UPD78011HCWA-XXX [NEC]

8-BIT, MROM, MICROCONTROLLER, PDIP64, 0.750 INCH, SHRINK, PLASTIC, DIP-64;
UPD78011HCWA-XXX
型号: UPD78011HCWA-XXX
厂家: NEC    NEC
描述:

8-BIT, MROM, MICROCONTROLLER, PDIP64, 0.750 INCH, SHRINK, PLASTIC, DIP-64

时钟 光电二极管 外围集成电路
文件: 总66页 (文件大小:490K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
8-BIT SINGLE-CHIP MICROCONTROLLER  
DESCRIPTION  
Compared to the µPD78011H, 78012H, 78013H, and 78014H (standard models), the µPD78011H(A), 78012H(A),  
78013H(A), and 78014H(A) employ a stricter quality-assurance program. (NEC calls this quality grade “special grade”).  
The µPD78011H(A), 78012H(A), 78013H(A), and 78014H(A) are the products in the µPD78014H subseries within the  
78K/0 series.  
Compared with the older µPD78018F subseries, this subseries reduces the EMI (Electro Magnetic Interface) noise  
generated from the microcontroller.  
Functions are described in detail in the following User's Manual, which should be read when carring out design  
work.  
µPD78014H Subseries User's Manual: Planned to publish  
78K/0 Series User’s Manual – Instruction: IEU-1372  
FEATURES  
Low EMI noise model  
Large on-chip ROM & RAM  
Item  
Program  
Data Memory  
Memory  
(ROM)  
Internal High-  
Internal  
Package  
Product Name  
Speed RAM  
512 bytes  
Buffer RAM  
µPD78011H(A)  
µPD78012H(A)  
µPD78013H(A)  
µPD78014H(A)  
8K bytes  
32 bytes  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 14 mm)  
16K bytes  
24K bytes  
32K bytes  
1024 bytes  
External memory expansion space : 64K bytes  
Instruction execution time can be varied from high-speed (0.4 µs) to ultra-low-speed (122 µs)  
I/O ports: 53 (N-ch open-drain : 4)  
8-bit resolution A/D converter : 8 channels  
Serial interface : 2 channels  
Timer : 5 channels  
Supply voltage : VDD = 1.8 to 5.5 V  
APPLICATION FIELD  
Control unit of automotive, gas leak breaker, and safety devices, etc.  
The information in this document is subject to change without notice.  
Document No. U12174EJ1V0DS00 (1st edition)  
Date Published March 1997 N  
Printed in Japan  
1997  
©
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
ORDERING INFORMATION  
Part Number  
Package  
µPD78011HCW(A)-×××  
µPD78011HGC(A)-×××-AB8  
µPD78012HCW(A)-×××  
µPD78012HGC(A)-×××-AB8  
µPD78013HCW(A)-×××  
µPD78013HGC(A)-×××-AB8  
µPD78014HCW(A)-×××  
µPD78014HGC(A)-×××-AB8  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 14 mm)  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 14 mm)  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 14 mm)  
64-pin plastic shrink DIP (750 mil)  
64-pin plastic QFP (14 × 14 mm)  
Remark ××× indicates ROM code No.  
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by  
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.  
2
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
78K/0 Series Expansion  
The following shows the 78K/0 Series products development. Subseries name are shown inside frames.  
Products in mass production  
Products under development  
Y subseries products are compatible with I2C bus.  
Control  
EMI-noise reduced version of  
µ
PD78078  
PD78075B  
PD78078  
µPD78075BY  
µPD78078Y  
µ
µ
100-pin  
100-pin  
100-pin  
100-pin  
80-pin  
A timer was added to the PD78054 and external interface was enhanced  
µ
µPD78070A  
PD780018Note  
PD780058  
µPD78070AY  
PD780018YNote  
PD780058YNote  
µPD78058FY  
µ
ROM-less version of the PD78078  
Serial I/O of the  
Serial I/O of the  
µ
µ
PD78078 was enhanced and the function is limited.  
PD78054 was enhanced and EMI-noise was reduced.  
µ
µ
µ
µ
EMI-noise reduced version of the PD78054  
µ
µPD78058F  
PD78054  
80-pin  
µ
UART and D/A converter were enhanced to the PD78014 and I/O was enhanced  
80-pin  
PD78054Y  
PD780034Y  
PD780024Y  
µ
µ
µ
µ
PD780034  
µ
A/D converter of the  
µ
PD780024 was enhanced  
64-pin  
PD780024  
64-pin  
64-pin  
µ
µ
Serial I/O of the PD78018F was added and EMI-noise was reduced.  
µ
EMI-noise reduced version of PD78018F  
µ
PD78014H  
PD78018F  
PD78014  
Low-voltage (1.8 V) operation version of the PD78014, with larger selection of ROM and RAM capacities  
µ
64-pin  
µ
µ
PD78018FY  
PD78014Y  
µ
µ
µ
µ
µ
An A/D converter and 16-bit timer were added to the PD78002  
µ
64-pin  
An A/D converter was added to the PD78002  
µ
PD780001  
64-pin  
µPD78002Y  
Basic subseries for control  
PD78002  
PD78083  
64-pin  
On-chip UART, capable of operating at low voltage (1.8 V)  
42/44-pin  
Inverter control  
µ
A/D converter of the PD780924 was enhanced  
64-pin  
64-pin  
PD780964  
µ
On-chip inverter control circuit and UART. EMI-noise was reduced.  
PD780924  
µ
FIPTM drive  
The I/O and FIP C/D of the  
The I/O and FIP C/D of the  
µ
µ
PD78044F were enhanced, Display output total: 53  
PD78044H were enhanced, Display output total: 48  
100-pin  
100-pin  
80-pin  
PD780208  
PD780228  
PD78044H  
µ
µ
µ
78K/0  
Series  
µ
An N-ch open drain I/O was added to the PD78044F, Display output total: 34  
Basic subseries for driving FIP, Display output total: 34  
80-pin  
PD78044F  
µ
LCD drive  
100-pin  
100-pin  
100-pin  
PD780308  
PD78064B  
µ
PD780308Y  
PD78064Y  
µ
µ
The SIO of the µPD78064 was enhanced, and ROM, RAM capacity increased  
µ
EMI-noise reduced version of the PD78064  
µ
µ
PD78064  
Basic subseries for driving LCDs, On-chip UART  
IEBusTM supported  
µ
An IEBus controller was added to the PD78054  
80-pin  
64-pin  
µPD78098  
LV  
µPD78P0914  
On-chip PWM output, LV digital code decoder, and Hsync counter  
Note Under planning  
3
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
The following lists the main functional differences between subseries products.  
Function  
Timer  
ROM  
8-bit 10-bit 8-bit  
A/D A/D D/A  
VDD MIN.  
Value  
External  
Serial Interface  
I/O  
88  
Capacity  
Expansion  
Subseries Name  
8-bit 16-bit Watch WDT  
Control µPD78075B 32K-40K  
4ch 1ch 1ch 1ch 8ch  
2ch 3ch (UART: 1ch)  
1.8 V  
µPD78078  
48K-60K  
µPD78070A  
61  
2.7 V  
µPD780018 48K-60K  
µPD780058 24K-60K  
µPD78058F 48K-60K  
2ch (time division 3-wire: 1ch) 88  
2ch  
2ch 3ch (time division UART: 1ch) 68  
1.8 V  
2.7 V  
2.0 V  
1.8 V  
3ch (UART: 1ch)  
69  
51  
53  
µPD78054  
16K-60K  
µPD780034 8K-32K  
µPD780024  
8ch  
3ch (UART: 1ch,  
time division 3-wire: 1ch)  
8ch  
µPD78014H  
2ch  
1.8 V  
2.7 V  
µPD78018F 8K-60K  
µPD78014  
8K-32K  
µPD780001 8K  
1ch  
1ch  
39  
53  
33  
47  
µPD78002  
µPD78083  
8K-16K  
8ch  
1ch (UART: 1ch)  
2ch (UART: 2ch)  
1.8 V  
2.7 V  
Inverter µPD780964 8K-32K  
3ch Note  
1ch  
8ch  
control  
µPD780924  
8ch  
FIP  
µPD780208 32K-60K  
µPD780228 48K-60K  
µPD78044H 32K-48K  
µPD78044F 16K-40K  
µPD780308 48K-60K  
µPD78064B 32K  
2ch 1ch 1ch 1ch 8ch  
3ch  
2ch  
1ch  
74  
72  
68  
2.7 V  
4.5 V  
2.7 V  
drive  
2ch 1ch 1ch  
2ch  
LCD  
drive  
2ch 1ch 1ch 1ch 8ch  
3ch (time division UART: 1ch) 57  
2ch (UART: 1ch)  
1.8 V  
2.0 V  
µPD78064  
µPD78098  
16K-32K  
32K-60K  
IEBus  
2ch 1ch 1ch 1ch 8ch  
2ch 3ch (UART: 1ch)  
69  
54  
2.7 V  
4.5 V  
supported  
LV  
µPD78P0914 32K  
6ch  
1ch 8ch  
2ch  
Note 10-bit timer: 1 channel  
4
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
OVERVIEW OF FUNCTION  
Item  
µPD78011H(A)  
µPD78012H(A)  
µPD78013H(A)  
µPD78014H(A)  
Product Name  
ROM  
8K bytes  
16K bytes  
24K bytes  
32K bytes  
High-speed  
512 bytes  
1024 bytes  
Internal  
memory  
RAM  
Buffer RAM  
32 bytes  
64K bytes  
Memory space  
General-purpose registers  
Instruction cycle  
8 bits × 32 registers (8 bits × 8 registers × 4 banks)  
On-chip instruction execution time cycle modification function  
When main system  
clock selected  
0.4 µs/0.8 µs/1.6 µs/3.2 µs/6.4 µs (at 10.0 MHz operation)  
When subsystem  
clock selected  
122 µs (at 32.768 kHz operation)  
Instruction set  
• 16-bit operation  
• Multiplication/division (8 bits × 8 bits,16 bits ÷ 8 bits)  
• Bit manipulation (set, reset, test, boolean operation)  
• BCD correction, etc.  
I/O ports  
Total  
: 53  
: 02  
: 47  
• CMOS input  
• CMOS I/O  
• N-channel open-drain I/O  
(15 V withstand voltage)  
: 04  
A/D converter  
Serial interface  
Timer  
• 8-bit resolution × 8 channels  
• Operable over a wide power supply voltage range: AVDD = 1.8 to 5.5 V  
• 3-wire serial I/O/SBI /2-wire serial I/O mode selectable: 1 channel  
• 3-wire serial I/O mode (on-chip max. 32 bytes automatic data transmit/receive function): 1 channel  
• 16-bit timer/event counter : 1 channel  
• 8-bit timer/event counter  
• Watch timer  
: 2 channels  
: 1 channel  
: 1 channel  
• Watchdog timer  
Timer output  
Clock output  
3 (14-bit PWM output × 1)  
39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz (at main system clock: 10.0 MHz  
operation), 32.768 kHz (at subsystem clock: 32.768 kHz operation)  
Buzzer output  
2.4 kHz, 4.9 kHz, 9.8 kHz (at main system clock: 10.0 MHz operation)  
Maskable  
Vectored  
interrupt  
sources  
Internal : 8, External : 4  
Internal : 1  
Non-maskable  
Software  
1
Internal : 1, External : 1  
Test input  
VDD = 1.8 to 5.5 V  
TA = –40 to +85°C  
Supply voltage  
Operating ambient  
temperature  
Package  
• 64-pin plastic shrink DIP (750 mil)  
• 64-pin plastic QFP (14 × 14 mm)  
5
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
TABLE OF CONTENTS  
1. PIN CONFIGURATION (Top View) ......................................................................................................... 7  
2. BLOCK DIAGRAM ................................................................................................................................... 10  
3. PIN FUNCTIONS ...................................................................................................................................... 11  
3.1 PORT PINS ........................................................................................................................................................ 11  
3.2 OTHER PORTS ................................................................................................................................................. 12  
3.3 PIN I/O CIRCUIT AND RECOMMENDED CONNECTION OF UNUSED PINS ................................................ 14  
4. MEMORY SPACE .................................................................................................................................... 16  
5. PERIPHERAL HARDWARE FUNCTION FEATURES ............................................................................ 17  
5.1 PORTS ............................................................................................................................................................... 17  
5.2 CLOCK GENERATOR....................................................................................................................................... 18  
5.3 TIMER/EVENT COUNTER ................................................................................................................................ 19  
5.4 CLOCK OUTPUT CONTROL CIRCUIT ............................................................................................................ 21  
5.5 BUZZER OUTPUT CONTROL CIRCUIT........................................................................................................... 21  
5.6 A/D CONVERTER.............................................................................................................................................. 22  
5.7 SERIAL INTERFACES ...................................................................................................................................... 23  
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS.............................................................................. 25  
6.1 INTERRUPT FUNCTIONS................................................................................................................................. 25  
6.2 TEST FUNCTIONS ............................................................................................................................................ 28  
7. EXTERNAL DEVICE EXPANSION FUNCTIONS ................................................................................... 29  
