CD4047BHMSR [RENESAS]

4000/14000/40000 SERIES, MONOSTABLE MULTIVIBRATOR, UUC14, DIE-14;
CD4047BHMSR
型号: CD4047BHMSR
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

4000/14000/40000 SERIES, MONOSTABLE MULTIVIBRATOR, UUC14, DIE-14

时钟 逻辑集成电路
文件: 总15页 (文件大小:129K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CD4047BMS  
CMOS Low-Power  
Monostable/Astable Multivibrator  
December 1992  
Features  
Description  
CD4047BMS consists of a gatable astable multivibrator with logic tech-  
niques incorporated to permit positive or negative edge triggered  
monostable multivibrator action with retriggering and external counting  
options.  
• High Voltage Type (20V Rating)  
• Low Power Consumption: Special CMOS Oscillator  
Configuration  
• Monostable (One-Shot) or Astable (Free-Running)  
Operation  
Inputs include +TRIGGER, -TRIGGER, ASTABLE, ASTABLE,  
RETRIGGER, and EXTERNAL RESET. Buffered outputs are Q, Q, and  
OSCILLATOR. In all modes of operation, an external capacitor must be  
connected between C-Timing and RC-Common terminals, and an  
external resistor must be connected between the R-Timing and RC-  
Common terminals.  
• True and Complemented Buffered Outputs  
• Only One External R and C Required  
• Buffered Inputs  
• 100% Tested for Quiescent Current at 20V  
• Standardized, Symmetrical Output Characteristics  
• 5V, 10V and 15V Parametric Ratings  
Astable operation is enabled by a high level on the ASTABLE input or a  
low level on the ASTABLE input, or both. The period of the square wave  
at the Q and Q Outputs in this mode of operation is a function of the  
external components employed. “True” input pulses on the ASTABLE  
input or “Complement” pulses on the ASTABLE input allow the circuit to  
be used as a gatable multivibrator. The OSCILLATOR output period will  
be half of the Q terminal output in the astable mode. However, a 50%  
duty cycle is not guaranteed at this output.  
• Meets All Requirements of JEDEC Tentative Standard  
No. 13B, “Standard Specifications for Description of  
‘B’ Series CMOS Devices”  
Monostable Multivibrator Features  
• Positive or Negative Edge Trigger  
The CD4047BMS triggers in the monostable mode when a positive  
going edge occurs on the +TRIGGER input while the -TRIGGER is held  
low. Input pulses may be of any duration relative to the output pulse.  
• Output Pulse Width Independent of Trigger Pulse  
Duration  
If retrigger capability is desired, the RETRIGGER input is pulsed. The  
retriggerable mode of operation is limited to positive going edge. The  
CD4047BMS will retrigger as long as the RETRIGGER input is high,  
with or without transitions (See Figure 31)  
• Retriggerable Option for Pulse Width Expansion  
• Internal Power-On Reset Circuit  
• Long Pulse Widths Possible Using Small RC Compo-  
nents by Means of External Counter Provision  
An external countdown option can be implemented by coupling “Q” to  
an external “N” counter and resetting the counter with trigger pulse. The  
counter output pulse is fed back to the ASTABLE input and has a dura-  
tion equal to N times the period of the multivibrator.  
• Fast Recovery Time Essentially Independent of Pulse  
Width  
A high level on the EXTERNAL RESET input assures no output pulse  
during an “ON” power condition. This input can also be activated to ter-  
minate the output pulse at any time. For monostable operation, when-  
ever VDD is applied, an internal power on reset circuit will clock the Q  
output low within one output period (tM).  
• Pulse-Width Accuracy Maintained at Duty Cycles  
Approaching 100%  
Astable Multivibrator Features  
• Free-Running or Gatable Operating Modes  
• 50% Duty Cycle  
The CD4047BMS is supplied in these 14-lead outline packages:  
Braze Seal DIP  
Frit Seal DIP  
H4Q  
H1B  
• Oscillator Output Available  
• Good Astable Frequency Stability: Frequency Deviation:  
Ceramic Flatpack H3W  
- = ±2% + 0.03%/oC at 100kHz  
- = ±0.5% + 0.015%/oC at 10kHz (Circuits “Trimmed”  
to Frequency VDD = 10V ± 10%  
Pinout  
CD4047BMS  
TOP VIEW  
Applications  
Digital equipment where low power dissipation and/or high noise  
immunity are primary design requirements  
C
R
1
14 VDD  
2
3
4
5
6
7
13 OSC OUT  
12 RETRIGGER  
11 Q  
R-C COMMON  
