UPD44325362BF5-E35-FQ1-A [RENESAS]

1MX36 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165;
UPD44325362BF5-E35-FQ1-A
型号: UPD44325362BF5-E35-FQ1-A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

1MX36 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165

时钟 静态存储器 内存集成电路
文件: 总36页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
μPD44325092B  
μPD44325182B  
μPD44325362B  
R10DS0038EJ0200  
Rev.2.00  
36M-BIT QDRTM II SRAM  
2-WORD BURST OPERATION  
August 11, 2011  
Description  
The μPD44325092B is a 4,194,304-word by 9-bit, the μPD44325182B is a 2,097,152-word by 18-bit and the  
μPD44325362B is a 1,048,576-word by 36-bit synchronous quad data rate static RAM fabricated with  
advanced CMOS technology using full CMOS six-transistor memory cell.  
The μPD44325092B, μPD44325182B and μPD44325362B integrate unique synchronous peripheral circuitry  
and a burst counter. All input registers controlled by an input clock pair (K and K#) are latched on the  
positive edge of K and K#. These products are suitable for application which require synchronous operation,  
high speed, low voltage, high density and wide bit configuration.  
These products are packaged in 165-pin PLASTIC BGA.  
Features  
1.8 ± 0.1 V power supply  
165-pin PLASTIC BGA (15 x 17)  
HSTL interface  
PLL circuitry for wide output data valid window and future frequency scaling  
Separate independent read and write data ports with concurrent transactions  
100% bus utilization DDR READ and WRITE operation  
Two-tick burst for low DDR transaction size  
Two input clocks (K and K#) for precise DDR timing at clock rising edges only  
Two output clocks (C and C#) for precise flight time and clock skew matching-clock  
and data delivered together to receiving device  
Internally self-timed write control  
Clock-stop capability. Normal operation is restored in 20 μs after clock is resumed.  
User programmable impedance output (35 to 70 Ω)  
Fast clock cycle time : 3.3 ns (300 MHz), 3.5 ns (287 MHz), 4.0 ns (250 MHz), 5.0 ns (200 MHz)  
Simple control logic for easy depth expansion  
JTAG 1149.1 compatible test access port  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 1 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Ordering Information (1/2)  
Organization  
(word x bit)  
4M x 9  
Operating Ambient  
Temperature  
Cycle  
time  
Clock  
frequency  
Part No.  
Package  
μPD44325092BF5-E33-FQ1-A  
μPD44325092BF5-E35-FQ1-A  
μPD44325092BF5-E40-FQ1-A  
μPD44325092BF5-E50-FQ1-A  
μPD44325182BF5-E33-FQ1-A  
μPD44325182BF5-E35-FQ1-A  
μPD44325182BF5-E40-FQ1-A  
μPD44325182BF5-E50-FQ1-A  
μPD44325362BF5-E33-FQ1-A  
μPD44325362BF5-E35-FQ1-A  
μPD44325362BF5-E40-FQ1-A  
μPD44325362BF5-E50-FQ1-A  
μPD44325092BF5-E33-FQ1  
μPD44325092BF5-E35-FQ1  
μPD44325092BF5-E40-FQ1  
μPD44325092BF5-E50-FQ1  
μPD44325182BF5-E33-FQ1  
μPD44325182BF5-E35-FQ1  
μPD44325182BF5-E40-FQ1  
μPD44325182BF5-E50-FQ1  
μPD44325362BF5-E33-FQ1  
μPD44325362BF5-E35-FQ1  
μPD44325362BF5-E40-FQ1  
μPD44325362BF5-E50-FQ1  
3.3ns  
3.5ns  
4.0ns  
5.0ns  
3.3ns  
3.5ns  
4.0ns  
5.0ns  
3.3ns  
3.5ns  
4.0ns  
5.0ns  
3.3ns  
3.5ns  
4.0ns  
5.0ns  
3.3ns  
3.5ns  
4.0ns  
5.0ns  
3.3ns  
3.5ns  
4.0ns  
5.0ns  
300MHz  
287MHz  
250MHz  
200MHz  
300MHz  
287MHz  
250MHz  
200MHz  
300MHz  
287MHz  
250MHz  
200MHz  
300MHz  
287MHz  
250MHz  
200MHz  
300MHz  
287MHz  
250MHz  
200MHz  
300MHz  
287MHz  
250MHz  
200MHz  
165-pin  
PLASTIC BGA  
(15 x 17)  
Ta = 0 to 70°C  
Lead-free  
2M x 18  
1M x 36  
4M x 9  
165-pin  
PLASTIC BGA  
(15 x 17)  
Ta = 0 to 70°C  
Lead  
2M x 18  
1M x 36  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 2 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Ordering Information (2/2)  
Organization  
(word x bit)  
4M x 9  
Operating Ambient  
Temperature  
Cycle  
time  
Clock  
frequency  
Part No.  
Package  
μPD44325092BF5-E33Y-FQ1-A  
μPD44325092BF5-E35Y-FQ1-A  
μPD44325092BF5-E40Y-FQ1-A  
μPD44325092BF5-E50Y-FQ1-A  
μPD44325182BF5-E33Y-FQ1-A  
μPD44325182BF5-E35Y-FQ1-A  
μPD44325182BF5-E40Y-FQ1-A  
μPD44325182BF5-E50Y-FQ1-A  
μPD44325362BF5-E33Y-FQ1-A  
μPD44325362BF5-E35Y-FQ1-A  
μPD44325362BF5-E40Y-FQ1-A  
μPD44325362BF5-E50Y-FQ1-A  
μPD44325092BF5-E33Y-FQ1  
μPD44325092BF5-E35Y-FQ1  
μPD44325092BF5-E40Y-FQ1  
μPD44325092BF5-E50Y-FQ1  
μPD44325182BF5-E33Y-FQ1  
μPD44325182BF5-E35Y-FQ1  
μPD44325182BF5-E40Y-FQ1  
μPD44325182BF5-E50Y-FQ1  
μPD44325362BF5-E33Y-FQ1  
μPD44325362BF5-E35Y-FQ1  
μPD44325362BF5-E40Y-FQ1  
μPD44325362BF5-E50Y-FQ1  
3.3ns  
3.5ns  
4.0ns  
5.0ns  
3.3ns  
3.5ns  
4.0ns  
5.0ns  
3.3ns  
3.5ns  
4.0ns  
5.0ns  
3.3ns  
3.5ns  
4.0ns  
5.0ns  
3.3ns  
3.5ns  
4.0ns  
5.0ns  
3.3ns  
3.5ns  
4.0ns  
5.0ns  
300MHz  
287MHz  
250MHz  
200MHz  
300MHz  
287MHz  
250MHz  
200MHz  
300MHz  
287MHz  
250MHz  
200MHz  
300MHz  
287MHz  
250MHz  
200MHz  
300MHz  
287MHz  
250MHz  
200MHz  
300MHz  
287MHz  
250MHz  
200MHz  
165-pin  
PLASTIC BGA  
(15 x 17)  
Ta = 40 to 85°C  
Lead-free  
2M x 18  
1M x 36  
4M x 9  
165-pin  
PLASTIC BGA  
(15 x 17)  
Ta = 40 to 85°C  
Lead  
2M x 18  
1M x 36  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 3 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Pin Arrangement  
165-pin PLASTIC BGA (15 x 17)  
(Top View)  
[μPD44325092B]  
4M x 9  
1
CQ#  
NC  
2
3
A
4
5
6
7
NC/144M  
BW0#  
A
8
9
A
10  
A
11  
CQ  
Q4  
D4  
NC  
Q3  
NC  
NC  
ZQ  
D2  
NC  
Q1  
D1  
NC  
Q0  
TDI  
A
B
C
D
E
F
W#  
NC  
NC/288M  
A
K#  
K
R#  
VSS/72M  
NC  
NC  
NC  
NC  
Q5  
NC  
Q6  
VDDQ  
NC  
NC  
D7  
NC  
NC  
Q8  
A
A
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
NC  
NC  
D3  
NC  
NC  
VSS  
A
VSS  
NC  
D5  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
VREF  
Q2  
NC  
NC  
NC  
NC  
D0  
G
H
J
NC  
D6  
DLL#  
NC  
VREF  
NC  
K
L
NC  
NC  
NC  
Q7  
M
N
P
R
NC  
NC  
NC  
D8  
VSS  
VSS  
NC  
NC  
A
A
C
A
A
TDO  
TCK  
A
A
C#  
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Read input  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
D0 to D8  
Q0 to Q8  
R#  
TDI  
TCK  