8. STANDBY FUNCTIONS........................................................................................................................... 29  
9. RESET FUNCTIONS ................................................................................................................................ 29  
10. INSTRUCTION SET ................................................................................................................................. 30  
11. ELECTRICAL SPECIFICATIONS ............................................................................................................ 33  
12. PACKAGE DRAWINGS ........................................................................................................................... 57  
13. RECOMMENDED SOLDERING CONDITIONS ..................................................................................... 59  
APPENDIX A. DEVELOPMENT TOOLS ......................................................................................................... 60  
APPENDIX B. RELATED DOCUMENTS ........................................................................................................ 62  
6
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
1. PIN CONFIGURATION (Top View)  
64-Pin Plastic Shrink DIP (750 mil)  
µPD78011HCW(A)-×××, 78012HCW(A)-×××, 78013HCW(A)-×××, 78014HCW(A)-×××  
P20/SI1  
P21/SO1  
P22/SCK1  
P23/STB  
P24/BUSY  
P25/SI0/SB0  
P26/SO0/SB1  
P27/SCK0  
P30/TO0  
P31/TO1  
P32/TO2  
P33/TI1  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AVREF  
2
AVDD  
3
P17/ANI7  
P16/ANI6  
P15/ANI5  
P14/ANI4  
P13/ANI3  
P12/ANI2  
P11/ANI1  
P10/ANI0  
AVSS  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P04/XT1  
XT2  
P34/TI2  
P35/PCL  
P36/BUZ  
P37  
IC  
X1  
X2  
V
SS  
V
DD  
P40/AD0  
P41/AD1  
P42/AD2  
P43/AD3  
P44/AD4  
P45/AD5  
P46/AD6  
P47/AD7  
P50/A8  
P03/INTP3  
P02/INTP2  
P01/INTP1  
P00/INTP0/TI0  
RESET  
P67/ASTB  
P66/WAIT  
P65/WR  
P64/RD  
P63  
P51/A9  
P52/A10  
P53/A11  
P54/A12  
P55/A13  
P62  
P61  
P60  
P57/A15  
P56/A14  
V
SS  
Cautions 1. Always connect the IC (Internally Connected) pin to VSS directly.  
2. The AVDD pin is multiplexed with an A/D converter power pin and a port power pin. In an applica-  
tion where the noise generated from the microcontroller must be reduced, connect the AVDD pin  
to a power supply of the same voltage as VDD.  
3. The AVSS pin is multiplexed with an A/D converter ground pin and a port ground pin. In an  
application where the noise generated from the microcontroller must be reduced, connect AVSS  
pin to a ground line separate from VSS.  
7
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
64-Pin Plastic QFP (14 × 14 mm)  
µPD78011HGC(A)-×××-AB8, 78012HGC(A)-×××-AB8, 78013HGC(A)-×××-AB8, 78014HGC(A)-×××-AB8  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
P30/TO0  
P31/TO1  
P32/TO2  
P33/TI1  
P34/TI2  
P35/PCL  
P36/BUZ  
P37  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P11/ANI1  
P10/ANI0  
AVSS  
2
3
4
P04/XT1  
XT2  
5
6
IC  
7
X1  
8
X2  
V
SS  
9
VDD  
P40/AD0  
P41/AD1  
P42/AD2  
P43/AD3  
P44/AD4  
P45/AD5  
P46/AD6  
10  
11  
12  
13  
14  
15  
16  
P03/INTP3  
P02/INTP2  
P01/INTP1  
P00/INTP0/TI0  
RESET  
P67/ASTB  
P66/WAIT  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Cautions 1. Always connect the IC (Internally Connected) pin to VSS directly.  
2. The AVDD pin is multiplexed with an A/D converter power pin and a port power pin. In an applica-  
tion where the noise generated from the microcontroller must be reduced, connect the AVDD pin  
to a power supply of the same voltage as VDD.  
3. The AVSS pin is multiplexed with an A/D converter ground pin and a port ground pin. In an  
application where the noise generated from the microcontroller must be reduced, connect AVSS  
pin to a ground line separate from VSS.  
8
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
A8-A15  
AD0-AD7  
ANI0-ANI7  
ASTB  
: Address Bus  
: Address/Data Bus  
: Analog Input  
: Address Strobe  
: Analog Power Supply  
: Analog Reference Voltage  
: Analog Ground  
: Busy  
P60-P67  
PCL  
: Port 6  
: Programmable Clock  
: Read Strobe  
: Reset  
RD  
RESET  
SB0, SB1  
SCK0, SCK1  
SI0, SI1  
SO0, SO1  
STB  
AVDD  
: Serial Bus  
AVREF  
: Serial Clock  
: Serial Input  
AVSS  
BUSY  
: Serial Output  
: Strobe  
BUZ  
: Buzzer Clock  
: Internally Connected  
: Interrupt from Peripherals  
: Port 0  
IC  
TI0-TI2  
TO0-TO2  
VDD  
: Timer Input  
INTP0-INTP3  
P00-P04  
P10-P17  
P20-P27  
P30-P37  
P40-P47  
P50-P57  
: Timer Output  
: Power Supply  
: Ground  
: Port 1  
VSS  
: Port 2  
WAIT  
: Wait  
: Port 3  
WR  
: Write Strobe  
: Crystal (Main System Clock)  
: Crystal (Subsystem Clock)  
: Port 4  
X1, X2  
XT1, XT2  
: Port 5  
9
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
2. BLOCK DIAGRAM  
TO0/P30  
P00  
16-bit TIMER/  
EVENT COUNTER  
PORT0  
TI0/INTP0/P00  
P01-P03  
P04  
TO1/P31  
TI1/P33  
8-bit TIMER/  
EVENT COUNTER 1  
PORT1  
PORT2  
PORT3  
PORT4  
PORT5  
PORT6  
P10-P17  
P20-P27  
P30-P37  
P40-P47  
P50-P57  
P60-P67  
TO2/P32  
TI2/P34  
8-bit TIMER/  
EVENT COUNTER 2  
WATCHDOG TIMER  
WATCH TIMER  
78K/0  
CPU CORE  
ROM  
SI0/SB0/P25  
SO0/SB1/P26  
SCK0/P27  
SERIAL  
INTERFACE 0  
SI1/P20  
SO1/P21  
SCK1/P22  
STB/P23  
AD0/P40-  
AD7/P47  
SERIAL  
INTERFACE 1  
A8/P50-  
A15/P57  
BUSY/P24  
EXTERNAL  
ACCESS  
RAM  
RD/P64  
ANI0/P10-  
ANI7/P17  
WR/P65  
WAIT/P66  
ASTB/P67  
A/D CONVERTER  
AVREF  
RESET  
X1  
INTP0/P00-  
INTP3/P03  
INTERRUPT  
CONTROL  
SYSTEM  
CONTROL  
X2  
XT1  
XT2  
BUZZER OUTPUT  
BUZ/P36  
PCL/P35  
CLOCK OUTPUT  
CONTROL  
V
DD  
VSS AVDD AVSS IC  
Remark Internal ROM & RAM capacity varies depending on the product.  
10  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
3. PIN FUNCTIONS  
3.1 PORT PINS (1/2)  
Dual-  
Pin Name  
P00  
I/O  
Function  
On Reset  
Input  
Function Pin  
Port 0  
Input  
INTP0/TI0  
Input only  
5-bit I/O port  
Input/output can be specified bit-wise.  
When used as an input port, on-chip pull-up  
resistor can be used by software.  
Input  
Input/  
P01  
P02  
P03  
P04  
INTP1  
output  
INTP2  
INTP3  
Note 1  
Input  
Input only  
Input  
Input  
XT1  
Port 1  
Input/  
P10 to P17  
ANI0 to ANI7  
8-bit input/output port.  
output  
Input/output can be specified bit-wise.  
When used as an input port, on-chip pull-up resistor can be used  
Note 2  
by software.  
Input  
Input/  
P20  
Port 2  
SI1  
output  
8-bit input/output port.  
P21  
SO1  
Input/output can be specified bit-wise.  
When used as an input port, on-chip pull-up resistor can be used  
by software.  
P22  
SCK1  
STB  
P23  
P24  
BUSY  
SI0/SB0  
SO0/SB1  
SCK0  
TO0  
P25  
P26  
P27  
Input  
Input/  
Port 3  
P30  
output  
8-bit input/output port.  
P31  
TO1  
Input/output can be specified in 1-bit units.  
When used as an input port, on-chip pull-up resistor can be used  
by software.  
P32  
TO2  
P33  
TI1  
P34  
TI2  
P35  
PCL  
P36  
BUZ  
P37  
Input/  
P40 to P47  
Port 4  
Input  
AD0 to AD7  
output  
8-bit input/output port.  
Input/output can be specified in 8-bit unit.  
When used as an input port, on-chip pull-up resistor can be used  
by software.  
Test input flag (KRIF) is set to 1 by falling edge detection.  
Notes 1. When using the P04/XT1 pin as an input port pin, set bit 6 (FRC) of the processor clock control register  
(PCC) to 1 (do not use the internal feedback resistor of the subsystem clock oscillation circuit).  
2. When using the P10/ANI0 through P17/ANI7 pins as the analog input pins of the A/D converter, the internal  
pull-up resistors are automatically not used.  
11  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
3.1 PORT PINS (2/2)  
Dual-  
Pin Name  
I/O  
Function  
On Reset  
Input  
Function Pin  
Port 5  
P50 to P57  
Input/  
A8 to A15  
8-bit input/output port.  
LED can be driven directly.  
output  
Input/output can be specified bit-wise.  
When used as an input port, on-chip pull-up resistor can be used by  
software.  
P60  
P61  
P62  
P63  
P64  
P65  
P66  
P67  
Input  
Input/  
Port 6  
N-ch open-drain input/output port.  
output  
8-bit input/output port.  
On-chip pull-up resistor can be  
Input/output can be specified  
specified by mask option.  
bit-wise.  
LED can be driven directly.  
RD  
When used as an input port, on-chip  
pull-up resistor can be used by soft-  
ware.  
WR  
WAIT  
ASTB  
Caution Do not manipulate the pins multiplexed with a port pin as follows during A/D conversion; otherwise,  
the rated total error during A/D conversion may not be satisfied.  
<1> Rewriting the contents of the output latch when the pin is used as an output port pin.  
<2> Changing the output level of the pin used as an output pin even when the pin is not used as a  
port pin.  
3.2 OTHER PORTS (1/2)  
Dual-  
Pin Name  
INTP0  
I/O  
Function  
On Reset  
Input  
Function Pin  
P00/TI0  
P01  
Input  
External interrupt request input by which the effective edge (rising  
edge, falling edge, or both rising edge and falling edge) can be  
specified.  
INTP1  
INTP2  
INTP3  
SI0  
P02  
P03  
Falling edge detection external interrupt request input.  
Serial interface serial data input.  
Input  
Input  
Input  
Input  
Input  
P25/SB0  
P20  
SI1  
SO0  
P26/SB1  
P21  
Output  
Serial interface serial data output.  
SO1  
SB0  
Input  
Serial interface serial data input/output.  
Serial interface serial clock input/output.  
P25/SI0  
P26/SO0  
P27  
/output  
SB1  
Input  
SCK0  
SCK1  
STB  
/output  
P22  
Serial interface automatic transmit/receive strobe output.  
Serial interface automatic transmit/receive busy input.  
Input  
Input  
Output  
Input  
P23  
BUSY  
P24  
12  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
3.2 OTHER PORTS (2/2)  
Dual-  
Function Pin  
On Reset  
Input  
Pin Name  
TI0  
I/O  
Function  
External count clock input to 16-bit timer (TM0).  
External count clock input to 8-bit timer (TM1).  
External count clock input to 8-bit timer (TM2).  
Input  
P00/INTP0  
P33  
TI1  
TI2  
P34  
Output  
16-bit timer (TM0) output (multiplexed with 14-bit PWM output).  
8-bit timer (TM1) output.  
Input  
TO0  
P30  
TO1  
P31  
8-bit timer (TM2) output.  
TO2  
P32  
Input  
Input  
PCL  
Clock output (for main system clock, subsystem clock trimming).  
Buzzer output.  
Output  
Output  
P35  
BUZ  
P36  
Input  
AD0 to AD7  
Low-order address/data bus at external memory expansion.  
P40 to P47  
Input  
/output  
Input  
Input  
A8 to A15  
RD  
High-order address bus at external memory expansion.  
External memory read operation strobe signal output.  
External memory write operation strobe signal output.  
Wait insertion at external memory access.  
Output  
Output  
P50 to P57  
P64  
WR  
P65  
Input  
Input  
WAIT  
ASTB  
Input  
P66  
Strobe output which latches the address information output at port 4 and  
port 5 to access external memory.  
Output  
P67  
ANI0 to ANI7  
AVREF  
AVDD  
AVSS  
RESET  
X1  
A/D converter analog input.  
Input  
P10 to P17  
Input  
Input  
A/D converter reference voltage input.  
P04  
A/D converter analog power supply (multiplexed with a port power pin).  
A/D converter ground potential (multiplexed with a port ground pin).  
System reset input.  
Input  
Input  
Main system clock oscillation crystal connection.  
X2  
XT1  
Subsystem clock oscillation crystal connection.  
Input  
Input  
XT2  
VDD  
Positive power supply (except port pins).  
Ground potential (except port pins).  
VSS  
IC  
Internal connection. Connected to VSS directly.  
Cautions 1. The AVDD pin is multiplexed with an A/D converter power pin and a port power pin. In an applica-  
tion where the noise generated from the microcontroller must be reduced, connect the AVDD pin  
to a power supply of the same voltage as VDD.  
2. The AVSS pin is multiplexed with an A/D converter ground pin and a port ground pin. In an  
application where the noise generated from the microcontroller must be reduced, connect AVSS  
pin to a ground line separate from VSS.  
13  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
3.3 PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS  
