ISL24202IRTZ-T13 [RENESAS]

Programmable VCOM Calibrator with EEPROM, TDFN, /Reel;
ISL24202IRTZ-T13
型号: ISL24202IRTZ-T13
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Programmable VCOM Calibrator with EEPROM, TDFN, /Reel

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 光电二极管
文件: 总12页 (文件大小:428K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Programmable V  
Calibrator with EEPROM  
COM  
ISL24202  
Features  
The ISL24202 is an 8-bit programmable current sink that can be  
used in conjunction with an external voltage divider to generate a  
• Adjustable 8-Bit, 256-Step, Current Sink Output  
• On-Chip 8-Bit EEPROM  
voltage source (V  
) positioned between the analog supply  
COM  
• Up/Down Counter Interface  
voltage and ground. The current sink’s full-scale range is  
controlled by an external resistor, R . With the appropriate  
• Guaranteed Monotonic Over-Temperature  
SET  
choice of external resistors R and R , the V  
COM  
voltage range  
1
2
• 4.5V to 19.0V Analog Supply Range for Normal Operation  
(10.8V Minimum Analog Supply Voltage for Programming)  
can be controlled between any arbitrary voltage range. The  
ISL24202 has an 8-bit data register and 8-bit EEPROM for storing  
both a volatile and a permanent value for its output, accessible  
through a single up/down counter interface pin (CTL). After the  
• 2.25V to 3.6V Logic Supply Voltage Operating Range  
• Pb-free (RoHS-Compliant)  
part is programmed with the desired V  
value, the Counter  
COM  
• Ultra-Thin 8 Ld TDFN (3 x 3 x 0.8mm Max)  
Enable pin (CE) can be grounded to prevent further changes. On  
every power-up the EEPROM contents are automatically  
transferred to the data register, and the pre-programmed output  
Applications  
• LCD Panel V  
Generator  
voltage appears at the V  
pin.  
COM  
OUT  
• Electrophoretic Display V  
Generator  
COM  
The ISL24202 can be used with a high output drive buffer  
amplifier, which allows it to directly drive the V  
LCD panel.  
input of an  
COM  
Related Literature  
• See AN1633 for ISL24202 Evaluation Board Application Note  
“ISL24202IRTZ-EVALZ Evaluation Board User Guide” (Coming  
Soon)  
The ISL24202 is available in an 8 Ld 3mm x 3mm TDFN  
package. This package has a maximum height of 0.8mm for very  
low profile designs. The ambient operating temperature range is  
-40°C to +85°C.  
VDD  
AVDD  
5
2
6
R1  
R2  
CTL  
LCD PANEL  
I/O PIN*  
1
MICRO-  
CONTROLLER  
OUT  
7
ISL24202  
VCOM  
I/O PIN  
CE  
8
SET  
EL5411T  
RSET  
4
* 0, 1, TRI-STATE  
FIGURE 1. TYPICAL ISL24202 APPLICATION  
March 15, 2011  
FN7587.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL24202  
Block Diagram  
VDD  
AVDD  
2
5
VDD  
RBIAS  
3
DNC  
1
ANALOG DCP  
AND  
CURRENT SINK  
OUT  
6
CTL  
DIGITAL  
INTERFACE  
DAC  
REGISTERS  
UP/DOWN  
COUNTER  
RBIAS  
Q1  
7
A1  
CE  
8-BIT EEPROM  
CS  
8
SET  
4
GND  
FIGURE 2. BLOCK DIAGRAM OF THE ISL24202  
Pin Descriptions  
PIN NAME PIN #  
Pin Configuration  
ISL24202  
(8 LD TDFN)  
TOP VIEW  
FUNCTION  
OUT  
1
Adjustable Sink Current Output Pin. The sink current into  
the OUT pin is equal to the DAC setting times the  
maximum adjustable sink current divided by 256. See  
the “SET” pin function description below (pin 8) for  
setting the maximum adjustable sink current.  
SET  
CE  
OUT  
AVDD  
DNC  
GND  
1
2
3
4
8
7
A
2
3
High-Voltage Analog Supply. Bypass to GND with 0.1µF  
capacitor.  
VDD  
CTL  
VDD  
6
5
PAD  
DNC  
Do Not Connect to external circuitry. It is acceptable to  
ground this pin.  
GND  
4
5
Ground connection.  
(*CONNECT THERMAL PAD TO GND)  
V
Digital power supply input. Bypass to GND with 0.1µF  
de-coupling capacitor.  
DD  
CTL  
6
Up/Down Control for internal counter and Internal  
EEPROM Programming Control Input. When CE is high:  
