clock Output Control Block Diagram  
fX/23  
fX/24  
fX/25  
Synchronization  
Circuit  
Output Control  
Circuit  
fX/26  
PCL/P35  
Selector  
fX/27  
fX/28  
fXT  
5.5 BUZZER OUTPUT CONTROL CIRCUIT  
The clock with the following frequencies can be output for buzzer output.  
• 2.4 kHz/4.9 kHz/9.8 kHz (Main system clock: at 10.0 MHz operation)  
Figure 5-7. Buzzer Output Control Block Diagram  
fX/210  
fX/211  
fX/212  
Output Control  
Circuit  
BUZ/P36  
Selector  
23  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
5.6 A/D CONVERTER  
The A/D converter has on-chip eight 8-bit resolution channels.  
There are the following two method to start A/D conversion.  
• Hardware starting  
• Software starting  
Figure 5-8. A/D Converter Block Diagram  
Series Resistor String  
AVDD  
Sample & Hold Circuit  
ANI0/P10  
ANI1/P11  
ANI2/P12  
ANI3/P13  
ANI4/P14  
ANI5/P15  
ANI6/P16  
ANI7/P17  
AVREF  
Voltage Comparator  
Tap  
Selector  
Selector  
Succesive Approxmation  
Register (SAR)  
AVSS  
Falling  
Edge  
Detector  
Control  
Circuit  
INTAD  
INTP3  
INTP3/P03  
A/D Conversion  
Result Register (ADCR)  
Internal Bus  
5.7 SERIAL INTERFACES  
There are two on-chip clocked serial interfaces as follows.  
• Serial Interface channel 0  
• Serial Interface channel 1  
Table 5-3. Type and Function of Serial Interface  
Function  
3-wire serial I/O mode  
Serial Interface Channel 0  
Serial Interface Channel 1  
O (MSB/LSB-first switchable)  
O (MSB/LSB-first switchable)  
3-wire serial I/O mode with automatic data transmit/  
receive function  
O (MSB/LSB-first switchable)  
SBI (Serial Bus Interface) mode  
2-wire serial I/O mode  
O (MSB-first)  
O (MSB-first)  
24  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Figure 5-9. Serial Interface Channel 0 Block Diagram  
Internal Bus  
SI0/SB0/P25  
SO0/SB1/P26  
Output  
Latch  
Serial I/O Shift  
Register 0 (SIO0)  
Selector  
Selector  
Busy/Acknowlede  
Output Circuit  
Bus Release/Command/  
Acknowledge Detection  
Circuit  
Interrupt  
Request  
Signal  
INTCSI0  
Serial Clock Counter  
SCK0/P27  
Generator  
fx/22 to fx/29  
TO2  
Serial Clock  
Control Circuit  
Selector  
Figure 5-10. Serial Interface Channel 1 Block Diagram  
Internal Bus  
Automatic Data Transmit/  
Receive Address Pointer  
(ADTP)  
Buffer RAM  
SI1/P20  
SO1/P21  
STB/P23  
BUSY/P24  
Serial I/O Shift Register 1 (SIO0)  
Handshake  
Control  
Circuit  
Interrupt Request  
Signal Generator  
Serial Clock Counter  
INTCSI1  
SCK/P22  
fX/22 to fX/29  
TO2  
Selector  
Serial Clock Control Circuit  
25  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS  
6.1 INTERRUPT FUNCTIONS  
There are interrupt functions, 14 sources of three different kinds, as shown below.  
• Non-maskable  
• Maskable  
:
1
: 12  
• Software  
:
1
Table 6-1. Interrupt Source List  
Interrupt Source  
Default  
Internal/  
External  
Vector Table  
Address  
Basic  
Note 1  
Interrupt Type  
Non-maskable  
Maskable  
Priority  
Configuratin  
Name  
Trigger  
Note 2  
Type  
–––  
0
INTWDT Watchdog timer overflow (with watchdog  
timer mode 1 selected)  
Internal  
0004H  
(A)  
(B)  
INTWDT Watchdog timer overflow (with interval  
timer mode selected)  
1
2
3
4
5
6
7
INTP0  
INTP1  
INTP2  
INTP3  
Pin input edge detection  
External  
0006H  
0008H  
000AH  
000CH  
000EH  
0010H  
0012H  
(C)  
(D)  
INTCSI0 Serial interface channel 0 transfer end  
INTCSI1 Serial interface channel 1 transfer end  
Internal  
(B)  
INTTM3 Reference time interval signal from  
watch timer  
8
9
INTTM0 16 bit timer/event counter match signal  
generation  
0014H  
0016H  
0018H  
INTTM1 8-bit timer/event counter 1 match signal  
generation  
10  
INTTM2 8-bit timer/event counter 2 match signal  
generation  
11  
INTAD  
BRK  
A/D converter conversion end  
BRK instruction execution  
001AH  
003EH  
Software  
–––  
–––  
(E)  
Notes 1. The default pririty is the priority applicable when more than one maskable interrupt request is generated. 0 is the  
highest priority and 11, the lowest.  
2. Basic configuration types (A) to (E) correspond to (A) to (E) on the next page.  
26  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Figure 6-1. Basic Interrupt Function Configuration (1/2)  
(A) Internal Non-Maskable Interrupt  
Internal Bus  
Vector Table  
Address  
Generator  
Interrupt  
Request  
Priority Control  
Circuit  
Standby Release  
Signal  
(B) Internal Maskable Interrupt  
Internal Bus  
PR  
ISP  
MK  
IE  
Vector Table  
Priority Control  
Circuit  
Address  
Interrupt  
Request  
IF  
Generator  
Standby Release  
Signal  
(C) External Maskable Interrupt (INTP0)  
Internal Bus  
MK  
Sampling Clock  
Select Register  
(SCS)  
External Interrupt  
Mode Register  
(INTM0)  
PR  
ISP  
IE  
Vector Table  
Address  
Generator  
Priority Control  
Circuit  
Interrupt  
Request  
Edge  
Detector  
Sampling  
Clock  
IF  
Standby Release  
Signal  
27  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Figure 6-1. Basic Interrupt Function Configuration (2/2)  
(D) External Maskable Interrupt (Except INTP0)  
Internal Bus  
MK  
External Interrupt  
Mode Register  
(INTM0)  
PR  
ISP  
IE  
Vector Table  
Address  
Generator  
Priority Control  
Circuit  
Interrupt  
Request  
Edge  
Detector  
IF  
Standby Release  
Signal  
(E) Software Interrupt  
Internal Bus  
Vector Table  
Address  
Generator  
Priority Control  
Circuit  
Interrupt  
Request  
IF : Interrupt request flag  
IE : Interrupt enable flag  
ISP : In-service priority flag  
MK : Interrupt mask flag  
PR : Priority spcification flag  
28  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
6.2 TEST FUNCTIONS  
There are two test functions as shown in Table 6-2.  
Table 6-2. Test Source List  
Test Source  
Trigger  
Internal/External  
Name  
INTWT  
INTPT4  
Watch timer overflow  
Internal  
External  
Port 4 falling edge detection  
Figure 6-2. Test Function Basic Configuration  
Internal Bus  
MK  
Standby Release  
Signal  
Test  
Input  
IF  
IF : Test input flag  
MK : Test mask flag  
29  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
7. EXTERNAL DEVICE EXPANSION FUNCTIONS  
The external device expansion function is used to connect external devices to areas other than the internal ROM, RAM  
and SFR.  
Ports 4 to 6 are used for connection with external devices.  
8. STANDBY FUNCTIONS  
There are the following two standby functions to reduce the current dissipation.  
• HALT mode  
: The CPU operating clock is stopped. The average consumption current can be reduced by intermittent  
operation in combination with the normal operat ing mode.  
• STOP mode : The main system clock oscillation is stopped. The whole operation by the main system clock  
is stopped, so that the system operates withultra-low power consumption using only the subsystem  
clock.  
Figure 8-1. Standby Functions  
CSS=1  
Main System  
Clock Operation  
Subsystem Clock  
OperationNote  
CSS=0  
HALT  
Instruction  
STOP  
Instruction  
HALT  
Instruction  
Interrupt  
Request  
Interrupt  
Request  
Interrupt  
Request  
STOP Mode  
(Main system clock  
oscillation stopped)  
HALT Mode  
(Clock supply to CPU is  
stopped, oscillation)  
HALT ModeNote  
(Clock supply to CPU is  
stopped, oscillation)  
Note The power consumption can be reduced by stopping the main system clock. When the CPU is operating on the  
subsystem clock, set the bit 7 (MCC) of the processor clock control register (PCC) to stop the main system clock.  
The STOP instruction cannot be used.  
Caution When the main system clock is stopped and the system is operated by the subsystem clock, the  
subsystem clock should be switched again to the main system clock after the oscillation stabilization  
time is secured by the program by the program.  
9. RESET FUNCTIONS  
There are the following two reset methods.  
• External reset input by RESET pin.  
• Internal reset by watchdog timer runaway time detection.  
30  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
10. INSTRUCTION SET  
(1) 8-Bit Instruction  
MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC,  
ROLC, ROR4, ROL4, PUSH, POP, DBNZ  
2nd Operand  
[HL+byte]  
Note  
#byte  
A
r
sfr  
saddr !addr16 PSW  
[DE]  
[HL]  
[HL+B] $adder16  
[HL+C]  
1
None  
1st Operand  
A
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
XCH  
MOV  
XCH  
ADD  
MOV  
XCH  
ADD  
MOV  
MOV  
XCH  
MOV  
XCH  
ADD  
MOV  
XCH  
ADD  
ROR  
ROL  
RORC  
ROLC  
ADDC ADDC  
SUB SUB  
SUBC SUBC  
ADDC ADDC  
SUB SUB  
SUBC SUBC  
XOR  
CMP  
AND  
OR  
AND  
OR  
AND  
OR  
AND  
OR  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
r
MOV MOV  
INC  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
DEC  
XOR  
CMP  
B, C  
sfr  
DBNZ  
DBNZ  
MOV  
MOV  
MOV  
sadder  
MOV  
ADD  
INC  
DEC  
ADDC  
SUB  
SUBC  
AND  
OR  
XOR  
CMP  
!adder16  
PSW  
MOV  
MOV  
MOV  
PUSH  
POP  
[DE]  
[HL]  
MOV  
MOV  
ROR4  
ROL4  
[HL+byte]  
[HL+B]  
MOV  
[HL+C]  
X
C
MULU  
DIVUW  
Note Except r=A  
