ISL78843ASRHF/PROTO [RENESAS]

1A SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, CDFP8, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FP-8;
ISL78843ASRHF/PROTO
型号: ISL78843ASRHF/PROTO
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

1A SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, CDFP8, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FP-8

CD 开关
文件: 总14页 (文件大小:867K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Radiation Hardened, High Performance Industry  
Standard Single-Ended Current Mode PWM Controller  
ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH  
The ISL7884xASRH is a high performance, radiation hardened  
drop-in replacement for the popular 28C4x and 18C4x PWM  
Features  
• Electrically Screened to DLA SMD # 5962-07249  
• QML Qualified Per MIL-PRF-38535 Requirements  
• 1A MOSFET Gate Driver  
controllers suitable for a wide range of power conversion  
applications including boost, flyback, and isolated output  
configurations. Its fast signal propagation and output  
switching characteristics make this an ideal product for  
existing and new designs.  
• 90µA Typical Start-up Current, 125µA Max  
• 35ns Propagation Delay Current Sense to Output  
• Fast Transient Response with Peak Current Mode Control  
• 9V to 13.2V Operation  
Features include up to 13.2V operation, low operating current,  
90µA typical start-up current, adjustable operating frequency  
to 1MHz, and high peak current drive capability with 50ns rise  
and fall times.  
• Adjustable Switching Frequency to 1MHz  
• 50ns Rise and Fall Times with 1nF Output Load  
PART NUMBER  
ISL78840ASRH  
ISL78841ASRH  
ISL78843ASRH  
ISL78845ASRH  
RISING UVLO  
MAX. DUTY CYCLE  
7.0  
7.0  
100%  
50%  
• Trimmed Timing Capacitor Discharge Current for Accurate  
Deadtime/Maximum Duty Cycle Control  
• 1.5MHz Bandwidth Error Amplifier  
8.4V  
8.4V  
100%  
50%  
• Tight Tolerance Voltage Reference Over Line, Load and  
Temperature  
• ±3% Current Limit Threshold  
Specifications for Rad Hard QML devices are controlled by the  
Defense Logistics Agency Land and Maritime (DLA). The SMD  
numbers listed in the ordering information must be used when  
ordering.  
• Pb-Free Available (RoHS Compliant)  
Applications  
• Current Mode Switching Power Supplies  
• Isolated Buck and Flyback Regulators  
• Boost Regulators  
Detailed Electrical Specifications for the ISL788xASRH are  
contained in SMD 5962-07249. A “hot-link” is provided on our  
website for downloading.  
• Direction and Speed Control in Motors  
• Control of High Current FET Drivers  
Pin Configurations  
ISL78840ASRH, ISL78841ASRH,  
ISL78843ASRH, ISL78845ASRH  
(8 LD FLATPACK)  
ISL78840ASRH, ISL78841ASRH,  
ISL78843ASRH, ISL78845ASRH  
(8 LD SBDIP)  
TOP VIEW  
TOP VIEW  
COMP  
FB  
1
2
3
4
8
7
6
5
V
V
REF  
COMP  
FB  
1
2
3
4
8
7
6
5
V
V
REF  
DD  
DD  
CS  
OUT  
GND  
CS  
OUT  
GND  
RTCT  
RTCT  
April 5, 2012  
FN6991.2  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2009, 2010, 2012. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH  
Ordering Information  
TEMP. RANGE  
PACKAGE  
ORDERING NUMBER  
ISL78840ASRHVX/SAMPLE  
ISL78840ASRHF/PROTO  
5962R0724901QXC  
PART NUMBER  
ISL78840ASRHVX/SAMPLE  
(°C)  
(Pb-Free)  
PKG. DWG. #  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
-55 to +125  
Die  
ISL78840ASRHF/PROTO (Notes 1, 2)  
ISL78840ASRHQF (Notes 1, 2)  
ISL78840ASRHVF (Notes 1, 2)  
ISL78840ASRHD/PROTO (Notes 1, 2)  
ISL78840ASRHQD (Notes 1, 2)  
ISL78840ASRHVD (Notes 1, 2)  
ISL78841ASRHVX/SAMPLE  
8 Ld Flatpack  
8 Ld Flatpack  
8 Ld Flatpack  
8 Ld SBDIP  
8 Ld SBDIP  
8 Ld SBDIP  
Die  
K8.A  
K8.A  
K8.A  
D8.3  
D8.3  
D8.3  
5962R0724901VXC  
ISL78840ASRHD/PROTO  
5962R0724901QPC  
5962R0724901VPC  
ISL78841ASRHVX/SAMPLE  
ISL78841ASRHF/PROTO  
5962R0724902QXC  
5962R0724902VXC  
ISL78841ASRHF/PROTO (Notes 1, 2)  
ISL78841ASRHQF (Notes 1, 2)  
ISL78841ASRHVF (Notes 1, 2)  
ISL78841ASRHD/PROTO (Notes 1, 2)  
ISL78841ASRHQD (Notes 1, 2)  
ISL78841ASRHVD (Notes 1, 2)  
ISL78843ASRHVX/SAMPLE  
8 Ld Flatpack  
8 Ld Flatpack  
8 Ld Flatpack  
8 Ld SBDIP  
8 Ld SBDIP  
8 Ld SBDIP  
Die  
K8.A  
K8.A  
K8.A  
D8.3  
D8.3  
D8.3  
ISL78841ASRHD/PROTO  
5962R0724902QPC  
5962R0724902VPC  
ISL78843ASRHVX/SAMPLE  
ISL78843ASRHF/PROTO  
5962R0724903QXC  
5962R0724903VXC  
ISL78843ASRHF/PROTO (Notes 1, 2)  