ASTABLE  
ASTABLE  
-TRIGGER  
VSS  
• Envelope Detection  
• Frequency Multiplication • Timing Circuits  
• Frequency Division • Time Delay Applications  
• Frequency Discriminators  
10 Q  
9
8
EXT. RESET  
+TRIGGER  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
File Number 3313  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
7-897  
Specifications CD4047BMS  
Absolute Maximum Ratings  
Reliability Information  
DC Supply Voltage Range, (VDD) . . . . . . . . . . . . . . . -0.5V to +20V  
(Voltage Referenced to VSS Terminals)  
Thermal Resistance . . . . . . . . . . . . . . . .  
Ceramic DIP and FRIT Package . . . . . 80 C/W  
Flatpack Package . . . . . . . . . . . . . . . . 70 C/W  
θ
θ
jc  
ja  
o
o
20 C/W  
o
o
Input Voltage Range, All Inputs . . . . . . . . . . . . .-0.5V to VDD +0.5V  
DC Input Current, Any One Input . . . . . . . . . . . . . . . . . . . . . . . .±10mA  
20 C/W  
o
Maximum Package Power Dissipation (PD) at +125 C  
o
o
o
o
Operating Temperature Range. . . . . . . . . . . . . . . . -55 C to +125 C  
Package Types D, F, K, H  
For TA = -55 C to +100 C (Package Type D, F, K) . . . . . . 500mW  
o
o
For TA = +100 C to +125 C (Package Type D, F, K) . . . . .Derate  
o
o
o
Storage Temperature Range (TSTG) . . . . . . . . . . . -65 C to +150 C  
Linearity at 12mW/ C to 200mW  
Device Dissipation per Output Transistor . . . . . . . . . . . . . . . 100mW  
For TA = Full Package Temperature Range (All Package Types)  
o
Lead Temperature (During Soldering) . . . . . . . . . . . . . . . . . +265 C  
At Distance 1/16 ± 1/32 Inch (1.59mm ± 0.79mm) from case for  
10s Maximum  
o
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175 C  
TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS  
LIMITS  
MIN MAX UNITS  
GROUP A  
SUBGROUPS  
PARAMETER  
Supply Current  
SYMBOL  
CONDITIONS (NOTE 1)  
TEMPERATURE  
o
IDD  
VDD = 20V, VIN = VDD or GND  
1
+25 C  
-
2
µA  
µA  
µA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
µA  
nA  
µA  
mV  
V
o
2
+125 C  
-
200  
o
VDD = 18V, VIN = VDD or GND  
3
-55 C  
-
2
o
Input Leakage Current  
Input Leakage Current  
IIL  
VIN = VDD or GND  
VIN = VDD or GND  
VDD = 20  
1
+25 C  
-100  
-
o
2
+125 C  
-1000  
-
-
o
VDD = 18V  
VDD = 20  
3
-55 C  
-100  
o
IIH  
1
+25 C  
-
100  
1000  
100  
-
o
2
+125 C  
-
o
VDD = 18V  
3
-55 C  
-
o
Input Leakage Curent  
(Pin 3)  
IIL  
VDD = 24V, VIN = 11V or GND  
1
+25 C  
-300  
o
2
+125 C  
-10  
-
o
Input Leakage Current  
(Pin 3)  
IIH  
VDD = 26V, VIN = 13V or GND  
1
2
+25 C  
-
-
-
300  
10  
50  
-
o
+125 C  
o
o
o
Output Voltage  
Output Voltage  
VOL15 VDD = 15V, No Load  
1, 2, 3  
1, 2, 3  
1
+25 C, +125 C, -55 C  
o
o
o
VOH15 VDD = 15V, No Load (Note 3)  
+25 C, +125 C, -55 C 14.95  
o
Output Current (Sink)  
Q, Q, OSC Out  
IOL5  
IOL10  
IOL15  
VDD = 5V, VOUT = 0.4V  
VDD = 10V, VOUT = 0.5V  
VDD = 15V, VOUT = 1.5V  
+25 C  
0.53  
-
mA  
o
Output Current (Sink)  
Q, Q, OSC Out  
1
1
1
1
1
1
+25 C  
1.4  
-
mA  
mA  
mA  
mA  
mA  
mA  
o
Output Current (Sink)  
Q, Q, OSC Out  
+25 C  
3.5  
-
o
OutputCurrent(Source)  
Q, Q, OSC Out  
IOH5A VDD = 5V, VOUT = 4.6V  
IOH5B VDD = 5V, VOUT = 2.5V  
IOH10 VDD = 10V, VOUT = 9.5V  
IOH15 VDD = 15V, VOUT = 13.5V  
+25 C  
-
-
-
-
-0.53  
-1.8  
-1.4  
-3.5  
o
OutputCurrent(Source)  
Q, Q, OSC Out  
+25 C  
o
OutputCurrent(Source)  
Q, Q, OSC Out  
+25 C  
o
OutputCurrent(Source)  
Q, Q, OSC Out  
+25 C  
o
Output Current (Sink)  
Output Current (Sink)  
Output Current (Sink)  
IOL5RC VDD = 5V, VOUT = 0.4V  
IOL10RC VDD = 10V, VOUT = 0.5V  
IOL15RC VDD = 15V, VOUT = 1.5V  
1
1
1
1
1
1
1
+25 C  
0.78  
2.0  
5.2  
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
V
o
+25 C  
o
+25 C  
-
o
Output Current (Source) IOH5RC VDD = 5V, VOUT = 4.6V  
Output Current (Source) IOH10RC VDD = 10V, VOUT = 9.5V  
Output Current (Source) IOH15RC VDD = 15V, VOUT = 13.5V  
+25 C  
-0.78  
-2  
o
+25 C  
-
o
+25 C  
-
-5.2  
-0.7  
o
N Threshold Voltage  
VNTH  
VDD = 10V, ISS = -10µA  
+25 C  
-2.8  
7-898  
Specifications CD4047BMS  
TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)  
LIMITS  
MIN MAX UNITS  
0.7  
GROUP A  
SUBGROUPS  
PARAMETER  
P Threshold Voltage  
Functional  
SYMBOL  
VPTH  
F
CONDITIONS (NOTE 1)  
