HA2-5002-2ZR5254 [RENESAS]

BUFFER AMPLIFIER, MBCY8, GREEN, METAL CAN, 8 PIN;
HA2-5002-2ZR5254
型号: HA2-5002-2ZR5254
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

BUFFER AMPLIFIER, MBCY8, GREEN, METAL CAN, 8 PIN

放大器
文件: 总14页 (文件大小:849K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA-5002  
®
Data Sheet  
March 8, 2006  
FN2921.11  
110MHz, High Slew Rate, High Output  
Current Buffer  
Features  
• Voltage Gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.995  
• High Input Impedance . . . . . . . . . . . . . . . . . . . . . .3000kΩ  
• Low Output Impedance . . . . . . . . . . . . . . . . . . . . . . . . 3Ω  
• Very High Slew Rate . . . . . . . . . . . . . . . . . . . . . 1300V/µs  
• Very Wide Bandwidth. . . . . . . . . . . . . . . . . . . . . . 110MHz  
• High Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . ±200mA  
• Pulsed Output Current . . . . . . . . . . . . . . . . . . . . . . 400mA  
• Monolithic Construction  
The HA-5002 is a monolithic, wideband, high slew rate, high  
output current, buffer amplifier.  
Utilizing the advantages of the Intersil D.I. technologies, the  
HA-5002 current buffer offers 1300V/µs slew rate with  
110MHz of bandwidth. The ±200mA output current capability  
is enhanced by a 3output impedance.  
The monolithic HA-5002 will replace the hybrid LH0002 with  
corresponding performance increases. These characteristics  
range from the 3000kinput impedance to the increased  
output voltage swing. Monolithic design technologies have  
allowed a more precise buffer to be developed with more than  
an order of magnitude smaller gain error.  
Pb-Free Plus Anneal Available (RoHS Compliant)  
Applications  
• Line Driver  
• Data Acquistion  
The HA-5002 will provide many present hybrid users with a  
higher degree of reliability and at the same time increase  
overall circuit performance.  
• 110MHz Buffer  
• Radara Cable Driver  
• High Power Current Booster  
• High Power Current Source  
• Sample and Holds  
• Video Products  
For the military grade product, refer to the HA-5002/883  
datasheet.  
Ordering Information  
TEMP.  
PKG.  
PART NUMBER  
HA2-5002-2  
PART MARKING  
HA2-5002-2  
RANGE (°C)  
PACKAGE  
8 Pin Metal Can  
DWG. #  
-55 to 125  
0 to 75  
T8.C  
HA2-5002-5  
HA2-5002-5  
HA3-5002-5  
HA3-5002-5Z  
HA4P5002-5  
HA4P5002-5Z  
50025  
8 Pin Metal Can  
8 Ld PDIP  
T8.C  
HA3-5002-5  
0 to 75  
E8.3  
HA3-5002-5Z (Note)  
HA4P5002-5  
0 to 75  
8 Ld PDIP* (Pb-free)  
20 Ld PLCC  
E8.3  
0 to 75  
N20.35  
N20.35  
M8.15  
M8.15  
M8.15  
M8.15  
HA4P5002-5Z (Note)  
HA9P5002-5  
0 to 75  
20 Ld PLCC (Pb-free)  
8 Ld SOIC  
0 to 75  
HA9P5002-5Z (Note)  
HA9P5002-9  
50025Z  
0 to 75  
8 Ld SOIC (Pb-free)  
8 Ld SOIC  
50029  
-40 to 85  
-40 to 85  
HA9P5002-9Z (Note)  
50029Z  
8 Ld SOIC (Pb-free)  
*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin  
plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2003-2006. All Rights Reserved.  
