ISL24212IRTZ-T7 [RENESAS]

Analog Circuit;
ISL24212IRTZ-T7
型号: ISL24212IRTZ-T7
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Analog Circuit

光电二极管
文件: 总12页 (文件大小:459K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Programmable V  
Output Buffer  
Calibrator with EEPROM and  
COM  
ISL24212  
Features  
The ISL24212 is an 8-bit programmable current sink that can be  
used in conjunction with an external voltage divider to generate a  
• Adjustable 8-bit, 256-Step, Current Sink Output  
• 60MHz V  
COM  
Buffer/Amplifier  
voltage source (V  
) positioned between the analog supply  
COM  
• On-Chip 8-Bit EEPROM  
voltage and ground. The current sink’s full-scale range is  
controlled by an external resistor, R . With the appropriate  
• Up/Down Counter Interface  
• Guaranteed Monotonic Over-Temperature  
SET  
choice of external resistors R and R , the V  
COM  
voltage range  
1
2
can be controlled between any arbitrary voltage range. The  
ISL24212 has an 8-bit data register and 8-bit EEPROM for storing  
both a volatile and a permanent value for its output, accessible  
through a single up/down counter interface pin (CTL). After the  
• 4.5V to 19.0V Analog Supply Range for Normal Operation  
(10.8V Minimum Analog Supply Voltage for Programming)  
• 2.25V to 3.6V Logic Supply Voltage Operating Range  
• Pb-free (RoHS-compliant)  
part is programmed with the desired V  
value, the Counter  
COM  
Enable pin (CE) can be grounded to prevent further changes. On  
every power-up, the EEPROM contents are automatically  
transferred to the data register and the pre-programmed output  
voltage appears at the VCOM_OUT pin.  
• Ultra-Thin 10 Ld TDFN (3x3x0.8mm max)  
Applications  
• LCD Panel V  
Generator  
COM  
The ISL24212 also features an integrated, wide-bandwidth, high  
output drive buffer amplifier that can directly drive the V  
input of an LCD panel.  
• Electrophoretic Display V  
Generator  
COM  
COM  
Related Literature  
• See Application Note “ISL24212IRTZ-EVALZ Evaluation Board  
User Guide” (Coming Soon)  
The ISL24212 is available in an 10 Ld 3mm x 3mm TDFN  
package. This package has a maximum height of 0.8mm for very  
low profile designs. The ambient operating temperature range is  
-40°C to +85°C.  
VDD  
AVDD  
6
3
R1  
2
DVR_OUT  
7
CTL  
CE  
I/O PIN*  
I/O PIN  
R2  
MICRO-  
CONTROLLER  
1
INN  
LCD PANEL  
8
ISL24212  
10  
9
VCOM  
VCOM_OUT  
SET  
RSET  
5
* 0, 1, TRISTATE  
FIGURE 1. TYPICAL ISL24212 APPLICATION  
March 15, 2011  
FN7590.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL24212  
Block Diagram  
AVDD  
3
VDD  
6
V
COM BUFFER  
AMPLIFER  
4
ANALOG DCP  
DNC  
2
AND  
DVR_OUT  
CURRENT SINK  
DIGITAL  
INTERFACE  
DAC  
REGISTERS  
7
8
UP/DOWN  
COUNTER  
CTL  
CE  
10  
Q1  
VCOM_OUT  
A2  
A1  
1
9
8-Bit EEPROM  
INN  
CS  
SET  
5
GND  
FIGURE 2. BLOCK DIAGRAM OF THE ISL24212  
Pin Configuration  
ISL24212  
(10 LD TDFN)  
TOP VIEW  
VCOM_OUT  
1
2
3
4
5
INN  
DVR_OUT  
AVDD  
10  
9
SET  
CE  
EXPOSED  
THERMAL  
PAD*  
8
CTL  
VDD  
DNC  
GND  
7
6
(*CONNECT THERMAL PAD TO GND)  
Pin Descriptions  
PIN  
PIN  
NAME  
NUMBER  
FUNCTION  
IN  
1
2
Negative input of the op amp. To create a unity-gain V voltage buffer, connect this pin to the VCOM_OUT pin.  
COM  
N
DVR_OUT  
Current Sink Output. The sink current into the DVR_OUT (Digital Variable Resistor) pin is equal to the DAC setting times the maximum  
adjustable sink current divided by 256. See the “SET” pin function description (pin 9) for setting the maximum adjustable sink  
current.  
AV  
3
4
5
6
7
High-Voltage Analog Supply. Bypass to GND with 0.1µF capacitor.  
Do Not Connect to external circuitry. It is acceptable to ground this pin.  
Ground connection.  
DD  
DNC  
GND  
V
Digital power supply input. Bypass to GND with 0.1µF capacitor.  
DD  
CTL  
Up/Down Control for internal counter and Internal EEPROM Programming Control Input. When CE is high:  