VSS = 0V, IDD = 10µA  
TEMPERATURE  
o
1
7
+25 C  
2.8  
V
V
o
VDD = 2.8V, VIN = VDD or GND  
VDD = 20V, VIN = VDD or GND  
VDD = 18V, VIN = VDD or GND  
VDD = 3V, VIN = VDD or GND  
VDD = 5V, VOH > 4.5V, VOL < 0.5V  
+25 C  
VOH > VOL <  
VDD/2 VDD/2  
o
7
+25 C  
o
8A  
8B  
1, 2, 3  
+125 C  
o
-55 C  
o
o
o
Input Voltage Low  
(Note 2)  
VIL  
VIH  
VIL  
VIH  
+25 C, +125 C, -55 C  
-
1.5  
V
V
V
V
o
o
o
Input Voltage High  
(Note 2)  
VDD = 5V, VOH > 4.5V, VOL < 0.5V  
1, 2, 3  
1, 2, 3  
1, 2, 3  
+25 C, +125 C, -55 C 3.5  
-
4
-
o
o
o
Input Voltage Low  
(Note 2)  
VDD = 15V, VOH > 13.5V,  
VOL < 1.5V  
+25 C, +125 C, -55 C  
-
o
o
o
Input Voltage High  
(Note 2)  
VDD = 15V, VOH > 13.5V,  
VOL < 1.5V  
+25 C, +125 C, -55 C  
11  
NOTES:  
1. All voltages referenced to device GND, 100% testing being implemented  
2. Go/No Go test with limits applied to inputs.  
3. For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max..  
TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS  
LIMITS  
(NOTES 1, 2)  
GROUP A  
PARAMETER  
SYMBOL  
CONDITIONS  
SUBGROUPS TEMPERATURE  
MIN  
MAX  
UNITS  
ns  
o
Propagation Delay  
Astable, Astable to OSC  
TPLH1 VDD = 5V, VIN = VDD or GND  
9
+25 C  
-
-
-
-
-
-
400  
540  
o
o
10, 11  
9
+125 C, -55 C  
ns  
o
Propagation Delay  
Trigger to Q, Q  
TPHL3 VDD = 5V, VIN = VDD or GND  
TPLH3  
+25 C  
1000  
1350  
700  
ns  
o
o
10, 11  
9
+125 C, -55 C  
ns  
o
Propagation Delay  
(Note 2)  
Astable or Astable to Q, Q  
TPLH2 VDD = 5V, VIN = VDD or GND  
TPLH2  
+25 C  
ns  
o
o
10, 11  
+125 C, -55 C  
945  
ns  
o
Propagation Delay  
(Note 2)  
Retrigger to Q, Q  
TPHL4 VDD = 5V, VIN = VDD or GND  
TPLH4  
9
+25 C  
-
-
600  
810  
ns  
ns  
o
o
10, 11  
+125 C, -55 C  
o
Propagation Delay  
(Note 2)  
Reset to Q, Q  
TPLH5 VDD = 5V, VIN = VDD or GND  
TPLH5  
9
+25 C  
-
-
500  
675  
ns  
ns  
o
o
10, 11  
+125 C, -55 C  
o
Transition Time  
NOTES:  
TTHL  
TTLH  
VDD = 5V, VIN = VDD or GND  
9
+25 C  
-
-
200  
270  
ns  
ns  
o
o
10, 11  
+125 C, -55 C  
1. VDD = 5V, CL = 50pF, RL = 200K; input TR, TF < 20ns.  
o
o
2. -55 C and +125 C limits guaranteed, 100% testing being implemented.  
7-899  
Specifications CD4047BMS  
TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS  
LIMITS  
PARAMETER  
Supply Current  
SYMBOL  
CONDITIONS  
NOTES  
TEMPERATURE  
MIN  
MAX  
1
UNITS  
µA  
o
o
IDD  
VDD = 5V, VIN = VDD or GND  
1, 2  
-55 C, +25 C  
-
-
-
-
-
-
-
o
+125 C  
30  
2
µA  
o
o
VDD = 10V, VIN = VDD or GND  
VDD = 15V, VIN = VDD or GND  
1, 2  
1, 2  
-55 C, +25 C  
µA  
o
+125 C  
60  
2
µA  
o
o
-55 C, +25 C  
µA  
o
+125 C  
120  
50  
µA  
o
o
Output Voltage  
Output Voltage  
Output Voltage  
Output Voltage  
Output Current (Sink)  
VOL  
VOL  
VOH  
VOH  
IOL5  
VDD = 5V, No Load  
VDD = 10V, No Load  
VDD = 5V, No Load  
VDD = 10V, No Load  
VDD = 5V, VOUT = 0.4V  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
+25 C, +125 C,  
mV  
o
-55 C  
o
o
+25 C, +125 C,  
-
50  
-
mV  
V
o
-55 C  
o
o
+25 C, +125 C,  
4.95  
9.95  
o
-55 C  
o
o
+25 C, +125 C,  
-
V
o
-55 C  
o
+125 C  
0.36  
-
-
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
o
-55 C  
0.64  
o
Output Current (Sink)  
Output Current (Sink)  
Output Current (Source)  
Output Current (Source)  
Output Current (Source)  
Output Current (Source)  
IOL10  
IOL15  
VDD = 10V, VOUT = 0.5V  
VDD = 15V, VOUT = 1.5V  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
+125 C  
0.9  
-
o
-55 C  
1.6  
-
o
+125 C  
2.4  
-
o
-55 C  
4.2  
-
o
IOH5A VDD = 5V, VOUT = 4.6V  
IOH5B VDD = 5V, VOUT = 2.5V  
+125 C  
-
-
-
-
-
-
-
-
-
-0.36  
-0.64  
-1.15  
-2.0  
-0.9  
-1.6  
-2.4  
-4.2  
3
o
-55 C  
o
+125 C  
o
-55 C  
o
IOH10  
IOH15  
VDD = 10V, VOUT = 9.5V  
VDD =15V, VOUT = 13.5V  
+125 C  
o
-55 C  
o
+125 C  
o
-55 C  
o
o
Input Voltage Low  
Input Voltage High  
VIL  
VDD = 10V, VOH > 9V, VOL < 1V  
VDD = 10V, VOH > 9V, VOL < 1V  
1, 2  
1, 2  
+25 C, +125 C,  
o
-55 C  
o
o
VIH  
+25 C, +125 C,  
+7  
-
V
o
-55 C  
o
Propagation Delay  
Astable, Astable to OSC  
TPLH1 VDD = 10V  
VDD = 15V  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
+25 C  
-
-
-
-
-
-
-
-
-
-
-
-
200  
160  
350  
250  
450  
300  
300  
200  
200  
140  