All other trademarks mentioned are the property of their respective owners.  
HA-5002  
Pinouts  
HA-5002 (PDIP, SOIC)  
HA-5002 (PLCC)  
HA-5002 (METAL CAN)  
TOP VIEW  
TOP VIEW  
TOP VIEW  
IN  
8
1
8
7
6
5
V +  
OUT  
1
3
2
1
20 19  
V +  
1
3
V -  
1
7
5
1
2
3
4
V -  
2
V +  
2
4
5
6
7
8
18 NC  
NC  
NC  
IN  
NC  
2
6
V +  
V -  
2
2
V -  
2
17 V +  
2
V -  
1
NC  
NC  
NC  
16  
15  
NC  
NC  
NC  
NC  
4
OUT  
14 NC  
NOTE: Case Voltage = Floating  
9
10 11 12 13  
FN2921.11  
March 8, 2006  
2
HA-5002  
Absolute Maximum Ratings  
Thermal Information  
Voltage Between V+ and V- Terminals. . . . . . . . . . . . . . . . . . . . 44V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V + to V -  
Output Current (Continuous) . . . . . . . . . . . . . . . . . . . . . . . . ±200mA  
Thermal Resistance (Typical, Note 2)  
θ
(°C/W)  
θ
(°C/W)  
JC  
JA  
1
1
PDIP Package*. . . . . . . . . . . . . . . . . . .  
Metal Can Package . . . . . . . . . . . . . . .  
PLCC Package. . . . . . . . . . . . . . . . . . .  
SOIC Package . . . . . . . . . . . . . . . . . . .  
92  
155  
74  
N/A  
67  
N/A  
N/A  
Output Current (50ms On, 1s Off) . . . . . . . . . . . . . . . . . . . . ±400mA  
157  
Max Junction Temperature (Hermetic Packages, Note 1) . . . . . . 175°C  
Max Junction Temperature (Plastic Packages, Note 1) . . . . . . . . 150°C  
Max Storage Temperature Range . . . . . . . . . . . . . . -65°C to 150°C  
Max Lead Temperature (Soldering 10s) . . . . . . . . . . . . . . . . 300°C  
(PLCC and SOIC - Lead Tips Only)  
*Pb-free PDIPs can be used for through hole wave solder processing  
only. They are not intended for use in Reflow solder processing  
applications.  
Operating Conditions  
Temperature Range  
HA-5002-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55°C to 125°C  
HA-5002-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 75°C  
HA-5002-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to 85°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Maximum power dissipation, including load conditions, must be designed to maintain the maximum junction temperature below 175°C for the  
can packages, and below 150°C for the plastic packages.  
2. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications  
V
= ±12V to ±15V, R = 50, R = 1kΩ, C = 10pF, Unless Otherwise Specified  
SUPPLY  
S
L
L
HA-5002-2  
TYP  
HA-5002-5, -9  
TYP  
TEST  
CONDITIONS  
TEMP  
(°C)  
PARAMETER  
INPUT CHARACTERISTICS  
Offset Voltage  
MIN  
MAX  
MIN  
MAX  
UNITS  
25  
Full  
Full  
25  
-
5
10  
30  
2
20  
30  
-
-
5
10  
30  
2
20  
30  
-
mV  
mV  
-
-
Average Offset Voltage Drift  
Bias Current  
-
-
µV/°C  
µA  
-
-
7
-
-
7
Full  
Full  
25  
3.4  
3
10  
-
2.4  
3
10  
-
µA  
Input Resistance  
1.5  
-
1.5  
-
MΩ  
Input Noise Voltage  
TRANSFER CHARACTERISTICS  
Voltage Gain  
10Hz-1MHz  
18  
-
18  
-
µV  
P-P  
R
= 50Ω  
25  
25  
-
0.900  
0.971  
0.995  
-
-
-
-
-
-
-
-
0.900  
0.971  
0.995  
-
-
-
-
-
-
-
V/V  
L
(V  
= ±10V)  
OUT  
R
R
R
= 100Ω  