The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1.  
For the input/output circuit configuration of each type, see Figure 3-1.  
Table 3-1. Input/Output Circuit Type of Each Pin  
Input/output  
Circuit Type  
Pin Name  
I/O  
Recommended Connection when Not Used  
P00/INTP0/TI0  
P01/INTP1  
P02/INTP2  
P03/INTP3  
P04/XT1  
2
Input  
Connected to VSS .  
8-D  
Input/output  
Individually connected to VSS via resistor.  
16  
Input  
Connected to VDD or VSS.  
P10/ANI0 to P17/ANI7  
P20/SI1  
11-C  
8-D  
5-J  
Input/output  
Individually connected to VDD or VSS via resisitor.  
P21/SO1  
P22/SCK1  
P23/STB  
8-D  
5-J  
P24/BUSY  
P25/SI0/SB0  
P26/SO0/SB1  
P27/SCK0  
P30/TO0  
8-D  
10-C  
5-J  
P31/TO1  
P32/TO2  
P33/TI1  
8-D  
5-J  
P34/TI2  
P35/PCL  
P36/BUZ  
P37  
P40/AD0 to P47/AD7  
P50/A8 to P57/A15  
P60 to P63  
P64/RD  
5-O  
5-J  
Individually connected to VDD via resistor.  
Individually connected to VDD or VSS via resistor.  
Individually connected to VDD via resistor.  
Individually connected to VDD or VSS via resistor.  
13-I  
5-J  
P65/WR  
P66/WAIT  
P67/ASTB  
RESET  
2
Input  
XT2  
16  
Leave open.  
AVREF  
Connected to VSS .  
Connected to VDD .  
Connected to VSS .  
Connected to VSS directly.  
AVDD  
AVSS  
IC  
14  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
Figure 3-1. Pin Input/Output Circuits  
Type 2  
Type 10-C  
pullup  
AVDD  
P-ch  
enable  
IN  
AVDD  
P-ch  
data  
IN / OUT  
open drain  
output disable  
N-ch  
AVSS  
Schmitt-Triggered Input with Hysteresis Characteristic  
Type 5-J  
Type 11-C  
AVDD  
AVDD  
P-ch  
pullup  
enable  
pullup  
enable  
P-ch  
AVDD  
data  
P-ch  
AVDD  
P-ch  
IN / OUT  
data  
N-ch  
output  
disable  
Comparator  
P-ch  
N-ch  
IN / OUT  
AVSS  
+
output  
disable  
N-ch  
AVSS  
AVSS  
REF (Threshold Voltage)  
V
input  
enable  
input  
enable  
Type 5-O  
Type 13-I  
AVDD  
AVDD  
Mask  
Option  
pullup  
enable  
IN / OUT  
P-ch  
data  
AVDD  
P-ch  
N-ch  
AVSS  
output disable  
data  
AVDD  
IN / OUT  
output  
disable  
RD  
P-ch  
N-ch  
AVSS  
Middle-High Voltage Input Buffer  
Type 8-D  
Type 16  
AVDD  
feedback  
cut-off  
pullup  
enable  
P-ch  
P-ch  
AVDD  
P-ch  
data  
IN / OUT  
output  
disable  
N-ch  
AVSS  
XT1  
XT2  
15  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
4. MEMORY SPACE  
The memory map of the µPD78011H(A), 78012H(A), 78013H(A), 78014H(A) is shown in Figure 4-1.  
Figure 4-1. Memory Map  
FFFFH  
Special Function Registers  
(SFR) 256 × 8 Bits  
FF00H  
FEFFH  
General-Purpose Registers  
32 × 8 Bits  
FEE0H  
FEDFH  
Internal High-Speed RAMNote  
mmmmH  
nnnnH  
mmmmH–1  
Use Prohibited  
Program Area  
CALLF Entry Area  
Program Area  
FAE0H  
FADFH  
Data  
1000H  
0FFFH  
Buffer RAM 32 × 8 Bits  
Memory  
Space  
FAC0H  
FABFH  
Use Prohibited  
0800H  
07FFH  
FA80H  
FA7FH  
Program  
Memory  
Space  
0080H  
007FH  
External Memory  
nnnnH+1  
nnnnH  
CALLT Table Area  
Vector Table Area  
0040H  
003FH  
Internal ROMNote  
0000H  
0000H  
Note Internal ROM and internal high-speed RAM capacities vary depending on the product (see the table below).  
Internal High-Speed RAM  
Intenal ROM End Address  
Start Address  
mmmmH  
Product Name  
nnnnH  
FD00H  
µPD78011H(A)  
µPD78012H(A)  
µPD78013H(A)  
µPD78014H(A)  
1FFFH  
3FFFH  
5FFFH  
7FFFH  
FB00H  
16  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
5. PERIPHERAL HARDWARE FUNCTION FEATURES  
5.1 PORTS  
The I/O port has the following three types  
• CMOS input (P00, P04)  
:
2
• CMOS input/output (P01 to P03, port 1 to port 5, P64 to P67)  
• N-ch open-drain input/output(15V withstand voltage) (P60 to P63)  
: 47  
:
4
Total  
: 53  
Table 5-1. Functions of Ports  
Port Name  
Port 0  
Pin Name  
Function  
P00, P04  
Dedicated Input port  
P01 to P03  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
Input/output ports. Input/output can be specified in 8-bit units.  
When used as an input port, pull-up resistor can be used by software.  
Test input flag (KRIF) is set to 1 by falling edge detection.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
LED can be driven directly.  
Port 1  
Port 2  
Port 3  
Port 4  
P10 to P17  
P20 to P27  
P30 to P37  
P40 to P47  
Port 5  
Port 6  
P50 to P57  
P60 to P63  
P64 to P67  
N-ch open-drain input/output port. Input/output can be specified bit-wise.  
On-chip pull-up resistor can be specified by mask option.  
LED can be driven directly.  
Input/output ports. Input/output can be specified bit-wise.  
When used as an input port, pull-up resistor can be used by software.  
17  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
5.2 CLOCK GENERATOR  
There are two types of clock generator: main system clock and subsystem clock.  
The instruction exection time can be changed.  
• 0.4µs/0.8µs/1.6µs/3.2µs/6.4µs (Main system clock: at 10.0 MHz operation)  
• 122µs (Subsystem clock: at 32.768 KHz operation)  
Figure 5-1. Clock Generator Block Diagram  
Watch Timer  
Clock Output  
Function  
XT1/P04  
Subsystem  
Clock  
Osicillator  
fXT  
XT2  
Prescaler  
Main  
X1  
X2  
fX  
Clock to  
Peripheral  
Hardware  
System  
Clock  
Prescaler  
Osicillator  
fX  
fX  
fX  
fX  
2
22  
23  
24  
STOP  
Wait  
Control  
Circuit  
Standby  
Control  
Circuit  
CPU Clock  
(fCPU)  
Selector  
INTP0  
Sampling Clock  
18  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
5.3 TIMER/EVENT COUNTER  
The following five channels are incorporated in the timer/event counter.  
• 16-bit timer/event counter  
• 8-bit timer/event counter  
• Watch timer  
: 1 channel  
: 2 channels  
: 1 channel  
: 1 channel  
• Watchdog timer  
Table 5-2. Types and Functions of Timer/Event Counter  
8-bit Timer/Event  
Counter  
16-bit Timer/Event  
Counter  
Watch Timer  
Watchdog Timer  
Type  
Interval timer  
1 channel  
1 channel  
1 output  
1 output  
1 input  
1 output  
2
2 channels  
1 channel  
1 channel  
Externanal event counter  
Timer output  
2 channels  
1
1
1
Functions  
2 outputs  
PWM output  
Pulse width mesurement  
Sqare wave output  
Interrupt request  
Test input  
2 outputs  
2
Figure 5-2. 16-bit Timer/Enent Counter Block Diagram  
Internal Bus  
16-Bit Compare  
Register (CR00)  
INTTM0  
PWM  
Pulse  
Output  
Control  
Circuit  
Output  
Control  
Circuit  
Match  
TO0/P30  
fX/2  
fX/22  
fX/23  
16-Bit Timer  
Register (TM0)  
Selector  
Edge  
Detection  
Circuit  
Selector  
Clear  
TI0/INTP0/P00  
INTP0  
16-Bit Capture  
Register (CR01)  
Internal Bus  
19  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
Figure 5-3. 8-bit Timer/Enent Counter Block Diagram  
Internal Bus  
INTIM1  
8-Bit Compare  
Register (CR10)  
8-Bit Compare  
Register (CR20)  
Output  
Control  
Circuit  
TO2/P32  
INTTM2  
Selector  
Match  
fX/22–fX/210  
8-Bit Timer  
Register 1 (TM1)  
Selector  
Selector  
fX/212  
8-Bit Timer  
Register 2 (TM2)  
Selector  
TI1/P33  
Clear  
Clear  
fX/22–fX/210  
Selector  
fX/212  
TI2/P34  
Output  
Control  
Circuit  
TO1/P31  
Internal Bus  
Figure 5-4. Watch Timer Block Diagram  
fW  
214  
Selector  
5-Bit Counter  
fX/28  
fXT  
fW  
Selector  
INTWT  
Prescaler  
Selector  
fW  
213  
fW  
24  
fW  
25  
fW  
fW  
27  
fW  
28  
fW  
29  
26  
Selector  
INTTM3  
20  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
Figure 5-5. Watchdog Timer Block Diagram  
fX  
24  
Prescaler  
fX  
26  
fX  
27  
fX  
28  
fX  
29  
fX  
210  
fX  
212  
fX  
25  
INTWDT  
Maskable  
Interrupt Request  
Control  
Circuit  
Selector  
RESET  
8-Bit Counter  
INTWDT  
Non-Maskable  
Interrupt Request  
5.4 CLOCK OUTPUT CONTROL CIRCUIT  
The clock with the following frequencies can be output for clock output.  
• 39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz (Main system clock: at 10.0 MHz operation)  
• 32.768 kHz (Subsystem clock: at 32.768 kHz operation)  
Figure 5-6. Clock Output Control Block Diagram  
fX/23  
fX/24  
fX/25  
Synchronization  
Circuit  
Output Control  
Circuit  
fX/26  
PCL/P35  
Selector  
fX/27  
fX/28  
fXT  
5.5 BUZZER OUTPUT CONTROL CIRCUIT  
The clock with the following frequencies can be output for buzzer output.  
• 2.4 kHz/4.9 kHz/9.8 kHz (Main system clock: at 10.0 MHz operation)  
Figure 5-7. Buzzer Output Control Block Diagram  
fX/210  
fX/211  
fX/212  
Output Control  
Circuit  
BUZ/P36  
Selector  
21  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
5.6 A/D CONVERTER  
The A/D converter has on-chip eight 8-bit resolution channels.  
There are the following two method to start A/D conversion.  
• Hardware starting  
• Software starting  
Figure 5-8. A/D Converter Block Diagram  
Series Resistor String  
AVDD  
Sample & Hold Circuit  
ANI0/P10  
ANI1/P11  
ANI2/P12  
ANI3/P13  
ANI4/P14  
ANI5/P15  
ANI6/P16  
ANI7/P17  
AVREF  
Voltage Comparator  
Tap  
Selector  
Selector  
Succesive Approximation  
Register (SAR)  
AVSS  
Falling  
Edge  
Detector  
Control  
Circuit  
INTAD  
INTP3  
INTP3/P03  
A/D Conversion  
Result Register (ADCR)  
Internal Bus  
Caution Do not manipulate the pins multiplexed with a port pin (refer to 3.1 PORT PINS) during A/D conversion;  
otherwise, the rated total error during A/D conversion may not be satisfied.  
<1> Rewriting the contents of the output latch when the pin is used as an output port pin.  
<2> Changing the output level of the pin used as an output pin even when the pin is not used as a port  
pin.  
22  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
5.7 SERIAL INTERFACES  
There are two on-chip clocked serial interfaces as follows.  
• Serial Interface channel 0  
• Serial Interface channel 1  
Table 5-3. Type and Function of Serial Interface  
Function  
3-wire serial I/O mode  
Serial Interface Channel 0  
Serial Interface Channel 1  
O (MSB/LSB-first switchable)  
O (MSB/LSB-first switchable)  
3-wire serial I/O mode with automatic data transmit/  
receive function  
O (MSB/LSB-first switchable)  
SBI (Serial Bus Interface) mode  
2-wire serial I/O mode  
O (MSB-first)  
O (MSB-first)  
Figure 5-9. Serial Interface Channel 0 Block Diagram  
Internal Bus  
SI0/SB0/P25  
SO0/SB1/P26  
Output  
Latch  
Serial I/O Shift  
Register 0 (SIO0)  
Selector  
Selector  
Busy/Acknowledge  
Output Circuit  
Bus Release/Command/  
Acknowledge Detection  
Circuit  
Interrupt  
Request  
Signal  
INTCSI0  
SCK0/P27  
Serial Clock Counter  
Generator  
fx/22–fx/29  
TO2  
Serial Clock  
Control Circuit  
Selector  
23  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
Figure 5-10. Serial Interface Channel 1 Block Diagram  
Internal Bus  
Automatic Data Transmit/  
Receive Address Pointer  
(ADTP)  
Buffer RAM  
Serial I/O Shift Register 1 (SIO1)  
SI1/P20  
SO1/P21  
STB/P23  
Handshake  
Control  
Circuit  
BUSY/P24  
Interrupt Request  
Signal Generator  
INTCSI1  
Serial Clock Counter  
SCK1/P22  
fX/22 – fX/29  
TO2  
Selector  
Serial Clock Control Circuit  
24  
µPD78011H(A), 78012H(A), 78013FH(A), 78014H(A)  
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS  
6.1 INTERRUPT FUNCTIONS  
There are the 14 interrupt sources of 3 different kind as shown below.  
• Non-maskable  
• Maskable  
:
1
: 12  
• Software  
:
1
Table 6-1. Interrupt Source List  
Interrupt Source  
Default  
Internal/  
External  
Vector Table  
Address  
Basic  
Note 1  
Interrupt Type  
Non-maskable  
Maskable  
Priority  
Configuratin  
Name  
Trigger  
Note 2  
Type  
–––  
0
INTWDT Watchdog timer overflow (with watchdog  
timer mode 1 selected)  
Internal  
0004H  
(A)  
(B)  
INTWDT Watchdog timer overflow (with interval  
timer mode selected)  
1
2
3
4
5
6
7
INTP0  
INTP1  
INTP2  
INTP3  
Pin input edge detection  
External  
0006H  
0008H  
000AH  
000CH  
000EH  
0010H  
0012H  
(C)  
(D)  
INTCSI0 Serial interface channel 0 transfer end  
INTCSI1 Serial interface channel 1 transfer end  
Internal  
(B)  
INTTM3 Reference time interval signal from  
watch timer  
8
9
INTTM0 16 bit timer/event counter match signal  
generation  
0014H  
0016H  
0018H  
INTTM1 8-bit timer/event counter 1 match signal  
generation  
10  
INTTM2 8-bit timer/event counter 2 match signal  
generation  
11  
INTAD  
BRK  
A/D converter conversion end  