100  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
o
+25 C  
o
Propagation Delay  
Astable or Astable to Q, Q TPHL2  
TPLH2 VDD = 10V  
+25 C  
o
VDD = 15V  
+25 C  
o
Propagation Delay  
Trigger to Q, Q  
TPHL3 VDD = 10V  
+25 C  
TPLH3  
o
VDD = 15V  
+25 C  
o
Propagation Delay  
Retrigger to Q, Q  
TPHL4 VDD = 10V  
+25 C  
TPLH4  
o
VDD = 15V  
+25 C  
o
Propagation Delay  
Reset to Q, Q  
TPLH5 VDD = 10V  
+25 C  
TPLH5  
o
VDD = 15V  
+25 C  
o
Transition Time  
TTHL  
TTLH  
VDD = 10V  
VDD = 15V  
+25 C  
o
+25 C  
7-900  
Specifications CD4047BMS  
TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)  
LIMITS  
PARAMETER  
SYMBOL  
CONDITIONS  
VDD = 5V  
NOTES  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2  
TEMPERATURE  
MIN  
MAX  
±1  
UNITS  
%
o
Q or Q Deviation from  
50% Duty Factor  
QD  
+25 C  
-
-
-
-
-
-
-
-
-
-
-
-
-
o
VDD = 10V  
VDD = 15V  
VDD = 5V  
VDD = 10V  
VDD = 15V  
VDD = 5V  
VDD = 10V  
VDD = 15V  
VDD = 5V  
VDD = 10V  
VDD = 15V  
Any Input  
+25 C  
±1  
%
o
+25 C  
±0.5  
400  
160  
100  
200  
100  
60  
%
o
Minimum Pulse Width  
+ Trigger  
- Trigger  
TW  
TW  
TW  
CIN  
+25 C  
ns  
o
+25 C  
ns  
o
+25 C  
ns  
o
Minimum Pulse Width  
Reset  
+25 C  
ns  
o
+25 C  
ns  
o
+25 C  
ns  
o
Minimum Retrigger Pulse  
Width  
+25 C  
600  
230  
150  
7.7  
ns  
o
+25 C  
ns  
o
+25 C  
ns  
o
Input Capacitance  
NOTES:  
+25 C  
pF  
1. All voltages referenced to device GND.  
2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized  
on initial design release and upon design changes which would affect these characteristics.  
3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.  
TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS  
LIMITS  
PARAMETER  
Supply Current  
SYMBOL  
IDD  
CONDITIONS  
NOTES  
1, 4  
TEMPERATURE  
MIN  
MAX  
7.5  
UNITS  
o
VDD = 20V, VIN = VDD or GND  
VDD = 10V, ISS = -10µA  
VDD = 10V, ISS = -10µA  
+25 C  
-
-2.8  
-
µA  
V
o
N Threshold Voltage  
VNTH  
VTN  
1, 4  
+25 C  
-0.2  
±1  
o
N Threshold Voltage  
Delta  
1, 4  
+25 C  
V
o
P Threshold Voltage  
VTP  
VSS = 0V, IDD = 10µA  
VSS = 0V, IDD = 10µA  
1, 4  
1, 4  
+25 C  
0.2  
-
2.8  
V
V
o
P Threshold Voltage  
Delta  
VTP  
+25 C  
±1  
o
Functional  
F
VDD = 18V, VIN = VDD or GND  
VDD = 3V, VIN = VDD or GND  
VDD = 5V  
1
+25 C  
VOH >  
VDD/2  
VOL <  
VDD/2  
V
o
Propagation Delay Time  
TPHL  
TPLH  
1, 2, 3, 4  
+25 C  
-
1.35 x  
ns  
o
+25 C  
Limit  
o
NOTES: 1. All voltages referenced to device GND.  
2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.  
3. See Table 2 for +25 C limit.  
4. Read and Record  
O
TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25 C  
PARAMETER  
Supply Current - MSI-1  
Output Current (Sink)  
Output Current (Source)  
SYMBOL  
IDD  
DELTA LIMIT  
± 0.2µA  
IOL5  
± 20% x Pre-Test Reading  
± 20% x Pre-Test Reading  
IOH5A  
7-901  
Specifications CD4047BMS  
TABLE 6. APPLICABLE SUBGROUPS  
MIL-STD-883  
CONFORMANCE GROUP  
Initial Test (Pre Burn-In)  
Interim Test 1 (Post Burn-In)  
Interim Test 2 (Post Burn-In)  
PDA (Note 1)  
METHOD  
100% 5004  
100% 5004  
100% 5004  
100% 5004  
100% 5004  
100% 5004  
100% 5004  
Sample 5005  
Sample 5005  
Sample 5005  
Sample 5005  
GROUP A SUBGROUPS  
1, 7, 9  
READ AND RECORD  
IDD, IOL5, IOH5A  
1, 7, 9  
IDD, IOL5, IOH5A  
IDD, IOL5, IOH5A  
1, 7, 9  
1, 7, 9, Deltas  
Interim Test 3 (Post Burn-In)  
PDA (Note 1)  
1, 7, 9  
IDD, IOL5, IOH5A  
1, 7, 9, Deltas  
Final Test  
2, 3, 8A, 8B, 10, 11  
1, 2, 3, 7, 8A, 8B, 9, 10, 11  
1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas  
1, 7, 9  
Group A  
Group B  
Subgroup B-5  
Subgroup B-6  
Subgroups 1, 2, 3, 9, 10, 11  
Subgroups 1, 2 3  
Group D  
1, 2, 3, 8A, 8B, 9  
NOTE: 1. 5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.  
TABLE 7. TOTAL DOSE IRRADIATION  
TEST  
READ AND RECORD  
MIL-STD-883  
METHOD  
CONFORMANCE GROUPS  
PRE-IRRAD  
POST-IRRAD  
PRE-IRRAD  
POST-IRRAD  
Group E Subgroup 2  
5005  
1, 7, 9  
Table 4  
1, 9  
Table 4  
TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS  
OSCILLATOR  
FUNCTION  
OPEN  
GROUND  
VDD  
9V ± -0.5V  
50kHz  
25kHz  
Static Burn-In 1  
Note 1  
1, 2, 10, 11, 13  
3-9, 12  
14  
Static Burn-In 2  
Note 1  
1, 2, 10, 11, 13  