TDO  
VREF  
VDD  
W#  
: Write input  
BW0#  
K, K#  
C, C#  
CQ, CQ#  
ZQ  
: Byte Write data select  
: Input clock  
V
DDQ  
: Power Supply  
: Output clock  
VSS  
NC  
: Ground  
: Echo clock  
: No connection  
: Output impedance matching  
: PLL disable  
NC/xxM : Expansion address for xxMb  
DLL#  
Remarks 1. ×××# indicates active LOW.  
2. Refer to Package Dimensions for the index mark.  
3. 2A, 7A and 5B are expansion addresses : 2A for 72Mb  
: 2A and 7A for 144Mb  
: 2A, 7A and 5B for 288Mb  
2A of this product can also be used as NC.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 4 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Pin Arrangement  
165-pin PLASTIC BGA (15 x 17)  
(Top View)  
[μPD44325182B]  
2M x 18  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ#  
NC  
A
W#  
A
BW1#  
NC  
A
K#  
K
R#  
A
A
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
VSS/144M  
Q9  
NC/288M  
BW0#  
A
VSS/72M  
NC  
D9  
NC  
NC  
D10  
Q10  
Q11  
D12  
Q13  
VDDQ  
D14  
Q14  
D15  
D16  
Q16  
Q17  
A
VSS  
A
VSS  
Q7  
NC  
D11  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
D6  
NC  
Q12  
D13  
VREF  
NC  
NC  
G
H
J
NC  
NC  
DLL#  
NC  
VREF  
Q4  
K
L
NC  
NC  
D3  
NC  
Q15  
NC  
NC  
M
N
P
R
NC  
Q1  
NC  
D17  
NC  
VSS  
VSS  
NC  
NC  
A
A
C
A
A
D0  
TDO  
TCK  
A
A
C#  
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Read input  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
D0 to D17  
Q0 to Q17  
R#  
TDI  
TCK  
TDO  
VREF  
VDD  
W#  
: Write input  
BW0#, BW1#  
K, K#  
: Byte Write data select  
: Input clock  
VDD  
VSS  
NC  
Q
: Power Supply  
C, C#  
: Output clock  
: Ground  
CQ, CQ#  
ZQ  
: Echo clock  
: No connection  
: Output impedance matching  
: PLL disable  
NC/xxM : Expansion address for xxMb  
DLL#  
Remarks 1. ×××# indicates active LOW.  
2. Refer to Package Dimensions for the index mark.  
3. 2A, 7A and 10A are expansion addresses : 10A for 72Mb  
: 10A and 2A for 144Mb  
: 10A, 2A and 7A for 288Mb  
2A and 10A of this product can also be used as NC.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 5 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Pin Arrangement  
165-pin PLASTIC BGA (15 x 17)  
(Top View)  
[μPD44325362B]  
1M x 36  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
CQ#  
Q27  
D27  
D28  
Q29  
Q30  
D30  
DLL#  
D31  
Q32  
Q33  
D33  
D34  
Q35  
TDO  
W#  
A
BW2#  
BW3#  
A
K#  
K
BW1#  
BW0#  
A
R#  
A
A
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
VSS/288M NC/72M  
VSS/144M  
Q17  
Q7  
Q18  
Q28  
D20  
D29  
Q21  
D22  
VREF  
Q31  
D32  
Q24  
Q34  
D26  
D35  
TCK  
D18  
D19  
Q19  
Q20  
D21  
Q22  
VDDQ  
D23  
Q23  
D24  
D25  
Q25  
Q26  
A
D17  
D16  
Q16  
Q15  
D14  
Q13  
VDDQ  
D12  
Q12  
D11  
D10  
Q10  
Q9  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
D15  
D6  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
Q14  
D13  
VREF  
Q4  
G
H
J
K
L
D3  
Q11  
Q1  
M
N
P
R
VSS  
VSS  
D9  
A
A
C
A
A
D0  
A
A
C#  
A
A
A
TMS  
A
: Address inputs  
: Data inputs  
: Data outputs  
: Read input  
TMS  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
D0 to D35  
Q0 to Q35  
R#  
TDI  
TCK  
TDO  
VREF  
VDD  
W#  
: Write input  
BW0# to BW3# : Byte Write data select  
K, K#  
C, C#  
CQ, CQ#  
ZQ  
: Input clock  
VDD  
VSS  
NC  
Q
: Power Supply  
: Output clock  
: Ground  
: Echo clock  
: No connection  
: Output impedance matching  
: PLL disable  
NC/xxM : Expansion address for xxMb  
DLL#  
Remarks 1. ×××# indicates active LOW.  
2. Refer to Package Dimensions for the index mark.  
3. 2A, 3A and 10A are expansion addresses : 3A for 72Mb  
: 3A and 10A for 144Mb  
: 3A, 10A and 2A for 288Mb  
2A and 10A of this product can also be used as NC.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 6 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Pin Description  
(1/2)  
Symbol  
Type  
Input  
Description  
A
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold  
times around the rising edge of K for READ cycles and must meet the setup and hold times  
around the rising edge of K# for WRITE cycles. All transactions operate on a burst of two  
words (one clock period of bus activity). These inputs are ignored when device is  
deselected, i.e., NOP (R# = W# = HIGH).  
D0 to Dxx  
Q0 to Qxx  
Synchronous Data Inputs: Input data must meet setup and hold times around the rising  
edges of K and K# during WRITE operations. See Pin Arrangement for ball site location of  
individual signals.  
x9 device uses D0 to D8.  
x18 device uses D0 to D17.  
Input  
x36 device uses D0 to D35.  
Synchronous Data Outputs: Output data is synchronized to the respective C and C# or to K  
and K# rising edges if C and C# are tied HIGH. Data is output in synchronization with C and  
C# (or K and K#), depending on the R# command. See Pin Arrangement for ball site  
location of individual signals.  
Output  
x9 device uses Q0 to Q8.  
x18 device uses Q0 to Q17.  
x36 device uses Q0 to Q35.  
R#  
Synchronous Read: When LOW this input causes the address inputs to be registered and a  
READ cycle to be initiated. This input must meet setup and hold times around the rising  
edge of K.  
Synchronous Write: When LOW this input causes the address inputs to be registered and a  
WRITE cycle to be initiated. This input must meet setup and hold times around the rising  
edge of K.  
Synchronous Byte Writes: When LOW these inputs cause their respective byte to be  
registered and written during WRITE cycles. These signals must meet setup and hold times  
around the rising edges of K and K# for each of the two rising edges comprising the WRITE  
cycle. See Pin Arrangement for signal to data relationships.  
x9 device uses BW0#.  
Input  
Input  
Input  
W#  
BWx#  
x18 device uses BW0#, BW1#.  
x36 device uses BW0# to BW3#.  
See Byte Write Operation for relation between BWx# and Dxx.  
Input Clock: A READ address and control input signal are input in synchronization with the  