= 1kΩ  
= 1kΩ  
-
-
V/V  
V/V  
L
25  
-
-
L
Full  
25  
0.980  
0.980  
V/V  
L
-3dB Bandwidth  
V
= 1V  
-
-
110  
40  
-
-
110  
40  
MHz  
A/mA  
IN  
P-P  
AC Current Gain  
25  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
R
R
R
= 100Ω  
25  
Full  
Full  
25  
±10  
±10.7  
±13.5  
±10.5  
220  
-
-
±10  
±11.2  
±13.9  
±10.5  
220  
-
-
V
V
L
= 1k, V = ±15V  
±10  
±10  
L
S
= 1k, V = ±12V  
±10  
-
±10  
-
V
L
S
Output Current  
V
= ±10V, R = 40Ω  
-
-
-
-
-
-
-
-
mA  
IN  
L
Output Resistance  
Harmonic Distortion  
TRANSIENT RESPONSE  
Full Power Bandwidth (Note 3)  
Rise Time  
Full  
25  
3
10  
-
3
10  
-
V
= 1V  
, f = 10kHz  
RMS  
<0.005  
<0.005  
%
IN  
25  
25  
25  
25  
25  
25  
-
20.7  
3.6  
2
-
-
-
-
-
-
-
20.7  
3.6  
2
-
-
-
-
-
-
MHz  
ns  
-
-
Propagation Delay  
Overshoot  
-
-
-
-
ns  
30  
30  
%
Slew Rate  
1.0  
-
1.3  
50  
1.0  
-
1.3  
50  
V/ns  
ns  
Settling Time  
To 0.1%  
FN2921.11  
3
March 8, 2006  
HA-5002  
Electrical Specifications  
V
= ±12V to ±15V, R = 50, R = 1kΩ, C = 10pF, Unless Otherwise Specified (Continued)  
SUPPLY  
S
L
L
HA-5002-2  
TYP  
HA-5002-5, -9  
TYP  
TEST  
CONDITIONS  
TEMP  
(°C)  
PARAMETER  
Differential Gain  
MIN  
MAX  
MIN  
MAX  
UNITS  
%
R
= 500Ω  
25  
25  
-
-
0.06  
-
-
-
-
0.06  
-
-
L
Differential Phase  
R
= 500Ω  
0.22  
0.22  
Degrees  
L
POWER REQUIREMENTS  
Supply Current  
25  
-
-
8.3  
-
-
10  
-
-
-
8.3  
-
-
10  
-
mA  
mA  
dB  
Full  
Full  
Power Supply Rejection Ratio  
NOTE:  
A
= 10V  
54  
64  
54  
64  
V
Slew Rate  
3.  
.
--------------------------  
FPBW =  
; V = 10V  
P
2πV  
PEAK  
Test Circuit and Waveforms  
+15V  
V +  
V +  
2
1
R
S
IN  
OUT  
V -  
V -  
2
1
R
L
-15V  
FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE  
V
V
IN  
IN  
V
OUT  
V
OUT  
R
= 50, R = 100Ω  
R = 50, R = 1kΩ  
S L  
S
L
SMALL SIGNAL WAVEFORMS  
SMALL SIGNAL WAVEFORMS  
FN2921.11  
4
March 8, 2006  
HA-5002  
Test Circuit and Waveforms (Continued)  
V
IN  
V
IN  
V
V
OUT  
OUT  
R
= 50, R = 1kΩ  
L
R
= 50, R = 100Ω  
L
S
S
LARGE SIGNAL WAVEFORMS  
LARGE SIGNAL WAVEFORMS  
Schematic Diagram  
V +  
1
R
8
R
R
9
N1  
Q
19  
V +  
2
R
R
6
4
1
Q
20  
Q
18  
Q
Q
Q
25  
26  
Q
12  
R
10  
Q
3
Q
1
Q
9
27  
Q
Q
10  
R
11  
Q
Q
4
7
R
IN  
OUT  
5
R
N2  
Q
21  
Q
5
Q
11  
Q
2
Q
22  
Q
8
Q
15  
Q
23  
Q
24  
V -  
2
R
6
Q
17  
Q
13  
Q
Q
16  
14  
R
7
R
R
N3  
2
R
R
3
12  
V -  
1
Other considerations are proper power supply bypassing  
and keeping the input and output connections as short as  
possible which minimizes distributed capacitance and  
reduces board space.  
Application Information  
Layout Considerations  
The wide bandwidth of the HA-5002 necessitates that high  
frequency circuit layout procedures be followed. Failure to  
follow these guidelines can result in marginal performance.  
Power Supply Decoupling  
For optimal device performance, it is recommended that the  
positive and negative power supplies be bypassed with  