ISL78843ASRHQF (Notes 1, 2)  
ISL78843ASRHVF (Notes 1, 2)  
ISL78843ASRHD/PROTO (Notes 1, 2)  
ISL78843ASRHQD (Notes 1, 2)  
ISL78843ASRHVD (Notes 1, 2)  
ISL78845ASRHVX/SAMPLE  
8 Ld Flatpack  
8 Ld Flatpack  
8 Ld Flatpack  
8 Ld SBDIP  
8 Ld SBDIP  
8 Ld SBDIP  
Die  
K8.A  
K8.A  
K8.A  
D8.3  
D8.3  
D8.3  
ISL78843ASRHD/PROTO  
5962R0724903QPC  
5962R0724903VPC  
ISL78845ASRHVX/SAMPLE  
ISL78845ASRHF/PROTO  
5962R0724904QXC  
5962R0724904VXC  
ISL78845ASRHF/PROTO (Notes 1, 2)  
ISL78845ASRHQF (Notes 1, 2)  
ISL78845ASRHVF (Notes 1, 2)  
ISL78845ASRHD/PROTO (Notes 1, 2)  
ISL78845ASRHQD (Notes 1, 2)  
ISL78845ASRHVD (Notes 1, 2)  
8 Ld Flatpack  
8 Ld Flatpack  
8 Ld Flatpack  
8 Ld SBDIP  
8 Ld SBDIP  
8 Ld SBDIP  
K8.A  
K8.A  
K8.A  
D8.3  
D8.3  
D8.3  
ISL78845ASRHD/PROTO  
5962R0724904QPC  
5962R0724904VPC  
NOTES:  
1. These Intersil Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations.  
2. For Moisture Sensitivity Level (MSL), please see device information page for ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH. For  
more information on MSL please see techbrief TB363.  
FN6991.2  
April 5, 2012  
2
Functional Block Diagram  
V
V
REF  
V
DD  
REF  
5V  
START/STOP  
UV COMPARATOR  
ENABLE  
V
OK  
DD  
+
-
V
FAULT  
-
REF  
+
+
-
V
REF  
UV COMPARATOR  
GND  
A
4.65V 4.80V  
2.5V  
A = 0.5  
PWM  
COMPARATOR  
CS  
+
-
100mV  
ONLY  
ISL78841A,  
ISL78845A  
2R  
1.1V  
CLAMP  
+
-
FB  
VF TOTAL = 1.15V  
ERROR  
R
Q
T
AMPLIFIER  
COMP  
Q
OUT  
S
R
Q
Q
36k  
RESET  
DOMINANT  
V
REF  
100k  
2.9V  
1.0V  
ON  
150k  
OSCILLATOR  
COMPARATOR  
<10ns  
-
RTCT  
+
CLOCK  
8.4mA  
ON  
Typical Application - 48V Input Dual Output Flyback  
CR5  
+3.3V  
+1.8V  
C21  
+ C15  
+ C16  
T1  
R21  
V
+
IN  
C4  
R3  
CR4  
+
C22  
+
C17  
C6  
C20  
C2  
C19  
CR2  
C5  
RETURN  
CR6  
Q1  
R1  
36V TO 75V  
R16  
U2  
R17  
R18  
C1  
C3  
R19  
C14  
R28  
R4  
R22  
R15  
C13  
U3  
V
-
IN  
R27  
R20  
U4  
COMP  
R26  
V
REF  
V
CS  
FB  
DD  
OUT  
RTCT  
GND  
ISL7884xASRH  
R6  
R10  
CR1  
Q3  
C12  
C8  
VR1  
C11  
R13  
Typical Application - Boost Converter  
R8  
C10  
CR1  
L1  
VIN+  
+VOUT  
+
C2  
C3  
RETURN  
R4  
Q1  
R5  
R9  
C9  
C1  
R1  
R2  
U1  
R7  
VIN+  
V
COMP  
FB  
C8  
REF  
R6  
V
DD  
OUT  
GND  
CS  
C4  
RTCT  
R3  
C5  
C6  
C7  
VIN-  
ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage V Without Ion Beam . . . . . . . . . . . .GND -0.3V to +30.0V  
Supply Voltage V Under Ion Beam . . . . . . . . . . . . . .GND -0.3V to +14.7V  
DD  
Thermal Resistance (Typical)  
8 Ld Flatpack Package (Notes 3, 5)  
8 Ld SBDIP Package (Notes 4, 5)  
θ
(°C/W)  
140  
98  
θ
(°C/W)  
15  
15  
DD  
JA  
JC  
OUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND -0.3V to V + 0.3V  
DD  
Signal Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND -0.3V to 6.0V  
Peak GATE Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1A  
ESD Rating  
Human Body Model (Tested per JESD22-A114E). . . . . . . . . . . . . . . . 2kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . 200V  
Latch Up (Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . 100mA  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Radiation Information  
Maximum Total Dose  
Recommended Operating Conditions  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-55°C to +125°C  
Supply Voltage (Typical Note 6) . . . . . . . . . . . . . . . . . . . . . . . . . 9V to 13.2V  
(Dose Rate = 50 - 100radSi/s) . . . . . . . . . . . . . . . . . . . . . 100 krads (Si)  
SEB (No Burnout) (Note 6). . . . . . . . . . . . . . . . . . . . . . . . . . 80Mev/mg/cm2  
SEL (No latchup) (Note 6) . . . . . . . . . . . . . . . . . . . . . . . . . . 80Mev/mg/cm2  
SET (Regulated V  
within ±3%) (Note 9) . . . . . . . . . . . . 40Mev/mg/cm2  
OUT  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
3. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
4. θ is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
5. For θ , the "case temp" location is the center of the ceramic on the package underside.  
JC  
6. All voltages are with respect to GND.  
Electrical Specifications Recommended operating conditions unless otherwise noted. Refer to Block Diagram and Typical Application  
schematic on page 3 and page 4. V = 13.2V, R = 10k, C = 3.3nF, T = -55 to +125°C. Typical values are at T = +25°C. Boldface limits apply over  
DD  
T
T
A