rising edge of K and a WRITE address is input in synchronization with the rising edge of K#.  
Input data is input in synchronization with the rising edge of K and K#. K# is ideally 180  
degrees out of phase with K. All synchronous inputs must meet setup and hold times around  
the clock rising edges.  
Output Clock: This clock pair provides a user controlled means of tuning device output data.  
The rising edge of C# is used as the output timing reference for first output data. The rising  
edge of C is used as the output reference for second output data. Ideally, C# is 180 degrees  
out of phase with C. When use of K and K# as the reference instead of C and C#, then fixed  
C and C# to HIGH. Operation cannot be guaranteed unless C and C# are fixed to HIGH  
(i.e. toggle of C and C#).  
K, K#  
C, C#  
Input  
Input  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 7 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
(2/2)  
Symbol  
Type  
Description  
CQ, CQ#  
Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to  
the synchronous data outputs and can be used as a data valid indication. These signals run  
freely and do not stop when Q tristates. If C and C# are stopped (if K and K# are stopped in  
the single clock mode), CQ and CQ# will also stop.  
Output  
ZQ  
Output Impedance Matching Input: This input is used to tune the device outputs to the  
system data bus impedance. Q, CQ and CQ# output impedance are set to 0.2 x RQ, where  
RQ is a resistor from this bump to ground. The output impedance can be minimized by  
directly connect ZQ to VDDQ. This pin cannot be connected directly to GND or left  
unconnected. The output impedance is adjusted every 20 μs upon power-up to account for  
drifts in supply voltage and temperature. After replacement for a resistor, the new output  
impedance is reset by implementing power-on sequence.  
PLL Disable: When debugging the system or board, the operation can be performed at a  
clock frequency slower than TKHKH (MAX.) without the PLL circuit being used, if DLL# =  
LOW. The AC/DC characteristics cannot be guaranteed. For normal operation, DLL# must  
be HIGH and it can be connected to VDDQ through a 10 kΩ or less resistor.  
Input  
Input  
DLL#  
TMS  
TDI  
Input  
IEEE 1149.1 Test Inputs: 1.8 V I/O level. These balls may be left Not Connected if the JTAG  
function is not used in the circuit.  
TCK  
IEEE 1149.1 Clock Input: 1.8 V I/O level. This pin must be tied to VSS if the JTAG function  
is not used in the circuit.  
Input  
TDO  
IEEE 1149.1 Test Output: 1.8 V I/O level.  
Output  
When providing any external voltage to TDO signal, it is recommended to pull up to VDD.  
HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the  
input buffers.  
Power Supply: 1.8 V nominal. See Recommended DC Operating Conditions and DC  
Characteristics for range.  
VREF  
VDD  
Supply  
Supply  
VDDQ  
Power Supply: Isolated Output Buffer Supply. Nominally 1.5 V. 1.8 V is also permissible. See  
Recommended DC Operating Conditions and DC Characteristics for range.  
VSS  
NC  
Supply  
Power Supply: Ground  
No Connect: These signals are not connected internally.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 8 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Block Diagram  
[μPD44325092B]  
21  
ADDRESS  
R#  
ADDRESS  
REGISTRY  
& LOGIC  
21  
W#  
K
K#  
W#  
BW0#  
221 x 18  
DATA  
18  
18  
9
2
18  
9
Q0 to Q8  
D0 to D8  
R#  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
MUX  
CQ,  
CQ#  
K
K
K
C, C#  
K#  
OR  
K, K#  
[μPD44325182B]  
20  
ADDRESS  
R#  
ADDRESS  
REGISTRY  
& LOGIC  
20  
W#  
K
K#  
W#  
BW0#  
BW1#  
220 x 36  
DATA  
36  
36  
18  
2
36  
18  
Q0 to Q17  
D0 to D17  
R#  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
MUX  
CQ,  
CQ#  
K
K
K
C, C#  
OR  
K#  
K, K#  
[μPD44325362B]  
19  
ADDRESS  
R#  
ADDRESS  
REGISTRY  
& LOGIC  
19  
W#  
K
K#  
W#  
BW0#  
BW1#  
BW2#  
BW3#  
219 x 72  
DATA  
72  
72  
36  
72  
Q0 to Q35  
REGISTRY  
& LOGIC  
MEMORY  
ARRAY  
MUX  
36  
D0 to D35  
2
CQ,  
CQ#  
R#  
K
K
K
C, C#  
K#  
OR  
K, K#  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 9 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Power-On Sequence in QDR II SRAM  
QDR II SRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.  
The following timing charts show the recommended power-on sequence.  
The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and  
VDDQ can be applied simultaneously, as long as VDDQ does not exceed VDD by more than 0.5 V during power-up.  
The following power-down supply voltage removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD  
and VDDQ can be removed simultaneously, as long as VDDQ does not exceed VDD by more than 0.5 V during  
power-down.  
Power-On Sequence  
Apply power and tie DLL# to HIGH.  
- Apply VDD before VDDQ.  
- Apply VDDQ before VREF or at the same time as VREF  
.
Provide stable clock for more than 20 μs to lock the PLL.  
PLL Constraints  
The PLL uses K clock as its synchronizing input and the input should have low phase jitter which is specified as  
TKC var. The PLL can cover 120 MHz as the lowest frequency. If the input clock is unstable and the PLL is  
enabled, then the PLL may lock onto an undesired clock frequency.  
Power-On Waveforms  
V
DD/VDDQ  
V
DD/VDDQ Stable (< ±0.1 V DC per 50 ns)  
Fix HIGH (or tied to VDDQ)  
DLL#  
Clock  
20 μs or more  
Stable Clock  
Unstable Clock  
Normal Operation  
Start  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 10 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Truth Table  
Operation  
CLK  
R#  
W#  
L
D or Q  
Data in  
WRITE cycle  
L H  
×
Load address, input write data on  
consecutive K and K# rising edge  
READ cycle  
Input data  
Input clock  
Data out  
DA (A+0)  
DA (A+1)  
K( t ) ↑  
K#( t ) ↑  
L H  
L
×
Load address, output data on  
consecutive C and C# rising edge  
NOP (No operation)  
Output data  
Output clock  
QA (A+0)  
QA (A+1)  
C#(t+1) ↑  
C(t+2) ↑  
L H  
H
H
D = ×, Q = High-Z  
Previous state  
Clock stop  
Stopped  
×
×