A low-to-mid transition increments the 8-bit counter, adding 1 to the DAC setting, increasing the DVR_OUT sink current, and  
lowering the divider voltage at the DVR_OUT pin.  
A high-to-mid transition decrements the 8-bit counter, subtracting 1 from the DAC setting, decreasing the DVR_OUT sink current,  
and increasing the divider voltage at the DVR_OUT pin.  
To program the EEPROM, take this pin to >4.9V (see “CTL EEPROM Programming Signal Time” in the “Electrical Specification”  
table on page 5 for details). Float when not in use.  
FN7590.0  
March 15, 2011  
2
ISL24212  
Pin Descriptions(Continued)  
PIN  
PIN  
NAME  
NUMBER  
FUNCTION  
CE  
8
9
Counter Enable Pin. Connect CE to V to enable adjustment of the output sink current. Float or connect CE to GND to prevent  
DD  
further adjustment or programming (Note: the CE pin has an internal 500nA pull-down sink current). The EEPROM value will be  
copied to the register on a V to V transition.  
OH OL  
SET  
Maximum Sink Current Adjustment Point. Connect a resistor from SET to GND to set the maximum adjustable sink current of the  
DVR_OUT pin. The maximum adjustable sink current is equal to (AV /20) divided by R  
.
DD  
SET  
VCOM_OUT  
PAD  
10  
-
Output of the buffer amplifier  
Thermal pad should be connected to system ground plane to optimize thermal performance.  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
TEMP RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
INTERFACE  
COUNTER  
ISL24212IRTZ  
4212  
Evaluation Board  
-40 to +85  
10 Ld 3x3 TDFN  
L10.3x3A  
ISL24212IRTZ-EVALZ  
NOTES:  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page ISL24212. For more information on MSL please see techbrief TB363.  
FN7590.0  
March 15, 2011  
3
ISL24212  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage  
Thermal Resistance (Typical)  
10 Ld TDFN Package (Notes 4, 5) . . . . . . .  
θ
(°C/W)  
53  
θ
(°C/W)  
11  
JA  
JC  
AV to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V  
DD  
V
to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4V  
Moisture Sensitivity (see Technical Brief TB363)  
DD  
Input Voltage with respect to Ground  
All Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Level 1  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
SET, IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4V  
N
SCL, SDA and WP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V +0.3V  
DD  
Output Voltage with respect to Ground  
DVR_OUT, VCOM_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AV  
DD  
Continuous Output Current  
DVR_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
VCOM_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±100mA  
ESD Ratings  
Human Body Model (Tested per JESD22-A114) . . . . . . . . . . . . . . . . . 7kV  
Machine Model (Tested per JESD22-A115). . . . . . . . . . . . . . . . . . . . 250V  
Charged Device Model (Tested per JESD22-C101). . . . . . . . . . . . . . . 2kV  
Latch Up (Tested per JESD 78, Class II, Level A). . . . . . . . . . . . . . . . 100mA  
Recommended Operating Conditions  
Operating Range  
AV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5V to 19V  
DD  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.25V to 3.6V  
DD  
Ambient Operating Temperature . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Test Conditions: V = 3.3V, AV = 18V, R = 5kΩ, R = 10kΩ, R = 10kΩ, (See Figure 5), VCOM_OUT pin  
DD  
DD  
SET  
1
2
connected to IN , unless otherwise specified. Typicals are at T = +25°C. Boldface limits apply over the operating temperature range,  
N
A
-40°C to +85°C.  
MIN  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNITS  
DC CHARACTERISTICS  
V
V
Supply Range - Operating  
2.25  
10.8  
4.5  
3.6  
19  
19  
V
V
V
DD  
DD  
AV  
AV  
AV Supply Range Supporting EEPROM Programming  
DD  
DD  
DD  
AV Supply Range for Wide-Supply Operation without  
DD  
EEPROM Programming  
I
V
Supply Current  
CTL = 0.5*V  
95  
300  
6.5  
µA  
DD  
DD  
DD  
DD  
I
AV Supply Current  
CTL = 0.5*V  
3.8  
mA  
AVDD  
DD  