A
the operating temperature range, -55 to +125°C.  
MIN  
MAX  
PARAMETER  
UNDERVOLTAGE LOCKOUT  
START Threshold  
TEST CONDITIONS  
(Note 10)  
TYP  
(Note 10)  
UNITS  
ISL78840A, ISL78841A  
ISL78843A, ISL78845A  
ISL78840A, ISL78841A  
ISL78843A, ISL78845A  
ISL78840A, ISL78841A  
ISL78843A, ISL78845A  
6.5  
7.0  
8.4  
6.6  
7.6  
7.5  
9.0  
6.9  
8.0  
-
V
V
8.0  
STOP Threshold  
Hysteresis  
6.1  
V
7.3  
V
-
-
-
-
-
-
0.4  
0.8  
90  
V
-
V
Start-up Current, I  
V
V
< START Threshold  
125  
500  
4.0  
5.5  
µA  
µA  
mA  
mA  
DD  
DD  
DD  
< START Threshold, 100krad  
300  
2.9  
4.75  
Operating Current, I  
DD  
(Note 7)  
Operating Supply Current, I  
REFERENCE VOLTAGE  
Overall Accuracy  
Includes 1nF GATE loading  
D
Over line (V = 9V to 13.2V), load of  
DD  
4.925  
5.000  
5.050  
V
1mA and 10mA, temperature  
Long Term Stability  
Current Limit, Sourcing  
Current Limit, Sinking  
CURRENT SENSE  
T
= +125°C, 1000 hours (Note 8)  
-
5
-
-
-
-
mV  
mA  
mA  
A
-20  
5
-
Input Bias Current  
V
= 1V  
-1.0  
0.97  
2.75  
-
-
1.0  
1.03  
3.15  
55  
µA  
V
CS  
Input Signal, Maximum  
1.00  
2.82  
35  
Gain, A = ΔV  
/ΔV  
CS  
0 < V < 910mV, V = 0V  
CS FB  
V/V  
ns  
CS COMP  
CS to OUT Delay  
FN6991.2  
April 5, 2012  
6
ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH  
Electrical Specifications Recommended operating conditions unless otherwise noted. Refer to Block Diagram and Typical Application  
schematic on page 3 and page 4. V = 13.2V, R = 10k, C = 3.3nF, T = -55 to +125°C. Typical values are at T = +25°C. Boldface limits apply over  
DD  
T
T
A
A
the operating temperature range, -55 to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
TEST CONDITIONS  
(Note 10)  
TYP  
(Note 10)  
UNITS  
ERROR AMPLIFIER  
Open Loop Voltage Gain  
Unity Gain Bandwidth  
(Note 8)  
(Note 8)  
-
-
90  
-
dB  
MHz  
V
1.5  
-
Reference Voltage, V  
V
V
V
V
V
V
= V  
COMP  
2.475  
-1.0  
1.0  
-0.4  
4.80  
0.4  
-
2.500  
2.530  
REF  
FB  
FB Input Bias Current, FBI  
COMP Sink Current  
COMP Source Current  
COMP VOH  
= 0V  
-0.2  
1.0  
µA  
mA  
mA  
V
IB  
FB  
= 1.5V, V = 2.7V  
FB  
-
-
-
COMP  
COMP  
= 1.5V, V = 2.3V  
FB  
-
= 2.3V  
-
-
V
REF  
FB  
FB  
COMP VOL  
= 2.7V  
1.0  
-
V
PSRR  
Frequency = 120Hz, V = 9V to 13.2V  
DD  
80  
dB  
(Note 8)  
OSCILLATOR  
Frequency Accuracy  
Initial, T = +25°C  
48  
51  
0.2  
5
53  
kHz  
%
A
Frequency Variation with V  
Temperature Stability  
T = +25°C, (f  
A
- f )/f  
13.2V 9V 12V  
-
1.0  
DD  
(Note 8)  
-
-
%
Amplitude, Peak-to-Peak  
Static Test  
Static Test  
RTCT = 2.0V  
-
-
1.75  
1.0  
7.8  
-
-
V
RTCT Discharge Voltage (Valley Voltage)  
Discharge Current  
OUTPUT  
V
6.5  
8.5  
mA  
Gate VOH  
V
to OUT, I  
OUT  
= -100mA  
= 100mA  
-
-
-
-
-
-
1.0  
1.0  
1.0  
35  
20  
-
2.0  
2.0  
-
V
V
DD  
Gate VOL  
OUT to GND, I  
OUT  
Peak Output Current  
Rise Time  
C
C
C
V
= 1nF (Note 8)  
= 1nF  
A
OUT  
OUT  
OUT  
60  
40  
50  
ns  
ns  
µA  
Fall Time  
= 1nF  
OUTPUT OFF state leakage  
PWM  
= 5V  
DD  
Maximum Duty Cycle  
(ISL78840A, ISL78843A)  
COMP = V  
COMP = V  
94.0  
47.0  
-
96.0  
48.0  
-
-
-
%
%
%
REF  
REF  
Maximum Duty Cycle  
(ISL78841A, ISL78845A)  
Minimum Duty Cycle  
NOTES:  
COMP = GND  
0
7. This is the V current consumed when the device is active but not switching. Does not include gate drive current.  
DD  
8. Limits established by characterization and are not production tested.  
9. SEE tests performed with VREF bypass capacitor of 0.22µF and F = 200kHz. SEB/L tests done on a standalone open loop configuration. SET tests  
SW  
done in a closed loop configuration. For SEL no hard latch requiring manual intervention were observed. For more information see:  
ISL7884xASRH SEE Test Report.  
10. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
FN6991.2  
April 5, 2012  
7
ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH  
Typical Performance Curves  
1.01  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
1.00  
0.99  
0.98  
-60 -40 -20  
0
20 40 60 80 100 120 140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 2. REFERENCE VOLTAGE vs TEMPERATURE  
FIGURE 1. FREQUENCY vs TEMPERATURE  
3
10  
1.001  
1.000  
0.998  
0.997  
0.996  
100pF  
100  
10  
1
220pF  
330pF  
470pF  
1.0nF  
2.2nF  
3.3nF  
4.7nF  
6.8nF  
1
10  
100  
-60 -40 -20  
0
20 40 60 80 100 120 140  