Remarks 1. H : HIGH, L : LOW, × : don’t care, : rising edge.  
2. Data inputs are registered at K and K# rising edges. Data outputs are delivered at C and C# rising edges  
except if C and C# are HIGH then Data outputs are delivered at K and K# rising edges.  
3. All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of  
K. All control inputs are registered during the rising edge of K.  
4. This device contains circuitry that ensure the outputs to be in high impedance during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. It is recommended that K = K# = C = C# when clock is stopped. This is not essential but permits most  
rapid restart by overcoming transmission line charging symmetrically.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 11 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Byte Write Operation  
[μPD44325092B]  
Operation  
Write D0 to D8  
K
L H  
L H  
K#  
L H  
BW0#  
0
0
1
1
Write nothing  
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# can be altered for any portion of the BURST WRITE  
operation provided that the setup and hold requirements are satisfied.  
[μPD44325182B]  
Operation  
K
L H  
L H  
L H  
L H  
K#  
L H  
L H  
L H  
BW0#  
BW1#  
Write D0 to D17  
Write D0 to D8  
Write D9 to D17  
Write nothing  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# and BW1# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
[μPD44325362B]  
Operation  
K
L H  
L H  
L H  
L H  
L H  
L H  
K#  
L H  
L H  
L H  
L H  
L H  
BW0#  
BW1#  
BW2#  
BW3#  
Write D0 to D35  
Write D0 to D8  
Write D9 to D17  
Write D18 to D26  
Write D27 to D35  
Write nothing  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
L H  
Remarks 1. H : HIGH, L : LOW, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0# to BW3# can be altered for any portion of the BURST  
WRITE operation provided that the setup and hold requirements are satisfied.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 12 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Bus Cycle State Diagram  
LOAD NEW  
WRITE ADDRESS  
AT K#  
LOAD NEW  
READ ADDRESS  
R# = LOW  
Always  
Always  
W# = LOW  
WRITE DOUBLE  
AT K#  
READ DOUBLE  
R# = LOW  
W# = LOW  
W# = HIGH  
W# = HIGH  
R# = HIGH  
R# = HIGH  
Supply voltage  
provided  
Supply voltage  
provided  
READ PORT NOP  
R_Init = 0  
WRITE PORT NOP  
Power UP  
Remarks 1. The address is concatenated with 1 additional internal LSB to facilitate burst operation.  
The address order is always fixed as: xxx...xxx+0, xxx...xxx+1.  
Bus cycle is terminated at the end of this sequence (burst count = 2).  
2. Read and write state machines can be active simultaneously.  
3. State machine control timing sequence is controlled by K.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 13 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Electrical Characteristics  
Absolute Maximum Ratings  
Parameter  
Supply voltage  
Symbol  
Conditions  
Rating  
0.5 to +2.5  
Unit  
V
VDD  
Output supply voltage  
Input voltage  
VDD  
Q
0.5 to VDD  
V
VIN  
VI/O  
TA  
0.5 to VDD+0.5 (2.5 V MAX.)  
0.5 to VDDQ+0.5 (2.5 V MAX.)  
0 to 70  
V
Input / Output voltage  
Operating ambient temperature  
V
(E** series)  
°C  
(E**Y series)  
40 to 85  
Storage temperature  
Tstg  
55 to +125  
°C  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions (TA = 0 to 70°C, TA = 40 to 85°C)  
Parameter  
Supply voltage  
Symbol Conditions  
MIN.  
1.7  
TYP.  
MAX.  
1.9  
Unit Note  
VDD  
1.8  
V
Output supply voltage  
Input HIGH voltage  
Input LOW voltage  
Clock input voltage  
Reference voltage  
VDD  
Q
1.4  
VDD  
V
V
V
V
V
1
VIH (DC)  
VIL (DC)  
VIN  
VREF +0.1  
0.3  
VDDQ+0.3  
VREF 0.1  
VDDQ+0.3  
0.95  
1, 2  
1, 2  
1, 2  
0.3  
VREF  
0.68  
Notes 1. During normal operation, VDDQ must not exceed VDD  
.
2. Power-up: VIH VDDQ +0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
Recommended AC Operating Conditions (TA = 0 to 70°C, TA = 40 to 85°C)  
Parameter  
Input HIGH voltage  
Input LOW voltage  
Symbol Conditions  
MIN.  
MAX.  
Unit Note  
VIH (AC)  
VIL (AC)  
VREF +0.2  
V
V
1
1
VREF 0.2  
Note 1. Overshoot: VIH (AC) VDD +0.7 V (2.5 V MAX.) for t TKHKH/2  
Undershoot: VIL (AC) 0.5 V for t TKHKH/2  
Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than  
TKHKH (MIN.).  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 14 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
DC Characteristics 1 (TA = 0 to 70°C, VDD = 1.8 0.1 V)  
Parameter  
Symbol  
Test condition  
MIN.  
MAX.  
x18 x36  
+2  
Unit Note  
x9  
Input leakage current  
I/O leakage current  
ILI  
2  
2  
μA  
μA  
ILO  
IDD  
+2  
Operating supply current  
(Read cycle / Write cycle)  
VIN VIL or VIN VIH, -E33  
mA  
570 690 770  
550 660 750  
510 610 690  
440 530 590  
310 320 340  
310 320 340  
300 310 330  
290 300 320  
II/O = 0 mA,  
-E35  
-E40  
-E50  
Cycle = MAX.  
Standby supply current  
(NOP)  
ISB1  
VIN VIL or VIN VIH, -E33  
mA  
II/O = 0 mA,  
Cycle = MAX.  
Inputs static  
-E35  
-E40  
-E50  
Output HIGH voltage  
Output LOW voltage  
VOH(Low) |IOH| 0.1 mA  
VOH Note1  
VOL(Low) IOL 0.1 mA  
VOL Note2  
VDDQ0.2  
VDDQ/20.12  
VSS  
V
DDQ  
V
DDQ/2+0.12  
0.2  
VDDQ/20.12  
VDDQ/2+0.12  
Notes 1. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) 15% for values of 175 Ω ≤ RQ 350 Ω.  
2. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) 15% for values of 175 Ω ≤ RQ 350 Ω.  
3. AC load current is higher than the shown DC values.  
4. HSTL outputs meet JEDEC HSTL Class I standards.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 15 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
DC Characteristics 2 (TA = 40 to 85°C, VDD = 1.8 0.1 V)  
Parameter  
Symbol  
Test condition  
MIN.  
MAX.  
x18 x36  
+2  
Unit Note  
x9  
Input leakage current  
I/O leakage current  
ILI  
2  
2  
μA  
μA  
ILO  
IDD  
+2  
Operating supply current  
(Read cycle / Write cycle)  
VIN VIL or VIN VIH, -E33Y  
mA  
700 820 910  
680 790 890  
640 740 830  
570 670 730  
430 440 470  
430 440 470  
420 430 460  