31  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
(2) 16-Bit Instruction  
MOVW, XCHW ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW  
2nd Operand  
1st Operand  
#byte  
AX  
rp Note  
saddrp  
MOVW  
!addr16  
MOVW  
SP  
None  
MOVW  
AX  
rp  
ADDW  
MOVW  
XCHW  
MOVW  
SUBW  
CMPW  
MOVW  
MOVWNote  
INCW, DECW  
PUSH, POP  
sfrp  
MOVW  
MOVW  
MOVW  
MOVW  
MOVW  
MOVW  
sadderp  
!adder16  
SP  
MOVW  
Note Only when rp=BC, DE, HL.  
(3) Bit Manipulation Instruction  
MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR  
2nd Operand  
1st Operand  
A.bit  
A.bit  
sfr.bit  
saddr.bit  
PWS.bit  
[HL].bit  
CY  
$addr16  
BT  
None  
MOV1  
SET1  
CLR1  
BF  
BTCLR  
sfr.bit  
MOV1  
MOV1  
MOV1  
MOV1  
BT  
SET1  
CLR1  
BF  
BTCLR  
saddr.bit  
PSW.bit  
[HL].bit  
CY  
BT  
SET1  
CLR1  
BF  
BTCLR  
BT  
SET1  
CLR1  
BF  
BTCLR  
BT  
SET1  
CLR1  
BF  
BTCLR  
MOV1  
AND1  
OR1  
MOV1  
MOV1  
MOV1  
MOV1  
SET1  
CLR1  
NOT1  
AND1  
OR1  
AND1  
OR1  
AND1  
OR1  
AND1  
OR1  
XOR1  
XOR1  
XOR1  
XOR1  
XOR1  
32  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
(4) Call Instruction/Branch Instruction  
CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ  
2nd Operand  
AX  
!addr16  
!addr11  
CALLF  
[addr5]  
CALLT  
$addr16  
1st Operand  
Basic instruction  
BR  
CALL, BR  
BR, BC, BNC,  
BZ, BNZ  
Compound instruction  
BT,BF,BTCLR,  
DBNZ  
(5) Other Instruction  
ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP  
33  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
11. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25 °C)  
Parameter  
Symbol  
Test Conditions  
Rating  
Unit  
Supply voltage  
VDD  
AVDD  
AVREF  
AVSS  
–0.3 to +7.0  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–0.3 to +0.3  
V
V
V
V
Input voltage  
P00 to P04, P10 to P17, P20 to P27, P30 to P37  
P40 toP47, P50 to P57, P64 to P67, X1, X2, XT2  
VI1  
–0.3 to VDD + 0.3  
V
VI2  
VO  
P60 to P67  
Open-drain  
–0.3 to +16  
V
V
Output voltage  
–0.3 to VDD + 0.3  
Analog input  
voltage  
VAN  
P10 to P17  
1 pin  
Analog input pin  
AVSS – 0.3 to AVREF + 0.3  
V
Output  
current high  
–10  
–15  
–15  
30  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IOH  
P10 to P17, P20 to P27, P30 to P37 total  
P01 to P03, P40 to P47, P50 to P57, P60 to P67 total  
Peak value  
Output  
current low  
1 pin  
rms  
15  
P40 to P47, P50 to P55 total  
Peak value  
rms  
100  
70  
P01 to P03, P56, P57,  
P60 to P67 total  
P01 to P03,  
Peak value  
rms  
100  
70  
IOLNote  
Peak value  
rms  
50  
P64 to P67 total  
20  
P10 to P17, P20 to P27, P30 to P37 Peak value  
total rms  
50  
20  
Operating ambient  
temperature  
–40 to +85  
°C  
°C  
TA  
Storage  
–65 to +150  
Tstg  
temperature  
Note rms should be calculated as follows: [rms] = [peak value] × √duty  
Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or  
even momentarily. That is, the absolute maximuam ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under conditions which  
ensure that the absolute maximum ratings are not exceeded.  
34  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Capacitance ( TA = 25 °C, VDD = VSS = 0 V )  
Parameter  
Symbol  
Test Conditions  
MIN.  
TYP.  
MAX.  
15  
Unit  
pF  
Input capacitance  
I/O capacitance  
CIN  
f = 1 MHz Unmeasured pins returned to 0 V  
P01 to P03, P10 to P17,  
f = 1 MHz Unmeasured P20 to P27, P30 toP37,  
pins returned to 0 V P40 toP47, P50 to P57,  
P64 to P67  
15  
pF  
pF  
CIO  
P60 to P63  
20  
Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.  
Main System Clock Oscillation Circuit Characteristics ( TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)  
Recommended  
Circuit  
Resonator  
Ceramic  
Parameter  
Test Conditions  
MIN.  
TYP.  
MAX.  
Unit  
2.7 V VDD 5.5 V  
1.8 V VDD < 2.7 V  
1
1
10  
5
Oscillator  
X1  
X2  
V
SS  
MHz  
resonator  
Note 1  
frequency (fX)  
R1  
C2  
C1  
Oscillation  
After VDD reaches oscil-  
lator voltage range MIN.  
ms  
4
Note 2  
stabilization time  
Crystal  
2.7 V VDD 5.5 V  
1.8 V VDD < 2.7 V  
VDD = 4.5 to 5.5 V  
1
1
10  
5
Oscillator  
X1  
C1  
X2  
MHz  
V
SS  
resonator  
Note 1  
frequency (fX)  
Oscillation  
C2  
10  
30  
Note 2  
ms  
stabilization time  
X1 input  
External  
clock  
1.0  
45  
10.0  
500  
Note 1  
MHz  
X2  
frequency (fX)  
X1  
X1 input  
µPD74HCU04  
high/low level width  
(tXH , tXL)  
ns  
Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.  
2. Time required to stabilize oscillation after reset or STOP mode release.  
Cautions 1. When using the main system clock oscillator, wiring the area enclosed with the dotted line should  
be carried out as follows to avoid an adverse effect from wiring capacitance.  
Wiring should be as short as possible.  
Wiring should not cross other signal lines.  
Wiring should not be placed close to a varying high current.  
The potential of the oscillator capacitor ground should be the same as VSS.  
Do not ground wiring to a ground pattern in which a high current flows.  
Do not fetch a signal from the oscillator.  
2. When the main system clock is stopped and the system is operated by the subsystem clock, the  
subsystem clock should be switched again to the main system clock after the oscillation stabilization  
time is secured by the program.  
35  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Subsystem Clock Oscillation Circuit Characteristics (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)  
Recommended  
Circuit  
Test Conditions  
Parameter  
Oscillator  
MIN.  
32  
TYP.  
MAX.  
35  
Unit  
kHz  
Resonator  
Crystal  
XT1 XT2  
V
SS  
32.768  
1.2  
Note 1  
frequency (fXT)  
resonator  
R2  
VDD = 4.5 to 5.5 V  
C3  
C4  
2
Oscillation  
s
Note 2  
stabilization time  
10  
XT1 input  
External  
clock  
100  
15  
32  
5
kHz  
Note 1  
frequency (fXT)  
XT2  
XT1  
XT1 input  
high/low level width  
µs  
(tXTH , tXTL)  
Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.  
2. Time required to stabilize oscillation after VDD reaches oscillator voltage MIN.  
Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the dotted line should  
be carried out as follows to avoid an adverse effect from wiring capacitance.  
Wiring should be as short as possible.  
Wiring should not cross other signal lines.  
Wiring should not be placed close to a varying high current.  
The potential of the oscillator capacitor ground should be the same as VSS.  
Do not ground wiring to a ground pattern in which a high current flows.  
Do not fetch a signal from the oscillator.  
2. The subsystem clock oscillation circuit is a circuit with a low amplification level,more prone to  
misoperation due to noise than the main system clock.  
Particular care is therefore required with the wiring method when the subsystem clock is used.  
36  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Recommended Oscillation Circuit Constant  
Recommended oscillation circuit constant differs depending on the model.  
(1) µPD78011F, 78012F, 78013F, 78014F  
(a) Main system clock: ceramic resonator (TA = –45 to +85 °C)  
Recommended Oscillation  
Circuit Constant  
C1 (pF)  
Oscillation  
Frequency  
(MHz)  
Manufacturer  
Product Name  
Voltage Range  
C2 (pF)  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
30  
MIN. (V)  
MAX. (V)  
5.5  
TDK Corp.  
CCR4.19MC3  
4.19  
4.19  
5.00  
5.00  
8.00  
8.00  
10.00  
10.00  
4.19  
4.19  
5.00  
5.00  
8.38  
8.38  
10.00  
10.00  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
30  
1.8  
1.8  
1.8  
1.8  
2.7  
2.7  
2.7  
2.7  
1.8  
1.8  
1.8  
1.8  
2.7  
2.7  
2.7  
2.7  
FCR4.19MC5  
CCR5.00MC3  
FCR5.00MC5  
CCR8.38MC  
FCR8.38MC5  
CCR10.00MC  
FCR10.00MC5  
CSA4.19MG  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
Murata Mfg. Co. Ltd.  
5.5  
CST4.19MGW  
CSA5.00MG  
Built-in  
30  
Built-in  
30  
5.5  
5.5  
CST5.00MGW  
CSA8.38MTZ  
CST8.38MTW  
CSA10.00MTZ  
CST10.00MTW  
Built-in  
30  
Built-in  
30  
5.5  
5.5  
Built-in  
30  
Built-in  
30  
5.5  
5.5  
Built-in  
Built-in  
5.5  
(b) Main system clock: ceramic resonator (TA = –20 to +80 °C)  
Recommended Oscillation  
Circuit Constant  
Oscillation  
Voltage Range  
Frequency  
(MHz)  
Manufacturer  
Product Name  
C1 (pF)  
33  
C2 (pF)  
33  
MIN. (V)  
MAX. (V)  
5.5  
Kyocera Corp.  
PBRC5.00A  
5.00  
5.00  
5.00  
5.00  
8.00  
10.00  
1.8  
1.8  
1.8  
1.8  
2.7  
2.7  
PBRC5.00B  
KBR-5.00MSA  
KBR-5.00MKS  
KBR-8M  
Built-in  
33  
Built-in  
33  
5.5  
5.5  
Built-in  
33  
Built-in  
33  
5.5  
5.5  
KBR-10M  
33  
33  
5.5  
Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation  
but do not guarantee the accuracy of the oscillation frequency. If the application circuit requires  
accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator  
in the application circuit. For this, it is necessary to directly contact manufacturer of the resonator being  
used.  
37  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
(2) µPD78015F, 78016F  
(a) Main system clock: ceramic resonator (TA = –45 to +85 °C)  