DVR_OUT CHARACTERISTICS  
SET  
SET Zero-Scale Error  
±3  
±8  
LSB  
LSB  
V
ZSE  
FSE  
SET  
SET Full-Scale Error  
V
DVR_OUT Voltage Range  
SET Voltage Drift  
V
+ 1.75  
AV  
DD  
DVR_OUT  
SET  
SET  
7
4
µV/°C  
mA  
VD  
I
Maximum DVR_OUT Sink Current  
Integral Non-Linearity  
Differential Non-Linearity  
DVR_OUT  
INL  
±2  
LSB  
LSB  
DNL  
±1  
±15  
±1  
OUTPUT AMPLIFIER CHARACTERISTICS  
V
Input Offset Voltage  
±2  
-6.3  
±0.01  
75  
mV  
µV/°C  
μA  
OS  
TCV  
Input Offset Voltage Drift  
Input Bias Current  
OS  
I
B
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Open Loop Gain  
55  
60  
55  
dB  
82  
dB  
A
75  
dB  
VOL  
V
Output Swing Low  
I = -5mA  
50  
150  
mV  
OL  
L
FN7590.0  
March 15, 2011  
4
ISL24212  
Electrical Specifications Test Conditions: V = 3.3V, AV = 18V, R = 5kΩ, R = 10kΩ, R = 10kΩ, (See Figure 5), VCOM_OUT pin  
DD  
DD  
SET  
1
2
connected to IN , unless otherwise specified. Typicals are at T = +25°C. Boldface limits apply over the operating temperature range,  
N
A
-40°C to +85°C. (Continued)  
MIN  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 6)  
TYP  
17.9  
430  
555  
116  
93  
(Note 6)  
UNITS  
V
V
Output Swing High  
I = 5mA  
17.85  
300  
450  
70  
OH  
L
I
Short Circuit Current (Sinking)  
Short Circuit Current (Sourcing)  
Slew Rate (Rising)  
mA  
SC  
mA  
SR  
1KΩ || 8pF Load  
1KΩ || 8pF Load  
V/µs  
V/µs  
ns  
Slew Rate (Falling)  
50  
t
Settling Time to 0.2%  
-3dB Bandwidth  
150  
60  
S
BW  
MHz  
EEPROM CHARACTERISTICS  
EEPROM Programming Time (internal)  
UP/DOWN COUNTER CONTROL INPUTS (SEE FIGURE 11)  
t
100  
ms  
PROG  
V
CE and CTL Input Logic High Threshold  
CE and CTL Input Logic Low Threshold  
CE Input Pull Down Current Sink  
CTL Input Bias Current  
0.7*V  
V
V
IH  
DD  
V
0.3*V  
1.5  
15  
IL  
DD  
I
0.5  
7
µA  
µA  
µA  
µs  
ms  
µs  
µs  
µs  
µs  
µs  
V
CS_PD  
I
CTL = GND (sourcing)  
CTL  
CTL = V (sinking)  
DD  
7
15  
t
CE to CTL Start Delay  
50  
ST  
t
EEPROM Recall Time (after CE de-asserted)  
CTL High Pulse Rejection Width  
10  
20  
20  
READ  
t
H_REJ  
t
CTL Low Pulse Rejection Width  
L_REJ  
t
CTL High Minimum Valid Pulse Width  
CTL Low Minimum Valid Pulse Width  
CTL Minimum Time Between Counts  
CTL EEPROM Program Voltage (see Figure 9)  
CTL EEPROM Programming Signal Time  
CTL High-to-Mid to DVR_OUT propagation time  
CTL Low-to-Mid to DVR_OUT propagation time  
200  
200  
10  
H_MIN  
t
L_MIN  
t
MTC  
V
4.9  
19  
PROG  
PROG  
t
200  
65  
µs  
µs  
µs  
t
H_PROP  
t
65  
L_PROP  
NOTE:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN7590.0  
March 15, 2011  
5
ISL24212  
Application Information  
AVDD  
REGISTER  
VALUE  
LCD panels have a V  
(common voltage) that must be precisely  
adjustment  
COM  
19R  
set to minimize flicker. Figure 3 shows a typical V  
COM  
circuit using a mechanical potentiometer, and the equivalent  
circuit replacement using the ISL24212. Having a digital counter  
interface enables automatic, digital flicker minimization during  
production test and alignment. After programming, the counter  
interface is no longer needed - the ISL24212 automatically powers  
255  
254  
AVDD  
20  
253  
252  
VDCP  
up with the correct V  
voltage programmed previously.  
COM  
The ISL24212 uses a digitally controllable potentiometer (DCP),  
with 256 steps of resolution (see Figure 4) to change the current  
drawn at the DVR_OUT pin, which then changes the voltage  
R
251  
2
created by the R - R resistor divider (see Figure 5). The DVR_OUT  
1
2
1
voltage is then buffered by A2 to generate a buffered output voltage  
at the V pin, capable of directly driving the V input of  
0
COM_OUT COM  
an LCD panel. The amount of current sunk is controlled by the  
setting of the DCP, which is recalled at power-up from the  
ISL24212’s internal EEPROM. The EEPROM is typically  
programmed during panel manufacture. As noted in the  
“Electrical Specifications” on page 4, the ISL24212 requires a  