410 420 450  
II/O = 0 mA,  
-E35Y  
-E40Y  
-E50Y  
Cycle = MAX.  
Standby supply current  
(NOP)  
ISB1  
VIN VIL or VIN VIH, -E33Y  
mA  
II/O = 0 mA,  
Cycle = MAX.  
Inputs static  
-E35Y  
-E40Y  
-E50Y  
Output HIGH voltage  
Output LOW voltage  
VOH(Low) |IOH| 0.1 mA  
VOH Note1  
VOL(Low) IOL 0.1 mA  
VOL Note2  
VDDQ0.2  
VDDQ/20.12  
VSS  
V
DDQ  
V
DDQ/2+0.12  
0.2  
VDDQ/20.12  
VDDQ/2+0.12  
Notes 1. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) 15% for values of 175 Ω ≤ RQ 350 Ω.  
2. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) 15% for values of 175 Ω ≤ RQ 350 Ω.  
3. AC load current is higher than the shown DC values.  
4. HSTL outputs meet JEDEC HSTL Class I standards.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 16 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Capacitance (TA = 25°C, f = 1 MHz)  
Parameter  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
MIN.  
MAX.  
Unit  
pF  
Input capacitance (Address, Control)  
Input / Output capacitance  
(D, Q, CQ, CQ#)  
5
7
CI/O  
VI/O = 0 V  
pF  
Clock Input capacitance  
Cclk  
Vclk = 0 V  
6
pF  
Remark These parameters are periodically sampled and not 100% tested.  
Thermal Characteristics  
Parameter  
Thermal resistance  
Symbol  
Substrate  
4-layer  
Airflow  
0 m/s  
1 m/s  
0 m/s  
1 m/s  
0 m/s  
1 m/s  
0 m/s  
1 m/s  
TYP.  
Unit  
θ ja  
21.2  
13.4  
20.2  
13.0  
0.02  
0.06  
0.02  
0.05  
2.58  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
from junction to ambient air  
8-layer  
4-layer  
8-layer  
Thermal characterization parameter  
from junction to the top center  
of the package surface  
Ψ jt  
θ jc  
Thermal resistance  
from junction to case  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 17 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
AC Characteristics (TA = 0 to 70°C or TA = 40 to 85°C, VDD = 1.8 0.1 V)  
AC Test Conditions (VDD = 1.8 0.1 V, VDDQ = 1.4 V to VDD  
)
Input waveform (Rise / Fall time 0.3 ns)  
1.25 V  
0.75 V  
0.75 V  
Test Points  
0.25 V  
Output waveform  
V
DDQ / 2  
Test Points  
VDDQ / 2  
Output load condition  
Figure 1. External load at test  
V
DDQ / 2  
0.75 V  
50 Ω  
V
REF  
ZO = 50 Ω  
SRAM  
250 Ω  
ZQ  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 18 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Read and Write Cycle  
-E33, E33Y  
(300 MHz)  
Parameter  
Symbol  
TKHKH  
-E35, E35Y -E40, E40Y -E50, E50Y Unit Note  
(287 MHz) (250 MHz) (200 MHz)  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
Clock  
3.3  
8.4  
0.2  
3.5  
8.4  
0.2  
4.0  
8.4  
0.2  
5.0  
8.4  
0.2  
ns  
1
2
Average Clock cycle time  
(K, K#, C, C#)  
Clock phase jitter (K, K#, C, C#)  
Clock HIGH time (K, K#, C, C#)  
Clock LOW time (K, K#, C, C#)  
Clock HIGH to Clock# HIGH  
(K K#, C C#)  
TKC var  
TKHKL  
ns  
ns  
ns  
ns  
1.32  
1.32  
1.49  
1.5  
1.5  
1.7  
1.6  
1.6  
1.8  
2.0  
2.0  
2.2  
TKLKH  
TKHK#H  
TK#HKH  
TKHCH  
1.49  
0
1.7  
0
1.8  
0
2.2  
0
ns  
ns  
Clock# HIGH to Clock HIGH  
(K# K, C# C)  
Clock to data clock  
1.45  
1.65  
1.8  
2.3  
(K C, K# C#)  
PLL lock time (K, C)  
TKC lock  
20  
30  
20  
30  
20  
30  
20  
30  
μs  
ns  
3
4
K static to PLL reset  
TKC reset  
Output Times  
CQ HIGH to CQ# HIGH  
(CQ CQ#)  
CQ# HIGH to CQ HIGH  
(CQ# CQ)  
C, C# HIGH to output valid  
C, C# HIGH to output hold  
C, C# HIGH to echo clock valid  
C, C# HIGH to echo clock hold  
CQ, CQ# HIGH to output valid  
CQ, CQ# HIGH to output hold  
C HIGH to output High-Z  
C HIGH to output Low-Z  
TCQHCQ#H 1.24  
TCQ#HCQH 1.24  
TCHQV  
1.35  
1.35  
1.55  
1.55  
1.95  
1.95  
ns  
ns  
5
5
0.45  
0.45  
0.27  
0.45  
0.45  
0.45  
0.3  
0.45  
0.45  
0.3  
0.45  
0.45  
0.35  
0.45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCHQX  
0.45  
0.45  
0.45  
0.3  
0.45  
0.45  
0.3  
0.45  
0.45  
0.35  
0.45  
TCHCQV  
TCHCQX 0.45  
TCQHQV  
6
6
TCQHQX 0.27  
TCHQZ  
0.45  
0.45  
TCHQX1 0.45  
0.45  
0.45  
Setup Times  
Address valid to K rising edge  
TAVKH  
TIVKH  
0.3  
0.3  
0.35  
0.35  
0.35  
0.35  
0.4  
0.4  
ns  
ns  
7
7
Control inputs (R#, W#) valid to  
K rising edge  
Data inputs and write data  
select  
TDVKH  
0.3  
0.35  
0.35  
0.4  
ns  
7
inputs (BWx#) valid to  
K, K# rising edge  
Hold Times  
K rising edge to address hold  
K rising edge to control inputs  
(R#, W#) hold  
TKHAX  
TKHIX  
0.3  
0.3  
0.35  
0.35  
0.35  
0.35  
0.4  
0.4  
ns  
ns  
7
7
K, K# rising edge to data  
inputs and write data select  
inputs (BWx#) hold  
TKHDX  
0.3  
0.35  
0.35  
0.4  
ns  
7
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 19 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Notes 1. When debugging the system or board, these products can operate at a clock frequency slower than TKHKH  
(MAX.) without the PLL circuit being used, if DLL# = LOW. Read latency (RL) is changed to 1.0 clock  
cycle in this operation. The AC/DC characteristics cannot be guaranteed, however.  
2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. TKC var  
(MAX.) indicates a peak-to-peak value.  
3. VDD slew rate must be less than 0.1 V DC per 50 ns for PLL lock retention.  
PLL lock time begins once VDD and input clock are stable.  
It is recommended that the device is kept NOP (R# = W# = HIGH) during these cycles.  
4. K input is monitored for this operation. See below for the timing.  
K
TKC reset  
or  
K
TKC reset  
5. Guaranteed by design.  
6. Echo clock is very tightly controlled to data valid / data hold. By design, there is a 0.1 ns variation from  
echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.  
7. This is a synchronous device. All addresses, data and control lines must meet the specified setup  
and hold times for all latching clock edges.  
Remarks 1. This parameter is sampled.  
2. Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise  
noted.  
3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).  
4. If C, C# are tied HIGH, K, K# become the references for C, C# timing parameters.  