BRK instruction execution  
001AH  
003EH  
Software  
–––  
(E)  
Notes 1. The default pririty is the priority applicable when more than one maskable interrupt is generated. 0 is the highest  
priority and 11, the lowest.  
2. Basic configuration types (A) to (E) correspond to (A) to (E) on the next page.  
25  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
Figure 6-1. Basic Interrupt Function Configuration (1/2)  
(A) Internal Non-Maskable Interrupt  
Internal Bus  
Vector Table  
Address  
Generator  
Interrupt  
Request  
Priority Control  
Circuit  
Standby Release  
Signal  
(B) Internal Maskable Interrupt  
Internal Bus  
PR  
ISP  
MK  
IE  
Vector Table  
Priority Control  
Circuit  
Address  
Interrupt  
Request  
IF  
Generator  
Standby Release  
Signal  
(C) External Maskable Interrupt (INTP0)  
Internal Bus  
MK  
Sampling Clock  
Select Register  
(SCS)  
External Interrupt  
Mode Register  
(INTM0)  
PR  
ISP  
IE  
Vector Table  
Address  
Generator  
Priority Control  
Circuit  
Interrupt  
Request  
Edge  
Detector  
Sampling  
Clock  
IF  
Standby Release  
Signal  
26  
µPD78011H(A), 78012H(A), 78013FH(A), 78014H(A)  
Figure 6-1. Basic Interrupt Function Configuration (2/2)  
(D) External Maskable Interrupt (Except INTP0)  
Internal Bus  
MK  
External Interrupt  
Mode Register  
(INTM0)  
PR  
ISP  
IE  
Vector Table  
Address  
Generator  
Priority Control  
Circuit  
Interrupt  
Request  
Edge  
Detector  
IF  
Standby Release  
Signal  
(E) Software Interrupt  
Internal Bus  
Vector Table  
Address  
Generator  
Priority Control  
Circuit  
Interrupt  
Request  
IF : Interrupt request flag  
IE : Interrupt enable flag  
ISP : In-service priority flag  
MK : Interrupt mask flag  
PR : Priority spcification flag  
27  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
6.2 TEST FUNCTIONS  
There are two test functions as shown in Table 6-2.  
Table 6-2. Test Source List  
Test Source  
Trigger  
Internal/External  
Name  
INTWT  
INTPT4  
Watch timer overflow  
Internal  
External  
Port 4 falling edge detection  
Figure 6-2. Test Function Basic Configuration  
Internal Bus  
MK  
Standby Release  
Signal  
Test  
Input  
IF  
IF : Test input flag  
MK : Test mask flag  
28  
µPD78011H(A), 78012H(A), 78013FH(A), 78014H(A)  
7. EXTERNAL DEVICE EXPANSION FUNCTIONS  
The external device expansion function is used to connect external devices to areas other than the internal ROM, RAM  
and SFR.  
Ports 4 to 6 are used for connection with external devices.  
8. STANDBY FUNCTIONS  
There are the following two standby functions to reduce the current dissipation.  
• HALT mode  
: The CPU operating clock is stopped. The average consumption current can be reduced by intermittent  
operation in combination with the normal operat ing mode.  
• STOP mode : The main system clock oscillation is stopped. The whole operation by the main system clock  
is stopped, so that the system operates withultra-low power consumption using only the subsystem  
clock.  
Figure 8-1. Standby Functions  
CSS=1  
Main System  
Clock Operation  
Subsystem Clock  
OperationNote  
CSS=0  
HALT  
Instruction  
STOP  
Instruction  
HALT  
Instruction  
Interrupt  
Request  
Interrupt  
Request  
Interrupt  
Request  
STOP Mode  
(Main system clock  
oscillation stopped)  
HALT Mode  
(Clock supply to CPU is  
stopped, oscillation)  
HALT ModeNote  
(Clock supply to CPU is  
stopped, oscillation)  
Note The power consumption can be reduced by stopping the main system clock. When the CPU is operating on the  
subsystem clock, set the MCC to stop the main system clock. The STOP instruction cannot be used.  
Caution When the main system clock is stopped and the system is operated by the subsystem clock, the  
subsystem clock should be switched again to the main system clock after the oscillation stabilization  
time is secured by the program by the program.  
9. RESET FUNCTIONS  
There are the following two reset methods.  
• External reset input by RESET pin.  
• Internal reset by watchdog timer runaway time detection.  
29  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
10. INSTRUCTION SET  
(1) 8-Bit Instruction  
MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL,  
RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ  
2nd Operand  
[HL+byte]  
Note  
#byte  
A
r
sfr  
saddr !addr16 PSW  
[DE]  
[HL]  
[HL+B] $adder16  
[HL+C]  
1
None  
1st Operand  
A
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
XCH  
MOV  
XCH  
ADD  
MOV  
XCH  
ADD  
MOV  
MOV  
XCH  
MOV  
XCH  
ADD  
MOV  
XCH  
ADD  
ROR  
ROL  
RORC  
ROLC  
ADDC ADDC  
SUB SUB  
SUBC SUBC  
ADDC ADDC  
SUB SUB  
SUBC SUBC  
XOR  
CMP  
AND  
OR  
AND  
OR  
AND  
OR  
AND  
OR  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
r
MOV MOV  
ADD  
INC  
DEC  
ADDC  
SUB  
SUBC  
AND  
OR  
XOR  
CMP  
r1  
DBNZ  
DBNZ  
sfr  
MOV MOV  
sadder  
MOV MOV  
ADD  
INC  
DEC  
ADDC  
SUB  
SUBC  
AND  
OR  
XOR  
CMP  
!adder16  
PSW  
MOV  
MOV MOV  
PUSH  
POP  
[DE]  
[HL]  
MOV  
MOV  
ROR4  
ROL4  
[HL+byte]  
[HL+B]  
MOV  
[HL+C]  
X
C
MULU  
DIVUW  
Note Except r=A  
30  
µPD78011H(A), 78012H(A), 78013FH(A), 78014H(A)  
(2) 16-Bit Instruction  
MOVW, XCHW ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW  
2nd Operand  
1st Operand  
#byte  
AX  
rp Note  
saddrp  
MOVW  
!addr16  
MOVW  
SP  
None  
MOVW  
AX  
rp  
ADDW  
MOVW  
XCHW  
MOVW  
SUBW  
CMPW  
MOVW  
MOVWNote  
INCW, DECW  
PUSH, POP  
sfrp  
MOVW  
MOVW  
MOVW  
MOVW  
MOVW  
MOVW  
saddrp  
!addr16  
SP  
MOVW  
Note Only when rp=BC, DE, HL.  
(3) Bit Manipulation Instruction  
MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR  
2nd Operand  
1st Operand  
A.bit  
A.bit  
sfr.bit  
saddr.bit  
PWS.bit  
[HL].bit  
CY  
$addr16  
BT  
None  
MOV1  
SET1  
CLR1  
BF  
BTCLR  
sfr.bit  
MOV1  
MOV1  
MOV1  
MOV1  
BT  
SET1  
CLR1  
BF  
BTCLR  
saddr.bit  
PSW.bit  
[HL].bit  
CY  
BT  
SET1  
CLR1  
BF  
BTCLR  
BT  
SET1  
CLR1  
BF  
BTCLR  
BT  
SET1  
CLR1  
BF  
BTCLR  
MOV1  
AND1  
OR1  
MOV1  
MOV1  
MOV1  
MOV1  
SET1  
CLR1  
NOT1  
AND1  
OR1  
AND1  
OR1  
AND1  
OR1  
AND1  
OR1  
XOR1  
XOR1  
XOR1  
XOR1  
XOR1  
31  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
(4) Call Instruction/Branch Instruction  
CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ  
2nd Operand  
AX  
!addr16  
!addr11  
CALLF  
[addr5]  
CALLT  
$addr16  
1st Operand  
Basic instruction  
BR  
CALL, BR  
BR, BC, BNC,  
BZ, BNZ  
Compound instruction  
BT, BF, BTCLR,  
DBNZ  
(5) Other Instruction  
ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP  
32  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
11. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25 °C)  
Parameter  
Symbol  
Test Conditions  
Rating  
Unit  
Supply voltage  
VDD  
AVDD  
AVREF  
AVSS  
–0.3 to + 7.0  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–0.3 to + 0.3  
V
V
V
V
Input voltage  
P00 to P04, P10 to P17, P20 to P27, P30 to P37  
P40 toP47, P50 to P57, P64 to P67, X1, X2, XT2  
VI1  
–0.3 to VDD + 0.3  
V
VI2  
VO  
P60 to P67  
Open-drain  
–0.3 to +16  
V
V
Output voltage  
–0.3 to VDD + 0.3  
Analog input  
voltage  
VAN  
P10 to P17  
1 pin  
Analog input pin  
AVSS –0.3 to AVREF + 0.3  
V
Output  
current high  
–10  
–15  
–15  
30  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IOH  
P10 to P17, P20 to P27, P30 to P37 total  
P01 to P03, P40 to P47, P50 to P57, P60 to P67 total  
Peak value  
Output  
current low  
1 pin  
rms  
15  
P40 to P47, P50 to P55 total  
Peak value  
rms  
100  
70  
P01 to P03, P56, P57,  
P60 to P67 total  
P01 to P03,  
Peak value  
rms  
100  
70  
IOLNote  
Peak value  
rms  
50  
P64 to P67 total  
20  
P10 to P17, P20 to P27, P30 to P37 Peak value  
total rms  
50  
20  
Operating ambient  
temperature  
–40 to +85  
°C  
°C  
TA  
Storage  
–65 to +150  
Tstg  
temperature  
Note rms should be calculated as follows: [rms] = [peak value] × √duty  
Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or  
even momentarily. That is, the absolute maximuam ratings are rated values at which the product is on  
the verge of suffering physical damage, and therefore the product must be used under conditions which  
ensure that the absolute maximum ratings are not exceeded.  
33  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
Capacitance ( TA = 25 °C, VDD = VSS = 0 V )  
Parameter  
Symbol  
Test Conditions  
MIN.  
TYP.  
MAX.  
15  
Unit  
pF  
Input capacitance  
I/O capacitance  
CIN  
f = 1 MHz Unmeasured pins returned to 0 V  
P01 to P03, P10 to P17,  
f = 1 MHz Unmeasured P20 to P27, P30 toP37,  
pins returned to 0 V P40 toP47, P50 to P57,  
P64 to P67  
15  
pF  
pF  
CIO  
P60 to P63  
20  
Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.  
Main System Clock Oscillation Circuit Characteristics ( TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)  
Recommended  
Circuit  
Resonator  
Ceramic  
Parameter  
Test Conditions  
MIN.  
TYP.  
MAX.  
Unit  
2.7 V VDD 5.5 V  
1.8 V VDD < 2.7 V  
1
1
10  
5
Oscillator  
MHz  
X1  
X2  
IC  
resonator  
Note 1  
frequency (fX)  
R1  
Oscillation  
After VDD reaches oscil-  
lator voltage range MIN.  
C2  
C1  
ms  
4
Note 2  
stabilization time  
Crystal  
2.7 V VDD 5.5 V  
1.8 V VDD < 2.7 V  
VDD = 4.5 to 5.5 V  
1
1
10  
5
Oscillator  
MHz  
X1  
C1  
X2  
IC  
resonator  
Note 1  
Note 2  
frequency (fX)  
Oscillation  
10  
30  
C2  
X2  
ms  
stabilization time  
External  
clock  
X1 input  
1.0  
45  
10.0  
500  
Note 1  
MHz  
frequency (fX)  
X1  
X1 input  
high/low level width  
(tXH , tXL)  
ns  
µ
PD74HCU04  
Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.  
2. Time required to stabilize oscillation after reset or STOP mode release.  
Cautions 1. When using the main system clock oscillator, wirinin the area enclosed with the dotted line should  
be carried out as follows to avoid an adverse effect from wiring capacitance.  
Wiring should be as short as possible.  
Wiring should not cross other signal lines.  
Wiring should not be placed close to a varying high current.  
The potential of the oscillator capacitor ground should be the same as VSS.  
Do not ground wiring to a ground pattern in which a high current flows.  
Do not fetch a signal from the oscillator.  
2. When the main system clock is stopped and the system is operated by the subsystem clock, the  
subsystem clock should be switched again to the main system clock after the oscillation stabilization  
time is secured by the program.  
34  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
Subsystem Clock Oscillation Circuit Characteristics (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)  
Recommended  
Circuit  
Test Conditions  
Parameter  
Oscillator  
MIN.  
32  
TYP.  
MAX.  
35  
Unit  
kHz  
Resonator  
Crystal  
32.768  
1.2  
XT1 XT2  
IC  
Note 1  
frequency (fXT)  
resonator  
R2  
VDD = 4.5 to 5.5 V  
2
Oscillation  
C3  
C4  
s
Note 2  
stabilization time  
10  
XT1 input  
External  
clock  
100  
15  
32  
5
kHz  
Note 1  
frequency (fXT)  
XT2  
XT1  
XT1 input  
high/low level width  
µs  
(tXTH , tXTL)  
Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.  
2. Time required to stabilize oscillation after VDD reaches oscillator voltage MIN.  
Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the dotted line should  
be carried out as follows to avoid an adverse effect from wiring capacitance.  
Wiring should be as short as possible.  
Wiring should not cross other signal lines.  
Wiring should not be placed close to a varying high current.  
The potential of the oscillator capacitor ground should be the same as VSS.  
Do not ground wiring to a ground pattern in which a high current flows.  
Do not fetch a signal from the oscillator.  
2. The subsystem clock oscillation circuit is a circuit with a low amplification level,more prone to  
misoperation due to noise than the main system clock.  
Particular care is therefore required with the wiring method when the subsystem clock is used.  
35  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
DC Characteristics (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)  