A low-to-mid transition increments the 8-bit counter,  
adding 1 to the DAC setting, increasing the OUT sink  
current, and lowering the divider voltage at the OUT pin.  
A high-to-mid transition decrements the 8-bit counter,  
subtracting 1 from the DAC setting, decreasing the OUT  
sink current, and increasing the divider voltage at the  
OUT pin.  
To program the EEPROM, take this pin to >4.9V (see  
“CTL EEPROM Programming Signal Time” in the  
“Electrical Specifications” table on page 5 for details).  
Float when not in use.  
CE  
7
Counter Enable Pin. Connect CE to V to enable  
DD  
adjustment of the output sink current. Float or connect  
CE to GND to prevent further adjustment or  
programming (Note: the CE pin has an internal 500nA  
pull-down sink current). The EEPROM value will be  
copied to the register on a V to V transition.  
OH OL  
SET  
8
-
Maximum Sink Current Adjustment Pin. Connect a  
resistor from SET to GND to set the maximum  
adjustable sink current of the OUT pin. The maximum  
adjustable sink current is equal to (AV /20) divided  
DD  
by R  
.
SET  
PAD  
Thermal pad should be connected to system ground  
plane to optimize thermal performance.  
FN7587.0  
March 15, 2011  
2
ISL24202  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
TEMP RANGE  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
INTERFACE  
COUNTER  
(°C)  
ISL24202IRTZ  
202Z  
Evaluation Board  
-40 to +85  
8 Ld 3x3 TDFN  
L8.3x3A  
ISL24202IRTZ-EVALZ  
NOTES:  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page ISL24202. For more information on MSL please see techbrief TB363.  
FN7587.0  
March 15, 2011  
3
ISL24202  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage  
Thermal Resistance (Typical)  
8 Ld TDFN Package (Notes 4, 5). . . . . . . . .  
θ
(°C/W)  
53  
θ
(°C/W)  
11  
JA  
JC  
AV to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V  
DD  
V
to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4V  
Moisture Sensitivity (see Technical Brief TB363)  
DD  
Input Voltage with respect to Ground  
SET, CTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AV +0.3V  
CE and WP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V +0.3V  
DD  
Output Voltage with respect to Ground  
All Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Level 1  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
DD  
OUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AV  
DD  
Continuous Output Current  
OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
ESD Ratings  
Human Body Model (Tested per JESD22-A114) . . . . . . . . . . . . . . . . . 7kV  
Machine Model (Tested per JESD22-A115). . . . . . . . . . . . . . . . . . . . 300V  
Charged Device Model (Tested per JESD22-C101). . . . . . . . . . . . . . . 2kV  
Latch Up (Tested per JESD 78, Class II, Level A). . . . . . . . . . . . . . . . 100mA  
Recommended Operating Conditions  
Operating Range  
AV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5V to 19V  
DD  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.25V to 3.6V  
DD  
Ambient Operating Temperature . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Test Conditions: V = 3.3V, AV = 18V, R = 5kΩ, R = 10kΩ, R = 10kΩ, (See Figure 5). Typicals are at  
DD  
DD  
SET  
1
2
T
= +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C.  
A
MIN  
MAX  
SYMBOL  
DC CHARACTERISTICS  
Supply Range - Operating  
PARAMETER  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNITS  
V
V
2.25  
10.8  
4.5  
3.6  
19  
19  
V
V
V
DD  
DD  
AV  
AV  
AV Supply Range Supporting EEPROM Programming  
DD  
DD  
DD  
AV Supply Range for Wide-Supply Operation without  
DD  
EEPROM Programming  
I
V
Supply Current  
CTL = 0.5*V  
40  
24  
65  
38  
µA  
µA  
DD  
DD  
DD  
DD  
I
AV Supply Current  
CTL = 0.5*V  
AVDD  
DD  