5. VDDQ is 1.5 V DC.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 20 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Read and Write Timing  
READ  
WRITE READ  
WRITE READ  
WRITE NOP  
WRITE NOP  
1
2
3
4
5
6
7
8
9
10  
K
TKHKL TKLKH  
TKHKH  
TKHK#H TK#HKH  
K#  
R#  
TKHIX  
TIVKH  
W#  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
Address  
TKHAX  
TAVKH  
TKHAX  
D11  
TAVKH  
D30  
D10  
D31  
D50  
D51  
D60  
D61  
Data in  
TDVKH TKHDX  
TDVKH TKHDX  
Q01 Q20  
Data out  
Q00  
Q21  
Q40  
Q41  
TCHQX TCHQX  
TCQHQX  
TCHQX1  
TCHQZ  
TCHQV TCHQV  
TCQHQV  
CQ  
TCHCQX  
TCHCQV  
TCQHCQ#H TCQ#HCQH  
CQ#  
TCHCQX  
TKHCH  
TCHCQV  
C
TKHKL TKLKH  
TKHKH  
TKHK#H  
TK#HKH  
TKHCH  
C#  
Remarks 1. Q00 refers to output from address A0+0.  
Q01 refers to output from the next internal burst address following A0,i.e.,A0+1.  
2. Outputs are disabled (high impedance) 2.5 clock cycles after the last READ (R# = LOW) is input in the  
sequences of [READ/WRITE]-[NOP/WRITE], [READ/WRITE]-[NOP/NOP], [READ/NOP]-  
[NOP/WRITE] and [READ/NOP] -[NOP/NOP].  
3. In this example, if address A0 = A1, data Q00 = D10, Q01 = D11.  
Write data is forwarded immediately as read results.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 21 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Application Example  
R =  
250 Ω  
R =  
250 Ω  
ZQ  
ZQ  
CQ#  
CQ  
Q
CQ#  
SRAM#1  
SRAM#4  
. . .  
CQ  
D
A
D
A
Q
R# W# BWx# C/C# K/K#  
R# W# BWx# C/C# K/K#  
V
t
SRAM  
Controller  
R
Data In  
Vt  
Data Out  
Address  
R#  
R
Vt  
R
W#  
BW#  
SRAM#1 CQ/CQ#  
Vt  
R
R
SRAM#4 CQ/CQ#  
Vt  
Source CLK/CLK#  
Return CLK/CLK#  
Vt  
R
R = 50 Ω  
Vt = Vref  
Remark AC Characteristics are defined at the condition of SRAM outputs, CQ, CQ# and DQ with termination.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 22 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Test Access Port (TAP) Pins  
Pin name  
TCK  
Pin assignments  
Description  
2R  
Test Clock Input. All input are captured on the rising edge of TCK and all  
outputs propagate from the falling edge of TCK.  
TMS  
TDI  
10R  
11R  
Test Mode Select. This is the command input for the TAP controller state  
machine.  
Test Data Input. This is the input side of the serial registers placed between  
TDI and TDO. The register placed between TDI and TDO is determined by the  
state of the TAP controller state machine and the instruction that is currently  
loaded in the TAP instruction.  
TDO  
1R  
Test Data Output. This is the output side of the serial registers placed between  
TDI and TDO. Output changes in response to the falling edge of TCK.  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held HIGH  
for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.  
JTAG DC Characteristics (TA = 0 to 70°C, VDD = 1.8 0.1 V, unless otherwise noted)  
Parameter  
Symbol  
Conditions  
MIN.  
5.0  
5.0  
MAX.  
+5.0  
+5.0  
Unit  
μA  
JTAG Input leakage current  
JTAG I/O leakage current  
ILI  
0 V VIN VDD  
0 V VIN VDDQ,  
Outputs disabled  
ILO  
μA  
JTAG input HIGH voltage  
JTAG input LOW voltage  
JTAG output HIGH voltage  
VIH  
VIL  
1.3  
0.3  
1.6  
VDD+0.3  
+0.5  
V
V
V
V
V
V
VOH1  
VOH2  
VOL1  
VOL2  
| IOHC | = 100 μA  
| IOHT | = 2 mA  
IOLC = 100 μA  
IOLT = 2 mA  
1.4  
JTAG output LOW voltage  
0.2  
0.4  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 23 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
JTAG AC Test Conditions  
Input waveform (Rise / Fall time 1 ns)  
1.8 V  
0.9 V  
0.9 V  
Test Points  
0 V  
Output waveform  
0.9 V  
Test Points  
0.9 V  
Output load  
Figure 2. External load at test  
V
TT = 0.9 V  
50 Ω  
ZO = 50 Ω  
TDO  
20 pF  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 24 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
JTAG AC Characteristics (TA = 0 to 70°C)  
Parameter  
Symbol  
Conditions  
MIN.  
MAX.  
Unit  
Clock  
Clock cycle time  
Clock frequency  
Clock HIGH time  
Clock LOW time  
tTHTH  
fTF  
tTHTL  
tTLTH  
50  
ns  
MHz  
ns  
20  
20  
20  
ns  
Output time  
TCK LOW to TDO unknown  
TCK LOW to TDO valid  
tTLOX  
tTLOV  
0
ns  
ns  
10  
Setup time  
TMS setup time  
TDI valid to TCK HIGH  
Capture setup time  
tMVTH  
tDVTH  
tCS  
5
5
5
ns  
ns  
ns  
Hold time  
TMS hold time  
tTHMX  
tTHDX  
tCH  
5
5
5
ns  
ns  
ns  
TCK HIGH to TDI invalid  
Capture hold time  
JTAG Timing Diagram  
t
THTH  
TCK  
t
MVTH  
t
THTL  
t
TLTH  
TMS  
TDI  
t
THMX  
t
DVTH  
t
THDX  
t
TLOV  
t
TLOX  
TDO  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 25 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The instruction register holds the instructions that are executed by the TAP controller  
when it is moved into the run-test/idle or the various data register state. The register can  
be loaded when it is placed between the TDI and TDO pins. The instruction register is  
automatically preloaded with the IDCODE instruction at power-up whenever the controller  
is placed in test-logic-reset state.  
Bypass register  
ID register  
The bypass register is a single bit register that can be placed between TDI and TDO. It  
allows serial test data to be passed through the RAMs TAP to another device in the scan  
chain with as little delay as possible.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit  
code when the controller is put in capture-DR state with the IDCODE command loaded in  
the instruction register. The register is then placed between the TDI and TDO pins when  
the controller is moved into shift-DR state.  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents  
of the RAMs I/O ring when the controller is in capture-DR state and then is placed  
between the TDI and TDO pins when the controller is moved to shift-DR state. Several  
TAP instructions can be used to activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary  
register location. The first column defines the bit’s position in the boundary register. The  
second column is the name of the input or I/O at the bump and the third column is the  
bump number.  
Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
Bit size  
Unit  
bit  
3
1
bit  
32  
109  
bit  
Boundary register  
bit  
ID Register Definition  
ID [31:28] vendor  
revision no.  
ID [11:1] vendor  
ID no.  
Part number  
Organization  
4M x 9  
ID [27:12] part no.  
ID [0] fix bit  
μPD44325092B  
μPD44325182B  
μPD44325362B  
XXXX  
XXXX  
XXXX  
1
1
1
0000 0000 0100 1010  
0000 0000 0100 1011  
0000 0000 0100 1100  
00000010000  
00000010000  
00000010000  
2M x 18  
1M x 36  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 26 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
SCAN Exit Order  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
x18 x36  
Bump  
ID  
Bit  
Signal name  
x18 x36  
Bump  
ID  
no.  
x9  
x18  
x36  
no.  
x9  
no.  
x9  
NC  
Q5 Q11 Q20 3E  
1
C#  
C
6R  
6P  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
NC  
NC  
NC  
NC  
NC  
NC  
Q4  
D4  
NC D15 10D  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
NC Q28 2C  
2
NC Q15  
9E  
10C  
11D  
9C  
3
A
6N  
Q7  
D7  
Q7  
D7  
D5  
NC  
NC  
D11 D20  
NC D29  
2D  
2E  
4
A
7P  
5
A
7N  
NC D16  
NC Q16  
NC Q29 1E  
6
A
7R  
9D  
NC Q12 Q21  
NC D12 D21  
2F  
3F  
7
A
8R  
Q8  
D8  
Q8  
D8  
11B  
11C  
9B  
8
A
8P  
NC  
NC  
NC D30 1G  
NC Q30 1F  
9
A
9R  
NC  
NC  
NC D17  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Q0  
D0  
NC  
NC  
Q1  
D1  
NC  
NC  
Q2  
D2  
NC  
NC  
Q3  
D3  
NC  
NC  
Q4  
D4  
ZQ  
NC  
NC  
Q5  
D5  
NC  
NC  
Q6  
D6  
11P  
10P  
10N  
9P  
NC Q17 10B  
CQ 11A  
VSS VSS 10A  
Q6 Q13 Q22 3G  
D6  
D13 D22 2G  
NC  
NC  
NC  
NC  
NC  
NC  
Q1  
D1  
D9  
Q9  
A
DLL#  
1H  
1J  
2J  
A
A
9A  
8B  
7C  
6C  
8A  
NC  
NC  
NC D31  
NC Q31  
Q1  
10M  
11N  
9M  
9N  
D1  
A
NC Q14 Q23 3K  
D10  
Q10  
Q2  
A
NC D14 D23  
3J  
R#  
NC  
NC  
NC D32  
2K  
11L  
11M  
9L  
NC  
NC  
NC BW1# 7A  
NC Q32 1K  
D2  
BW0#  
K
7B  
6B  
6A  
Q7 Q15 Q24  
2L  
3L  
NC  
NC  
NC  
NC  
NC  
NC  
Q2  
D2  
D11  
D7  
NC  
NC  
D15 D24  
Q11 10L  
K#  
NC D33 1M  
NC Q33 1L  
Q3  
D3  
11K  
10K  
9J  
NC BW3# 5B  
NC BW1# BW2# 5A  
NC Q16 Q25 3N  
NC D16 D25 3M  
D12  
Q12  
Q4  
W#  
A
4A  
5C  
4B  
3A  
2A  
1A  
2B  
3B  
1C  
1B  
3D  
3C  
1D  
9K  
NC  
NC  
NC D34  
1N  
10J  
11J  
11H  
A
NC Q34 2M  
D4  
A
A
NC  
Q8 Q17 Q26 3P  
VSS  
CQ#  
Q9  
D9  
D8  
D17 D26  
NC D35  
2N  
2P  
NC  
NC  
NC  
NC  
NC  
NC  
Q3  
D3  
D13 10G  
101 NC  
102 NC  
103  
Q13  
Q5  
9G  
11F  
11G  
9F  
NC  
NC  
NC  
NC  
Q18  
D18  
NC Q35 1P  
A
A
A
A
A
A
3R  
4R  
D5  
NC D27  
NC Q27  
104  
D14  
105  
4P  
Q14 10F  
NC Q10 Q19  
NC D10 D19  
106  
5P  
Q6  
D6  
11E  
10E  
107  
5N  
NC  
NC D28  
108  
5R  
109  
Internal  
Remarks  
Bump ID 10A of bit no. 48 can also be used as NC if the product is x18 or x36.  
Bump ID 2A of bit no. 64 can also be used as NC.  
The register always indicates LOW, however.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 27 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
JTAG Instructions  
Instructions  
Description  
EXTEST  
The EXTEST instruction allows circuitry external to the component package to be tested.  
Boundary-scan register cells at output pins are used to apply test vectors, while those at  
input pins capture test results. Typically, the first test vector to be applied using the  
EXTEST instruction will be shifted into the boundary scan register using the PRELOAD  
instruction. Thus, during the update-IR state of EXTEST, the output drive is turned on and  
the PRELOAD data is driven onto the output pins.  
IDCODE  
BYPASS  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the  
controller is in capture-DR mode and places the ID register between the TDI and TDO pins  
in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up  
and any time the controller is placed in the test-logic-reset state.  
When the BYPASS instruction is loaded in the instruction register, the bypass register is  
placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-  
DR state. This allows the board level scan path to be shortened to facilitate testing of other  
devices in the scan path.  
SAMPLE / PRELOAD SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the  
SAMPLE / PRELOAD instruction is loaded in the instruction register, moving the TAP  
controller into the capture-DR state loads the data in the RAMs input and DQ pins into the  
boundary scan register. Because the RAM clock(s) are independent from the TAP clock  
(TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input  
buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample  
metastable input will not harm the device, repeatable results cannot be expected. RAM  
input signals must be stabilized for long enough to meet the TAPs input data capture setup  
plus hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any other  
TAP operation except capturing the I/O ring contents into the boundary scan register.  
Moving the controller to shift-DR state then places the boundary scan register between the  
TDI and TDO pins.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM DQ pins are  
forced to an inactive drive state (high impedance) and the boundary register is connected  
between TDI and TDO when the TAP controller is moved to the shift-DR state.  
JTAG Instruction Coding  
IR2  
0
IR1  
0
IR0  
0
Instruction  
EXTEST  
Note  
0
0
1
IDCODE  
0
1
0
SAMPLE-Z  
1
2
0
1
1
RESERVED  
SAMPLE / PRELOAD  
RESERVED  
RESERVED  
BYPASS  
1
0
0
1
0
1
2
2
1
1
0
1
1
1
Notes 1. TRISTATE all DQ pins and CAPTURE the pad values into a SERIAL SCAN LATCH.  
2. Do not use this instruction code because the vendor uses it to evaluate this product.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 28 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Output Pin States of CQ, CQ# and Q  
Instructions  
Control-Register Status  
Output Pin Status  
CQ,CQ#  
Update  
Update  
SRAM  
SRAM  
High-Z  
High-Z  
SRAM  
SRAM  
SRAM  
SRAM  
Q
EXTEST  
0
1
0
1
0
1
0
1
0
1
High-Z  
Update  
SRAM  
SRAM  
High-Z  
High-Z  