7
7, 9, 12  
7
3-6, 8, 9, 12, 14  
4, 5, 14  
Dynamic Burn-  
In Note 1  
-
1, 2, 10, 11, 13  
6, 8  
3
Irradiation  
Note 2  
1, 2, 10, 11, 13  
3-6, 8, 9, 12, 14  
NOTE:  
1. Each pin except VDD and GND will have a series resistor of 10K ± 5%, VDD = 18V ± 0.5V  
2. Each pin except VDD and GND will have a series resistor of 47K ± 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures,  
VDD = 10V ± 0.5V  
7-902  
CD4047BMS  
TABLE 9. FUNCTIONAL TERMINAL CONNECTIONS  
In all cases External resistor between terminals 2 and 3 (Note 1)  
External capacitor between terminals 1 and 3 (Note 1)  
TERMINAL CONNECTIONS  
OUTPUT PULSE OUTPUT PERIOD OR PULSE  
FUNCTION  
ASTABLE MULTIVIBRATOR  
Free Running  
TO VDD  
TO VSS  
INPUT TO  
FROM  
WIDTH  
4, 5, 6, 14  
4, 6, 14  
6, 14  
7, 8, 9, 12  
7, 8, 9, 12  
-
10, 11, 13  
10, 11, 13  
10, 11, 13  
T (10, 11) = 4.40 RC  
A
True Gating  
5
4
T (13) = 2.20 RC (Note 2)  
A
Complement Gating  
MONOSTABLE MULTIVIBRATOR  
Positive Edge Trigger  
Negative Edge Trigger  
Retriggerable  
5, 7, 8, 9, 12  
4, 14  
4, 8, 14  
4, 14  
14  
5, 6, 7, 9, 12  
5, 7, 9, 12  
8
10, 11  
10, 11  
10, 11  
10, 11  
tM (10, 11) = 2.48 RC  
6
8, 12  
-
5, 6, 7, 9  
External Countdown (Note 3)  
NOTES:  
5, 6, 7, 8, 9, 12  
1. See text.  
1
2. First positive / cycle pulse width = 2.48 RC. See note follow Monostable Mode Design Information.  
2
3. Input Pulse to Reset of External Counting Chip External Counting Chip Output to Terminal 4.  
Logic Diagrams  
C
R
C-TIMING  
RC  
R-TIMING  
3
1
2
OSCILLATOR OUT  
13  
10  
COMMON  
Q
Q
ASTABLE  
ASTABLE  
5
4
ASTABLE  
LOW POWER  
ASTABLE  
MULTIVIBRATOR  
FREQUENCY  
DIVIDER (÷2)  
GATE  
CONTROL  
11  
-TRIGGER  
6
8
MONOSTABLE  
CONTROL  
+TRIGGER  
RETRIGGER  
RETRIGGER  
CONTROL  
12  
EXTERNAL  
RESET  
9
FIGURE 1. CD4047BMS LOGIC BLOCK DIAGRAM  
7-903  
CD4047BMS  
Logic Diagrams (Continued)  
*
**  
RC  
*
VDD  
12  
3
1
2
RETRIGGER  
CTC  
RTC  
COMMON  
5
ASTABLE  
ASTABLE  
*
4
*
8
+TRIGGER  
-TRIGGER  
*
6
OSC  
OUT  
VDD  
FF1  
D
Q
13  
CL  
CL  
R1 R2  
14  
7
VDD  
VSS  
S
S
10  
11  
Q
D
FF3  
CL  
Q
Q
FF4  
CL  
CL  
Q
Q
D
D
FF2  
CL  
VSS  
CL Q  
R
CL  
R1 R2  
R
*
9
EXTERNAL  
RESET  
VDD  
VDD  
SPECIAL  
**  
RC COMMON  
PROTECTION  
NETWORK  
CAUTION: Terminal 3 is more sensitive  
to static electrical discharge. Extra  
handling precautions are recommended.  
INPUTS PROTECTED  
BY CMOS  
*
PROTECTION  
NETWORK  
VSS  
VSS  
FIGURE 2. CD4047BMS LOGIC DIAGRAM  
R2 R1  
CL  
CL  
p
n
p
n
Q
D
D
Q
R1 R2  
CL  
CL  
CL  
CL  
CL  
CL  
p
n
p
n
R1 R2  
FF1, FF3  
CL  
CL  
(a)  
Q
CL  
S
CL  
S
p
n
Q
p
n
S
D
D
Q
Q
CL  
CL  
CL  
CL  
CL  
CL  
R
p
n
p
n
FF2, FF4  
R
R
CL  
CL  
(b)  
FIGURE 3. DETAIL LOGIC DIAGRAM FOR FLIP-FLOPS FF1 AND FF3 (a) AND FOR FLIP-FLOPS FF2 AND FF4 (b)  
7-904  
CD4047BMS  
Typical Performance Characteristics  
AMBIENT TEMPERATURE (TA) = +25oC  
AMBIENT TEMPERATURE (TA) = +25oC  
15.0  
30  
25  
GATE-TO-SOURCE VOLTAGE (VGS) = 15V  
GATE-TO-SOURCE VOLTAGE (VGS) = 15V  
12.5  
10.0  
7.5  
20  
15  
10V  
10V  
5.0  
10  
5
2.5  
5V  
5V  
0
5
10  
15  
0
5
10  
15  
DRAIN-TO-SOURCE VOLTAGE (VDS) (V)  
DRAIN-TO-SOURCE VOLTAGE (VDS) (V)  
FIGURE 4. TYPICAL OUTPUT LOW (SINK) CURRENT  
CHARACTERISTICS  
FIGURE 5. MINIMUM OUTPUT LOW (SINK) CURRENT  
CHARACTERISTICS  
DRAIN-TO-SOURCE VOLTAGE (VDS) (V)  
DRAIN-TO-SOURCE VOLTAGE (VDS) (V)  
-15  
-10  
-5  
0
-15  
-10  
-5  
0
0
0
AMBIENT TEMPERATURE (TA) = +25oC  
AMBIENT TEMPERATURE (TA) = +25oC  
GATE-TO-SOURCE VOLTAGE (VGS) = -5V  
-2.5  
-5  
GATE-TO-SOURCE VOLTAGE (VGS) = -5V  
-2.5  
-7.5  
-10  
-12.5  
-15  
-10V  
-10V  
-5  
-15V  
-15V  
-7.5  
FIGURE 6. TYP. OUTPUT HIGH (SOURCE) CURRENT  
CHARACTERISTICS  
FIGURE 7. MINIMUM OUTPUT HIGH (SOURCE) CURRENT  
CHARACTERISTICS  
400  
AMBIENT TEMPERATURE (TA) = +25oC  
SUPPLY VOLTAGE (VDD) = 5V  
600  
300  
200  
100  
SUPPLY VOLTAGE (VDD) = 5V  
400  
10V  
15V  
10V  
200  
15V  
AMBIENT TEMPERATURE (TA) = +25oC  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
LOAD CAPACITANCE (CL) (pF)  
LOAD CAPACITANCE (CL) (pF)  
FIGURE 8. TYP.PROPAGATIONDELAYTIMEASAFUNCTIONOF  
LOAD CAPACITANCE (ASTABLE, ASTABLE TO Q, Q)  
FIGURE 9. TYP. PROPAGATION DELAY TIME AS A FUNCTION  