RT (kΩ)  
TEMPERATURE (°C)  
FIGURE 4. RESISTANCE FOR CT CAPACITOR VALUES GIVEN  
FIGURE 3. EA REFERENCE vs TEMPERATURE  
COMP - COMP is the output of the error amplifier and the input of  
the PWM comparator. The control loop frequency compensation  
network is connected between the COMP and FB pins.  
Pin Descriptions  
RTCT - This is the oscillator timing control pin. The operational  
frequency and maximum duty cycle are set by connecting a  
FB - The output voltage feedback is connected to the inverting  
input of the error amplifier through this pin. The non-inverting  
input of the error amplifier is internally tied to a reference  
voltage.  
resistor, RT, between V  
and this pin and a timing capacitor,  
REF  
CT, from this pin to GND. The oscillator produces a sawtooth  
waveform with a programmable frequency range up to 2.0MHz.  
The charge time, t , the discharge time, t , the switching  
C
D
frequency, f, and the maximum duty cycle, D  
approximated from Equations 1 through 4:  
, can be  
MAX  
CS - This is the current sense input to the PWM comparator. The  
range of the input signal is nominally 0V to 1.0V and has an  
internal offset of 100mV.  
t
0.533 RT CT  
(EQ. 1)  
(EQ. 2)  
C
GND - GND is the power and small signal reference ground for all  
functions.  
0.008 RT 3.83  
0.008 RT 1.71  
---------------------------------------------  
t
RT CT In  
D
OUT - This is the drive output to the power switching device. It is a  
high current output capable of driving the gate of a power  
MOSFET with peak currents of 1.0A. This GATE output is actively  
f = 1 ⁄ (t + t  
)
(EQ. 3)  
(EQ. 4)  
C
D
held low when V is below the UVLO threshold.  
DD  
D = t f  
V
- V is the power connection for the device. The total supply  
DD DD  
C
current will depend on the load applied to OUT. Total I current  
DD  
The formulae have increased error at higher frequencies due to  
propagation delays. Figure 4 may be used as a guideline in  
selecting the capacitor and resistor values required for a given  
switching frequency for the ISL78841ASRH, ISL78845ASRH. The  
value for the ISL78840ASRH, ISL78843ASRH will be twice that  
shown in Figure 4.  
is the sum of the operating current and the average output  
current. Knowing the operating frequency, f, and the MOSFET  
gate charge, Qg, the average output current can be calculated  
from Equation 5:  
(EQ. 5)  
I
= Qg × f  
OUT  
FN6991.2  
April 5, 2012  
8
ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH  
To optimize noise immunity, bypass V to GND with a ceramic  
DD  
resistor also damps any oscillations caused by the resonant tank  
of the parasitic inductances in the traces of the board and the  
FET’s input capacitance. TID environment of >50krads requires  
the use of a bleeder resistor of 10k from the OUT pin to GND.  
capacitor as close to the V and GND pins as possible.  
DD  
V
- The 5.00V reference voltage output. +1.0/-1.5% tolerance  
REF  
over line, load and operating temperature. The recommended  
bypass to GND cap is in the range 0.1µF to 0.22µF. A typical  
value of 0.15µF can be used.  
Slope Compensation  
For applications where the maximum duty cycle is less than 50%,  
slope compensation may be used to improve noise immunity,  
particularly at lighter loads. The amount of slope compensation  
required for noise immunity is determined empirically, but is  
generally about 10% of the full scale current feedback signal. For  
applications where the duty cycle is greater than 50%, slope  
compensation is required to prevent instability.  
Functional Description  
Features  
The ISL7884xASRH current mode PWM makes an ideal choice  
for low-cost flyback and forward topology applications. With its  
greatly improved performance over industry standard parts, it is  
the obvious choice for new designs or existing designs which  
require updating.  
Slope compensation may be accomplished by summing an  
external ramp with the current feedback signal or by subtracting  
the external ramp from the voltage feedback error signal. Adding  
the external ramp to the current feedback signal is the more  
popular method.  
Oscillator  
The ISL7884xASRH has a sawtooth oscillator with a  
programmable frequency range to 2MHz, which can be  
From the small signal current-mode model [1] it can be shown  
that the naturally-sampled modulator gain, Fm, without slope  