Parameter Symbol Test Conditions  
P10-P17, P21, P23, P30-P32, VDD = 2.7 to 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
V
Input voltage VIH1  
high  
0.7 VDD  
VDD  
P35-P37, P40-P47, P50-P57,  
P64-67  
0.8 VDD  
VDD  
V
VIH2  
VIH3  
VIH4  
VIH5  
P00-P03, P20, P22, P24-P27, P33, VDD = 2.7 to 5.5 V  
P34, RESET  
0.8 VDD  
0.85 VDD  
0.7 VDD  
0.8 VDD  
VDD – 0.5  
VDD – 0.2  
0.8 VDD  
0.9 VDD  
0.9 VDD  
0
VDD  
VDD  
V
V
V
V
V
V
V
V
V
V
P60-P63  
VDD = 2.7 to 5.5 V  
15  
(N-ch open-drain)  
X1, X2  
15  
VDD = 2.7 to 5.5 V  
VDD  
VDD  
XT1/P04, XT2  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
VDD = 2.7 to 5.5 V  
VDD  
VDD  
Note  
VDD  
Input voltage VIL1  
low  
P10-P17, P21, P23, P30-P32,  
P35-P37, P40-P47, P50-P57,  
P64-67  
0.3 VDD  
0
0.2 VDD  
V
VIL2  
VIL3  
P00-P03, P20, P22, P24-P27, P33, VDD = 2.7 to 5.5 V  
P34, RESET  
0
0.2 VDD  
0.15 VDD  
0.3 VDD  
0.2 VDD  
0.1 VDD  
0.4  
V
V
V
V
V
V
V
V
V
V
V
V
V
0
P60-P63  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
0
0
0
VIL4  
VIL5  
X1, X2  
VDD = 2.7 to 5.5 V  
0
0
0.2  
XT1/P04, XT2  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
1.8 V VDD < 2.7 V  
0
0.2 VDD  
0.1 VDD  
0.1 VDD  
0
Note  
0
Output  
VOH1  
VOL1  
VDD = 4.5 to 5.5 V, IOH = –1 mA  
IOH = –100 µA  
VDD – 1.0  
VDD – 0.5  
voltage high  
Output  
P50 to P57, P60 to P63  
VDD = 4.5 to 5.5 V,  
IOL = 15 mA  
0.4  
2.0  
0.4  
voltage low  
P01 to P03, P10 to P17, P20 to P27  
P30 to P37, P40 to P47, P64 to P67  
SB0, SB1, SCK0  
VDD = 4.5 to 5.5 V,  
IOL = 1.6 mA  
V
V
V
VOL2  
VOL3  
VDD = 4.5 to 5.5 V, open-drain  
0.2 VDD  
0.5  
pulled-up (R = 1 K)  
IOL = 400 µA  
Note When using XT1/P04 as P04, input the inverse of P04 to XT2 using an inverter.  
Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.  
36  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
DC Characteristics (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)  
Parameter Symbol Test Conditions  
P00 to P03, P10 to P17,  
MIN.  
TYP.  
MAX.  
3
Unit  
Input leakage ILIH1  
current high  
VIN = VDD  
µA  
P20 to P27, P30 to P37,  
P40 to P47, P50 to P57,  
P60 to P67, RESET  
X1, X2, XT1/P04, XT2  
P60 to P63  
ILIH2  
ILIH3  
20  
80  
–3  
µA  
µA  
µA  
VIN = 15 V  
VIN = 0 V  
Input leakege ILIL1  
current low  
P00 to P03, P10 to P17,  
P20 to P27, P30 to P37,  
P40 to P47, P50 to P57,  
P60 to P67, RESET  
X1, X2, XT1/P04, XT2  
P60 to P63  
ILIL2  
ILIL3  
–20  
µA  
µA  
µA  
Note  
–3  
Output leakage ILOH1  
current high  
VOUT = VDD  
3
Output leakage ILOL  
current low  
VOUT = 0 V  
–3  
90  
90  
µA  
kΩ  
kΩ  
Mask option  
pull-up resister  
Software  
R1  
VIN = 0 V, P60 to P63  
20  
15  
40  
40  
R2  
VIN = 0 V, P01 to P03, P10 to P17, P20 to P27, P30 to P37,  
P40 to P47, P50 to P57, P60 to P67  
pull-up resister  
Note For P60-P63, if pull-up resistor is not provided (specifiable by mask option) a low-level input leak current of –200  
µA (MAX.) flows only during the 3 clocks (no-wait time) after an instruction has been executed to read out port 6 (P6)  
or port mode register 6 (PM6). Outside the period of 3 clocks following execution a read-out instruction, the current  
is –3 µA (MAX.).  
Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.  
37  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
DC Characteristics (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)  
Parameter  
Supply  
Symbol  
Test Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Note 2  
Note 3  
Note 2  
Note 3  
Note 3  
Note 3  
Note 4  
Note 3  
Note 3  
Note 4  
IDD1  
10.00 MHz crystal  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 2.0 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 2.0 V ± 10 %  
VDD = 5.0 V ± 10 %  
9.0  
1.3  
2.0  
1.0  
60  
18.0  
2.6  
4.0  
2.0  
120  
70  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Note 1  
current  
oscillation operation mode  
10.00 MHz crystal  
IDD2  
IDD3  
oscillation HALT mode  
32.768 kHz crystal  
Note 4  
oscillation operation mode  
35  
24  
48  
IDD4  
IDD5  
IDD6  
32.768 kHz crystal  
25  
50  
oscillation HALT mode  
5
15  
2
10  
XT1 = VDD  
1
30  
STOP mode when using feedback VDD = 3.0 V ± 10 %  
0.5  
0.3  
0.1  
0.05  
0.05  
10  
Note 4  
Note 4  
resistor  
VDD = 2.0 V ± 10 %  
VDD = 5.0 V ± 10 %  
VDD = 3.0 V ± 10 %  
VDD = 2.0 V ± 10 %  
10  
XT1 = VDD  
30  
STOP mode when not using  
feedback resistor  
10  
10  
Notes 1. Current flowing into the VDD and AVDD pins. However, the current flowing into the A/D converter and internal pull-  
up resistors is not included.  
2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00H)  
3. When operating at low-speed mode (when the PCC is set to 04H)  
4. When main system clock stopped.  
38  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
AC Characteristics  
(1) Basic Operation (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)  
Parameter  
Symbol  
Test Conditions  
Operating on main system clock  
MIN.  
TYP.  
122  
MAX.  
Unit  
Cycle time  
TCY  
3.5 V VDD 5.5 V  
2.7 V VDD < 3.5 V  
1.8 V VDD < 2.7 V  
0.4  
64  
64  
µs  
µs  
(Min. instruction  
execution time)  
0.8  
2.0  
40  
64  
µs  
Operating on subsystem clock  
3.5 V VDD 5.5 V  
2.7 V VDD < 3.5 V  
1.8 V VDD < 2.7 V  
VDD = 4.5 to 5.5 V  
125  
µs  
Note  
Note  
Note  
TI0 input  
tTIH0  
tTIL0  
2/fsam+0.1  
2/fsam+0.2  
2/fsam+0.5  
0
µs  
frequency  
µs  
µs  
TI1, TI2 input fTI1  
frequency  
4
MHz  
kHz  
0
275  
TI1, TI2 input tTIH1  
high/low-level tTIL1  
width  
VDD = 4.5 to 5.5 V  
100  
1.8  
ns  
µs  
Note  
Note  
Note  
Interrupt input tINTH  
INTP0  
3.5 V VDD 5.5 V  
2.7 V VDD < 3.5 V  
1.8 V VDD < 2.7 V  
VDD = 2.7 to 5.5 V  
2/fsam+0.1  
2/fsam+0.2  
2/fsam+0.5  
10  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
high/low-level  
width  
tINTL  
INTP1-INTP3, KR0-KR7  
VDD = 2.7 to 5.5 V  
20  
RESET low  
level width  
tRSL  
10  
20  
Note In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register, selection of fsam is possible  
between fX/2N+1, fX/64 and fx/128 (when N= 0 to 4).  
39  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
TCY vs VDD (At main system clock operation)  
60.0  
Operation Guaranteed  
Range  
10.0  
5.0  
µ
1.0  
0.5  
0.1  
3.5  
5.5  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
1.8  
2.7  
Supply voltage VDD [V]  
40  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
(2) Read/Write Operation (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
Parameter  
ASTB high-level width  
Address setup time  
Symbol  
tASTH  
tADS  
Test Conditions  
MIN.  
0.5tCY  
0.5tCY–30  
50  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address hold time  
tADH  
Data input time from address  
tADD1  
tADD2  
tRDD1  
tRDD2  
tRDH  
(2.5+2n)tCY–50  
(3+2n)tCY–100  
(1+2n)tCY–25  
Data input time from RD↓  
(2.5+2n)tCY–100  
Read data hold time  
RD low-level width  
0
tRDL1  
(1.5+2n)tCY–20  
(2.5+2n) tCY–20  
tRDL2  
WAITinput time from RD↓  
tRDWT1  
tRDWT2  
tWRWT  
tWTL  
0.5tCY  
1.5tCY  
WAITinput time from WR↓  
WAIT low-level width  
0.5tCY  
(0.5+2n)tCY+10  
100  
(2+2n)tCY  
Write data setup time  
tWDS  
Write data hold time  
tWDH  
Load resistor 5 kΩ  
20  
WR low-level width  
tWRL1  
tASTRD  
tASTWR  
tRDAST  
(2.5+2n) tCY –20  
0.5tCY–30  
1.5tCY–30  
tCY–10  
RDdelay time from ASTB↓  
WRdelay time from ASTB↓  
ASTBdelay time from  
RDin external fetch  
tCY+40  
tCY+50  
Address hold time from  
tRDADH  
tRDWD  
tCY  
ns  
RDin external fetch  
Write data output time from RD↑  
Write data output time from WR↓  
Address hold time from WR↑  
VDD = 4.5 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 4.5 to 5.5 V  
0.5tCY+5  
0.5tCY+15  
5
0.5tCY+30  
0.5tCY+90  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWRWD  
15  
90  
tWRADH  
tCY  
tCY+60  
tCY  
tCY+100  
2.5tCY+80  
2.5tCY+80  
RDdelay time from WAIT↑  
WRdelay time from WAIT↑  
tWTRD  
tWTWR  
0.5tCY  
0.5tCY  
Remarks 1. tCY = TCY/4  
2. n indicates number of waits.  
41  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
(3) Serial Interface (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)  
(a) Serial Interface Channel 0  
(i) 3-wire serial I/O mode (SCK0... Internal clock output)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
SCK0 cycle time  
tKCY1  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
800  
1600  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3200  
4800  
SCK0 high/low-level  
width  
tKH1  
tKL1  
tSIK1  
VDD = 4.5 to 5.5 V  
tKCY1/2–50  
tKCY1/2–100  
100  
SI0 setup time  
(to SCK0)  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
150  
300  
400  
SI0 hold time  
tKSI1  
400  
(from SCK0)  
Note  
SO0 output delay time tKSO1  
C = 100 pF  
300  
ns  
from SCK0↓  
Note C is the load capacitance of SCK0 and SO0 output line.  
(ii) 3-wire serial I/O mode (SCK0... External clock input)  
Parameter  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK0 cycle time  
tKCY2  
800  
1600  
3200  
4800  
400  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
SCK0 high/low-level  
width  
tKH2  
tKL2  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
800  
1600  
2400  
100  
SI0 setup time  
(to SCK0)  
tSIK2  
tKSI2  
VDD = 2.0 to 5.5 V  
150  
SI0 hold time  
(from SCK0)  
400  
Note  
SO0 output delay time tKSO2  
C = 100 pF  
VDD = 2.0 to 5.5 V  
300  
500  
160  
ns  
ns  
ns  
from SCK0↓  
SCK0 rise, fall time  
tR2  
tF2  
When external device  
expansion function is used  
When external When 16-bit timer  
device expansion output function is  
function is not used  
700  
ns  
ns  
used  
When 16-bit timer  
output function is  
not used  
1000  
Note C is the load capacitance of SO0 output line.  
42  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
(iii) SBI mode (SCK0... Internal clock output)  
Parameter  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK0 cycle time  
tKCY3  
800  
3200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.0 V VDD < 4.5 V  
4800  
SCK0 high/low-level  
width  
tKH3  
tKL3  
tSIK3  
VDD = 4.5 to 6.0 V  
tKCY3/2–50  
tKCY3/2–150  
100  
SB0, SB1 setup time  
(to SCK0)  
4.5 V VDD 5.5 V  
2.0 V VDD < 4.5 V  
300  
400  
SB0, SB1 hold time  
(from SCK0)  
tKSI3  
tKCY3/2  
SB0, SB1output delay  
time from SCK0↓  
tKSO3  
R = 1 k,  
VDD = 4.5 to 5.5 V  
0
250  
ns  
ns  
ns  
ns  
ns  
Note  
C = 100 pF  
0
1000  
SB0, SB1from SCK0tKSB  
SCK0from SB0, SB1tSBK  
tKCY3  
tKCY3  
tKCY3  
SB0, SB1 high-level  
width  
tSBH  
SB0, SB1 low-level  
width  
tSBL  
tKCY3  
ns  
Note R and C are the load resistors and load capacitance of the SB0, SB1 and SCK0 output line.  
43  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
(iv) SBI mode (SCK0... External clock input)  
Parameter  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK0 cycle time  
tKCY4  
800  
3200  
4800  
400  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.0 V VDD < 4.5 V  
SCK0 high/low-level  
width  
tKH4  
tKL4  
4.5 V VDD 5.5 V  
2.0 V VDD < 4.5 V  
1600  
2400  
100  
SB0, SB1 setup time  
tSIK4  
4.5 V VDD 5.5 V  
2.0 V VDD < 4.5 V  
(to SCK0)  
300  
400  
SB0, SB1 hold time  
tKSI4  
tKCY4/2  
(from SCK0)  
SB0, SB1 output delay tKSO4  
time from SCK0↓  
R = 1 k,  
VDD = 4.5 to 5.5 V  
0
300  
ns  
ns  
ns  
ns  
ns  
Note  
C = 100 pF  
0
1000  
SB0, SB1from SCK0tKSB  
SCK0from SB0, SB1tSBK  
tKCY4  
tKCY4  
tKCY4  
SB0, SB1 high-level  
width  
tSBH  
SB0, SB1 low-level  
width  
tSBL  
tKCY4  
ns  
ns  
ns  
SCK0 rise, fall time  
tR4  
tF4  
When external device  
160  
700  
expansion function is used  
When external When 16-bit timer  
device expansion output function is  
function is not used  
used  
When 16-bit timer  
output function is  
not used  
1000  
ns  
Note R and C are the load resistors and load capacitance of the SB0 and SB1 output line.  
44  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
(v) 2-wire serial I/O mode (SCK0... Internal clock output)  
Parameter  
Symbol  
Test Conditions  
R = 1 k, 2.7 V VDD 5.5 V  
C = 100 pF  
MIN.  
TYP.  
MAX.  
Unit  
SCK0 cycle time  
tKCY5  
1600  
3200  
4800  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note  