capacitors to ground. Ceramic capacitors ranging in value  
from 0.01 to 0.1µF will minimize high frequency variations in  
supply voltage, while low frequency bypassing requires  
Probably the most crucial of the RF/video layout rules is the  
use of a ground plane. A ground plane provides isolation and  
minimizes distributed circuit capacitance and inductance  
which will degrade high frequency performance.  
FN2921.11  
5
March 8, 2006  
HA-5002  
larger valued capacitors since the impedance of the  
capacitor is dependent on frequency.  
Capacitive Loading  
The HA-5002 will drive large capacitive loads without oscillation  
but peak current limits should not be exceeded. Following the  
formula I = Cdv/dt implies that the slew rate or the capacitive  
load must be controlled to keep peak current below the  
maximum or use the current limiting approach as shown. The  
HA-5002 can become unstable with small capacitive loads  
(50pF) if certain precautions are not taken. Stability is  
It is also recommended that the bypass capacitors be  
connected close to the HA-5002 (preferably directly to the  
supply pins).  
Operation at Reduced Supply Levels  
The HA-5002 can operate at supply voltage levels as low as  
±5V and lower. Output swing is directly affected as well as  
slight reductions in slew rate and bandwidth.  
enhanced by any one of the following: a source resistance in  
series with the input of 50to 1k; increasing capacitive load  
Short Circuit Protection  
to 150pF or greater; decreasing C  
to 20pF or less; adding  
LOAD  
The output current can be limited by using the following circuit:  
an output resistor of 10to 50; or adding feedback  
capacitance of 50pF or greater. Adding source resistance  
generally yields the best results.  
I
= 200mA  
V+  
V-  
V+  
OUTMAX  
R
= ------------------------- = -------------------------  
LIM  
(CONTINUOUS)  
I
I
OUTMAX  
OUTMAX  
R
V +  
LIM  
1
V +  
2
OUT  
IN  
V -  
2
V -  
1
R
LIM  
V-  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
T
T  
A
+ θ  
CS SA  
JMAX  
+ θ  
PLCC  
P
= --------------------------------------------  
θ
DMAX  
PDIP  
JC  
Where: T  
Device  
= Maximum Junction Temperature of the  
JMAX  
CAN  
T = Ambient  
A
θ
θ
θ
= Junction to Case Thermal Resistance  
= Case to Heat Sink Thermal Resistance  
= Heat Sink to Ambient Thermal Resistance  
JC  
CS  
SA  
SOIC  
T
T  
A
QUIESCENT POWER DISSIPATION  
AT ±15V SUPPLIES  
JMAX  
θ
Graph is based on:  
P
= -------------------------------  
DMAX  
JA  
25  
65  
85  
45  
125  
105  
TEMPERATURE (°C)  
FIGURE 2. MAXIMUM POWER DISSIPATION vs TEMPERATURE  
FN2921.11  
6
March 8, 2006  
HA-5002  
Typical Application  
+12V  
V +  
V +  
2
1
V
IN  
R
S
R
RG -58  
M
V
OUT  
50Ω  
50Ω  
V
R
L
50Ω  
IN  
V -  
V -  
2
1
-12V  
V
OUT  
FIGURE 3. COAXIAL CABLE DRIVER - 50SYSTEM  
Typical Performance Curves  
9
9
V
= ±15V, R = 50Ω  
V
= ±15V, R = 50Ω  
S
S
S
S
6
3
6
3
GAIN  
GAIN  
0
0
-3  
-3  
PHASE  
PHASE  
-6  
0°  
-6  