compensation is calculated in Equation 6:  
programmed with a resistor from V  
and a capacitor to GND on  
REF  
the RTCT pin. (Please refer to Figure 4 for the resistor and  
capacitance required for a given frequency).  
1
-----------------  
Fm =  
(EQ. 6)  
Sntsw  
Soft-Start Operation  
Soft-start must be implemented externally. One method,  
illustrated below, clamps the voltage on COMP.  
where Sn is the slope of the sawtooth signal and tsw is the  
duration of the half-cycle. When an external ramp is added, the  
modulator gain becomes Equation 7:  
1
1
(EQ. 7)  
------------------------------------  
-------------------------  
Fm =  
=
(Sn + Se)tsw  
m Sntsw  
c
V
REF  
where Se is slope of the external ramp and becomes Equation 8:  
D
C
R
1
1
1
COMP  
GND  
Se  
Sn  
-------  
m
= 1 +  
(EQ. 8)  
c
Q
1
The criteria for determining the correct amount of external ramp  
can be determined by appropriately setting the damping factor of  
the double-pole located at the switching frequency. The  
double-pole will be critically damped if the Q-factor is set to 1,  
over-damped for Q < 1, and under-damped for Q > 1. An  
under-damped condition may result in current loop instability.  
FIGURE 5. SOFT-START  
1
(EQ. 9)  
-------------------------------------------------  
Q =  
π(m (1 D) 0.5)  
The COMP pin is clamped to the voltage on capacitor C plus a  
1
c
base-emitter junction by transistor Q . C is charged from V  
1
1
REF  
1
where D is the percent of on-time during a switching cycle.  
Setting Q = 1 and solving for Se yields Equation 10:  
through resistor R and the base current of Q . At power-up C is  
1
1
fully discharged, COMP is at ~0.7V, and the duty cycle is zero. As  
C charges, the voltage on COMP increases, and the duty cycle  
increases in proportion to the voltage on C . When COMP  
1
reaches the steady state operating point, the control loop takes  
1
1
π
1
⎛⎛  
⎝⎝  
1  
(EQ. 10)  
--  
-------------  
= S  
+ 0.5  
e
n
1 D  
over and soft-start is complete. C continues to charge up to  
1
Since Sn and Se are the on-time slopes of the current ramp and  
the external ramp, respectively, they can be multiplied by t to  
V
and no longer affects COMP. During power-down, diode D  
REF  
1
ON  
quickly discharges C so that the soft-start circuit is properly  
1
obtain the voltage change that occurs during t  
.
ON  
initialized prior to the next power-on sequence.  
1
π
1
⎛⎛  
⎝⎝  
1  
--  
-------------  
V
= V  
+ 0.5  
(EQ. 11)  
e
n
Gate Drive  
1 D  
The ISL7884xASRH is capable of sourcing and sinking 1A peak  
current. To limit the peak current through the IC, an optional  
external resistor may be placed between the totem-pole output of  
the IC (OUT pin) and the gate of the MOSFET. This small series  
where V is the change in the current feedback signal (ΔI) during  
the on-time and Ve is the voltage that must be added by the  
external ramp.  
n
FN6991.2  
April 5, 2012  
9
ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH  
For a flyback converter, Vn can be solved in terms of input  
voltage, current transducer components, and primary  
inductance, yielding Equation 12:  
Assuming the designer has selected values for the RC filter (R  
6
and C ) placed on the CS pin, the value of R required to add the  
4
9
appropriate external ramp can be found by superposition.  
2.05D R  
6
D T  
V R  
IN CS  
1
π
1
SW  
---------------------------  
(EQ. 16)  
V
=
e
V
⎛⎛  
1  
---------------------------------------------------- --  
-------------  
V
=
+ 0.5  
V
R
+ R  
9
e
⎝⎝  
(EQ. 12)  
6
L
1 D  
p
The factor of 2.05 in Equation 16 arises from the peak amplitude  
of the sawtooth waveform on RTCT minus a base-emitter junction  
drop. That voltage multiplied by the maximum duty cycle is the  
voltage source for the slope compensation. Rearranging to solve  
where R is the current sense resistor, T is the switching  
CS sw  
period, L is the primary inductance, V is the minimum input  
p
IN  
voltage, and D is the maximum duty cycle.  
for R yields Equation 17:  
9
The current sense signal at the end of the ON time for CCM  
operation is Equation 13:  
(2.05D V ) ⋅ R  
e
6
---------------------------------------------  
R
=
Ω
(EQ. 17)  
9
V
e
(1 D) ⋅ V T  
sw  
N
R  
CS  
O
S
------------------------  
---------------------------------------------  
V
=
I
+
O
V
(EQ. 13)  
CS  