Recommended Oscillation  
Oscillation  
Frequency  
(MHz)  
Manufacturer  
Product Name  
Circuit Constant  
C2 (pF)  
100  
Voltage Range  
C1 (pF)  
100  
R1 (k)  
MIN. (V)  
MAX. (V)  
TDK Corp.  
CSB1000J  
1.00  
2.00  
2.00  
4.00  
4.00  
6.00  
6.00  
10.0  
10.0  
6.00  
6.00  
10.0  
10.0  
4.0  
5.6  
0
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.7  
2.7  
2.7  
2.7  
1.8  
1.8  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
CSA2.00MG040  
CST2.00MG040  
CSA4.00MG040  
CST4.00MGW040  
CSA6.00MG  
100  
100  
Built-in  
100  
Built-in  
100  
0
0
Built-in  
30  
Built-in  
30  
0
0
CST6.00MGW  
CSA10.0MTZ  
Built-in  
30  
Built-in  
30  
0
0
CST10.0MTW  
CSA6.00MG040  
CST6.00MGW040  
CSA10.0MTZ040  
CST10.0MTW040  
FCR4.0MC5  
Built-in  
100  
Built-in  
100  
0
Murata Mfg. Co. Ltd.  
(EMI noise reduced  
products)  
0
Built-in  
100  
Built-in  
100  
0
0
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
0
TDK Corp.  
2.2  
1.0  
FCR10.0MC  
10.0  
(b) Main system clock: ceramic resonator (TA = –20 to +80 °C)  
Recommended Oscillation  
Circuit Constant  
Oscillation  
Voltage Range  
Frequency  
(MHz)  
Manufacturer  
Product Name  
C1 (pF)  
33  
C2 (pF)  
33  
MIN. (V)  
1.8  
MAX. (V)  
5.5  
Kyocera Corp.  
PBRC5.00A  
5.00  
5.00  
5.00  
5.00  
8.00  
10.00  
PBRC5.00B  
KBR-5.00MSA  
KBR-5.00MKS  
KBR-8M  
Built-in  
33  
Built-in  
33  
1.8  
5.5  
1.8  
5.5  
Built-in  
33  
Built-in  
33  
1.8  
5.5  
2.7  
5.5  
KBR-10M  
33  
33  
2.7  
5.5  
Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation  
but do not guarantee the accuracy of the oscillation frequency. If the application circuit requires  
accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator  
in the application circuit. For this, it is necessary to directly contact manufacturer of the resonator being  
used.  
38  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
(3) µPD78018F  
(a) Main system clock: ceramic resonator (TA = –40 to +85 °C)  
Recommended Oscillation  
Circuit Constant  
C1 (pF)  
Oscillation  
Frequency  
(MHz)  
Manufacturer  
Product Name  
Voltage Range  
C2 (pF)  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
30  
MIN. (V)  
MAX. (V)  
5.5  
TDK Corp.  
CCR4.0MC3  
4.00  
4.00  
8.00  
8.00  
10.0  
10.0  
4.00  
4.00  
8.00  
8.00  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
Built-in  
30  
1.8  
1.8  
2.7  
2.7  
2.7  
2.7  
1.8  
1.8  
2.7  
2.7  
FCR4.0MC5  
CCR8.0MC5  
FCR8.0MC  
5.5  
5.5  
5.5  
CCR10.0MC5  
FCR10.0MC  
CSA4.0MG  
5.5  
5.5  
Murata Mfg. Co. Ltd.  
5.5  
CST4.0MGW  
CSA8.0MTZ  
CST8.0MTW  
Built-in  
30  
Built-in  
30  
5.5  
5.5  
Built-in  
Built-in  
5.5  
(b) Main system clock: ceramic resonator (TA = –20 to +80 °C)  
Recommended Oscillation  
Circuit Constant  
Oscillation  
Voltage Range  
Frequency  
(MHz)  
Manufacturer  
Product Name  
C1 (pF)  
33  
C2 (pF)  
33  
MIN. (V)  
MAX. (V)  
5.5  
Kyocera Corp.  
FBRC4.00A  
4.00  
4.00  
4.00  
4.00  
8.00  
10.00  
1.8  
1.8  
1.8  
1.8  
2.7  
2.7  
FBRC4.00B  
KBR-4.00MSB  
KBR-4.00MKC  
KBR-8M  
Built-in  
33  
Built-in  
33  
5.5  
5.5  
Built-in  
33  
Built-in  
33  
5.5  
5.5  
KBR-10M  
33  
33  
5.5  
Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation  
but do not guarantee the accuracy of the oscillation frequency. If the application circuit requires  
accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator  
in the application circuit. For this, it is necessary to directly contact manufacturer of the resonator being  
used.  
39  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
DC Characteristics (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
Test Conditions  
MIN.  
TYP.  
MAX.  
Unit  
V
Input voltage VIH1  
high  
P10 to P17, P21, P23, P30 to P32, VDD = 2.7 to 5.5 V  
P35 to P37, P40 to P47,  
0.7 VDD  
VDD  
0.8 VDD  
VDD  
V
P50 to P57, P64 to 67  
VIH2  
VIH3  
VIH4  
VIH5  
P00 to P03, P20, P22, P24 to P27, VDD = 2.7 to 5.5 V  
P33, P34, RESET  
0.8 VDD  
0.85 VDD  
0.7 VDD  
0.8 VDD  
VDD – 0.5  
VDD – 0.2  
0.8 VDD  
0.9 VDD  
0.9 VDD  
0
VDD  
VDD  
V
V
V
V
V
V
V
V
V
V
P60 to P63  
(N-ch open-drain)  
X1, X2  
VDD = 2.7 to 5.5 V  
15  
15  
VDD = 2.7 to 5.5 V  
VDD  
VDD  
XT1/P04, XT2  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
VDD  
VDD  
Note  
VDD  
Input voltage VIL1  
low  
P10 to P17, P21, P23, P30 to P32, VDD = 2.7 to 5.5 V  
P35 to P37, P40 to P47,  
0.3 VDD  
0
0.2 VDD  
V
P50 to P57, P64 to 67  
VIL2  
VIL3  
P00 to P03, P20, P22, P24 to P27, VDD = 2.7 to 5.5 V  
P33, P34, RESET  
0
0.2 VDD  
0.15 VDD  
0.3 VDD  
0.2 VDD  
0.1 VDD  
0.4  
V
V
V
V
V
V
V
V
V
V
V
V
V
0
P60 to P63  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
0
0
0
VIL4  
VIL5  
X1, X2  
VDD = 2.7 to 5.5 V  
0
0
0.2  
XT1/P04, XT2  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
0
0.2 VDD  
0.1 VDD  
0.1 VDD  
0
Note  
0
Output  
VOH1  
VOL1  
VDD = 4.5 to 5.5 V, IOH = –1 mA  
IOH = –100 µA  
VDD – 1.0  
VDD – 0.5  
voltage high  
Output  
P50 to P57, P60 to P63  
VDD = 4.5 to 5.5 V,  
IOL = 15 mA  
0.4  
2.0  
0.4  
voltage low  
P01 to P03, P10 to P17, P20 to P27  
P30 to P37, P40 to P47, P64 to P67  
SB0, SB1, SCK0  
VDD = 4.5 to 5.5 V,  
IOL = 1.6 mA  
V
V
V
VOL2  
VOL3  
VDD = 4.5 to 5.5 V, open-drain  
0.2 VDD  
0.5  
pulled-up (R = 1 K)  
IOL = 400 µA  
Note When using XT1/P04 as P04, input the inverse of P04 to XT2 using an inverter.  
Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.  
40  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
DC Characteristics (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)  
Parameter Symbol Test Conditions  
P00 to P03, P10 to P17,  
MIN.  
TYP.  
MAX.  
3
Unit  
Input leakage ILIH1  
current high  
VIN = VDD  
µA  
P20 to P27, P30 to P37,  
P40 to P47, P50 to P57,  
P60 to P67, RESET  
X1, X2, XT1/P04, XT2  
P60 to P63  
ILIH2  
ILIH3  
20  
80  
–3  
µA  
µA  
µA  
VIN = 15 V  
VIN = 0 V  
Input leakege ILIL1  
current low  
P00 to P03, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47, P50 to P57,  
P60 to P67, RESET  
X1, X2, XT1/P04, XT2  
P60 to P63  
ILIL2  
ILIL3  
–20  
µA  
µA  
µA  
Note  
–3  
Output leakage ILOH1  
current high  
VOUT = VDD  
3
Output leakage ILOL  
current low  
VOUT = 0 V  
–3  
90  
90  
µA  
kΩ  
kΩ  
Mask option  
pull-up resister  
Software  
R1  
VIN = 0 V, P60 to P63  
20  
15  
40  
40  
R2  
VIN = 0 V, P01 to P03, P10 to P17, P20 to P27, P30 to P37,  
P40 to P47, P50 to P57, P60 to P67  
pull-up resister  
Note For P60 to P63, if pull-up resistor is not provided (specifiable by mask option) a low-level input leak current of –200  
µA (MAX.) flows only during the 3 clocks (no-wait time) after an instruction has been executed to read out port 6 (P6)  
or port mode register 6 (PM6). Outside the period of 3 clocks following execution a read-out instruction, the current  
is –3 µA (MAX.).  
Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.  
41  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
DC Characteristics (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)  
Parameter  
Supply  
Symbol  
Test Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Note 2  
Note 3  
Note 2  
Note 3  
IDD1  
10.00 MHz crystal  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 2.0 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 2.0 V ± 10 %  
VDD = 5.0 V ± 10 %  
9.0  
1.3  
2.4  
1.2  
60  
18.0  
2.6  
4.8  
2.4  
120  
70  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Note 1  
current  
oscillation operation mode  
10.00 MHz crystal  
IDD2  
IDD3  
oscillation HALT mode  
32.768 kHz crystal  
Note 4  
oscillation operation mode  
35  
24  
48  
IDD4  
IDD5  
IDD6  
32.768 kHz crystal  
25  
50  
Note 4  
oscillation HALT mode  
5
15  
2
10  
XT1 = VDD  
1
30  
STOP mode when using feedback VDD = 3.0 V ± 10 %  
0.5  
0.3  
0.1  
0.05  
0.05  
10  
resistor  
VDD = 2.0 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 2.0 V ± 10 %  
10  
XT1 = VDD  
30  
STOP mode when not using  
feedback resistor  
10  
10  
Notes 1. This current excludes the AVREF current, port current, and current which flows in the built-in pull-down resistor.  
2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00H)  
3. When operating at low-speed mode (when the PCC is set to 04H)  
4. When main system clock stopped.  
42  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
AC Characteristics  
(1) Basic Operation (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
Test Conditions  
Operating on main system clock  
MIN.  
TYP.  
122  
MAX.  
Unit  
Cycle time  
TCY  
3.5 V VDD 5.5 V  
2.7 V VDD < 3.5 V  
1.8 V VDD < 2.7 V  
0.4  
64  
64  
µs  
µs  
(Min. instruction  
execution time)  
0.8  
2.0  
64  
µs  
Operating on subsystem clock  
3.5 V VDD 5.5 V  
2.7 V VDD < 3.5 V  
1.8 V VDD < 2.7 V  
VDD = 4.5 to 5.5 V  
40  
2/fsam + 0.1  
2/fsam + 0.2  
2/fsam + 0.5  
0
125  
µs  
Note  
Note  
Note  
TI0 input  
tTIH0  
tTIL0  
µs  
frequency  
µs  
µs  
TI1, TI2 input fTI1  
frequency  