0°  
-9  
-9  
45°  
90°  
45°  
90°  
-12  
-15  
-18  
-12  
-15  
-18  
135°  
180°  
135°  
180°  
1
10  
100  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
FIGURE 4. GAIN/PHASE vs FREQUENCY (R = 1k)  
FIGURE 5. GAIN/PHASE vs FREQUENCY (R = 50)  
L
L
0.998  
0.994  
V
= ±15V  
V
= ±15V  
S
S
0.992  
0.990  
0.988  
0.986  
0.984  
0.982  
0.980  
0.978  
0.976  
0.974  
0.997  
0.996  
0.995  
0.994  
0.993  
0.992  
0.991  
V
= 0 TO +10V  
OUT  
V
= -10V TO +10V  
OUT  
V
= 0 TO -10V  
OUT  
-60 -40  
-20  
0
20  
40  
60  
80 100 120  
-60 -40 -20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 6. VOLTAGE GAIN vs TEMPERATURE (R = 100)  
FIGURE 7. VOLTAGE GAIN vs TEMPERATURE (R = 1k)  
L
L
FN2921.11  
March 8, 2006  
7
HA-5002  
Typical Performance Curves (Continued)  
7
6
5
4
3
2
1
0
3
V
= ±15V  
V
= ±15V  
2
1
S
S
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
-11  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 9. BIAS CURRENT vs TEMPERATURE  
FIGURE 8. OFFSET VOLTAGE vs TEMPERATURE  
15  
14  
13  
12  
11  
10  
9
V
= ±15V, R  
= 100Ω  
LOAD  
S
V
= ±15V, I  
= 0mA  
OUT  
S
+V  
8
OUT  
7
-V  
OUT  
6
5
4
3
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 10. MAXIMUM OUTPUT VOLTAGE vs TEMPERATURE  
FIGURE 11. SUPPLY CURRENT vs TEMPERATURE  
10  
V
= ±15V  
S
I
= 0mA  
OUT  
125°C, 25°C  
-55°C  
100K  
10K  
1000  
100  
10  
8
6
4
2
0
Z
IN  
Z
OUT  
1
0
2
4
6
8
10  
12  
14  
16  
18  
100K  
1M  
10M  
100M  
SUPPLY VOLTAGE (±V)  
FREQUENCY (Hz)  
FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 13. INPUT/OUTPUT IMPEDANCE vs FREQUENCY  
FN2921.11  
March 8, 2006  
8
HA-5002  
Typical Performance Curves (Continued)  
80  
70  
60  
50  
23  
R
= 100Ω  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
LOAD  
T
= 25°C  
A
40  
30  
T
= 125°C,  
A
T
= -55°C  
A
20  
10  
8
0
10K  
7
100K  
1M  
10M  
100M  
15  
12  
8
5
SUPPLY VOLTAGE (±V)  
FREQUENCY (Hz)  
FIGURE 15. PSRR vs FREQUENCY  
FIGURE 14. V  
OUT  
MAXIMUM vs V  
SUPPLY  
1500  
1400  
1300  
1200  
1100  
1000  
900  
150  
V
= ±15V  
S
T
= 25°C  
A
100  
50  
R
= 100  
L
R
= 1K  
L
0
-50  
-100  
-150  
R
= 600  
L
6
8
10  
12  
14  
16  
18  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
SUPPLY VOLTAGE (±V)  
INPUT VOLTAGE (VOLTS)  
FIGURE 16. SLEW RATE vs SUPPLY VOLTAGE  
FIGURE 17. GAIN ERROR vs INPUT VOLTAGE  
Die Characteristics  
SUBSTRATE POTENTIAL (POWERED UP):  
V -  
1
TRANSISTOR COUNT:  
27  
PROCESS:  
Bipolar Dielectric Isolation  
FN2921.11  
9
March 8, 2006  
HA-5002  
Metallization Mask Layout  
HA-5002  
IN  
V -  
1
V - (ALT)  
1
V + (ALT)  
1
V +  
2
V -  
2
V +  
1
OUT  
FN2921.11  
10  
March 8, 2006  
HA-5002  
Dual-In-Line Plastic Packages (PDIP)  
E8.3 (JEDEC MS-001-BA ISSUE D)  
N
8 LEAD DUAL-IN-LINE PLASTIC PACKAGE  
E1  
INDEX  
AREA  
INCHES  
MILLIMETERS  
1
2
3
N/2  
SYMBOL  
MIN  
MAX  
0.210  
-
MIN  
-
MAX  
5.33  
-
NOTES  
-B-  
-C-  
A
A1  
A2  
B
-
4
-A-  
D
E