2.0 V VDD < 2.7 V  
SCK0 high-level width  
SCK0 low-level width  
tKH5  
tKL5  
tSIK5  
VDD = 2.7 to 5.5 V tKCY5/2–160  
tKCY5/2–190  
VDD = 4.5 to 5.5 V  
tKCY5/2–50  
tKCY5/2–100  
300  
SB0, SB1 setup time  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
(to SCK0)  
350  
400  
500  
SB0, SB1 hold time  
tKSI5  
600  
(from SCK0)  
SB0, SB1 output delay tKSO5  
0
300  
ns  
time from SCK0↓  
Note R and C are the load resistors and load capacitance of the SCK0, SB0 and SB1 output line.  
45  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
(vi) 2-wire serial I/O mode (SCK0... External clock input)  
Parameter  
Symbol  
Test Conditions  
2.7 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK0 cycle time  
tKCY6  
1600  
3200  
4800  
650  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.0 V VDD < 2.7 V  
SCK0 high-level width tKH6  
2.7 V VDD 5.5 V  
2.0 V VDD < 2.7 V  
1300  
2100  
800  
SCK0 low-level width  
tKL6  
2.7 V VDD 5.5 V  
2.0 V VDD < 2.7 V  
1600  
2400  
100  
SB0, SB1 setup time  
(to SCK0)  
tSIK6  
tKSI6  
VDD = 2.0 to 5.5 V  
150  
SB0, SB1 hold time  
(from SCK0)  
tKCY6/2  
SB0, SB1 output delay tKSO6  
R = 1 k,  
4.5 V VDD 5.5 V  
0
0
0
300  
500  
800  
160  
ns  
ns  
ns  
ns  
time from SCK0↓  
C = 100 pF Note 2.0 V VDD < 4.5 V  
SCK0 rise, fall time  
tR6  
tF6  
When external device  
expansion function is used  
When external When 16-bit timer  
device expansion output function is  
function is not used  
700  
ns  
ns  
used  
When 16-bit timer  
output function is  
not used  
1000  
Note R and C are the load resistors and load capacitance of the SB0 and SB1 output line.  
46  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
(b) Serial Interface Channel 1  
(i) 3-wire serial I/O mode (SCK1... Internal clock output)  
Parameter  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK1 cycle time  
tKCY7  
800  
1600  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
3200  
4800  
SCK1 high/low-level  
width  
tKH7  
tKL7  
tSIK7  
VDD = 4.5 to 5.5 V  
tKCY7/2–50  
tKCY7/2–100  
100  
SI1 setup time  
(to SCK1)  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
150  
300  
400  
SI1 hold time  
tKSI7  
400  
(from SCK1)  
Note  
SO1 output delay time tKSO7  
C = 100 pF  
300  
ns  
from SCK1↓  
Note C is the load capacitance of SCK1 and SO1 output line.  
(ii) 3-wire serial I/O mode (SCK1... External clock input)  
Parameter  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK1 cycle time  
tKCY8  
800  
1600  
3200  
4800  
400  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
SCK1 high/low-level  
width  
tKH8  
tKL8  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
800  
1600  
2400  
100  
SI1 setup time  
(to SCK1)  
tSIK8  
tKSI8  
VDD = 2.0 to 5.5 V  
150  
SI1 hold time  
(from SCK1)  
400  
Note  
SO0 output delay time tKSO8  
C = 100 pF  
VDD = 2.0 to 5.5 V  
300  
500  
160  
ns  
ns  
ns  
from SCK1↓  
SCK1 rise, fall time  
tR8  
tF8  
When external device  
expansion function is used  
When external When 16-bit timer  
device expansion output function is  
function is not used  
700  
ns  
ns  
used  
When 16-bit timer  
output function is  
not used  
1000  
Note C is the load capacitance of SO1 output line.  
47  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... Internal clock output)  
Parameter  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK1 cycle time  
tKCY9  
800  
1600  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
3200  
4800  
SCK1 high/low-level  
width  
tKH9  
tKL9  
tSIK9  
VDD = 4.5 to 5.5 V  
tKCY9/2–50  
tKCY9/2–100  
100  
SI1 setup time  
(to SCK1)  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
150  
300  
400  
SI1 hold time  
tKSI9  
400  
(from SCK1)  
SO1 output delay time tKSO9  
C = 100 pF Note  
300  
ns  
from SCK1↓  
STBfrom SCK1↑  
Strobe signal  
tSBD  
tSBW  
tKCY9/2–100  
tKCY9–30  
tKCY9–60  
tKCY9–90  
100  
tKCY9/2+100  
tKCY9+30  
tKCY9+60  
tKCY9+90  
ns  
ns  
ns  
ns  
ns  
2.7 V VDD 5.5 V  
2.0 V VDD < 2.7 V  
high-level width  
Busy signal setup time tBYS  
(to busy signal  
detection timing)  
Busy signal hold time  
(from busy signal  
detection timing)  
tBYH  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
100  
150  
200  
300  
ns  
ns  
ns  
ns  
ns  
SCK1from busy  
tSPS  
2tKCY9  
inactive  
Note C is the load capacitance of SCK1 and SO1 output line.  
48  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... External clock input)  
Parameter  
Symbol  
Test Conditions  
4.5 V VDD 5.5 V  
MIN.  
TYP.  
MAX.  
Unit  
SCK1 cycle time  
tKCY10  
800  
1600  
3200  
4800  
400  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
SCK1 high/low-level  
width  
tKH10,  
tKL10  
4.5 V VDD 5.5 V  
2.7 V VDD < 4.5 V  
2.0 V VDD < 2.7 V  
800  
1600  
2400  
100  
SI1 setup time  
(to SCK1)  
tSIK10  
tKSI10  
VDD = 2.0 to 5.5 V  
150  
SI1 hold time  
(from SCK1)  
400  
Note  
SO1 output delay time tKSO10  
C = 100 pF  
VDD = 2.0 to 5.5 V  
300  
500  
160  
ns  
ns  
ns  
from SCK1↓  
SCK1 rise, fall time  
tR10, tF10  
When external device expansion  
function is used  
When external device expansion  
function is not used  
1000  
ns  
Note C is the load capacitance of the SO1 output line.  
49  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
AC Timing Test Point (Excluding X1, XT1 Input)  
0.8 VDD  
0.2 VDD  
0.8 VDD  
0.2 VDD  
Test Points  
Clock Timing  
1/fX  
t
XL  
t
XH  
V
V
IH4 (MIN.)  
IL4 (MAX.)  
X1 Input  
1/fXT  
t
XTL  
t
XTH  
V
IH5 (MIN.)  
IL5 (MAX.)  
XT1 Input  
V
TI Timing  
t
TIL0  
t
TIH0  
TI0  
1/fTI1  
t
TIL1  
t
TIH1  
TI1,TI2  
50  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
Read/Write Operation  
External fetch (No wait):  
A8-A15  
Higher 8-Bit Address  
t
ADD1  
Hi-Z  
Lower 8-Bit  
Address  
AD0-AD7  
Operation Code  
t
ADS  
t
ADH  
t
RDD1  
t
RDADH  
t
ASTH  
t
RDAST  
ASTB  
RD  
t
ASTRD  
t
RDL1  
t
RDH  
External fetch (Wait insertion):  
A8-A15  
Higher 8-Bit Address  
t
ADD1  
Hi-Z  
Lower 8-Bit  
Address  
AD0-AD7  
Operation Code  
t
ADS  
t
ADH  
t
RDD1  
t
RDADH  
t
ASTH  
t
RDAST  
ASTB  
RD  
t
ASTRD  
t
RDL1  
t
RDH  
WAIT  
t
RDWT1  
t
WTL  
t
WTRD  
51  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
External data access (No wait):  
A8-A15  
Higher 8-Bit Address  
t
ADD2  
Hi-Z  
Lower 8-Bit  
Address  
Hi-Z  
Hi-Z  
AD0-AD7  
Read Data  
Write Data  
t
ADS  
t
RDD2  
t
ADH  
t
ASTH  
t
RDH  
ASTB  
RD  
t
ASTRD  
t
RDWD  
t
RDL2  
t
WDS  
tWDH  
t
WRWD  
t
WRADH  
WR  
t
ASTWR  
t
WRL1  
External data access (Wait insertion):  
A8-A15  
Higher 8-Bit Address  
t
ADD2  
Hi-Z  
Hi-Z  
Hi-Z  
Lower 8-Bit  
Address  
Read Data  
Write Data  
AD0-AD7  
t
ADS  
t
ADH  
t
ASTH  
t
RDD2  
t
RDH  
ASTB  
RD  
t
ASTRD  
t
RDL2  
t
WDS  
t
WDH  
t
RDWD  
t
WRWD  
WR  
t
ASTWR  
t
WRL1  
t
WRADH  
WAIT  
t
WTL  
t
WTRD  
t
RDWT2  
t
WTL  
t
WTWR  
t
WRWT  
52  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
Serial Transfer Timing  
3-wire serial I/O mode:  
tKCYm  
tKLm  
tKHm  
tRn  
tFn  
SCK0,SCK1  
tSIKm  
tKSIm  
SI0,SI1  
Input Data  
tKSOm  
SO0,SO1  
Output Data  
m = 1, 2, 7, 8  
n = 2, 8  
SBI mode (Bus release signal transfer):  
t
KCY3, 4  
t
KL3, 4  
R4  
t
KH3, 4  
t
t
F4  
SCK0  
t
SIK3, 4  
tKSB  
t
SBL  
t
SBH  
t
SBK  
t
KSI3, 4  
SB0, SB1  
t
KSO3, 4  
SBI Mode (command signal transfer):  
t
KCY3, 4  
t
KL3, 4  
R4  
t
KH3, 4  
t
t
F4  
SCK0  
t
SIK3, 4  
t
KSB  
t
SBK  
t
KSI3, 4  
SB0, SB1  
t
KSO3, 4  
53  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
2-wire serial I/O mode:  
tKCY5,6  
tKL5,6  
tR6  
tKH5,6  
tF6  
SCK0  
tSIK5,6  
tKSI5,6  
tKSO5,6  
SB0, SB1  
3-wire serial I/O mode with automatic transmit/receive function:  
SO1  
SI1  
D7  
D2  
D1  
D0  
D7  
D2  
D1  
D0  
t
SIK9,10  
KSO9,10  
t
KSI9,10  
t
t
KH9,10  
t
F10  
SCK1  
STB  
t
R10  
t
KL9,10  
KCY9,10  
t
SBW  
t
SBD  
t
3-wire serial I/O mode with automatic transmit/receive function (busy processing):  
9Note  
10Note  
SCK1  
7
10 + nNote  
1
8
t
BYS  
t
BYH  
t
SPS  
BUSY  
(Active High)  
Note The signal is not actually driven low here; it is shown as such to indicate the timing.  
54  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
A/D converter characteristics (TA = –40 to +85 °C, AVDD = VDD = 1.8 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Overall error  
Symbol  
Test Conditions  
MIN.  
8
TYP.  
8
MAX.  
Unit  
8
bit  
%
Note  
2.7 V AVREF AVDD  
1.8 V AVREF < 2.7 V  
2.0 V AVDD 5.5 V  
1.8 V AVDD < 2.0 V  
0.6  
1.4  
200  
200  
%
Conversion time  
tCONV  
19.1  
38.2  
24/fX  
AVSS  
1.8  
µs  
µs  
µs  
V
Sampling time  
tSAMP  
VIAN  
Analog input voltage  
Reference voltage  
AVREF  
AVDD  
AVREF  
V
AVREF–AVSS resistance RAIREF  
4
14  
kΩ  
Note Overall error excluding quantization error (±1/2 LSB). It is indicated as a ratio to the full-scale value.  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +85 °C)  
Parameter  
Symbol  
Test Conditions  
MIN.  
1.8  
TYP.  
MAX.  
5.5  
Unit  
V
Data retention supply  
voltage  
VDDDR  
Data retention supply  
current  
IDDDR  
VDDDR = 1.8 V  
0.1  
10  
µA  
Subsystem clock stop and feed-  
back resister disconnected  
Release signal set time tSREL  
Oscillation stabilization tWAIT  
wait time  
0
µs  
ms  
ms  
Release by RESET  
Release by interrupt  
218/fX  
Note  
Note In combination with bit 0 to bit 2 (OSTS0 to OSTS2) of oscillation stabilization time select register, selection of 213/  
fX and 215/fX to 218/fX is possible.  
Data Retention Timing (STOP Mode Release by RESET)  
Internal Reset Operation  
HALT Mode  
Operating Mode  
STOP Mode  
Data Retension Mode  
VDD  
t
SREL  
VDDDR  
STOP Instruction Execution  
RESET  
t
WAIT  
55  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
Data Retention Timing (Standby Release Signal : STOP Mode Release by Interrupt Signal)  
HALT Mode  
Operating Mode  
STOP Mode  
Data Retension Mode  
V
DD  
V
DDDR  
tSREL  
STOP Instruction Execition  
Standby Release Signal  
(Interrupt Request)  
t
WAIT  
Interrupt Input Timing  
t
INTL  
t
INTH  
INTP0-INTP2  
t
INTL  
INTP3  
RESET Input Timing  
t
RSL  
RESET  
56  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
12. PACKAGE DRAWINGS  
64 PIN PLASTIC SHRINK DIP (750 mil)  
64  
33  
32  
1
A
K
L
F
D
M
R
B
C
M
N
NOTE  
ITEM MILLIMETERS  
INCHES  
1) Each lead centerline is located within 0.17 mm (0.007 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
58.68 MAX.  
1.78 MAX.  
1.778 (T.P.)  
2.311 MAX.  
0.070 MAX.  
0.070 (T.P.)  
2) Item "K" to center of leads when formed parallel.  
+0.004  
0.020  
0.50±0.10  
D
–0.005  
F
G
H
I
0.9 MIN.  
3.2±0.3  
0.035 MIN.  
0.126±0.012  
0.020 MIN.  
0.170 MAX.  
0.200 MAX.  
0.750 (T.P.)  
0.669  
0.51 MIN.  
4.31 MAX.  
5.08 MAX.  
19.05 (T.P.)  
17.0  
J
K
L
+0.004  
0.010  
+0.10  
0.25  
M
–0.003  
–0.05  
N
R
0.17  
0.007  
0~15°  
0~15°  
P64C-70-750A,C-1  
Remark Dimensions and materials of ES products are the same as those of mass-production products.  
57  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
64 PIN PLASTIC QFP ( 14)  
A
B
48  
49  
33  
32  
detail of lead end  
64  
1
17  
16  
G
H
M
I
J
K
N
L
P64GC-80-AB8-2  
NOTE  
ITEM  
A
MILLIMETERS  
INCHES  
Each lead centerline is located within 0.15  
mm (0.006 inch) of its true position (T.P.) at  
maximum material condition.  
±
±
17.6 0.4  
0.693 0.016  
+0.009  
–0.008  
±
B
14.0 0.2  
0.551  
+0.009  
±
C
D
F
14.0 0.2  
0.551  
–0.008  
±
±
0.693 0.016  
17.6 0.4  
1.0  
1.0  
0.039  
G
H
I
0.039  
+0.004  
–0.005  
±
0.35 0.10  
0.014  
0.15  
0.006  
J
0.8 (T.P.)  
0.031 (T.P.)  
±
±
K
1.8 0.2  
0.071 0.008  
+0.009  
–0.008  
±
0.031  
L
0.8 0.2  
+0.10  
–0.05  
+0.004  
–0.003  
0.15  
M
N
P
0.006  
0.10  
2.55  
0.004  
0.100  
±
Q
S
0.1 0.1  
±
0.004 0.004  
2.85 MAX.  
0.112 MAX.  
Remark Dimensions and materials of ES products are the same as those of mass-production products.  
58  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
13. RECOMMENDED SOLDERING CONDITIONS  
These products should be soldered and mounted under the conditions recommended in the table below.  
For detail of recommended soldering conditions, refer to the information document Semiconductor Device  