The value of R determined in Equation 15 must be rescaled so  
CS  
that the current sense signal presented at the CS pin is that  
N
P
2L  
s
predicted by Equation 13. The divider created by R and R  
makes this necessary.  
6
9
where V is the voltage across the current sense resistor, L is  
CS  
s
the secondary winding inductance, and I is the output current at  
current limit. Equation 13 assumes the voltage drop across the  
output rectifier is negligible.  
O
R
+ R  
9
R
9
6
--------------------  
R′  
=
R  
(EQ. 18)  
CS  
CS  
Since the peak current limit threshold is 1.00V, the total current  
feedback signal plus the external ramp voltage must sum to this  
value when the output load is at the current limit threshold as:  
Example:  
V
= 12V  
IN  
O
V
= 48V  
V
+ V  
= 1V  
CS  
(EQ. 14)  
e
L = 800µH  
s
shown in Equation 14.  
Substituting Equations 12 and 13 into Equation 14 and solving  
Ns/Np = 10  
Lp = 8.0µH  
for R yields Equation 15:  
CS  
I
= 200mA  
O
1
--------------------------------------------------------------------------------------------------------------------------------------------------------  
=
R
CS  
Switching Frequency, f = 200kHz  
sw  
1
--  
+ 0.5  
D T V  
N
(1 D) ⋅ V T  
O sw  
π
sw  
IN  
s
--------------------------------- -----------------  
------  
---------------------------------------------  
1  
+
I  
+
Duty Cycle, D = 28.6%  
O
L
1 D  
N
p
2L  
s
p
R = 499Ω  
6
(EQ. 15)  
Solve for the current sense resistor, R , using Equation 15.  
CS  
Adding slope compensation is accomplished in the  
R
= 295mΩ  
CS  
ISL7884xASRH using an external buffer transistor and the RTCT  
signal. A typical application sums the buffered RTCT signal with  
the current sense feedback and applies the result to the CS pin  
as shown in Figure 6.  
Determine the amount of voltage, Ve, that must be added to the  
current feedback signal using Equation 12.  
Ve = 92.4mV  
Using Equation 17, solve for the summing resistor, R , from CT to  
9
CS.  
V
R = 2.67kΩ  
REF  
9
Determine the new value of R (R’ ) using Equation 18.  
CS CS  
R9  
R’ = 350mΩ  
CS  
CS  
R6  
Additional slope compensation may be considered for design  
margin. The above discussion determines the minimum external  
ramp that is required. The buffer transistor used to create the  
external ramp from RTCT should have a sufficiently high gain  
(>200) so as to minimize the required base current. Whatever  
base current is required reduces the charging current into RTCT  
and will reduce the oscillator frequency.  
RTCT  
C4  
FIGURE 6. SLOPE COMPENSATION  
FN6991.2  
April 5, 2012  
10  
ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH  
Fault Conditions  
References  
[1] Ridley, R., “A New Continuous-Time Model for Current Mode  
Control”, IEEE Transactions on Power Electronics, Vol. 6,  
No. 2, April 1991.  
A Fault condition occurs if V  
falls below 4.65V. When a Fault  
REF  
is detected, OUT is disabled. When V  
exceeds 4.80V, the Fault  
REF  
condition clears, and OUT is enabled.  
Ground Plane Requirements  
Careful layout is essential for satisfactory operation of the device.  
A good ground plane must be employed. A unique section of the  
ground plane must be designated for high di/dt currents  
associated with the output stage. V should be bypassed  
DD  
directly to GND with good high frequency capacitors.  
Die Map  
FN6991.2  
April 5, 2012  
11  
ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev.  
DATE  
REVISION  
CHANGE  
February 28, 2012 FN6991.2 Pg 10 - Updated Equations 13 and 15 – Changed f  
to T . Changed Equation 14 – added“V” to 1 making it 1V.  
SW  
SW  
Paragraph under Equation 12, changed f  
Converted to new datasheet template.  
is the switching frequency to T  
is the switching period.  
SW  
SW  
November 9, 2011  
Added Abs Max, Thermal Information, and MIN/MAX data for Electrical Spec table. Added boldface over-temp limit  
notes.  
Pg 14: Replaced POD K8.A rev 1 with rev 2. Changes as follows: : In Side View, added 0.045 (1.14) dimension and  
removed "MIN" label from 0.026(0.66) dimension  
April 22, 2010  
April 8, 2010  
FN6991.1 Added Electrical Spec Table showing only the typical values. Removed boldface over-temp limit notes.  
Added SBDIP parts, pinout and Flatpack & SBDIP PODs.  
December 21, 2009 FN6991.0 Initial pre-release  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page  