OUT PIN CHARACTERISTICS  
SET  
SET Zero-Scale Error  
SET Full-Scale Error  
±3  
±8  
LSB  
LSB  
V
ZSE  
FSE  
SET  
V
OUT Voltage Range  
V
+ 1.75  
AV  
DD  
OUT  
SET  
SET  
SET Voltage Drift  
7
4
µV/°C  
mA  
VD  
I
Maximum OUT Sink Current  
Integral Non-Linearity  
Differential Non-Linearity  
OUT  
INL  
±2  
LSB  
LSB  
DNL  
±1  
EEPROM CHARACTERISTICS  
EEPROM Programming Time (internal)  
UP/DOWN COUNTER CONTROL INPUTS (SEE FIGURE 11)  
t
100  
ms  
PROG  
V
CE and CTL Input Logic High Threshold  
CE and CTL Input Logic Low Threshold  
CE Input Pull Down Current Sink  
CTL Input Bias Current  
0.7*V  
V
IH  
DD  
V
0.3*V  
1.5  
15  
V
IL  
CS_PD  
DD  
I
0.5  
7
µA  
µA  
µA  
µs  
ms  
I
CTL = GND (sourcing)  
CTL = V (sinking)  
CTL  
7
15  
DD  
t
CE to CTL Start Delay  
50  
ST  
t
EEPROM Recall Time (after CE de-asserted)  
10  
READ  
FN7587.0  
March 15, 2011  
4
ISL24202  
Electrical Specifications Test Conditions: V = 3.3V, AV = 18V, R = 5kΩ, R = 10kΩ, R = 10kΩ, (See Figure 5). Typicals are at  
DD  
DD  
SET  
1
2
T
= +25°C. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
A
MIN  
MAX  
SYMBOL  
PARAMETER  
CTL High Pulse Rejection Width  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNITS  
µs  
µs  
µs  
µs  
µs  
V
t
20  
20  
H_REJ  
t
CTL Low Pulse Rejection Width  
L_REJ  
t
CTL High Minimum Valid Pulse Width  
CTL Low Minimum Valid Pulse Width  
CTL Minimum Time Between Counts  
CTL EEPROM Program Voltage (see Figure 9)  
CTL EEPROM Programming Signal Time  
CTL High-to-Mid to OUT Propagation Time  
CTL Low-to-Mid to OUT Propagation Time  
200  
200  
10  
H_MIN  
t
L_MIN  
t
MTC  
V
4.9  
19  
PROG  
PROG  
t
200  
65  
µs  
µs  
µs  
t
H_PROP  
t
65  
L_PROP  
NOTE:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN7587.0  
March 15, 2011  
5
ISL24202  
Application Information  
AVDD  
REGISTER VALUE  
255  
LCD panels have a V  
(common voltage) that must be precisely  
adjustment  
COM  
19R  
set to minimize flicker. Figure 3 shows a typical V  
COM  
circuit using a mechanical potentiometer, and the equivalent  
circuit replacement using the ISL24202. Having a digital counter  
interface enables automatic, digital flicker minimization during  
production test and alignment. After programming, the counter  
interface is not needed again - the ISL24202 automatically powers  
AVDD  
20  
254  
253  
VDCP  
up with the correct V  
voltage programmed previously.  
COM  
252  
The ISL24202 uses a digitally controllable potentiometer (DCP),  
with 256 steps of resolution (Figure 4) to change the current  
drawn at the OUT pin, which then changes the voltage created by  
R
251  
2
the R - R resistor divider (Figure 5). The OUT voltage can then be  
1
2
1
buffered by an external amplifier (A2) to generate a buffered output  
voltage (V ) capable of driving the V input of an LCD panel.  
0
COM COM  
The amount of current sunk is controlled by the setting of the  
DCP, which is recalled at power-up from the ISL24202’s internal  
EEPROM. The EEPROM is typically programmed during panel  
manufacture. As noted in the “Electrical Specifications” section  
FIGURE 4. SIMPLIFIED SCHEMATIC OF DCP  
on page 4, the ISL24202 requires a minimum AV voltage of  
Output Current Sink  
Figure 5 shows the schematic of the OUT current sink. The  
combination of amplifier A1, transistor Q1, and resistor R  
forms a voltage-controlled current source, with the voltage  
determined by the DCP setting.  
DD  
10.8V for EEPROM programming, but will work in normal  
operation down to 4.5V after the EEPROM has been  
programmed, with no additional EEPROM writing.  
AVDD  
SET  
AVDD  
AVDD  
RA  
R1  
OUT  
RB  
VCOM  
VOUT  
VDCP  
IOUT  
Q1  
R2  
R1 = RA  
VSAT  
A1  
RC  
R2 = RB+RC  
SET  
VSET = VDCP = IOUT * RSET  
RSET = RARB + RARC  