OF LOAD CAPACITANCE (+ OR - TRIGGER TO Q, Q)  
7-905  
CD4047BMS  
Typical Performance Characteristics (Continued)  
4
3
2
1
0
AMBIENT TEMPERATURE (TA) = +25oC  
CX = 1µF  
AMBIENT TEMPERATURE (TA) = +25oC  
1MAND 100kΩ  
10kΩ  
200  
10MΩ  
SUPPLY VOLTAGE (VDD) = 5V  
150  
10MΩ  
-1  
-2  
-3  
-4  
100  
50  
0
10V  
15V  
RX = 1MAND  
100kΩ  
10kΩ  
0
20  
40  
60  
80  
100  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
LOAD CAPACITANCE (CL) (pF)  
SUPPLY VOLTAGE (VDD) (V)  
FIGURE 10. TYP. TRANSITION TIME AS A FUNCTION OF LOAD  
CAPACITANCE  
FIGURE 11. TYP. ASTABLE OSCILLATOR OR Q, Q PERIOD  
ACCURACY vs SUPPLY VOLTAGE  
4
AMBIENT TEMPERATURE (TA) = +25oC  
CX = 1000pF  
4
AMBIENT TEMPERATURE (TA) = +25oC  
CX = 0.01µF  
3
3
2
10MΩ  
10kΩ  
2
1
1
10kΩ  
1MΩ  
100kΩ  
1MAND  
10MΩ  
RX = 1MAND  
10kΩ  
0
-1  
-2  
-3  
-4  
0
100kΩ  
10kΩ  
RX = 1MΩ  
100kΩ  
-1  
-2  
-3  
-4  
10MΩ  
10kΩ  
10kΩ  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
SUPPLY VOLTAGE (VDD) (V)  
SUPPLY VOLTAGE (VDD) (V)  
FIGURE 12. TYP. ASTABLE OSCILLATOR OR Q, Q PERIOD  
ACCURACY vs SUPPLY VOLTAGE  
FIGURE 13. TYP. ASTABLE OSCILLATOR OR Q, Q PERIOD  
ACCURACY vs SUPPLY VOLTAGE  
1
2
CX = 0.1µF  
RX = 1MΩ  
CX = 1µF  
RX = 1MΩ  
10V, 15V  
SUPPLY VOLTAGE (VDD) = 5V  
SUPPLY VOLTAGE (VDD) = 5V  
1
5V  
0
10V  
0
15V  
-1  
5V  
15V  
-1  
10V, 15V  
-2  
10V  
-2  
-3  
-55  
-55  
-15  
25  
65  
105  
145  
-15  
25  
65  
105  
145  
AMBIENT TEMPERATURE (TA) (oC)  
AMBIENT TEMPERATURE (TA) (oC)  
FIGURE 14. TYP. ASTABLE OSCILLATOR OR Q, Q PERIOD  
ACCURACY vs AMBIENT TEMPERATURE (ULTRA  
LOW FREQ.)  
FIGURE 15. TYP. ASTABLE OSCILLATOR OR Q, Q PERIOD  
ACCURACY vs AMBIENT TEMPERATURE (LOW  
FREQ.)  
7-906  
CD4047BMS  
Typical Performance Characteristics (Continued)  
2
1
0
12  
10  
8
CX = 0.01µF  
RX = 100kΩ  
CX = 1000pF  
RX = 10kΩ  
SUPPLY VOLTAGE (VDD) = 5V  
SUPPLY VOLTAGE (VDD) = 5V, 10V  
15V  
6
4
5V AND 10V  
15V  
2
10V, 15V  
10V AND 15V  
5V  
0
-1  
-2  
-2  
-4  
-55  
-15  
25  
65  
105  
145  
-55 -35 -15  
-5  
25  
45  
65  
85 105 125 145  
AMBIENT TEMPERATURE (TA) (oC)  
AMBIENT TEMPERATURE (TA) (oC)  
FIGURE 16. TYP. ASTABLE OSCILLATOR OR Q, Q PERIOD  
FIGURE 17. TYP. ASTABLE OSCILLATOR OR Q, Q PERIOD  
ACCURACY vs AMBIENT TEMPERATURE (HIGH  
FREQ.)  
ACCURACY vs AMBIENT TEMPERATURE (MEDIUM  
FREQ.)  
8
AMBIENT TEMPERATURE (TA) = +25oC  
RX = 10kΩ  
SUPPLY VOLTAGE (VDD) = 5V  
6
CX = 1µF  
4
2
20  
10  
1kΩ  
100pF  
100kΩ  
10k, 1MAND 10MΩ  
10kΩ  
0
0.001µF  
RX = 100k, 1M, 10MΩ  
1kΩ  
-2  
0.01µF, 0.1µF, 1µF  
0.01µF, 0.1µF, 1µF  
0.001µF  
-4  
-6  
0
CX = 100pF  
-10  
-8  
-55  
-15  
25  
65  
105  
145  
0
5
10  
15  
20  
25  
AMBIENT TEMPERATURE (TA) (oC)  
SUPPLY VOLTAGE (VDD) (V)  
FIGURE 18. TYPICAL ASTABLE OSCILLATOR OR Q, Q PERIOD  
ACCURACY vs AMBIENT TEMPERATURE  
FIGURE 19. TYPICAL OUTPUT PULSE WIDTH VARIATIONS vs  
SUPPLY VOLTAGE  
8
AMBIENT TEMPERATURE (TA) = +25oC  
8
AMBIENT TEMPERATURE (TA) = +25oC  
CX = 1000pF  
6
CX = 0.1µF  
6
4
4
2
2
RX = 1MAND 10Ω  
10k, 100k, 1MAND 10MΩ  
100kΩ  
10kΩ  
0
0
10MΩ  
-2  
-2  
RX = 10k, 100k, 1MΩ  
-4  
-6  
-4  
-6  
-8  
-8  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
SUPPLY VOLTAGE (VDD) (V)  
SUPPLY VOLTAGE (VDD) (V)  
FIGURE 20. TYPICAL OUTPUT PULSE WIDTH VARIATIONS vs  
SUPPLY VOLTAGE  
FIGURE 21. TYPICAL OUTPUT PULSE WIDTH VARIATIONS vs  
SUPPLY VOLTAGE  
7-907  
CD4047BMS  
Typical Performance Characteristics (Continued)  
RX = 100kΩ  
SUPPLY VOLTAGE (VDD) = 10V OR 15V  
8
RX = 100kΩ  
SUPPLY VOLTAGE (VDD) = 5V  
10  
8
6
CX = 100pF  
4
6
4
2
0
0.001µF  
0.01µF  
2
0.1µF  
0.1µF  
0
0.1µF, 0.01µF  
0.01µF  
-2  
-4  
-6  
-8  
-10  
-12  
-2  
0.01µF  
0.001µF  
0.1µF AND 0.001µF  
-4  
-6  
100pF  
0.001µF  
85 105 125 145  
-8  
-55 -35 -15  
5
25  
45 65  
-50 -35 -15  
5
25 45 65 85 105 125 145  
AMBIENT TEMPERATURE (TA) (oC)  
AMBIENT TEMPERATURE (TA) (oC)  
FIGURE 22. TYPICAL OUTPUT PULSE WIDTH VARIATIONS vs  
AMBIENT TEMPERATURE  
FIGURE 23. TYPICAL OUTPUT PULSE WIDTH VARIATIONS vs  
AMBIENT TEMPERATURE  
4
4
CX = 1000pF  
SUPPLY VOLTAGE (VDD) = 15V  
CX = 1000pF  
SUPPLY VOLTAGE (VDD) = 5V OR 10V  
10MΩ  
2
2
0
10kΩ  
10kΩ  
0
100kΩ  
10kΩ  
10MΩ  
100kΩ  
-2  
-4  
RX = 1MΩ  
-2  