4
MHz  
kHz  
0
275  
TI1, TI2 input  
tTIH1  
VDD = 4.5 to 5.5 V  
100  
1.8  
ns  
high/low-level  
width  
tTIL1  
µs  
Note  
Note  
Note  
Interrupt  
tINTH  
tINTL  
INTP0  
3.5 V VDD 5.5 V  
2.7 V VDD < 3.5 V  
1.8 V VDD < 2.7 V  
VDD = 2.7 to 5.5 V  
2/fsam + 0.1  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
request input  
high/low-level  
width  
2/fsam + 0.2  
2/fsam + 0.5  
INTP1 to INTP3, KR0 to KR7  
VDD = 2.7 to 5.5 V  
10  
20  
10  
20  
RESET low  
level width  
tRSL  
Note In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS), selection of fsam is possible  
between fX/2N+1, fX/64 and fx/128 (when N= 0 to 4).  
43  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
TCY vs VDD (At main system clock operation)  
60.0  
Operation Guaranteed  
Range  
10.0  
µ
5.0  
1.0  
0.5  
0.1  
3.5  
5.5  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
1.8  
2.7  
Supply voltage VDD [V]  
44  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
(2) Read/Write Operation (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
Parameter  
ASTB high-level width  
Address setup time  
Symbol  
tASTH  
tADS  
Test Conditions  
MIN.  
0.5tCY  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tCY – 30  
50  
Address hold time  
tADH  
Data input time from address  
tADD1  
tADD2  
tRDD1  
tRDD2  
tRDH  
(2.5 + 2n) tCY – 50  
(3 + 2n) tCY – 100  
(1 + 2n) tCY – 25  
Data input time from RD↓  
(2.5 + 2n) tCY – 100  
Read data hold time  
RD low-level width  
0
tRDL1  
(1.5 + 2n) tCY – 20  
(2.5 + 2n) tCY – 20  
tRDL2  
WAITinput time from RD↓  
tRDWT1  
tRDWT2  
tWRWT  
tWTL  
0.5tCY  
1.5tCY  
WAITinput time from WR↓  
WAIT low-level width  
0.5tCY  
(0.5 + 2n) tCY + 10  
100  
(2 + 2n) tCY  
Write data setup time  
tWDS  
Write data hold time  
tWDH  
Load resistor 5 kΩ  
20  
WR low-level width  
tWRL1  
tASTRD  
tASTWR  
tRDAST  
(2.5 + 2n) tCY – 20  
0.5tCY – 30  
1.5tCY – 30  
tCY – 10  
RDdelay time from ASTB↓  
WRdelay time from ASTB↓  
ASTBdelay time from  
RDin external fetch  
tCY + 40  
tCY + 50  
Address hold time from  
tRDADH  
tRDWD  
tCY  
ns  
RDin external fetch  
Write data output time from RD↑  
Write data output time from WR↓  
Address hold time from WR↑  
VDD = 4.5 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 4.5 to 5.5 V  
0.5tCY + 5  
0.5tCY + 30  
0.5tCY + 90  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5tCY + 15  
tWRWD  
5
15  
90  
tWRADH  
tCY  
tCY + 60  
tCY + 100  
2.5tCY + 80  
2.5tCY + 80  
tCY  
RDdelay time from WAIT↑  
WRdelay time from WAIT↑  
tWTRD  
tWTWR  
0.5tCY  
0.5tCY  
Remarks 1. tCY = TCY/4  
2. n indicates number of waits.  
45  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
(3) Serial Interface (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)  
(a) Serial Interface Channel 0  
(i) 3-wire serial I/O mode (SCK0... Internal clock output)  
Parameter  
Symbol  
Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK0 cycle time  
tKCY1  
800  
1600  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
3200  
4800  
SCK0 high/low-level  
width  
tKH1  
tKL1  
tSIK1  
VDD = 4.5 to 5.5 V  
tKCY1/2 – 50  
tKCY1/2 – 100  
100  
SI0 setup time  
(to SCK0)  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
150  
300  
400  
SI0 hold time  
tKSI1  
400  
(from SCK0)  
Note  
SO0 output delay time tKSO1  
C = 100 pF  
300  
ns  
from SCK0↓  
Note C is the load capacitance of SCK0 and SO0 output line.  
(ii) 3-wire serial I/O mode (SCK0... External clock input)  
Parameter  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK0 cycle time  
tKCY2  
800  
1600  
3200  
4800  
400  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
SCK0 high/low-level  
width  
tKH2  
tKL2  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
800  
1600  
2400  
100  
SI0 setup time  
(to SCK0)  
tSIK2  
tKSI2  
VDD = 2.0 to 5.5 V  
150  
SI0 hold time  
(from SCK0)  
400  
Note  
SO0 output delay time tKSO2  
C = 100 pF  
VDD = 2.0 to 5.5 V  
300  
500  
160  
ns  
ns  
ns  
from SCK0↓  
SCK0 rise, fall time  
tR2  
tF2  
When external device  
expansion function is used  
When external When 16-bit timer  
device expansion output function is  
function is not used  
700  
ns  
ns  
used  
When 16-bit timer  
output function is  
not used  
1000  
Note C is the load capacitance of SO0 output line.  
46  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
(iii) SBI mode (SCK0... Internal clock output)  
Parameter  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK0 cycle time  
tKCY3  
800  
3200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.0 V VDD < 4.5 V  
4800  
SCK0 high/low-level  
width  
tKH3  
tKL3  
tSIK3  
VDD = 4.5 to 6.0 V  
tKCY3/2 – 50  
tKCY3/2 – 150  
100  
SB0, SB1 setup time  
(to SCK0)  
4.5 V VDD 5.5 V  
2.0 V VDD < 4.5 V  
300  
400  
SB0, SB1 hold time  
(from SCK0)  
tKSI3  
tKCY3/2  
SB0, SB1output delay  
time from SCK0↓  
tKSO3  
R = 1 k,  
VDD = 4.5 to 5.5 V  
0
250  
ns  
ns  
ns  
ns  
ns  
Note  
C = 100 pF  
0
1000  
SB0, SB1from SCK0tKSB  
SCK0from SB0, SB1tSBK  
tKCY3  
tKCY3  
tKCY3  
SB0, SB1 high-level  
width  
tSBH  
SB0, SB1 low-level  
width  
tSBL  
tKCY3  
ns  
Note R and C are the load resistors and load capacitance of the SB0, SB1 and SCK0 output line.  
47  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
(iv) SBI mode (SCK0... External clock input)  
Parameter  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK0 cycle time  
tKCY4  
800  
3200  
4800  
400  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.0 V VDD < 4.5 V  
SCK0 high/low-level  
width  
tKH4  
tKL4  
4.5 V VDD 5.5 V  
2.0 V VDD < 4.5 V  
1600  
2400  
100  
SB0, SB1 setup time  
tSIK4  
4.5 V VDD 5.5 V  
2.0 V VDD < 4.5 V  
(to SCK0)  
300  
400  
SB0, SB1 hold time  
tKSI4  
tKCY4/2  
(from SCK0)  
SB0, SB1 output delay tKSO4  
time from SCK0↓  
R = 1 k,  
VDD = 4.5 to 5.5 V  
0
300  
ns  
ns  
ns  
ns  
ns  
Note  
C = 100 pF  
0
1000  
SB0, SB1from SCK0tKSB  
SCK0from SB0, SB1tSBK  
tKCY4  
tKCY4  
tKCY4  
SB0, SB1 high-level  
width  
tSBH  
SB0, SB1 low-level  
width  
tSBL  
tKCY4  
ns  
ns  
ns  
SCK0 rise, fall time  
tR4  
tF4  
When external device  
160  
700  
expansion function is used  
When external When 16-bit timer  
device expansion output function is  
function is not used  
used  
When 16-bit timer  
output function is  
not used  
1000  
ns  
Note R and C are the load resistors and load capacitance of the SB0 and SB1 output line.  
48  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
(v) 2-wire serial I/O mode (SCK0... Internal clock output)  
Parameter  
Symbol  
Test Conditions  
R = 1 k, 2.7 V VDD 5.5 V  
C = 100 pF  
MIN.  
TYP.  
MAX.  
Unit  
SCK0 cycle time  
tKCY5  
1600  
3200  
4800  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note  
2.0 V VDD < 2.7 V  
SCK0 high-level width  
SCK0 low-level width  
tKH5  
tKL5  
tSIK5  
VDD = 2.7 to 5.5 V tKCY5/2 – 160  
tKCY5/2 – 190  
VDD = 4.5 to 5.5 V tKCY5/2 – 50  
tKCY5/2 – 100  
SB0, SB1 setup time  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
300  
350  
400  
500  
600  
(to SCK0)  
SB0, SB1 hold time  
tKSI5  
(from SCK0)  
SB0, SB1 output delay tKSO5  
0
300  
ns  
time from SCK0↓  
Note R and C are the load resistors and load capacitance of the SCK0, SB0 and SB1 output line.  
49  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
(vi) 2-wire serial I/O mode (SCK0... External clock input)  
Parameter  
Symbol  
Test Conditions  
2.7 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK0 cycle time  
tKCY6  
1600  
3200  
4800  
650  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.0 V VDD < 2.7 V  
SCK0 high-level width tKH6  
2.7 V VDD 5.5 V  
2.0 V VDD < 2.7 V  
1300  
2100  
800  
SCK0 low-level width  
tKL6  
2.7 V VDD 5.5 V  
2.0 V VDD < 2.7 V  
1600  
2400  
100  
SB0, SB1 setup time  
(to SCK0)  
tSIK6  
tKSI6  
VDD = 2.0 to 5.5 V  
150  
SB0, SB1 hold time  
(from SCK0)  
tKCY6/2  
SB0, SB1 output delay tKSO6  
R = 1 k,  
4.5 V VDD 5.5 V  
0
0
0
300  
500  
800  
160  
ns  
ns  
ns  
ns  
time from SCK0↓  
C = 100 pF Note 2.0 V VDD < 4.5 V  
SCK0 rise, fall time  
tR6  
tF6  
When external device  
expansion function is used  
When external When 16-bit timer  
device expansion output function is  
function is not used  
700  
ns  
ns  
used  
When 16-bit timer  
output function is  
not used  
1000  
Note R and C are the load resistors and load capacitance of the SB0 and SB1 output line.  
50  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
(b) Serial Interface Channel 1  
(i) 3-wire serial I/O mode (SCK1... Internal clock output)  
Parameter  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK1 cycle time  
tKCY7  
800  
1600  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
3200  
4800  
SCK1 high/low-level  
width  
tKH7  
tKL7  
tSIK7  
VDD = 4.5 to 5.5 V  
tKCY7/2 – 50  
tKCY7/2 – 100  
100  
SI1 setup time  
(to SCK1)  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
150  
300  
400  
SI1 hold time  
tKSI7  
400  
(from SCK1)  
Note  