on intersil.com: ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
FN6991.2  
April 5, 2012  
12  
ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH  
Package Outline Drawing  
K8.A  
8 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE  
Rev 2, 12/10  
PIN NO. 1  
ID OPTIONAL  
0.015 (0.38)  
0.008 (0.20)  
1
2
0.050 (1.27 BSC)  
0.005 (0.13)  
0.265 (6.73)  
0.245 (6.22)  
MIN  
PIN NO. 1  
ID AREA  
4
0.022 (0.56)  
0.015 (0.38)  
TOP VIEW  
0.115 (2.92)  
0.070 (1.18)  
0.045 (1.14)  
0.026 (0.66)  
0.09 (0.23)  
0.04 (0.10)  
6
0.265 (6.75)  
0.245 (6.22)  
-D-  
-H-  
-C-  
0.180 (4.57)  
0.170 (4.32)  
0.370 (9.40)  
0.250 (6.35)  
SEATING AND  
BASE PLANE  
0.03 (0.76) MIN  
SIDE VIEW  
0.007 (0.18)  
0.004 (0.10)  
NOTES:  
LEAD FINISH  
Index area: A notch or a pin one identification mark shall be located  
adjacent to pin one and shall be located within the shaded area shown.  
The manufacturer’s identification shall not be used as a pin one  
identification mark. Alternately, a tab may be used to identify pin one.  
1.  
0.009 (0.23)  
0.004 (0.10)  
BASE  
METAL  
2. If a pin one identification mark is used in addition to a tab, the limits  
of the tab dimension do not apply.  
0.019 (0.48)  
0.015 (0.38)  
3. The maximum limits of lead dimensions (section A-A) shall be  
measured at the centroid of the finished lead surfaces, when solder  
dip or tin plate lead finish is applied.  
0.0015 (0.04)  
MAX  
0.022 (0.56)  
0.015 (0.38)  
4. Measure dimension at all four corners.  
3
5. For bottom-brazed lead packages, no organic or polymeric materials  
shall be molded to the bottom of the package to cover the leads.  
SECTION A-A  
6. Dimension shall be measured at the point of exit (beyond the  
meniscus) of the lead from the body. Dimension minimum shall  
be reduced by 0.0015 inch (0.038mm) maximum when solder dip  
lead finish is applied.  
7. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
8. Controlling dimension: INCH.  
FN6991.2  
April 5, 2012  
13  
ISL78840ASRH, ISL78841ASRH, ISL78843ASRH, ISL78845ASRH  
Ceramic Dual-In-Line Metal Seal Packages (SBDIP)  
c1 LEAD FINISH  
D8.3 MIL-STD-1835 CDIP2-T8 (D-4, CONFIGURATION C)  
8 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE  
-A-  
-D-  
E
INCHES  
MIN  
MILLIMETERS  
BASE  
(c)  
METAL  
SYMBOL  
MAX  
0.200  
0.026  
0.023  
0.065  
0.045  
0.018  
0.015  
0.405  
0.310  
MIN  
-
MAX  
5.08  
0.66  
0.58  
1.65  
1.14  
0.46  
0.38  
10.29  
7.87  
NOTES  
b1  
A
b
-
-
M
A
M
(b)  
0.014  
0.014  
0.045  
0.023  
0.008  
0.008  
-
0.36  
0.36  
1.14  
0.58  
0.20  
0.20  
-
2
-B-  
b1  
b2  
b3  
c
3
SECTION A-A  
S
S
S
D
bbb  
C
A - B  
-
D
4
BASE  
S2  
Q
PLANE  
2
-C-  
SEATING  
PLANE  
c1  
D
3
L
-
S1  
b2  
eA  
A A  
E
0.220  
5.59  
-
e
eA/2  
aaa M C A - B S D S  
b
c
e
0.100 BSC  
2.54 BSC  
-
eA  
eA/2  
L
0.300 BSC  
0.150 BSC  
7.62 BSC  
3.81 BSC  
-
ccc  
M
C A - B S D S  
-
NOTES:  
0.125  
0.200  
3.18  
5.08  
-
1. Index area: A notch or a pin one identification mark shall be locat-  
ed adjacent to pin one and shall be located within the shaded  
area shown. The manufacturer’s identification shall not be used  
as a pin one identification mark.  
Q
0.015  
0.005  
0.005  
0.060  
0.38  
0.13  
0.13  
1.52  
5
S1  
S2  
α
-
-
-
-
6
7
2. The maximum limits of lead dimensions b and c or M shall be  
measured at the centroid of the finished lead surfaces, when  
solder dip or tin plate lead finish is applied.  
o
o
o
o
90  
105  
90  
105  
-
aaa  
bbb  
ccc  
M
-
-
-
-
0.015  
0.030  
0.010  
0.0015  
-
-
-
-
0.38  
0.76  
0.25  
0.038  
-
3. Dimensions b1 and c1 apply to lead base metal only. Dimension  
M applies to lead plating and finish thickness.  
-
-
4. Corner leads (1, N, N/2, and N/2+1) may be configured with a  
partial lead paddle. For this configuration dimension b3 replaces  
dimension b2.  
2
8
N
8
8
5. Dimension Q shall be measured from the seating plane to the  
base plane.  
Rev. 0 4/94  
6. Measure dimension S1 at all four corners.  
7. Measure dimension S2 from the top of the ceramic body to the  
nearest metallization or lead.  
8. N is the maximum number of terminal positions.  
9. Braze fillets shall be concave.  
10. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
11. Controlling dimension: INCH.  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6991.2  
April 5, 2012  
14  