Mounting Technology Manual (C10535E).  
For soldering methods and conditions other than those recommended below, contact our salespersonnel.  
Table 13-1. Surface Mounting Type Soldering Conditions  
µPD78011HGC(A)-×××-AB8 : 64-Pin Plastic QFP (14 × 14 mm)  
µPD78012HGC(A)-×××-AB8 : 64-Pin Plastic QFP (14 × 14 mm)  
µPD78013HGC(A)-×××-AB8 : 64-Pin Plastic QFP (14 × 14 mm)  
µPD78014HGC(A)-×××-AB8 : 64-Pin Plastic QFP (14 × 14 mm)  
Recommended  
Soldering Method  
Infrared reflow  
Soldering Conditions  
Condition Symbol  
Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above),  
Number of times: Thrice max.  
IR35-00-3  
VPS  
Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above),  
Number of times: Thrice max.  
VP15-00-3  
WS60-00-1  
Wave soldering  
Solder bath temperature: 260 °C max. Duration: 10 sec. max.  
Number of times: Once  
Preliminary heat temperature: 120 °C max. (Package surface temperature)  
Partial heating  
Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side)  
Caution Use more than one soldering method should be avoided (except in the case of partial heating).  
Table 13-2. Insertion Type Soldering Conditions  
µPD78011HCW(A)-××× : 64-Pin Plastic Shrink DIP (750 mil)  
µPD78012HCW(A)-××× : 64-Pin Plastic Shrink DIP (750 mil)  
µPD78013HCW(A)-××× : 64-Pin Plastic Shrink DIP (750 mil)  
µPD78014HCW(A)-××× : 64-Pin Plastic Shrink DIP (750 mil)  
Soldering Method  
Soldering Conditions  
Solder bath temperature: 260°C max., Duration: 10 sec. max.  
Wave soldering  
(pin only)  
Partial heating  
Pin temperature: 300°C max., Duration: 3 sec. max. (per pin)  
Caution Wave soldering is only for the lead part in order that jet solder can not contact with the chip directly.  
59  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
APPENDIX A. DEVELOPMENT TOOLS  
The following development tools are available for the development of systems using the µPD78014H subseries.  
Language processor software  
Notes 1, 2, 3, 4  
RA78K/0  
CC78K0  
DF78014  
Assembler package common to 78K/0 series  
C compiler package common to 78K/0 series  
Device file common to µPD78014 subseries  
C compiler library source file common to 78K/0 series  
Notes 1, 2, 3, 4  
Notes 1, 2, 3, 4, 6  
Notes 1, 2, 3, 4  
CC78K0-L  
Debugging tools  
IE-78000-R  
In-circuit emulator common to 78K/0 series  
IE-78000R-A  
In-circuit emulator common to 78K/0 series (for integrated debugger)  
Break board common to 78K/0 series  
IE-78000-R-BK  
IE-78014-R-EM-A  
EP-78240CW-R  
EV-9200GC-64  
Emulation board common to µPD78018F and 78018FY subseries (VDD = 3.0 to 6.0 V)  
Emulation probe common to µPD78244 subseries  
Socket mounted on printed wiring board of target system created for 64-pin plastic QFP  
(GC-AB8 type)  
Notes 5, 6, 7  
SM78K0  
System emulator common to 78K/0 series  
Integrated debugger common to 78K/0 series  
Screen debugger for IE-78000-R  
Notes 4, 5, 6, 7  
ID78K0  
Notes 1, 2  
SD78K/0  
Notes 1, 2, 3, 4, 5, 6, 7  
DF78014  
Device file common to µPD78014 subseries  
Real-Time OS  
Notes 1, 2  
RX78K/0  
Real-time OS for 78K/0 series  
OS for 78K/0 series  
Notes 1, 2  
MX78K0  
60  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
Fuzzy Inference Devleopment Support System  
Note 1  
Note 6  
FE9000  
FT9080  
FI78K0  
FD78K0  
/FE9200  
/FT9085  
Fuzzy knowledge data creation tool  
Note 1  
Note 2  
Translator  
Notes 1, 2  
Notes 1, 2  
Fuzzy inference module  
Fuzzy inference debugger  
Notes 1. PC-9800 series (MS-DOSTM) based  
2. IBM PC/ATTM and compatible machine (PC DOSTM/IBM DOSTM/MS-DOS) based  
3. HP9000 series 300TM (HP-UXTM) based  
4. HP9000 series 700TM (HP-UX) based, SPARCstationTM (SunOSTM) based, EWS-4800 series (EWS-UX/V) based  
5. PC-9800 series (MS-DOS + WindowsTM) based  
6. IBM PC/AT and compatible machine (PC DOS/IBM DOS/MS-DOS + Windows) based  
7. NEWSTM (NEWS-OSTM) based  
Remarks 1. For development tools manufactured by a third party, refer to the 78K/0 Series Selection Guide (U11126E).  
2. RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0, and RX78K/0 are used in combination with DF78014.  
61  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
APPENDIX B. RELATED DOCUMENTS  
Device Related Documents  
Document No.  
Document Name  
Japanese  
Planned to publish  
U12174J  
English  
µPD78014H Subseries User's Manual  
Planned to publish  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A) Data Sheet  
78K/0 Series User's Manual - Instruction  
78K/0 Series Instruction List  
This document  
IEU-849  
IEU-1372  
U10903J  
78K/0 Series Instruction Set  
U10904J  
µPD78014H Subseries Special Function Register List  
Planned to publish  
Development Tools Documents (User's Manual)  
Document No.  
Document Name  
Japanese  
EEU-809  
EEU-815  
EEU-817  
U11802J  
U11801J  
U11789J  
EEU-656  
EEU-655  
11517J  
English  
EEU-1399  
EEU-1404  
EEU-1402  
U11802E  
U11081E  
U11789E  
EEU-1280  
EEU-1284  
RA78K Series Assembler Package  
Operation  
Language  
RA78K Series Structured Assembler Preprocessor  
RA78K0 Assembler Package  
Operation  
Assembly Language  
Structural Assembly Language  
Operation  
CC78K Series C Compiler  
CC78K/0 C Compiler  
Language  
Operation  
Language  
11518J  
CC78K/0 C Compiler Application Note  
CC78K Series Library Source File  
IE-78000-R  
Programming Know-how  
EEA-618  
EEU-777  
EEU-810  
U10057J  
EEU-867  
EEU-962  
EEU-986  
U10181J  
U10092J  
EEA-1208  
U11376E  
U10057E  
EEU-1427  
U10418E  
U10332E  
U10181E  
U10092E  
IE-78000-R-A  
IE-78000-R-BK  
IE-78014-R-EM-A  
EP-78240  
SM78K0 System Simulator Windows Based  
SM78K Series System Simulator  
Reference  
External Components User Open  
Interface  
ID78K0 Integrated Debugger EWS Based  
ID78K0 Integrated Debugger PC Based  
ID78K0 Integrated Debugger Windows Based  
SD78K/0 Screen Debugger  
Reference  
Reference  
Guide  
U11151J  
U11539J  
U11649J  
EEU-852  
U10952J  
EEU-5024  
U11279J  
U11539E  
U11649E  
Introduction  
Reference  
Introduction  
Reference  
PC-9800 Series (MS-DOS) Based  
SD78K/0 Screen Deb  
EEU-1414  
U11279E  
IBM PC/AT (PC DOS) Based  
Caution The contents of the above related documents are subject to change without notice. The latest documents  
should be used for design, etc.  
62  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
Embedded Software Documents (User's Manual)  
Document No.  
Japanese  
Document Name  
English  
78K/0 Series Real-Time OS  
78K/0 Series OS MX78K0  
Fundamental  
Installation  
Technical  
U11537J  
U11536J  
U11538J  
EEU-5010  
EEU-829  
EEU-862  
Fundamental  
Fuzzy Knowledge Data Creation Tool  
78K/0, 78K/II, 87AD Series  
EEU-1438  
EEU-1444  
Fuzzy Inference Development Support System - Translator  
78K/0 Series Fuzzy Inference Development Suport System -  
Fuzzy Inference Module  
EEU-858  
EEU-921  
EEU-1441  
EEU-1458  
78K/0 Series Fuzzy Inference Development Support System -  
Fuzzy Inference Debugger  
Other Documents  
Document No.  
Document Name  
Japanese  
C10943X  
English  
IC Package Manual  
Semiconductor Device Mounting Technology Manual  
Quality Grades on NEC Semiconductor Device  
NEC Semiconductor Device Reliability/Quality Control System  
Electrostatic Discharge (ESD) Test  
C10535J  
C11531J  
C10983J  
MEM-539  
C11893J  
U11416J  
C10535E  
C11531E  
C10983E  
Guide to Quality Assurance for Semiconductor Device  
Guide for Products Related to Micro-Computer: Other Companies  
MEI-1202  
Caution The contents of the above related documents are subject to change without notice. The latest documents  
should be used for design, etc.  
63  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction  
of the gate oxide and ultimately degrade the device operation. Steps must  
be taken to stop generation of static electricity as much as possible, and  
quickly dissipate it once, when it has occurred. Environmental control must  
be adequate. When it is dry, humidifier should be used. It is recommended  
to avoid using insulators that easily build static electricity. Semiconductor  
devices must be stored and transported in an anti-static container, static  
shielding bag or conductive material. All test and measurement tools  
including work bench and floor should be grounded. The operator should  
be grounded using wrist strap. Semiconductor devices must not be touched  
with bare hands. Similar precautions need to be taken for PW boards with  
semiconductor devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input  
level may be generated due to noise, etc., hence causing malfunction. CMOS  
device behave differently than Bipolar or NMOS devices. Input levels of  
CMOS devices must be fixed high or low by using a pull-up or pull-down  
circuitry. Each unused pin should be connected to VDD or GND with a  
resistor, if it is considered to have a possibility of being an output pin. All  
handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Produc-  
tion process of MOS does not define the initial operation status of the device.  
Immediately after the power source is turned ON, the devices with reset  
function have not yet been initialized. Hence, power-on does not guarantee  
out-pin levels, I/O settings or contents of registers. Device is not initialized  
until the reset signal is received. Reset operation must be executed imme-  
diately after power-on for devices having reset function.  
64  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
product in your application, please contact the NEC office in your country to obtain a list of authorized  
representatives and distributors. They will verify:  
• Device availability  
• Ordering information  
• Product release schedule  
• Availability of related technical literature  
• Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
• Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
NEC Electronics Inc. (U.S.)  
Santa Clara, California  
Tel: 800-366-9782  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
NEC Electronics (Germany) GmbH  
Benelux Office  
Eindhoven, The Netherlands  
Tel: 040-2445845  
Fax: 800-729-9288  
Fax: 2886-9022/9044  
Fax: 040-2444580  
NEC Electronics (Germany) GmbH  
Duesseldorf, Germany  
Tel: 0211-65 03 02  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Seoul, Korea  
NEC Electronics (France) S.A.  
Velizy-Villacoublay, France  
Tel: 01-30-67 58 00  
Fax: 0211-65 03 490  
Tel: 02-528-0303  
Fax: 02-528-4411  
Fax: 01-30-67 58 99  
NEC Electronics (UK) Ltd.  
Milton Keynes, UK  
Tel: 01908-691-133  
NEC Electronics Singapore Pte. Ltd.  
United Square, Singapore 1130  
Tel: 253-8311  
NEC Electronics (France) S.A.  
Spain Office  
Madrid, Spain  
Fax: 01908-670-290  
Fax: 250-3583  
Tel: 01-504-2787  
NEC Electronics Italiana s.r.1.  
Milano, Italy  
Tel: 02-66 75 41  
Fax: 01-504-2860  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-719-2377  
NEC Electronics (Germany) GmbH  
Scandinavia Office  
Fax: 02-66 75 42 99  
Fax: 02-719-5951  
Taeby, Sweden  
Tel: 08-63 80 820  
NEC do Brasil S.A.  
Sao Paulo-SP, Brasil  
Tel: 011-889-1680  
Fax: 011-889-1689  
Fax: 08-63 80 388  
J96. 8  
65  
µPD78011H(A), 78012H(A), 78013H(A), 78014H(A)  
FIP and IEBus are trademarks of NEC Corporation.  
MS-DOS and Windows are trademarks of Microsoft Corporation.  
IBM-DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.  
HP9000 Series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company.  
SPARCstation is a tradmark of SPARC International, Inc.  
SunOS is a tradmark of Sun Microsystems, Inc.  
NEWS and NEWS-OS are trademarks of Sony Corporation.  
Some related decuments are preliminary versions. This document, however, is not indicated as preliminary.  
The export of this product from J apan is regulated by the J apanese governm ent. To export this product m ay be  
prohibited without governm ental license, the need for which m ust be judged by the custom er. The export or re-  
export of this product from a country other than J apan m ay also be prohibited without a license from that country.  
Please call an NEC sales representative.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 96.5  