SO1 output delay time tKSO7  
C = 100 pF  
300  
ns  
from SCK1↓  
Note C is the load capacitance of SCK1 and SO1 output line.  
(ii) 3-wire serial I/O mode (SCK1... External clock input)  
Parameter  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK1 cycle time  
tKCY8  
800  
1600  
3200  
4800  
400  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
SCK1 high/low-level  
width  
tKH8  
tKL8  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
800  
1600  
2400  
100  
SI1 setup time  
(to SCK1)  
tSIK8  
tKSI8  
VDD = 2.0 to 5.5 V  
150  
SI1 hold time  
(from SCK1)  
400  
Note  
SO0 output delay time tKSO8  
C = 100 pF  
VDD = 2.0 to 5.5 V  
300  
500  
160  
ns  
ns  
ns  
from SCK1↓  
SCK1 rise, fall time  
tR8  
tF8  
When external device  
expansion function is used  
When external When 16-bit timer  
device expansion output function is  
function is not used  
700  
ns  
ns  
used  
When 16-bit timer  
output function is  
not used  
1000  
Note C is the load capacitance of SO1 output line.  
51  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... Internal clock output)  
Parameter  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK1 cycle time  
tKCY9  
800  
1600  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
3200  
4800  
SCK1 high/low-level  
width  
tKH9  
tKL9  
tSIK9  
VDD = 4.5 to 5.5 V  
tKCY9/2 – 50  
tKCY9/2 – 100  
100  
SI1 setup time  
(to SCK1)  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
150  
300  
400  
SI1 hold time  
tKSI9  
400  
(from SCK1)  
SO1 output delay time tKSO9  
C = 100 pF Note  
300  
ns  
from SCK1↓  
STBfrom SCK1↑  
Strobe signal  
tSBD  
tSBW  
tKCY9/2 – 100  
tKCY9 – 30  
tKCY9 – 60  
tKCY9 – 90  
100  
tKCY9/2 + 100  
tKCY9 + 30  
tKCY9 + 60  
tKCY9 + 90  
ns  
ns  
ns  
ns  
ns  
2.7 V VDD 5.5 V  
2.0 V VDD < 2.7 V  
high-level width  
Busy signal setup time tBYS  
(to busy signal  
detection timing)  
Busy signal hold time  
(from busy signal  
detection timing)  
tBYH  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
100  
150  
200  
300  
ns  
ns  
ns  
ns  
ns  
SCK1from busy  
tSPS  
2tKCY9  
inactive  
Note C is the load capacitance of SCK1 and SO1 output line.  
52  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... External clock input)  
Parameter  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK1 cycle time  
tKCY10  
800  
1600  
3200  
4800  
400  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
SCK1 high/low-level  
width  
tKH10,  
tKL10  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
800  
1600  
2400  
100  
SI1 setup time  
(to SCK1)  
tSIK10  
tKSI10  
VDD = 2.0 to 5.5 V  
150  
SI1 hold time  
(from SCK1)  
400  
Note  
SO1 output delay time tKSO10  
C = 100 pF  
VDD = 2.0 to 5.5 V  
300  
500  
160  
ns  
ns  
ns  
from SCK1↓  
SCK1 rise, fall time  
tR10, tF10  
When external device expansion  
function is used  
When external device expansion  
function is not used  
1000  
ns  
Note C is the load capacitance of the SO1 output line.  
53  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
AC Timing Test Point (Excluding X1, XT1 Input)  
0.8 VDD  
0.2 VDD  
0.8 VDD  
0.2 VDD  
Test Points  
Clock Timing  
1/fX  
t
XL  
t
XH  
V
IH4 (MIN.)  
IL4 (MAX.)  
X1 Input  
V
1/fXT  
t
XTL  
t
XTH  
V
IH5 (MIN.)  
IL5 (MAX.)  
XT1 Input  
V
TI Timing  
t
TIL0  
t
TIH0  
TI0  
1/fTI1  
t
TIL1  
t
TIH1  
TI1,TI2  
54  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Read/Write Operation  
External fetch (No wait):  
A8 to A15  
Higher 8-Bit Address  
t
ADD1  
Hi-Z  
Lower 8-Bit  
Address  
AD0 to AD7  
Operation Code  
t
ADS  
t
ADH  
t
RDD1  
t
RDADH  
t
ASTH  
t
RDAST  
ASTB  
RD  
t
ASTRD  
t
RDL1  
t
RDH  
External fetch (Wait insertion):  
A8 to A15  
Higher 8-Bit Address  
t
ADD1  
Hi-Z  
Lower 8-Bit  
Address  
AD0 to AD7  
Operation Code  
tADS  
t
ADH  
t
RDD1  
t
RDADH  
t
ASTH  
t
RDAST  
ASTB  
RD  
t
ASTRD  
t
RDL1  
t
RDH  
WAIT  
t
RDWT1  
t
WTL  
t
WTRD  
55  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
External data access (No wait):  
A8 to A15  
Higher 8-Bit Address  
tADD2  
Hi-Z  
Lower 8-Bit  
Address  
Hi-Z  
Hi-Z  
AD0 to AD7  
Read Data  
Write Data  
t
ADS  
t
RDD2  
t
ADH  
t
ASTH  
t
RDH  
ASTB  
RD  
tASTRD  
t
RDWD  
t
RDL2  
t
WDS  
tWDH  
t
WRWD  
t
WRADH  
WR  
t
ASTWR  
t
WRL1  
External data access (Wait insertion):  
A8 to A15  
Higher 8-Bit Address  
t
ADD2  
Hi-Z  
Hi-Z  
Hi-Z  
Lower 8-Bit  
Address  
Read Data  
Write Data  
AD0 to AD7  
t
ADS  
t
ADH  
t
ASTH  
t
RDD2  
t
RDH  
ASTB  
RD  
t
ASTRD  
t
RDL2  
t
WDS  
t
WDH  
t
RDWD  
t
WRWD  
WR  
t
ASTWR  
t
WRL1  
t
WRADH  
WAIT  
t
WTL  
t
WTRD  
t
RDWT2  
t
WTL  
t
WTWR  
t
WRWT  
56  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Serial Transfer Timing  
3-wire serial I/O mode:  
tKCYm  
tKLm  
tKHm  
tRn  
tFn  
SCK0,SCK1  
tSIKm  
tKSIm  
SI0,SI1  
Input Data  
tKSOm  
SO0,SO1  
Output Data  
m = 1, 2, 7, 8  
n = 2, 8  
SBI mode (Bus release signal transfer):  
t
KCY3, 4  
t
KL3, 4  
R4  
t
KH3, 4  
t
t
F4  
SCK0  
t
SIK3, 4  
tKSB  
t
SBL  
t
SBH  
t
SBK  
t
KSI3, 4  
SB0, SB1  
t
KSO3, 4  
SBI Mode (command signal transfer):  
t
KCY3, 4  
t
KL3, 4  
R4  
t
KH3, 4  
t
t
F4  
SCK0  
t
SIK3, 4  
t
KSB  
t
SBK  
t
KSI3, 4  
SB0, SB1  
t
KSO3, 4  
57  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
2-wire serial I/O mode:  
tKCY5,6  
tKL5,6  
tR6  
tKH5,6  
tF6  
SCK0  
tSIK5,6  
tKSI5,6  
tKSO5,6  
SB0, SB1  
3-wire serial I/O mode with automatic transmit/receive function:  
SO1  
SI1  
D7  
D2  
D1  
D0  
D7  
D2  
D1  
D0  
t
SIK9,10  
KSO9,10  
t
KSI9,10  
t
t
KH9,10  
t
F10  
SCK1  
STB  
t
R10  
t
KL9,10  
KCY9,10  
t
SBW  
t
SBD  
t
3-wire serial I/O mode with automatic transmit/receive function (busy processing):  
9Note  
10Note  
SCK1  
7
10 + nNote  
1
8
t
BYS  
t
BYH  
t
SPS  
BUSY  
(Active High)  
Note The signal is not actually driven low here; it is shown as such to indicate the timing.  
58  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
A/D converter characteristics (TA = –40 to +85 °C, AVDD = VDD = 1.8 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Overall error  
Symbol  
Test Conditions  
MIN.  
8
TYP.  
8
MAX.  
Unit  
8
bit  
%
Note  
2.7 V AVREF AVDD  
1.8 V AVREF < 2.7 V  
2.0 V AVDD 5.5 V  
1.8 V AVDD < 2.0 V  
0.6  
1.4  
200  
200  
%
Conversion time  
tCONV  
19.1  
38.2  
24/fX  
AVSS  
1.8  
µs  
µs  
µs  
V
Sampling time  
tSAMP  
VIAN  
Analog input voltage  
Reference voltage  
AVREF resistance  
AVREF  
AVDD  
AVREF  
RAIREF  
V
4
14  
kΩ  
Note Overall error excluding quantization error (±1/2 LSB). It is indicated as a ratio to the full-scale value.  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +85 °C)  
Parameter  
Symbol  
Test Conditions  
MIN.  
1.8  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention supply  
voltage  
VDDDR  
Data retention supply  
current  
IDDDR  
VDDDR = 1.8 V  
0.1  
10  
µA  
Subsystem clock stop and feed-  
back resister disconnected  
Release signal set time tSREL  
Oscillation stabilization tWAIT  
wait time  
0
µs  
ms  
ms  
Release by RESET  
218/fX  
Release by interrupt request  
Note  
Note In combination with bit 0 to bit 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection  
of 213/fX and 215/fX to 218/fX is possible.  
Data Retention Timing (STOP Mode Release by RESET)  
Internal Reset Operation  
HALT Mode  
Operating Mode  
STOP Mode  
Data Retension Mode  
VDD  
t
SREL  
VDDDR  
STOP Instruction Execution  
RESET  
t
WAIT  
59  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Data Retention Timing (Standby Release Signal : STOP Mode Release by Interrupt Request Signal)  
HALT Mode  
Operating Mode  
STOP Mode  
Data Retension Mode  
VDD  
V
DDDR  
tSREL  
STOP Instruction Execition  
Standby Release Signal  
(Interrupt Request)  
t
WAIT  
Interrupt Request Input Timing  
t
INTL  
t
INTH  
INTP0 to INTP2  
t
INTL  
INTP3  
RESET Input Timing  
t
RSL  
RESET  
60  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
12. CHARACTERISTIC CURVE (REFERENCE VALUES)  
IDD vs VDD (Main System Clock: 10.0 MHz)  
(TA = 25 °C)  
10.0  
5.0  
PCC = 00H  
PCC = 01H  
PCC = 02H  
PCC = 03H  
PCC = 04H  
PCC = 30H  
HALT (X1 Oscillation,  
XT1 Stop)  
1.0  
0.5  
0.1  
0.05  
PCC = B0H  
HALT (X1 Stop,  
XT1 Oscillation)  
0.01  
0.005  
f
f
X
= 10.0 MHz  
XT = 32.768 kHz  
0.001  
0
1
2
3
4
5
6
7
8
Supply Voltage VDD [V]  
61  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
13. PACKAGE DRAWINGS  
64 PIN PLASTIC SHRINK DIP (750 mil)  
64  
33  
32  
1
A
K
L
F
D
M
R
B
C
M
N
NOTE  
ITEM MILLIMETERS  
INCHES  
1) Each lead centerline is located within 0.17 mm (0.007 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
58.68 MAX.  
1.78 MAX.  
1.778 (T.P.)  
2.311 MAX.  
0.070 MAX.  
0.070 (T.P.)  
2) Item "K" to center of leads when formed parallel.  
+0.004  
0.020  
D
0.50±0.10  
–0.005  
F
G
H
I
0.9 MIN.  
3.2±0.3  
0.035 MIN.  
0.126±0.012  
0.020 MIN.  
0.170 MAX.  
0.200 MAX.  
0.750 (T.P.)  
0.669  
0.51 MIN.  
4.31 MAX.  
5.08 MAX.  
19.05 (T.P.)  