FIGURE 4. SIMPLIFIED SCHEMATIC OF DCP  
Output Current Sink  
Figure 5 shows the schematic of the DVR_OUT current sink. The  
combination of amplifier A1, transistor Q1, and resistor R  
forms a voltage-controlled current source, with the voltage  
determined by the DCP setting.  
minimum AV voltage of 10.8V for EEPROM programming, but  
DD  
will work in normal operation down to 4.5V after the EEPROM  
has been programmed, with no additional EEPROM writing.  
SET  
AVDD  
AVDD  
RA  
R1  
IDVR_OUT  
DVR_OUT  
AVDD  
RB  
VCOM  
R1 = RA  
R2  
RC  
R2 = RB+RC  
RSET = RARB + RARC  
20RB  
VDCP  
VCOM_OUT  
Q1  
A2  
VOUT  
A1  
AVDD  
VDD  
AVDD  
INN  
VSAT  
R1  
ISL24212  
VCOM  
VCOM_OUT  
IOUT  
SET  
IOUT  
GND  
VSET = VDCP = IOUT * RSET  
RSET  
DVR_OUT  
SET  
INN  
R2  
RSET  
FIGURE 5. CURRENT SINK CIRCUIT  
FIGURE 3. MECHANICAL ADJUSTMENT REPLACEMENT  
The external R  
resistor sets the full-scale (maximum) sink current  
that can be pulled from the DVR_OUT node. The relationship  
SET  
DCP (Digitally Controllable Potentiometer)  
between I  
and Register Value is shown in Equation 2.  
DVR_OUT  
The DCP controls the voltage that ultimately controls the SET  
current. Figure 4 shows the relationship between the register  
value and the DCP’s tap position. Note that a register value of 0  
selects the first step of the resistor string. The output voltage of  
the DCP is given in Equation 1:  
V
AV  
RegisterValue + 1  
1
DCP  
DD  
⎞ ⎛ ⎞ ⎛  
(EQ. 2)  
-------------  
-------------------------------------------------- -------------- ------------  
I
=
=
DVROUT  
⎠ ⎝  
⎠ ⎝  
R
SET  
R
256  
20  
SET  
AV  
(EQ. 1)  
RegisterValue + 1  
DD  
⎞ ⎛  
-------------------------------------------------- --------------  
V
=
DCP  
⎠ ⎝  
256  
20  
FN7590.0  
March 15, 2011  
6
ISL24212  
The maximum value of I  
DVR_OUT  
substituting the maximum register value of 255 into Equation 2,  
resulting in Equation 3:  
can be calculated by  
First, verify that our chosen R  
meets the minimum  
requirement described in Equation 5:  
SET  
15  
A
------  
VDD  
(EQ. 3)  
--------------------  
16  
(MAX) =  
(EQ. 9)  
DVROUT  
------------------------------  
(7.5kΩ) >  
R
(MIN) =  
= 0.163kΩ  
20R  
SET  
SET  
15  
------  
6.5V –  
20  
Equation 2 can also be used to calculate the unit sink current  
step size per Register Code, resulting in Equation 4:  
AV  
Using Equations 6 and 7, calculate the values of R and R :  
DD  
(EQ. 4)  
1
2
---------------------------------------------  
=
I
STEP  
(256)(20)(R  
)
SET  
8.56.5  
(EQ. 10)  
-------------------------------------  
R
= 5120 7500 ⋅  
= 35.4kΩ  
1
2
256 8.5 6.5  
Determination of R  
SET  
8.5 6.5  
-----------------------------------------------------------------  
(EQ. 11)  
R
= 5120 7500 ⋅  
= 46.4kΩ  
The ultimate goal for the ISL24212 is to generate an adjustable  
255 15 + 6.5 256 8.5  
voltage between two endpoints, V and V , with  
COM_MIN COM_MAX  
a fixed power supply voltage, AV . This is accomplished by  
DD  
choosing the correct values for R , R and R . The exact value  
Table 1 shows the resulting V  
value for these conditions.  
voltage as a function of register  
SET  
1
2
COM  
of R  
is not critical. Values from 1k to more than 100k will  
work under most conditions. Equation 5 calculates the minimum  
SET  
TABLE 1. EXAMPLE V  
vs REGISTER VALUE  
DVR_OUT  
R
value:  
SET  
AV  
REGISTER VALUE  
V
(V)  
DVR_OUT  
8.49  
DD  
--------------  
(EQ. 5)  
16  
-----------------------------------------------------  
0
R
(MIN) =  
(kΩ)  
SET  
AV  
DD  
20  
--------------  
V
20  
8.34  
8.18  
8.02  
7.87  
7.71  
7.55  
7.50  
7.40  
7.24  
7.09  
6.93  
6.77  
6.62  
6.50  
OUT(MIN)  
40  
Note that this is the absolute minimum value for R . Larger  
SET  
60  
R
values reduce quiescent power, since R and R are  
SET  
proportional to R . The ISL24212 is tested with a 5kΩ R  
1 2  
.
SET  
80  
SET  
100  
120  
127  
140  
160  
180  