20RB  
RSET  
IOUT  
FIGURE 5. CURRENT SINK CIRCUIT  
VDD  
AVDD  
AVDD  
The external R  
resistor sets the full-scale (maximum) sink current  
that can be pulled from the OUT node. The relationship between  
SET  
ISL24202  
R1  
I
and Register Value is shown in Equation 2.  
IOUT  
OUT  
OUT  
VCOM  
V
AV  
DD  
20  
A2  
RegisterValue + 1  
1
DCP  
⎞ ⎛  
⎞ ⎛  
⎠ ⎝  
SET  
(EQ. 2)  
-------------  
-------------------------------------------------- -------------- ------------  
I
=
=
R2  
OUT  
⎠ ⎝  
R
256  
R
SET  
SET  
RSET  
The maximum value of I  
can be calculated by substituting the  
OUT  
maximum register value of 255 into Equation 2, resulting in  
Equation 3:  
FIGURE 3. MECHANICAL ADJUSTMENT REPLACEMENT  
A
VDD  
(EQ. 3)  
--------------------  
I
(MAX) =  
OUT  
DCP (Digitally Controllable Potentiometer)  
20R  
SET  
The DCP controls the voltage that ultimately controls the SET  
current. Figure 4 shows the relationship between the register  
value and the DCP’s tap position. Note that a register value of 0  
selects the first step of the resistor string. The output voltage of  
the DCP is given in Equation 1:  
Equation 2 can also be used to calculate the unit sink current  
step size per Register Code, resulting in Equation 4:  
AV  
DD  
(EQ. 4)  
---------------------------------------------  
=
I
STEP  
(256)(20)(R  
)
SET  
AV  
(EQ. 1)  
RegisterValue + 1  
DD  
⎞ ⎛  
-------------------------------------------------- --------------  
V
=
DCP  
⎠ ⎝  
256  
20  
FN7587.0  
March 15, 2011  
6
ISL24202  
Using Equations 6 and 7, calculate the values of R and R :  
Determination of R  
The ultimate goal for the ISL24202 is to generate an adjustable  
voltage between two endpoints, V and V , with  
a fixed power supply voltage, AV . This is accomplished by  
1
2
SET  
8.56.5  
(EQ. 10)  
-------------------------------------  
R
R
= 5120 7500 ⋅  
= 5120 7500 ⋅  
= 35.4kΩ  
1
2
256 8.5 6.5  
COM_MIN COM_MAX  
DD  
8.5 6.5  
-----------------------------------------------------------------  
choosing the correct values for R , R and R . The exact value  
(EQ. 11)  
= 46.4kΩ  
SET  
1
2
255 15 + 6.5 256 8.5  
of R  
is not critical. Values from 1k to more than 100k will  
work under most conditions. The following expression calculates  
SET  
the minimum R  
value:  
SET  
Table 1 shows the resulting V  
value for these conditions.  
voltage as a function of register  
COM  
AV  
DD  
--------------  
(EQ. 5)  
16  
-----------------------------------------------------  
R
(MIN) =  
(kΩ)  
TABLE 1. EXAMPLE V  
vs REGISTER VALUE  
OUT  
SET  
AV  
DD  
20  
--------------  
V
OUT(MIN)  
REGISTER VALUE  
V
(V)  
OUT  
0
8.49  
8.34  
8.18  
8.02  
7.87  
7.71  
7.55  
7.50  
7.40  
7.24  
7.09  
6.93  
6.77  
6.62  
6.50  
Note that this is the absolute minimum value for R . Larger  
SET  
20  
R
values reduce quiescent power, since R and R are  
SET  
1 2  
proportional to R . The ISL24202 is tested with a 5kΩ R  
.
SET SET  
40  
60  
Determination of R and R  
1
2
With AV , V  
and V  
known and R chosen  
80  
DD COM(MIN)  
COM(MAX)  
SET  
per the above requirements, R and R can be determined using  
1
2
100  
120  
127  
140  
160  
180  
200  
220  
240  
255  
Equations 6 and 7:  
V
V  
COM(MIN)  
COM(MAX)  
(EQ. 6)  
--------------------------------------------------------------------------------  
R
R
= 5120 R  
= 5120 R  
1
2
SET  
SET  
256 V  
V  
COM(MAX)  
COM(MIN)  
V
V  
COM(MAX)  
COM(MIN)  
--------------------------------------------------------------------------------------------------------------------  
255 AV  
+ V  
256 V  
COM(MIN) COM(MAX)  
DD  
(EQ. 7)  
Final Transfer Function  
The voltage at the OUT pin can be calculated from Equation 8:  
R
R
1
20R  
SET  
⎞ ⎛  
⎟ ⎜  
⎠ ⎝  
⎞⎞  
⎟⎟  
⎠⎠  