相关型号:

UPD78011HGC(A)-XXX-AB8

8-Bit Microcontroller
ETC

UPD78011HGC-XXX-AB8

8-Bit Microcontroller
ETC

UPD78011HGK-XXX-8A8

Microcontroller, 8-Bit, MROM, 10MHz, CMOS, PQFP64, 12 X 12 MM, PLASTIC, LQFP-64
NEC

UPD78011YCW-XXX

8-Bit Microcontroller
ETC

UPD78011YGC-XXX-AB8

8-Bit Microcontroller
ETC

UPD780121

78K0/KD1 User's Manual (Preliminary) | UM Including Electrical Characteristics[07/2002]
ETC

UPD780121GB(A)-XXX-8ET

UPD780121GB(A)-XXX-8ET
RENESAS

UPD780121GB(A1)-XXX-8ET

Microcontroller, 8-Bit, MROM, 10MHz, CMOS, PQFP52, 10 X 10 MM, PLASTIC, LQFP-52
NEC

UPD780121GB(A2)-XXX-8ET

UPD780121GB(A2)-XXX-8ET
RENESAS

UPD780121GB-XXX-8ET

Microcontroller, 8-Bit, MROM, 10MHz, CMOS, PQFP52, 10 X 10 MM, PLASTIC, LQFP-52
NEC

UPD780122

78K/0 Series for Instructions | User's Manual[10/2001]
ETC

UPD780122GB(A)-XXX-8ET

Microcontroller, 8-Bit, MROM, 10MHz, CMOS, PQFP52, 10 X 10 MM, PLASTIC, LQFP-52
NEC