200  
220  
240  
255  
Determination of R and R  
1
2
With AV , V  
and V  
known and R chosen  
DD COM(MIN)  
COM(MAX)  
SET  
per the above requirements, R and R can be determined using  
1
2
Equations 6 and 7:  
V
V  
COM(MIN)  
COM(MAX)  
(EQ. 6)  
--------------------------------------------------------------------------------  
R
R
= 5120 R  
= 5120 R  
1
2
SET  
SET  
256 V  
V  
COM(MAX)  
COM(MIN)  
V
V  
COM(MAX)  
COM(MIN)  
--------------------------------------------------------------------------------------------------------------------  
255 AV  
+ V  
256 V  
COM(MIN) COM(MAX)  
DD  
(EQ. 7)  
Final Transfer Function  
The voltage at the DVR_OUT pin can be calculated from  
Equation 8:  
Output Voltage Span Calculation  
It is also possible to calculate V  
existing resistor values.  
and V  
from the  
is drawn  
COM(MIN)  
COM(MAX)  
occurs when the greatest current, I  
DVR(MAX),  
R
R
1
20R  
SET  
⎞ ⎛  
⎟ ⎜  
⎠ ⎝  
⎞⎞  
⎟⎟  
⎠⎠  
RegisterValue + 1  
-------------------------------------------------- --------------------  
1 –  
2
--------------------  
V
= AV  
V
COM_MIN  
DVROUT  
DD  
R + R  
256  
1
2
from the middle node of the R1/R2 divider. Substituting  
RegisterValue = 255 into Equation 8 gives the following:  
(EQ. 8)  
R
R
1
20R  
SET  
With amplifier A2 in the unity-gain configuration (V  
tied  
⎞ ⎛  
⎟ ⎜  
⎠ ⎝  
⎞⎞  
⎟⎟  
⎠⎠  
(EQ. 12)  
(EQ. 13)  
2
COM_OUT  
--------------------  
--------------------  
V
= AV  
1 –  
COM(MIN)  
DD  
to IN as shown in Figure 5), V  
= V  
= V .  
R + R  
N
DVROUT  
COM_OUT  
COM  
1
2
Example  
Similarly, RegisterValue = 0 for V  
COM(MAX)  
:
As an example, suppose the A  
supply is 15V, the desired  
VDD  
R
R
1
⎞ ⎛  
⎟ ⎜  
⎠ ⎝  
⎞⎞  
⎟⎟  
⎠⎠  
1
2
V
= 6.5V and the desired V  
= 8.5V. R is  
--------------------  
--------- --------------------  
V
= AV  
1 –  
COM_MIN COM_MAX  
SET  
COM(MAX)  
DD  
R + R  
256 20R  
SET  
1
2
arbitrarily chosen to be 7.5kΩ.  
FN7590.0  
March 15, 2011  
7
ISL24212  
By finding the difference of Equation 13 and Equation 12, the total  
span of V can be found:  
Do not remove V or AV within 100ms of the start of the  
DD DD  
EEPROM programming cycle. Removing power before the  
EEPROM programming cycle is completed, may result in  
corrupted data in the EEPROM.  
COM  
R
R
1
1
2
--------- --------------------  
(EQ. 14)  
--------------------  
V
SPAN = AV  
1 –  
COM  
DD  
256 20R  
SET  
R + R  
1
2
Operating and Programming  
Supply Voltage and Current  
Assuming that the I  
expression in Equation 14 simplifies to:  
(MIN) = 0 instead of I  
, the  
DVROUT  
STEP  
To program the EEPROM, AV must be 10.8V. If further  
R
R  
R
R  
1
DD  
AV  
⎞ ⎛  
1
2
DD  
2
-------------------- --------------------  
--------------------  
programming is not required, the ISL24212 will operate over an  
V
SPAN =  
=
I
(MAX)  
DVROUT  
⎟ ⎜  
COM  
R
+ R  
20R  
R + R  
1 2  
⎠ ⎝  
2
1
SET  
AV range of 4.5V to 19V.  
DD  
(EQ. 15)  
During EEPROM programming, I and I  
DD AVDD  
will temporarily be  
4-5x higher for up to 100ms (t  
).  
PROG  
DVR_OUT Pin Leakage Current  
When the voltage on the DVR_OUT pin is greater than 10V, an  
additional leakage current flows into the pin in addition to the  
Up/Down Counter Interface  
The ISL24212 allows the adjustment of the output V  
and the programming of the non-volatile memory through a  
single pin (CTL) when the CE (counter enable) pin is high. The CTL  
pin is biased so that its voltage is set to VDD/2 if the driving  
circuit is set to Tristate or High Impedance (Hi-Z), allowing  
up/down operation using common digital I/O logic.  
I
current. Figure 6 shows the I current and the DVR_OUT  
SET  
SET  
voltage  
COM  
pin current for DVR_OUT pin voltage up to 19V. In applications  
where the voltage on the DVR_OUT pin will be greater than 10V,  
the actual output voltage will be lower than the voltage  
calculated by Equation 8 due to this extra current. The graph in  
Figure 6 was measured with R  