RegisterValue + 1  
-------------------------------------------------- --------------------  
1 –  
2
--------------------  
V
= AV  
OUT  
DD  
R + R  
256  
1
2
Output Voltage Span Calculation  
(EQ. 8)  
It is also possible to calculate V  
existing resistor values.  
and V  
from the  
is drawn  
COM(MIN)  
COM(MAX)  
occurs when the greatest current, I  
OUT(MAX),  
With external amplifier A2 in the unity-gain configuration,  
= V  
V
V
.
COM  
COM_MIN  
OUT  
from the middle node of the R /R divider. Substituting  
1
2
RegisterValue = 255 into Equation 8 gives the following:  
Example  
As an example, suppose the A  
R
R
1
⎞ ⎛  
⎟ ⎜  
⎠ ⎝  
⎞⎞  
⎟⎟  
⎠⎠  
supply is 15V, the desired  
2
(EQ. 12)  
(EQ. 13)  
VDD  
--------------------  
1
--------------------  
V
= AV  
1 –  
COM(MIN)  
DD  
R + R  
2
20R  
SET  
V
= 6.5V and the desired V  
= 8.5V. R  
is  
COM_MIN  
arbitrarily chosen to be 7.5kΩ.  
COM_MAX  
SET  
Similarly, RegisterValue = 0 for V  
COM(MAX)  
:
First, verify that our chosen R  
meets the minimum  
SET  
requirement described in Equation 5:  
R
R
1
⎞ ⎛  
⎟ ⎜  
⎠ ⎝  
⎞⎞  
⎟⎟  
⎠⎠  
1
2
--------------------  
--------- --------------------  
V
= AV  
1 –  
COM(MAX)  
DD  
R + R  
256 20R  
SET  
1
2
15  
------  
16  
(EQ. 9)  
------------------------------  
(7.5kΩ) >  
R
(MIN) =  
= 0.163kΩ  
By finding the difference of Equation 13 and Equation 12, the total  
span of V can be found:  
SET  
15  
------  
6.5V –  
COM  
20  
R
R
1
1
2
--------- --------------------  
(EQ. 14)  
--------------------  
V
SPAN = AV  
1 –  
COM  
DD  
256 20R  
SET  
R +R  
1
2
FN7587.0  
March 15, 2011  
7
ISL24202  
Assuming that the I  
in Equation 14 simplifies to:  
(MIN) = 0 instead of I  
OUT  
, the expression  
STEP  
Operating and Programming  
Supply Voltage and Current  
R
R  
R R  
1
2
AV  
⎞ ⎛  
1
2
DD  
-------------------- --------------------  
--------------------  
To program the EEPROM, AV must be 10.8V. If further  
V
SPAN =  
=
I
(MAX)  
DVROUT  
⎟ ⎜  
DD  
COM  
R
+ R  
20R  
R + R  
1 2  
⎠ ⎝  
1
2
SET  
programming is not required, the ISL24202 will operate over an  
(EQ. 15)  
AV range of 4.5V to 19V.  
DD  
During EEPROM programming, I and I  
DD AVDD  
will temporarily be  
OUT Pin Leakage Current  
When the voltage on the OUT pin is greater than 10V, an  
4-5x higher for up to 100ms (t  
).  
PROG  
additional leakage current flows into the pin in addition to the  
current. Figure 6 shows the I current and the OUT pin  
current for OUT pin voltage up to 19V. In applications where the  
voltage on the OUT pin will be greater than 10V, the actual output  
voltage will be lower than the voltage calculated by Equation 8  
due to this extra current. The graph in Figure 6 was measured  
Up/Down Counter Interface  
I
SET  
SET  
The ISL24202 allows the adjustment of the output V  
voltage  
COM  
and the programming of the non-volatile memory through a  
single pin (CTL) when the CE (counter enable) pin is high. The CTL  
pin is biased so that its voltage is set to VDD/2 if the driving  
circuit is set to Tri-state or High Impedance (Hi-Z), allowing  
up/down operation using common digital I/O logic.  
with R  
= 4.99kΩ.  
SET  
0.30  
REGISTER = 255  
CTL Pin  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
OUT PIN CURRENT  
SET PIN CURRENT  
When a mid-high-mid transition is detected on the CTL pin (see  
Figure 11), the internal register value counts down by one at the  
trailing (high-mid) edge, and the output V  
voltage is  
COM  
increased according to Equation 8. Similarly, when a mid-low-mid  
transition is detected on the CTL pin, the internal register value  
counts up by one at the trailing (low-mid) edge, and the output  
V
voltage is decreased. Once the maximum or minimum  
COM  