17.0  
J
K
L
+0.004  
0.010  
+0.10  
0.25  
M
–0.003  
–0.05  
N
R
0.17  
0.007  
0~15°  
0~15°  
P64C-70-750A,C-1  
Remark Dimensions and materials of ES products are the same as those of mass-production products.  
62  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
64 PIN PLASTIC QFP ( 14)  
A
B
48  
49  
33  
32  
detail of lead end  
64  
1
17  
16  
G
H
M
I
J
K
N
L
P64GC-80-AB8-2  
INCHES  
NOTE  
ITEM  
A
MILLIMETERS  
Each lead centerline is located within 0.15  
mm (0.006 inch) of its true position (T.P.) at  
maximum material condition.  
±
±
17.6 0.4  
0.693 0.016  
+0.009  
–0.008  
±
B
14.0 0.2  
0.551  
+0.009  
±
C
D
F
14.0 0.2  
0.551  
–0.008  
±
±
0.693 0.016  
17.6 0.4  
1.0  
1.0  
0.039  
G
H
I
0.039  
+0.004  
–0.005  
±
0.35 0.10  
0.014  
0.15  
0.006  
J
0.8 (T.P.)  
0.031 (T.P.)  
±
±
K
1.8 0.2  
0.071 0.008  
+0.009  
–0.008  
±
0.031  
L
0.8 0.2  
+0.10  
–0.05  
+0.004  
–0.003  
0.15  
M
N
P
0.006  
0.10  
2.55  
0.004  
0.100  
±
Q
S
0.1 0.1  
±
0.004 0.004  
2.85 MAX.  
0.112 MAX.  
Remark Dimensions and materials of ES products are the same as those of mass-production products.  
63  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
64 PIN PLASTIC LQFP ( 12)  
A
B
48  
49  
33  
32  
detail of lead end  
64  
17  
16  
1
G
M
H
I
J
K
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.13 mm (0.005 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
14.8±0.4  
12.0±0.2  
0.583±0.016  
+0.009  
0.472  
–0.008  
+0.009  
0.472  
C
12.0±0.2  
–0.008  
D
F
14.8±0.4  
1.125  
0.583±0.016  
0.044  
G
1.125  
0.044  
+0.004  
0.012  
H
0.30±0.10  
–0.005  
I
0.13  
0.005  
J
K
0.65 (T.P.)  
1.4±0.2  
0.026 (T.P.)  
0.055±0.008  
+0.008  
0.024  
L
0.6±0.2  
–0.009  
+0.004  
0.006  
+0.10  
0.15  
M
–0.003  
–0.05  
0.10  
N
P
Q
R
S
0.004  
1.4  
0.055  
0.125±0.075  
5°±5°  
0.005±0.003  
5°±5°  
1.7 MAX.  
0.067 MAX.  
P64GK-65-8A8-1  
Remark Dimensions and materials of ES products are the same as those of mass-production products.  
64  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
14. RECOMMENDED SOLDERING CONDITIONS  
The µPD78011F/78012F/78013F/78014F/78015F/78016F/78018F should be soldered and mounted under the condi-  
tions recommended in the table below.  
For detail of recommended soldering conditions, refer to the information document Semiconductor Device  
Mounting Technology Manual (C10535E).  
For soldering methods and conditions other than those recommended below, contact our salespersonnel.  
Table 14-1. Surface Mounting Type Soldering Conditions (1/2)  
(1) µPD78011FGC-×××-AB8: 64-Pin Plastic QFP (14 × 14 mm)  
µPD78012FGC-×××-AB8: 64-Pin Plastic QFP (14 × 14 mm)  
µPD78013FGC-×××-AB8: 64-Pin Plastic QFP (14 × 14 mm)  
µPD78014FGC-×××-AB8: 64-Pin Plastic QFP (14 × 14 mm)  
µPD78015FGC-×××-AB8: 64-Pin Plastic QFP (14 × 14 mm)  
µPD78016FGC-×××-AB8: 64-Pin Plastic QFP (14 × 14 mm)  
µPD78018FGC-×××-AB8: 64-Pin Plastic QFP (14 × 14 mm)  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Condition Symbol  
Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above),  
IR35-00-3  
Number of times: Three times max.  
VPS  
Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above),  
VP15-00-3  
WS60-00-1  
Number of times: Three times max.  
Solder bath temperature: 260 °C max. Duration: 10 sec. max.  
Number of times: Once  
Wave soldering  
Preheating temperature: 120 °C max. (Package surface temperature)  
Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side)  
Partial heating  
Caution Use more than one soldering method should be avoided (except in the case of partial heating).  
65  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Table 14-1. Surface Mounting Type Soldering Conditions (2/2)  
(2) µPD78011FGK-×××-8A8 : 64-Pin Plastic LQFP (12 × 12 mm)  
µPD78012FGK-×××-8A8 : 64-Pin Plastic LQFP (12 × 12 mm)  
µPD78013FGK-×××-8A8 : 64-Pin Plastic LQFP (12 × 12 mm)  
µPD78014FGK-×××-8A8 : 64-Pin Plastic LQFP (12 × 12 mm)  
µPD78015FGK-×××-8A8 : 64-Pin Plastic LQFP (12 × 12 mm)  
µPD78016FGK-×××-8A8 : 64-Pin Plastic LQFP (12 × 12 mm)  
µPD78018FGK-×××-8A8 : 64-Pin Plastic LQFP (12 × 12 mm)  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Condition Symbol  
Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above),  
IR35-107-2  
Note  
Number of times: Twice max., Number of days: 7 days  
for 10 hours is necessary.)  
(after that, 125 °C prebaking  
< Precautions >  
(1) Start the second reflow after the device temprature by the first reflow returns to  
normal.  
(2) Flux washing by the water after the first reflow should be avoided.  
VPS  
Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above),  
VP15-107-2  
Note  
Number of times: Twice max., Number of days: 7 days  
for 10 hours is necessary.)  
(after that, 125 °C prebaking  
< Precautions >  
(1) Start the second reflow after the device temprature by the first reflow returns to  
normal.  
(2) Flux washing by the water after the first reflow should be avoided.  
Wave soldering  
Partial heating  
Solder bath temperature: 260 °C max. Duration: 10 sec. max.  
WS60-107-1  
Number of times: Once, Preheating temperature: 120 °C max. (Package surface  
Note  
temperature), Number of days: 7 days  
necessary.)  
(after that, 125 °C prebaking for 10 hours is  
Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side)  
Note The number of days the device can be stored at 25 °C, 65% RH MAX. after the dry pack has been opend.  
Caution Use more than one soldering method should be avoided (except in the case of partial heating).  
66  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Table 14-2. Insertion Type Soldering Conditions  
µPD78011FCW-××× : 64-Pin Plastic Shrink DIP (750 mil)  
µPD78012FCW-××× : 64-Pin Plastic Shrink DIP (750 mil)  
µPD78013FCW-××× : 64-Pin Plastic Shrink DIP (750 mil)  
µPD78014FCW-××× : 64-Pin Plastic Shrink DIP (750 mil)  
µPD78015FCW-××× : 64-Pin Plastic Shrink DIP (750 mil)  
µPD78016FCW-××× : 64-Pin Plastic Shrink DIP (750 mil)  
µPD78018FCW-××× : 64-Pin Plastic Shrink DIP (750 mil)  
Soldering Method  
Soldering Conditions  
Solder bath temperature: 260°C max., Duration: 10 sec. max.  
Wave soldering  
(pin only)  
Partial heating  
Pin temperature: 300°C max., Duration: 3 sec. max. (per pin)  
Caution Wave soldering is only for the lead part in order that jet solder can not contact with the chip directly.  
67  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
APPENDIX A. DEVELOPMENT TOOLS  
The following development tools are available for system development using the µPD78018F subseries.  
Language Processing Software  
Notes 1, 2, 3, 4  
RA78K/0  
78K/0 series common assembler package  
78K/0 series common C compiler package  
Device file common to µPD78014 subseries  
78K/0 series common C compiler library source file  
Notes 1, 2, 3, 4  
Notes 1, 2, 3, 4  
Notes 1, 2, 3, 4  
CC78K/0  
DF78014  
CC78K/0-L  
PROM Writting Tools  
PG-1500  
PROM programmer  
PA-78P014CW  
PA-78P018GC  
PA-78P018GK  
PA-78P018KK-S  
Programmer adapter connected to PG-1500  
Notes 1, 2  
PG-1500 controller  
PG-1500 control program  
Debugging Tool  
IE-78000-R  
78K/0 series common in-circuit emulator  
IE-78000-R-A  
78K/0 series common in-circuit emulator (for integrated debugger)  
IE-78000-R-BK  
78K/0 series common break board  
IE-78014-R-EM-A  
IE-78000-R-SV3  
IE-70000-98-IF-B  
IE-70000-98N-IF  
IE-70000-PC-IF-B  
µPD78018F and 78018FY subseries evaluation emulation board (VDD = 3.0 to 6.0 V)  
Interface adapter and cable when an EWS is used as the host machine (for IE-78000R-A)  
Interface adapter when PC-9800 series (except notebook PC) is used as the host machine (for IE-78000-R-A)  
Interface adapter and cable when PC-9800 series notebook PC is used as the host machine (for IE-78000-R-A)  
Interface adapter when IBM PC/ATTM is used as the host machine (for IE-78000-R-A)  
Emulation probe common to µPD78244 subseries  
EP-78240CW-R  
EP-78240GC-R  
EV-78012GK-R  
EV-9200GC-64  
TGC-064SBW  
µPD78018F subseries emulation probe  
Socket to be mounted on target system board created for the 64-pin plastic QFP (GC-AB8 type)  
Conversion adapter to be mounted on a target system board made for 64-pin plastic QFP (GK-8A8 type)  
TGC-100SDW is a product from Tokyo Eletech Corp. (TEL (03) 5295-1661)  
When purchasing this product, please consult with our sales offices.  
EV-9900  
Tools for removing µPD78P018FKK-S from EV-9200GC-64  
78K/0 series common system simulator  
IE-78000-R-A integrated dubugger  
Notes 5, 6, 7  
SM78K0  
Notes 4, 5, 6, 7  
ID78K0  
Notes 1, 2  
SD78K/0  
IE-78000-R screen debugger  
Notes 1, 2, 4, 5, 6, 7  
DF78014  
Device file common to µPD78014 subseries  
Real-Time OS  
Notes 1, 2, 3, 4  
RX78K/0  
78K/0 series real-time OS  
78K/0 series OS  
Notes 1, 2, 3, 4  
MX78K0  
68  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Fuzzy Inference Devleopment Support System  
Note 1  
Note 6  
FE9000  
FT9080  
FI78K0  
FD78K0  
/FE9200  
/FT9085  
Fuzzy knowledge data creation tool  
Translator  
Note 1  
Note 2  