= 4.99kΩ.  
SET  
0.30  
REGISTER = 255  
CTL Pin  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
When a mid-high-mid transition is detected on the CTL pin (see  
Figure 11), the internal register value counts down by one at the  
OUT PIN CURRENT  
trailing (high-mid) edge, and the output V  
voltage is  
COM  
increased according to Equation 8. Similarly, when a mid-low-mid  
transition is detected on the CTL pin, the internal register value  
counts up by one at the trailing (low-mid) edge, and the output  
SET PIN CURRENT  
V
voltage is decreased. Once the maximum or minimum  
COM  
value is reached, the counter saturates and will not overflow or  
underflow beyond those values.  
CTL should have a noise filter to reduce bouncing or noise on the  
input that could cause unwanted counts when the CE pin is high.  
Figure 8 shows a simple debouncing circuit consisting of a series  
1kΩ resistor and a shunt 0.01µF capacitor connected on the CTL  
pin. To avoid unintentional adjustment, the ISL24212 guarantees  
to reject CTL pulses shorter than 20µs.  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
OUT PIN VOLTAGE (V)  
FIGURE 6. DVR_OUT PIN LEAKAGE CURRENT  
AV  
DD  
Power Supply Sequence  
CLOSE TO  
PROGRAM  
EEPROM  
The recommended power supply sequencing is shown in  
Figure 7. When applying power, V should be applied before or  
DD  
at the same time as AV . The minimum time for t is 0µs.  
DD VS  
ISL24212  
CTL  
1kΩ  
When removing power, the sequence of V and AV is not  
DD DD  
important.  
0.01µF  
VDD  
FIGURE 8. EXTERNAL DEBOUNCER ON CTL PIN  
This pin is pulled above 4.9V to program the EEPROM. See  
“Programming the EEPROM” on page 9 for details.  
AVDD  
tVS  
After CE (Counter Enable) is asserted and after programming  
EEPROM, the very first CTL pulse is ignored (see Figure 11) to  
avoid the possibility of a false count (CTL state may be unknown  
after programming).  
FIGURE 7. POWER SUPPLY SEQUENCE  
FN7590.0  
March 15, 2011  
8
ISL24212  
1. Power-up the ISL24212. The EEPROM value will be loaded.  
CE Pin  
2. Set the CE pin to V  
.
DD  
To change the counter controlling the output voltage, the CE  
(Counter Enable) pin must be pulled high (V ). When the CE pin  
3. Change the V  
OUT  
voltage using the CTL pin to the desired  
DD  
is pulled low, the counter value is loaded from EEPROM, which  
takes 10ms (during which the inputs should remain constant).  
The CE pin has an internal pull-down to keep it at a logic low  
when not being driven. CE should be pulled low before powering  
the device down to ensure that any glitches or transients during  
power-down will not cause unwanted EEPROM overwriting.  
value, noting that first pulse will be ignored.  
4. Pull the CTL pin to 4.9V or higher for at least 200µs. The  
counter value will be written to EEPROM after 100ms.  
5. Change the V  
OUT  
value (using the CTL pin) to a different value,  
noting that first pulse after programming will be ignored.  
6. Set the CE pin to 0V. The stored output value will be loaded  
from EEPROM after 10ms.  
The CE pin has a Schmitt trigger on the input to prevent false  
triggering during slow transitions of the CE pin. The CE pin  
transition time should be 10µs or less.  
7. Verify that the output value is the same value programmed in  
Step 4.  
The CTL pin should be left floating after programming. The  
Programming the EEPROM  
voltage at the CTL pin will be internally biased to V /2 to ensure  
DD  
To program the non-volatile EEPROM, pull the CTL pin above 4.9V  
for more than 200µs. The level and timing is shown in Figure 9. It  
then takes a maximum of 100ms after CTL crosses 4.9V for the  
programming to be completed inside the device.  
that no additional pulses will be seen by the Up/Down counter. To  
prevent further changes, ground the CE pin.  
Typical Application Circuit  
Shown below in Figure 10 is a typical circuit that can be used to  
program the ISL24212 via the up/down counter interface. Three  