value is reached, the counter saturates and will not overflow or  
underflow beyond those values.  
CTL should have a noise filter to reduce bouncing or noise on the  
input that could cause unwanted counts when the CE pin is high.  
Figure 8 shows a simple debouncing circuit consisting of a series  
1kΩ resistor and a shunt 0.01µF capacitor connected on the CTL  
pin. To avoid unintentional adjustment, the ISL24202 guarantees  
to reject CTL pulses shorter than 20µs.  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
OUT PIN VOLTAGE (V)  
FIGURE 6. OUT PIN LEAKAGE CURRENT  
AV  
DD  
Power Supply Sequence  
CLOSE TO  
PROGRAM  
EEPROM  
The recommended power supply sequencing is shown in  
Figure 7. When applying power, V should be applied before or  
DD  
ISL24202  
CTL  
1kΩ  
at the same time as AV . The minimum time for t is 0µs.  
DD VS  
When removing power, the sequence of V and AV is not  
DD DD  
important.  
0.01µF  
VDD  
FIGURE 8. EXTERNAL DEBOUNCER ON CTL PIN  
AVDD  
This pin is pulled above 4.9V to program the EEPROM. See  
“Programming the EEPROM” on page 9 for details.  
tVS  
FIGURE 7. POWER SUPPLY SEQUENCE  
After CE (Counter Enable) is asserted and after programming  
EEPROM, the very first CTL pulse is ignored (see Figure 11) to  
avoid the possibility of a false count (since CTL state may be  
unknown after programming).  
Do not remove V or AV within 100ms of the start of the  
DD DD  
EEPROM programming cycle. Removing power before the  
EEPROM programming cycle is completed may result in  
corrupted data in the EEPROM.  
CE Pin  
To change the counter controlling the output voltage, the CE  
(Counter Enable) pin must be pulled high (V ). When the CE pin  
DD  
is pulled low, the counter value is loaded from EEPROM, which  
takes 10ms (during which the inputs should remain constant).  
The CE pin has an internal pull-down to keep it at a logic low  
FN7587.0  
March 15, 2011  
8
ISL24202  
when not being driven. CE should be pulled low before powering  
1. Power-up the ISL24202. The EEPROM value will be loaded.  
the device down to ensure that any glitches or transients during  
power-down will not cause unwanted EEPROM overwriting.  
2. Set the CE pin to V  
.
DD  
3. Change the V  
OUT  
voltage using the CTL pin to the desired  
The CE pin has a Schmitt trigger on the input to prevent false  
triggering during slow transitions of the CE pin. The CE pin  
transition time should be 10µs or less.  
value, noting that first pulse will be ignored.  
4. Pull the CTL pin to 4.9V or higher for at least 200µs. The  
counter value will be written to EEPROM after 100ms.  
5. Change the V  
OUT  
value (using the CTL pin) to a different value,  
Programming the EEPROM  
noting that first pulse after programming will be ignored.  
To program the non-volatile EEPROM, pull the CTL pin above 4.9V  
for more than 200µs. The level and timing is shown in Figure 9. It  
then takes a maximum of 100ms after CTL crosses 4.9V for the  
programming to be completed inside the device.  
6. Set the CE pin to 0V. The stored output value will be loaded  
from EEPROM after 10ms.  
7. Verify that the output value is the same value programmed in  
Step 4.  
CTL VOLTAGE  
The CTL pin should be left floating after programming. The  
EEPROM  
>200µs  
OPERATION  
voltage at the CTL pin will be internally biased to V /2 to ensure  
DD  
COMPLETE  
that no additional pulses will be seen by the Up/Down counter. To  
prevent further changes, ground the CE pin.  
4.9V  
100ms  
Typical Application Circuit  
Shown below in Figure 10 is a typical circuit that can be used to  
program the ISL24202 via the up/down counter interface. Three  
momentary push-button switches are required. SW1 connected  
t
PROG  
TIME  
between CTL and AV allows the user to bring CTL above V for  
DD DD  