SRAM  
SRAM  
SRAM  
SRAM  
IDCODE  
SAMPLE-Z  
SAMPLE  
BYPASS  
Remark The output pin statuses during each instruction vary according  
to the Control-Register status (value of Boundary Scan  
Register, bit no. 109).  
Boundary Scan  
Register  
CAPTURE  
Register  
There are three statuses:  
Update : Contents of the “Update Register” are output to  
the output pin (QDR Pad).  
SRAM  
Output  
Update  
Register  
SRAM : Contents of the SRAM internal output “SRAM  
Output” are output to the output pin (QDR Pad).  
High-Z : The output pin (QDR Pad) becomes high  
impedance by controlling of the “High-Z JTAG  
ctrl”.  
Update  
QDR  
Pad  
SRAM  
SRAM  
Output  
Driver  
High-Z  
The Control-Register status is set during Update-DR at the  
EXTEST or SAMPLE instruction.  
High-Z  
JTAG ctrl  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 29 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Boundary Scan Register Status of Output Pins CQ, CQ# and Q  
Instructions  
SRAM Status  
Boundary Scan Register Status  
Note  
CQ,CQ#  
Pad  
Pad  
Q
Pad  
Pad  
EXTEST  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
READ (Low-Z)  
NOP (High-Z)  
IDCODE  
SAMPLE-Z  
SAMPLE  
BYPASS  
No definition  
Pad  
Pad  
Internal  
Internal  
Pad  
Pad  
Internal  
Pad  
No definition  
Remark The Boundary Scan Register statuses during execution each  
instruction vary according to the instruction code and SRAM  
operation mode.  
Boundary Scan  
Register  
CAPTURE  
Register  
There are two statuses:  
Internal  
Pad  
: Contents of the output pin (QDR Pad) are captured  
in the “CAPTURE Register” in the Boundary Scan  
Register.  
SRAM  
Output  
Update  
Register  
Pad  
Internal : Contents of the SRAM internal output “SRAM  
Output” are captured in the “CAPTURE Register”  
in the Boundary Scan Register.  
QDR  
Pad  
SRAM  
Output  
Driver  
High-Z  
JTAG ctrl  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 30 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
TAP Controller State Diagram  
1
0
Test-Logic-Reset  
0
1
1
1
Run-Test / Idle  
Select-DR-Scan  
0
Select-IR-Scan  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with  
normal operation of the device, TCK must be tied to VSS to preclude mid level inputs. TDI and TMS may be left open  
but fix them to VDD via a resistor of about 1 kΩ when the TAP controller is not used. TDO should be left unconnected  
also when the TAP controller is not used.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 31 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Run-Test/Idle  
Update-IR  
Exit1-IR  
Shift-IR  
Exit2-IR  
Pause-IR  
Exit1-IR  
Shift-IR  
Capture-IR  
Select-IR-Scan  
Select-DR-Scan  
Run-Test/Idle  
Test-Logic-Reset  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 32 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Test-Logic-Reset  
Select-IR-Scan  
Select-DR-Scan  
Run-Test/Idle  
Update-DR  
Exit1-DR  
Shift-DR  
Exit2-DR  
Pause-DR  
Exit1-DR  
Shift-DR  
Capture-DR  
Select-DR-Scan  
Run-Test/Idle  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 33 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Package Dimensions  
165-PIN PLASTIC BGA(15x17)  
w S  
B
ZD  
B
E
ZE  
11  
10  
9
8
7
A
6
5
D
4
3
2
1
R P N M L K J H G F E D C B A  
INDEX MARK  
w
S A  
A
(UNIT:mm)  
ITEM DIMENSIONS  
A2  
y1  
S
D
E
15.00 0.10  
17.00 0.10  
0.30  
S
w
A
1.35 0.11  
0.37 0.05  
0.98  
A1  
A2  
e
y
e
x
A1  
A B  
S
1.00  
M
b
S
+0.10  
b
0.50  
0.05  
x
0.10  
y
0.15  
y1  
ZD  
ZE  
0.25  
2.50  
1.50  
P165F5-100-FQ1-1  
Renesas Electronics Corporation 2010  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 34 of 36  
μPD44325092B, μPD44325182B, μPD44325362B  
Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of these products.  
Types of Surface Mount Devices  
μPD44325092BF5-FQ1 : 165-pin PLASTIC BGA (15 x 17)  
μPD44325182BF5-FQ1 : 165-pin PLASTIC BGA (15 x 17)  
μPD44325362BF5-FQ1 : 165-pin PLASTIC BGA (15 x 17)  
Quality Grade  
• A quality grade of the products is “Standard”.  
• Anti-radioactive design is not implemented in the products.  
• Semiconductor devices have the possibility of unexpected defects by affection of cosmic ray that reach to  
the ground and so forth.  
R10DS0038EJ0200 Rev.2.00  
August 11, 2011  
Page 35 of 36  
Revision History  
μPD44325092B, μPD44325182B , μPD44325362B  
Description  
Summary  
Rev.  
1st edition  
Date  
Page  
-
’08.03.01  
New Preliminary Data Sheet  
2nd edition ’10.03.01  
P14  
P15  
DC Characteristics (Modification, Spec of IDD and ISB1  
Thermal Characteristics (Modification, Spec)  
)
Rev.1.00  
Rev.2.00  
’10.09.10  
’11.08.11  
Throughout Preliminary Data Sheet Data Sheet  
Throughout Add Lead and the extended temperature operation product  
All trademarks and registered trademarks are the property of their respective owners.  
C - 36  

相关型号:

UPD44325362BF5-E35Y-FQ1

1MX36 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, PLASTIC, BGA-165
RENESAS

UPD44325362BF5-E35Y-FQ1-A

1MX36 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165
RENESAS

UPD44325362BF5-E40-FQ1

1MX36 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, PLASTIC, BGA-165
RENESAS

UPD44325362BF5-E40-FQ1-A

1MX36 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165
RENESAS

UPD44325362BF5-E50-FQ1

1MX36 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, PLASTIC, BGA-165
RENESAS

UPD44325362BF5-E50-FQ1-A

1MX36 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165
RENESAS

UPD44325362BF5-E50Y-FQ1

1MX36 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, PLASTIC, BGA-165
RENESAS

UPD44325362F5-E40-EQ2

36M-BIT QDRII SRAM 2-WORD BURST OPERATION
NEC

UPD44325362F5-E40-EQ2-A

QDR SRAM, 1MX36, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
NEC

UPD44325362F5-E50-EQ2

36M-BIT QDRII SRAM 2-WORD BURST OPERATION
NEC

UPD44325362F5-E50-EQ2-A

QDR SRAM, 1MX36, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
NEC

UPD44325364BF5-E33-FQ1

1MX36 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, PLASTIC, BGA-165
RENESAS