momentary push-button switches are required. SW1 connected  
CTL VOLTAGE  
EEPROM  
>200µs  
OPERATION  
COMPLETE  
4.9V  
between CTL and AV allows the user to bring CTL above V for  
100ms  
DD DD  
programming the EEPROM, SW2 connected to V to pull CTL up,  
DD  
and SW3 connected to GND to pull CTL to down. All the switches  
should have 1kΩ current-limiting resistors in series.  
For adjustment and programming to occur, the CE pin has to be  
t
PROG  
TIME  
set to V . This can be achieved by a single-pull double-throw  
DD  
switch (SW4) connected between V and GND.  
DD  
FIGURE 9. EEPROM PROGRAMMING  
Note that pressing the UP button increments the counter, but  
When the part is programmed, the data in the counter register is  
written into the EEPROM. This value will be loaded from the  
EEPROM during subsequent power-ups as well as when the CE  
pin is pulled low. The ISL24212 is factory-programmed to  
mid-scale. As with asserting CE, the first pulse after a program  
operation is ignored. The EEPROM contents can be written and  
verified using the following steps:  
results in V decreasing. Similarly, pressing the DOWN  
COM_OUT  
button decrements the counter, and results in V  
increasing.  
COM_OUT  
AV  
DD  
V
DD  
V
AV  
DD  
DD  
R1  
ENABLE  
ADJUST /  
PROGRAM  
AV  
V
DD  
DD  
0.1µF  
0.1µF  
SW4  
1kΩ  
1kΩ  
R2  
DISABLE  
V
AV  
DVR_OUT  
DD  
DD  
SW2  
CLOSE TO  
PROGRAM  
EEPROM  
UP  
CE  
ISL24212  
VCOM_OUT  
IN  
SW1  
CTL  
N
V
to LCD Panel  
COM  
GND  
SET  
0.01µF  
DOWN  
SW3  
RSET  
1kΩ  
FIGURE 10. TYPICAL APPLICATION CIRCUIT  
FN7590.0  
March 15, 2011  
9
ISL24212  
Up/Down Counter Waveforms  
The operation modes of the ISL24212 is shown in Table 2.  
TABLE 2. ISL 24212 OPERATION MODES  
INPUT  
OUTPUT  
CTL  
X
CE  
Lo  
COUNTER  
V
EEPROM  
COM_OUT  
No Change  
X
Lo to Hi  
Hi  
Ignore first CTL pulse  
No Change  
No Change  
No Change  
Hi to Mid  
Lo to Mid  
Decrement  
Increment  
No Change  
Increase  
Decrease  
No Change  
Hi  
Mid to >4.9V  
Hi  
Write Counter  
Value to EEPROM  
>4.9V to Mid  
X
Hi  
Ignore next CTL Pulse  
No Change  
No Change  
Hi to Lo  
EEPROM  
Programmed  
Value  
Read Value  
Figure 11 shows the associated waveforms.  
NOTE:  
FIRST PULSE AFTER  
PROGRAMMING IS  
IGNORED  
FIRST PULSE AFTER  
ASSERTING CE IS  
IGNORED  
AFTER COUNTER ENABLE IS ASSERTED,  
THE FIRST CTL PULSE IS IGNORED  
t
PROG  
V
= 4.9V  
PROG  
t
H_REJ  
t
ST  
t
MTC  
t
READ  
CTL HIGH  
CTL V /2  
DD  
CTL LOW  
t
L_REJ  
t
L_MIN  
t
H_MIN  
CE  
DISABLE ADJUSTMENT  
ENABLE ADJUSTMENT  
t
L_PROP  
t
H_PROP  
ENABLE ADJUSTMENT  
AVDD  
VDD  
COUNTER  
OUTPUT  
7A  
7A  
79  
7B  
78  
7B  
7A  
ASSUME COUNTER  
STARTS WITH VALUE 78  
DEASSERTING CE  
RELOADS 7B  
FROM EEPROM  
WRITE 7B TO  
EEPROM  
VCOM  
EXAMPLE POST POWER-UP TIMING  
FIGURE 11. COUNTER INTERFACE TIMING DIAGRAM  
FN7590.0  
March 15, 2011  
10  
ISL24212  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest revision.  
DATE  
REVISION  
FN7590.0  
CHANGE  
3/15/11  
Initial Release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page  
on intersil.com: ISL24212  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7590.0  
March 15, 2011  
11  
ISL24212  
Package Outline Drawing  
L10.3x3A  
10 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 5, 3/10  
2.0 REF  
8X 0.50 BSC  
6
3.00  
A
PIN 1  
INDEX AREA  
B
1
5
6
10X 0 . 30  
PIN 1  
INDEX AREA  
3.00  
1.50  
0.15  
(4X)  
C
C
A B  
0.10  
0.05  
M
M
10  
5
10 X 0.25  
4
TOP VIEW  
( 2.30 )  
2.30  
BOTTOM VIEW  
0 .80 MAX  
SEE DETAIL "X"  
0.10 C  
C
(2.90)  
SEATING PLANE  
0.08 C  
(1.50)  
SIDE VIEW  
(10 X 0.50)  
5
0 . 2 REF  
C
( 8X 0 .50 )  
( 10X 0.25 )  
0 . 00 MIN.  
0 . 05 MAX.  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
Angular ±2.50°  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
Compliant to JEDEC MO-229-WEED-3 except exposed pad length (2.30mm).  
7.  
FN7590.0  
March 15, 2011  
12  