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.005  
0.300  
0.240  
0.39  
2.93  
0.356  
1.15  
0.204  
9.01  
0.13  
7.62  
6.10  
4
BASE  
PLANE  
0.195  
0.022  
0.070  
0.014  
0.400  
-
4.95  
0.558  
1.77  
0.355  
10.16  
-
-
A2  
A
-
SEATING  
PLANE  
L
C
L
B1  
C
8, 10  
D1  
B1  
eA  
-
A
A
1
D1  
e
D
5
eC  
C
B
eB  
D1  
E
5
0.010 (0.25) M  
C
B S  
0.325  
0.280  
8.25  
7.11  
6
NOTES:  
E1  
e
5
1. Controlling Dimensions: INCH. In case of conflict between  
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
-
English and Metric dimensions, the inch dimensions control.  
e
e
6
A
B
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
-
0.430  
0.150  
-
10.92  
3.81  
7
3. Symbols are defined in the “MO Series Symbol List” in Section  
2.2 of Publication No. 95.  
L
0.115  
2.93  
4
9
4. Dimensions A, A1 and L are measured with the package seated  
N
8
8
in JEDEC seating plane gauge GS-3.  
Rev. 0 12/93  
5. D, D1, and E1 dimensions do not include mold flash or protru-  
sions. Mold flash or protrusions shall not exceed 0.010 inch  
(0.25mm).  
e
6. E and  
pendicular to datum  
7. e and e are measured at the lead tips with the leads uncon-  
are measured with the leads constrained to be per-  
A
-C-  
.
B
C
strained. e must be zero or greater.  
C
8. B1 maximum dimensions do not include dambar protrusions.  
Dambar protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3,  
E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch  
(0.76 - 1.14mm).  
FN2921.11  
11  
March 8, 2006  
HA-5002  
Metal Can Packages (Can)  
REFERENCE PLANE  
T8.C MIL-STD-1835 MACY1-X8 (A1)  
8 LEAD METAL CAN PACKAGE  
A
e1  
L
INCHES  
MILLIMETERS  
L2  
L1  
SYMBOL  
MIN  
MAX  
0.185  
0.019  
0.021  
0.024  
0.375  
0.335  
0.160  
MIN  
4.19  
0.41  
0.41  
0.41  
8.51  
7.75  
2.79  
MAX  
4.70  
0.48  
0.53  
0.61  
9.40  
8.51  
4.06  
NOTES  
ØD2  
A
Øb  
Øb1  
Øb2  
ØD  
ØD1  
ØD2  
e
0.165  
0.016  
0.016  
0.016  
0.335  
0.305  
0.110  
-
A
A
1
k1  
1
Øe  
ØD ØD1  
2
-
N
1
-
-
Øb1  
β
α
C
L
-
Øb  
k
F
0.200 BSC  
0.100 BSC  
5.08 BSC  
2.54 BSC  
-
BASE AND  
Q
e1  
F
-
SEATING PLANE  
-
0.040  
0.034  
0.045  
0.750  
0.050  
-
-
1.02  
0.86  
1.14  
19.05  
1.27  
-
-
BASE METAL  
LEAD FINISH  
Øb2  
k
0.027  
0.027  
0.500  
-
0.69  
0.69  
12.70  
-
-
k1  
L
2
Øb1  
1
L1  
L2  
Q
1
SECTION A-A  
0.250  
0.010  
6.35  
0.25  
1
0.045  
1.14  
-
NOTES:  
o
o
45 BSC  
45 BSC  
3
α
1. (All leads) Øb applies between L1 and L2. Øb1 applies between  
L2 and 0.500 from the reference plane. Diameter is uncontrolled  
in L1 and beyond 0.500 from the reference plane.  
o
o
β
45 BSC  
45 BSC  
3
4
N
8
8
2. Measured from maximum diameter of the product.  
Rev. 0 5/18/94  
3. α is the basic spacing from the centerline of the tab to terminal 1  
and β is the basic spacing of each lead or lead position (N -1  
places) from α, looking at the bottom of the package.  
4. N is the maximum number of terminal positions.  
5. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