programming the EEPROM, SW2 connected to V to pull CTL up,  
DD  
FIGURE 9. EEPROM PROGRAMMING  
and SW3 connected to GND to pull CTL to down. All the switches  
should have 1kΩ current-limiting resistors in series.  
When the part is programmed, the data in the counter register is  
written into the EEPROM. This value will be loaded from the  
EEPROM during subsequent power-ups as well as when the CE  
pin is pulled low. The ISL24202 is factory-programmed to  
mid-scale. As with asserting CE, the first pulse after a program  
operation is ignored. The EEPROM contents can be written and  
verified using the following steps:  
For adjustment and programming to occur, the CE pin has to be  
set to V . This can be achieved by a single-pull double-throw  
DD  
switch (SW4) connected between V and GND.  
DD  
Note that pressing the UP button increments the counter, but  
results in V  
decreasing. Similarly, pressing the DOWN  
COM_OUT  
button decrements the counter, and results in V  
increasing.  
COM_OUT  
V
DD  
V
AV  
DD  
DD  
ENABLE  
ADJUST /  
PROGRAM  
AV  
DD  
AV  
V
DD  
DD  
0.1µF  
0.1µF  
SW4  
1k  
1kΩ  
DISABLE  
V
AV  
DD  
DD  
SW2  
CLOSE TO  
R
R
1
2
PROGRAM  
EEPROM  
UP  
EL5411T  
CE  
CTL  
ISL24202  
OUT  
SW1  
V
to LCD Panel  
COM  
GND  
SET  
0.01µF  
DOWN  
SW3  
R
SET  
1kΩ  
FIGURE 10. TYPICAL APPLICATION CIRCUIT  
FN7587.0  
March 15, 2011  
9
ISL24202  
Up/Down Counter Waveforms  
The operation modes of the ISL24202 is shown in Table 2.  
TABLE 2. ISL24202 OPERATION MODES  
INPUT  
OUTPUT  
CTL  
X
CE  
Lo  
Counter  
V
EEPROM  
COM_OUT  
No Change  
X
Lo to Hi  
Hi  
Ignore first CTL pulse  
No Change  
No Change  
No Change  
Hi to Mid  
Lo to Mid  
Decrement  
Increment  
No Change  
Increase  
Decrease  
No Change  
Hi  
Mid to >4.9V  
Hi  
Write Counter  
Value to EEPROM  
>4.9V to Mid  
X
Hi  
Ignore next CTL Pulse  
No Change  
No Change  
Hi to Lo  
EEPROM  
Programmed  
Value  
Read Value  
Figure 11 shows the associated waveforms.  
NOTE:  
FIRST PULSE AFTER  
PROGRAMMING IS  
IGNORED  
FIRST PULSE AFTER  
ASSERTING CE IS  
IGNORED  
AFTER COUNTER ENABLE IS ASSERTED,  
THE FIRST CTL PULSE IS IGNORED  
t
PROG  
V
= 4.9V  
PROG  
t
H_REJ  
t
ST  
t
MTC  
t
READ  
CTL HIGH  
CTL V /2  
DD  
CTL LOW  
t
L_REJ  
t
L_MIN  
t
H_MIN  
CE  
DISABLE ADJUSTMENT  
ENABLE ADJUSTMENT  
t
L_PROP  
t
H_PROP  
ENABLE ADJUSTMENT  
AVDD  
VDD  
COUNTER  
OUTPUT  
7A  
7A  
79  
7B  
78  
7B  
7A  
ASSUME COUNTER  
STARTS WITH VALUE 78  
DEASSERTING CE  
RELOADS 7B  
FROM EEPROM  
WRITE 7B TO  
EEPROM  
VCOM  
EXAMPLE POST POWER-UP TIMING  
FIGURE 11. COUNTER INTERFACE TIMING DIAGRAM  
FN7587.0  
March 15, 2011  
10  
ISL24202  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest revision.  
DATE  
REVISION  
FN7587.0  
CHANGE  
3/15/11  
Initial release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page  
on intersil.com: ISL24202  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/sear  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7587.0  
March 15, 2011  
11  
ISL24202  
Package Outline Drawing  
L8.3x3A  
8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 4, 2/10  
( 2.30)  
( 1.95)  
3.00  
A
B
( 8X 0.50)  
(1.50)  
6
PIN 1  
INDEX AREA  
( 2.90 )  
(4X)  
0.15  
PIN 1  
TOP VIEW  
(6x 0.65)  
( 8 X 0.30)  
TYPICAL RECOMMENDED LAND PATTERN  
SEE DETAIL "X"  
0.10 C  
2X 1.950  
C
6X 0.65  
0.75 ±0.05  
0.08 C  
1
PIN #1  
INDEX AREA  
6
SIDE VIEW  
1.50 ±0.10  
5
8
C
0 . 2 REF  
4
8X 0.30 ±0.05  
0.10 M C A B  
8X 0.30 ± 0.10  
0 . 02 NOM.  
0 . 05 MAX.  
2.30 ±0.10  
DETAIL "X"  
BOTTOM VIEW  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.20mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
Compliant to JEDEC MO-229 WEEC-2 except for the foot length.  
7.  
FN7587.0  
March 15, 2011  
12  