相关型号:

ISL24833IRZ-T13

18-Channel Programmable I<sup>2</sup>C TFT-LCD Reference Voltage Generator
RENESAS

ISL24858IRXZ

Low Power 15-Channel I<sup>2</sup>C Programmable TFT-LCD Reference Voltage Generator with Integrated EEPROM
RENESAS

ISL24858IRXZ-T13

Low Power 15-Channel I<sup>2</sup>C Programmable TFT-LCD Reference Voltage Generator with Integrated EEPROM
RENESAS

ISL24858IRXZ-T7A

Low Power 15-Channel I<sup>2</sup>C Programmable TFT-LCD Reference Voltage Generator with Integrated EEPROM
RENESAS

ISL25700

Programmable Temperature Controlled MOSFET Driver
INTERSIL

ISL25700FRUZ-T

Programmable Temperature Controlled MOSFET Driver
INTERSIL

ISL25700FRUZ-T7A

Programmable Temperature Controlled MOSFET Driver
INTERSIL

ISL25700FRUZ-TK

Programmable Temperature Controlled MOSFET Driver
INTERSIL

ISL26102

Intersil’s Solutions for Industrial Process Control
INTERSIL

ISL26102

Low-Noise 24-bit Delta Sigma ADC
RENESAS

ISL26102AVZ

Low-Noise 24-bit Delta Sigma ADC
RENESAS

ISL26102AVZ

Low-Noise 24-bit Delta Sigma ADC
INTERSIL