Notes 1, 2  
Notes 1, 2  
Fuzzy inference module  
Fuzzy inference debugger  
Notes 1. PC-9800 series (MS-DOSTM) based  
2. IBM PC/AT and compatible (PC DOSTM/IBM DOSTM/MS-DOS) based  
3. HP9000 series 300TM (HP-UXTM) based  
4. HP9000 series 700TM (HP-UX) based, SPARCstationTM (SunOSTM) based, EWS4800 series (EWS-UX/V) based  
5. PC-9800 series (MS-DOS + WindowsTM) based  
6. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based  
7. NEWSTM (NEWS-OSTM) based  
Remarks 1. For development tools manufactured by a third party, refer to the 78K/0 Series Selection Guide (U11126E).  
2. RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0, and RX78K/0 are used in combination with DF78014.  
69  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
APPENDIX B. RELATED DOCUMENTS  
Device Related Documents  
Document No.  
Japanese  
Document Name  
English  
µPD78018F, 78018FY Subseries User’s Manual  
78K/0 Series User’s Manual - Instruction  
78K/0 Series Instruction Table  
U10659J  
U12326J  
U10903J  
U10904J  
IEM-5594  
IEA-715  
IEA-718  
U10659E  
IEU-1372  
78K/0 Series Instruction Set  
µPD78018F Subseries Special Function Register Table  
78K/0 Series Application Note  
Fundamental (I)  
Floating-Point Arithmetic Program  
IEA-1288  
IEA-1289  
Development Tools Documents (User’s Manual) (1/2)  
Document No.  
Document Name  
Japanese  
EEU-809  
English  
RA78K Series Assembler Package  
Operation  
Language  
EEU-1399  
EEU-815  
EEU-817  
U11802J  
U11801J  
U11789J  
EEU-656  
EEU-655  
U11517J  
U11518J  
EEA-618  
U12322J  
U11940J  
EEU-704  
EEU-5008  
U11376J  
U10057J  
EEU-867  
EEU-962  
EEU-986  
EEU-5012  
U10181J  
EEU-1404  
EEU-1402  
U11802E  
U11801E  
U11789E  
EEU-1280  
EEU-1284  
U11517E  
U11518E  
EEA-1208  
RA78K Series Structured Assembler Preprocessor  
RA78K0 Assembler Package  
Operation  
Assembly Language  
Structured Assembly Language  
Operation  
CC78K Series C Compiler  
CC78K0 C Compiler  
Language  
Operation  
Language  
CC78K/0 C Compiler Application Note  
CC78K Series Library Source File  
PG-1500 PROM Programmer  
Programming Know-how  
EEU-1335  
EEU-1291  
U10540E  
U11376E  
U10057E  
EEU-1427  
U10418E  
EEU-1513  
EEU-1538  
U10181E  
PG-1500 Controller PC-9800 Series (MS-DOS) Based  
PG-1500 Controller IBM PC Series (PC DOS) Based  
IE-78000-R  
E-78000-R-A  
IE-78000-R-BK  
IE-78014-R-EM-A  
EP-78240  
EP-78012GK-R  
SM78K0 System Simulator  
Reference  
Caution The contents of the above related documents are subject to change without notice. The latest documents  
should be used for designing, etc.  
70  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Development Tools Documents (User’s Manual) (2/2)  
Document No.  
Japanese  
Document Name  
SM78K Series System Simulator  
English  
External Part User Open  
Interface Specifications  
U10092J  
U10092E  
ID78K0 Integrated Debugger EWS Based  
ID78K0 Integrated Debugger PC Based  
ID78K0 Integrated Debugger Windows Based  
SD78K/0 Screen Debugger  
Reference  
Reference  
Guide  
U11151J  
U11539J  
U11649J  
EEU-852  
U10952J  
EEU-5024  
U11279J  
U11539E  
U11649E  
U10539E  
Introduction  
Reference  
Introduction  
Reference  
PC-9800 Series (MS-DOS) Based  
SD78K/0 Screen Debugger  
EEU-1414  
U11279E  
IBM PC/AT (PC DOS) Based  
Embedded Software Documents (User’s Manual)  
Document No.  
Document Name  
Japanese  
U11537J  
English  
78K/0 Series Real-Time OS  
Fundamental  
U11537E  
Installation  
U11536J  
U12257J  
EEU-829  
EEU-862  
U11536E  
78K/0 Series OS MX78K0  
Fundamental  
Fuzzy Knowledge Data Creation Tool  
78K/0, 78K/II, 87AD Series  
EEU-1438  
EEU-1444  
Fuzzy Inference Development Support System - Translator  
78K/0 Series Fuzzy Inference Development Suport System -  
Fuzzy Inference Module  
EEU-858  
EEU-921  
EEU-1441  
EEU-1458  
78K/0 Series Fuzzy Inference Development Support System -  
Fuzzy Inference Debugger  
Other Documents  
Document No.  
Document Name  
Japanese  
English  
IC Package Manual  
C10943X  
Semiconductor Device Mounting Technology Manual  
Quality Grades on NEC Semiconductor Device  
NEC Semiconductor Device Reliability/Quality Control System  
Electrostatic Discharge (ESD) Test  
C11535J  
C11531J  
C10983J  
MEM-539  
C11893J  
U11416J  
C10535E  
C11531E  
C10983E  
Guide to Quality Assurance for Semiconductor Device  
Guide for Products Related to Microcomputer: Other Companies  
MEI-1202  
Caution The contents of the above related documents are subject to change without notice. The latest  
documents should be used for designing, etc.  
71  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction  
of the gate oxide and ultimately degrade the device operation. Steps must  
be taken to stop generation of static electricity as much as possible, and  
quickly dissipate it once, when it has occurred. Environmental control must  
be adequate. When it is dry, humidifier should be used. It is recommended  
to avoid using insulators that easily build static electricity. Semiconductor  
devices must be stored and transported in an anti-static container, static  
shielding bag or conductive material. All test and measurement tools  
including work bench and floor should be grounded. The operator should  
be grounded using wrist strap. Semiconductor devices must not be touched  
with bare hands. Similar precautions need to be taken for PW boards with  
semiconductor devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input  
level may be generated due to noise, etc., hence causing malfunction. CMOS  
device behave differently than Bipolar or NMOS devices. Input levels of  
CMOS devices must be fixed high or low by using a pull-up or pull-down  
circuitry. Each unused pin should be connected to VDD or GND with a  
resistor, if it is considered to have a possibility of being an output pin. All  
handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Produc-  
tion process of MOS does not define the initial operation status of the device.  
Immediately after the power source is turned ON, the devices with reset  
function have not yet been initialized. Hence, power-on does not guarantee  
out-pin levels, I/O settings or contents of registers. Device is not initialized  
until the reset signal is received. Reset operation must be executed imme-  
diately after power-on for devices having reset function.  
72  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
product in your application, please contact the NEC office in your country to obtain a list of authorized  
representatives and distributors. They will verify:  
• Device availability  
• Ordering information  
• Product release schedule  
• Availability of related technical literature  
• Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
• Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
NEC Electronics Inc. (U.S.)  
Santa Clara, California  
Tel: 408-588-6000  
800-366-9782  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
NEC Electronics (Germany) GmbH  
Benelux Office  
Eindhoven, The Netherlands  
Tel: 040-2445845  
Fax: 2886-9022/9044  
Fax: 408-588-6130  
800-729-9288  
Fax: 040-2444580  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Seoul, Korea  
Tel: 02-528-0303  
Fax: 02-528-4411  
NEC Electronics (France) S.A.  
Velizy-Villacoublay, France  
Tel: 01-30-67 58 00  
NEC Electronics (Germany) GmbH  
Duesseldorf, Germany  
Tel: 0211-65 03 02  
Fax: 01-30-67 58 99  
Fax: 0211-65 03 490  
NEC Electronics Singapore Pte. Ltd.  
United Square, Singapore 1130  
Tel: 65-253-8311  
NEC Electronics (France) S.A.  
Spain Office  
Madrid, Spain  
NEC Electronics (UK) Ltd.  
Milton Keynes, UK  
Tel: 01908-691-133  
Fax: 65-250-3583  
Tel: 01-504-2787  
Fax: 01908-670-290  
Fax: 01-504-2860  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-719-2377  
NEC Electronics Italiana s.r.1.  
Milano, Italy  
NEC Electronics (Germany) GmbH  
Scandinavia Office  
Tel: 02-66 75 41  
Fax: 02-719-5951  
Taeby, Sweden  
Fax: 02-66 75 42 99  
Tel: 08-63 80 820  
NEC do Brasil S.A.  
Cumbica-Guarulhos-SP, Brasil  
Tel: 011-6465-6810  
Fax: 08-63 80 388  
Fax: 011-6465-6829  
J98. 2  
73  
µPD78011F, 78012F, 78013F, 78014F, 78015F, 78016F, 78018F  
FIP and IEBus are trademarks of NEC Corporation.  
MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation  
in the United States and/or other countries.  
IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.  
HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company.  
SPARCstation is a trademark of SPARC International, Inc.  
SunOS is a trademark of Sun Microsystems, Inc.  
NEWS and NEWS-OS are trademarks of Sony Corporation.  
The related documents referred to in this publication may include preliminary versions.  
However, preliminary versions are not marked as such.  
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited  
without governmental license, the need for which must be judged by the customer. The export or re-export of this product  
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 96.5  