相关型号:

ISL24202IRTZ-T7

Analog Circuit
RENESAS

ISL24211

Programmable VCOM Calibrator with EEPROM and Output Buffer
INTERSIL

ISL24211IRTZ

Programmable VCOM Calibrator with EEPROM and Output Buffer
INTERSIL

ISL24211IRTZ-EVALZ

Programmable VCOM Calibrator with EEPROM and Output Buffer
INTERSIL

ISL24211IRTZ-T

BUFFER AMPLIFIER, PDSO10, 3 X 3 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, PLASTIC, MO-229-WEED-3, TDFN-10
RENESAS

ISL24212

Programmable VCOM Calibrator with EEPROM and Output Buffer
INTERSIL

ISL24212IRTZ

Programmable VCOM Calibrator with EEPROM and Output Buffer
INTERSIL

ISL24212IRTZ-EVALZ

Programmable VCOM Calibrator with EEPROM and Output Buffer
INTERSIL

ISL24212IRTZ-T

SPECIALTY ANALOG CIRCUIT, PDSO10, 3 X 3 MM, 0.8 MM HEIGHT, ROHS COMPLIANT, MO-229WEED-3, TDFN-10
RENESAS

ISL24212IRTZ-T7

Analog Circuit
RENESAS

ISL24833IRZ-T13

18-Channel Programmable I<sup>2</sup>C TFT-LCD Reference Voltage Generator
RENESAS

ISL24858IRXZ

Low Power 15-Channel I<sup>2</sup>C Programmable TFT-LCD Reference Voltage Generator with Integrated EEPROM
RENESAS