RX = 1MΩ  
10k100kΩ  
-4  
100kΩ  
1MΩ  
-6  
-6  
-8  
-8  
1MΩ  
-10  
-10  
-12  
10MΩ  
10MΩ  
85 105 125 145  
-12  
-55 -35 -15  
5
25  
45 65  
85 105 125 145  
-50 -35 -15  
5
25  
45  
65  
AMBIENT TEMPERATURE (TA) (oC)  
AMBIENT TEMPERATURE (TA) (oC)  
FIGURE 24. TYPICAL OUTPUT PULSE WIDTH VARIATIONS vs  
AMBIENT TEMPERATURE  
FIGURE 25. TYPICAL OUTPUT PULSE WIDTH VARIATIONS vs  
AMBIENT TEMPERATURE  
105  
106  
ASTABLE MODE  
SUPPLY VOLTAGE (VDD) = 10V  
ASTABLE MODE  
SUPPLY VOLTAGE (VDD) = 5V  
105  
104  
C =100pF  
C =100pF  
C =1000pF  
104  
103  
C = 0.01µF  
C =1000pF  
C = 0.1µF  
C = 0.01µF  
C =10pF  
C =10pF  
C = 0.1µF  
103  
102  
101  
102  
101  
100  
10-1  
10-1  
100  
101  
102  
103  
104  
105  
106  
100  
101  
102  
103  
104  
105  
106  
Q OR Q FREQUENCY (F) (Hz)  
Q OR Q FREQUENCY (F) (Hz)  
FIGURE 26. TYPICAL POWER DISSIPATION vs OUTPUT  
FREQUENCY (VDD = 5V)  
FIGURE 27. TYPICAL POWER DISSIPATION vs OUTPUT  
FREQUENCY (VDD = 10V)  
7-908  
CD4047BMS  
Typical Performance Characteristics (Continued)  
ASTABLE MODE  
SUPPLY VOLTAGE (VDD) = 15V  
105  
C =100pF  
C =1000pF  
C = 0.01µF  
104  
103  
102  
C =10pF  
C = 0.1µF  
10-1  
100  
101  
102  
103  
104  
105  
106  
Q OR Q FREQUENCY (F) (Hz)  
FIGURE 28. TYPICAL POWER DISSIPATION vs OUTPUT FREQUENCY (VDD = 15V)  
Astable Mode Design Information  
Monostable Mode Design Information  
Unit-to-Unit Transfer Voltage Variations  
The following analysis presents variations from unit to unit as a  
function of transfer voltage (VTR) shift (33% - 67% VDD) for  
one shot (monostable) operation.  
The following analysis presents variations from unit to unit as  
a function of transfer voltage (VTR) shift (33%-67% VDD) for  
free running (astable) operation.  
TERMINAL 8  
t1  
t2  
t1  
t2  
TERMINAL 13  
TERMINAL 10  
t1´ t2  
tM  
t1´ t2  
tM  
TERMINAL 13  
TERMINAL 10  
tA/2  
tA/2  
tA  
FIGURE 30. MONOSTABLE WAVEFORMS  
FIGURE 29. ASTABLE MODE WAVEFORMS  
VTR  
VTR  
t1´ = -RC In  
;
t1 = -RC In  
t2 = -RC In  
;
2VDD  
VDD + VTR  
typically, t1 = 1.1RC  
typically, t1´ = 1.38RC  
tM = (t1´ + t2)  
VDD - VTR  
;
(VTR)(VDD - VTR)  
2VDD - VTR  
tM = -RC In  
(2VDD - VTR)(2VDD)  
typically, t2 = 1.1RC  
where tM = Monostable mode pulse width.  
Values for tM are as follows:  
t
= 2(t1 + t2)  
= -2RC In  
A
(VTR)(VDD - VTR)  
Typ: VTR = 0.5VDD  
Min: VTR = 0.33VDD  
Max: VTR = 0.67VDD  
tM = 2.48RC  
tM = 2.71RC  
tM = 2.48RC  
(VDD + VTR)(2VDD - VTR)  
Typ: VTR = 0.5VDD  
Min: VTR = 0.33VDD  
Max: VTR = 0.67VDD  
t
t
t
= 4.40RC  
= 4.62RC  
= 4.62RC  
A
A
A
thus if tM = 2.48RC is used, the variation will be +9.3%,  
-0% due to variations in transfer voltage.  
tA = 4.40RC  
NOTES:  
thus if  
is used, the variation will be +5%, -0%  
due to variations in transfer voltage.  
1. In the astable mode, the first positive half cycle has a duration of  
tM; succeeding durations are t /s.  
A
Variations Due to VDD and Temperature Changes  
2. In addition to variations from unit to unit, the monostable pulse  
width varies with VDD and temperature. These variations are  
presented in graphical form in Figures 19 to 26 with 10V as ref-  
In addition to variations from unit to unit, the astable period  
varies with VDD and temperature, Typical variations are pre-  
sented in graphical form in Figures 11 to 18 with 10V as ref-  
erence for voltage variations curves and +25oC as reference  
for temperature variations curves.  
o
erence for voltage variation curves and +25 C as reference for  
temperature variation curves.  
7-909  
CD4047BMS  
Retrigger Mode Operation  
However, in consideration of accuracy, C must be much larger  
than the inherent stray capacitance in the system (unless this  
capacitance can be measured and taken into account). R must  
be much larger than the CMOS “ON” resistance in series with  
it, which typically is hundreds of . In addition, with very large  
values of R, some short term instability with respect to time may  
be noted.  
The CD4047BMS can be used in the retrigger mode to extend  
the output pulse duration, or to compare the frequency of an  
input signal with that of the internal oscillator. In the retrigger  
mode the input pulse is applied to terminal 12, and the output is  