6. Controlling dimension: INCH.  
FN2921.11  
12  
March 8, 2006  
HA-5002  
Plastic Leaded Chip Carrier Packages (PLCC)  
0.042 (1.07)  
0.048 (1.22)  
N20.35 (JEDEC MS-018AA ISSUE A)  
0.042 (1.07)  
0.056 (1.42)  
0.004 (0.10)  
C
20 LEAD PLASTIC LEADED CHIP CARRIER PACKAGE  
PIN (1) IDENTIFIER  
0.025 (0.64)  
0.045 (1.14)  
0.050 (1.27) TP  
INCHES  
MILLIMETERS  
R
C
L
SYMBOL  
MIN  
MAX  
MIN  
4.20  
2.29  
9.78  
8.89  
3.59  
9.78  
8.89  
3.59  
MAX  
4.57  
NOTES  
A
A1  
D
0.165  
0.090  
0.385  
0.350  
0.141  
0.385  
0.350  
0.141  
0.180  
0.120  
0.395  
0.356  
0.169  
0.395  
0.356  
0.169  
-
3.04  
-
-
D2/E2  
D2/E2  
10.03  
9.04  
C
L
D1  
D2  
E
3
E1 E  
4.29  
4, 5  
-
10.03  
9.04  
VIEW “A”  
E1  
E2  
N
3
4.29  
4, 5  
6
0.020 (0.51)  
MIN  
20  
20  
A1  
D1  
D
Rev. 2 11/97  
A
SEATING  
PLANE  
0.020 (0.51) MAX  
3 PLCS  
-C-  
0.026 (0.66)  
0.032 (0.81)  
0.013 (0.33)  
0.021 (0.53)  
0.025 (0.64)  
MIN  
0.045 (1.14)  
MIN  
VIEW “A” TYP.  
NOTES:  
1. Controllingdimension:INCH. Convertedmillimeterdimensionsare  
not necessarily exact.  
2. Dimensions and tolerancing per ANSI Y14.5M-1982.  
3. Dimensions D1 and E1 do not include mold protrusions. Allowable  
mold protrusion is 0.010 inch (0.25mm) per side. Dimensions D1  
and E1 include mold mismatch and are measured at the extreme  
material condition at the body parting line.  
4. To be measured at seating plane -C- contact point.  
5. Centerline to be determined where center leads exit plastic body.  
6. “N” is the number of terminal positions.  
FN2921.11  
13  
March 8, 2006  
HA-5002  
Small Outline Plastic Packages (SOIC)  
M8.15 (JEDEC MS-012-AA ISSUE C)  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
N
INDEX  
0.25(0.010)  
M
B M  
H
AREA  
INCHES MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0532  
0.0040  
0.013  
0.0688  
0.0098  
0.020  
-
-
1
2
3
L
9
SEATING PLANE  
A
0.0075  
0.1890  
0.1497  
0.0098  
0.1968  
0.1574  
-
-A-  
3
h x 45°  
D
4
-C-  
0.050 BSC  
1.27 BSC  
-
α
H
h
0.2284  
0.0099  
0.016  
0.2440  
0.0196  
0.050  
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
α
8
8
7
NOTES:  
0°  
8°  
0°  
8°  
-
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Rev. 1 6/05  
Publication Number 95.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN2921.11  
14  
March 8, 2006  

相关型号:

HA2-5002-5

110MHz, High Slew Rate, High Output Current Buffer
INTERSIL

HA2-5002/883

Monolithic, Wideband, High Slew Rate, High Output Current Buffer
INTERSIL

HA2-5033-2

250MHz Video Buffer
INTERSIL

HA2-5033-5

250MHz Video Buffer
INTERSIL

HA2-5062-2

IC,OP-AMP,DUAL,BIPOLAR/JFET,CAN,8PIN,METAL
RENESAS

HA2-5101-2

Analog IC
ETC

HA2-5101-5

Analog IC
ETC

HA2-5101-7

IC,OP-AMP,SINGLE,BIPOLAR,CAN,8PIN,METAL
RENESAS

HA2-5102-2

Operational Amplifier
ETC

HA2-5102-5

Analog IC
ETC

HA2-5102-7

IC,OP-AMP,DUAL,BIPOLAR,CAN,8PIN,METAL
RENESAS

HA2-5102/883

Dual, Low Noise, High Performance Operational Amplifier
INTERSIL