相关型号:

UPD78011FGCA-XXX-AB8

8-BIT, MROM, MICROCONTROLLER, PQFP64, 14 X 14 MM, PLASTIC, QFP-64
NEC

UPD78011FGK-XXX-8A8

MICROCONTROLLER|8-BIT|UPD78K0 CPU|CMOS|QFP|64PIN|PLASTIC
ETC

UPD78011FYCW-XXX

Microcontroller, 8-Bit, MROM, MOS, PDIP64, 0.750 INCH, SHRINK, PLASTIC, DIP-64
NEC

UPD78011FYGC-XXX-AB8

Microcontroller, 8-Bit, MROM, MOS, PQFP64, 14 X 14 MM, PLASTIC, QFP-64
NEC

UPD78011HCW(A)-XXX

8-Bit Microcontroller
ETC

UPD78011HCW-XXX

Microcontroller, 8-Bit, MROM, 10MHz, CMOS, PDIP64, 0.750 INCH, PLASTIC, SHRINK, DIP-64
NEC

UPD78011HCWA-XXX

8-BIT, MROM, MICROCONTROLLER, PDIP64, 0.750 INCH, SHRINK, PLASTIC, DIP-64
NEC

UPD78011HGC(A)-XXX-AB8

8-Bit Microcontroller
ETC

UPD78011HGC-XXX-AB8

8-Bit Microcontroller
ETC

UPD78011HGK-XXX-8A8

Microcontroller, 8-Bit, MROM, 10MHz, CMOS, PQFP64, 12 X 12 MM, PLASTIC, LQFP-64
NEC

UPD78011YCW-XXX

8-Bit Microcontroller
ETC

UPD78011YGC-XXX-AB8

8-Bit Microcontroller
ETC