taken from terminal 10 or 11. As shown in Figure 31 normal  
monostable action is obtained when one retrigger pulse is  
applied. Extended pulse duration is obtained when more than  
one pulse is applied.  
The recommended values for these components to maintain  
agreement with previously calculated formulas without trimming  
should be:  
For two input pulses, tRE = t1´ + t1 + 2t2. For more than two  
pulses, the output pulse width is an integral number of time peri-  
ods, with the first time period being t1´ + t2, typically, 2.48RC, and  
all subsequent time periods being t1 + t2, typically, 2.2RC.  
C 100pF, up to any practical value, for astable modes;  
C 1000pF, up to any practical value for monostable modes.  
10kΩ ≤ R 1MΩ  
External Counter Option  
Time tM can be extended by any amount with the use of external  
counting circuitry. Advantages include digitally controlled pulse  
duration, small timing capacitors for long time periods, and  
extremely fast recovery time. A typical implementation is shown  
in Figure 32. The pulse duration at the output is  
Power Consumption  
In the standby mode (Monostable or Astable), power dissipa-  
tion will be a function of leakage current in the circuit, as shown  
in the static electrical characteristics. For dynamic operation,  
the power needed to charge the external timing capacitor C is  
given by the following formula:  
text = (N - 1) (tA) + (tM + tA/2)  
where text = pulse duration of the circuitry, and N is the number  
of counts used.  
Astable Mode:  
P = 2CV2f. (Output at terminal No. 13)  
P = 4CV2f. (Output at terminal Nos. 10 and 11)  
Monostable Mode:  
OPTIONAL  
BUFFER  
AST  
CD4047BMS  
Q
CD4017BMS  
R
CL  
OUT  
2
12  
(2.9CV ) (Duty Cycle)  
P =  
11  
T
INPUT  
PULSE  
TEXT  
(Output at terminal Nos. 10 to 11)  
The circuit is designed so that most of the total power is con-  
sumed in the external components. In practice, the lower the  
values of frequency and voltage used, the closer the actual  
power dissipation will be to the calculated value.  
FIGURE 32. IMPLEMENTATION OF EXTERNAL COUNTER OPTION  
Timing Component Limitations  
The capacitor used in the circuit should be non polarized and  
have low leakage (i.e. the parallel resistance of the capacitor  
should be at least an order of magnitude greater than the exter-  
nal resistor used). There is no upper or lower limit for either R or  
C value to maintain oscillation.  
Because the power dissipation does not depend on R, a  
design for minimum power dissipation would be a small value  
of C. The value of R would depend on the desired period  
(within the limitations discussed above). See Figures 26, 27,  
and 28 for typical power consumption in astable mode.  
+TRIGGER &  
RETRIGGER  
TERMINALS  
8 & 12  
OSC OUTPUT  
TERMINAL 13  
t1´ t2  
tRE  
t1´ t2 t1´ t2  
t1´ t2 t1´ t2 t1´ t2 t1´ t2  
t1´ t2 t1´ t2 t1´ t2  
Q OUTPUT  
TERMINAL 10  
tRE  
tRE  
tRE  
FIGURE 31. RETRIGGER MODE WAVEFORMS  
7-910  
CD4047BMS  
Chip Dimensions and Pad Layout  
Dimensions in parenthesis are in millimeters and are  
derived from the basic inch dimensions as indicated.  
Grid graduations are in mils (10-3 inch).  
METALLIZATION: Thickness: 11kÅ 14kÅ, AL.  
PASSIVATION: 10.4kÅ - 15.6kÅ, Silane  
BOND PADS: 0.004 inches X 0.004 inches MIN  
DIE THICKNESS: 0.0198 inches - 0.0218 inches  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
Taiwan Limited  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
911  

相关型号:

CD4047BKMSH

Monostable Multivibrator, 4000/14000/40000 Series, 1-Func, CMOS, CDFP14
RENESAS

CD4047BKMSR

Monostable Multivibrator
ETC

CD4047BM

Low Power Monostable/Astable Multivibrator
NSC

CD4047BM

CMOS LOW-POWER MONOSTABLE/ASTABLE MULTIVIBRATOR
TI

CD4047BM96

CMOS LOW-POWER MONOSTABLE/ASTABLE MULTIVIBRATOR
TI

CD4047BM96E4

CMOS Low-Power Monostable/Astable Multivibrator
TI

CD4047BM96G4

CMOS Low-Power Monostable/Astable Multivibrator
TI

CD4047BMD

IC,MONOSTABLE MULTIVIBRATOR,CMOS,DIP,14PIN,CERAMIC
TI

CD4047BMD/883C

IC,MONOSTABLE MULTIVIBRATOR,CMOS,DIP,14PIN,CERAMIC
TI

CD4047BME4

CMOS Low-Power Monostable/Astable Multivibrator
TI

CD4047BMG4

CMOS Low-Power Monostable/Astable Multivibrator
TI

CD4047BMJ

Monostable Multivibrator
ETC