相关型号:

ISL78843ASRHVX/SAMPLE

Radiation Hardened, High Performance IndustryStandard Single-Ended Current Mode PWM Controller
INTERSIL

ISL78843ASRHVX/SAMPLE

1A SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, UUC8, ROHS COMPLIANT, DIE-8
RENESAS

ISL78845ASEH

Radiation Hardened, High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL78845ASEHVD

Radiation Hardened, High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL78845ASEHVF

Radiation Hardened, High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL78845ASEHVX

Radiation Hardened, High Performance Industry Standard Single-Ended Current Mode PWM Controller
INTERSIL

ISL78845ASRH

Radiation Hardened, High Performance IndustryStandard Single-Ended Current Mode PWM Controller
INTERSIL

ISL78845ASRHF/PROTO

Radiation Hardened, High Performance IndustryStandard Single-Ended Current Mode PWM Controller
INTERSIL

ISL78845ASRHF/PROTO

1A SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, CDFP8, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC, FP-8
RENESAS

ISL78845ASRHVX/SAMPLE

Radiation Hardened, High Performance IndustryStandard Single-Ended Current Mode PWM Controller
INTERSIL

ISL78845ASRHVX/SAMPLE

1A SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, UUC8, ROHS COMPLIANT, DIE-8
RENESAS

ISL80015

Negative current protection
INTERSIL