EFM32GG990 [QIMONDA]

EFM32GG990 DATASHEET;
EFM32GG990
型号: EFM32GG990
厂家: QIMONDA AG    QIMONDA AG
描述:

EFM32GG990 DATASHEET

文件: 总73页 (文件大小:3730K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EFM32GG990 DATASHEET  
F1024/F512  
Preliminary  
ARM Cortex-M3 CPU platform  
Communication interfaces  
• High Performance 32-bit processor @ up to 48 MHz  
• Memory Protection Unit  
• 3× Universal Synchronous/Asynchronous Receiv-  
er/Transmitter  
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S  
• 2× Universal Asynchronous Receiver/Transmitter  
• 2× Low Energy UART  
Flexible Energy Management System  
• 20 nA @ 3 V Shutoff Mode  
• 0.4µA @ 3 V Shutoff Mode with RTC  
• 0.9 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out  
Detector, RAM and CPU retention  
• 1.1 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz  
oscillator, Power-on Reset, Brown-out Detector, RAM and CPU  
retention  
• Autonomous operation with DMA in Deep Sleep  
Mode  
• 2× I2C Interface with SMBus support  
• Address recognition in Stop Mode  
• Universal Serial Bus (USB) with Host and OTG sup-  
port  
• 50 µA/MHz @ 3 V Sleep Mode  
• 200 µA/MHz @ 3 V Run Mode, with code executed from Flash  
1024/512 KB Flash  
• Read-while-write support  
128/128 KB RAM  
86 General Purpose I/O pins  
• Configurable Push-pull, Open-drain, pull resistor, drive strength  
• Configurable peripheral I/O locations  
• 16 asynchronous external interrupts  
• Output state retention and wakeup from Shutoff Mode  
12 Channel DMA Controller  
12 Channel Peripheral Reflex System (PRS) for autonomous in-  
ter-peripheral signaling  
Hardware AES with 128/256-bit keys in 54/75 cycles  
Timers/Counters  
• Fully USB 2.0 compliant  
• On-chip PHY and embedded 5V to 3.3V regulator  
Ultra low power precision analog peripherals  
• 12-bit 1 Msamples/s Analog to Digital Converter  
• 8 single ended channels/4 differential channels  
• On-chip temperature sensor  
• 12-bit 500 ksamples/s Digital to Analog Converter  
• 2 single ended channels/1 differential channel  
• 2× Analog Comparator  
• Capacitive sensing with up to 16 inputs  
• 3× Operational Amplifier  
• 6.1 MHz GBW, Rail-to-rail, Programmable Gain  
• Supply Voltage Comparator  
Low Energy Sensor Interface (LESENSE)  
• Autonomous sensor monitoring in Deep Sleep Mode  
• Wide range of sensors supported, including LC sen-  
sors and capacitive buttons  
• 4× 16-bit Timer/Counter  
• 4×3 Compare/Capture/PWM channels  
• 16-bit Low Energy Timer  
• 1× 24-bit and 1× 32-bit Real-Time Counter  
• 3× 16/8-bit Pulse Counter with asynchronous operation  
• Watchdog Timer with dedicated RC oscillator @ 50 nA  
Integrated LCD Controller for up to 8×34 segments  
• Voltage boost, adjustable contrast and autonomous animation  
Backup Power Domain  
• RTC and retention registers in a separate power domain, avail-  
able in all energy modes  
• Operation from backup battery when main power drains out  
External Bus Interface for up to 4×256 MB of external memory  
mapped space  
Ultra efficient Power-on Reset and Brown-Out Detec-  
tor  
Debug Interface  
• 2-pin Serial Wire Debug interface  
• 1-pin Serial Wire Viewer  
• Embedded Trace Module v3.5 (ETM)  
Pre-Programmed Serial Bootloader  
Temperature range -40 to 85 ºC  
Single power supply 1.85 to 3.8 V  
BGA112 package  
• TFT Controller with Direct Drive  
32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4F microcontrollers for:  
• Energy, gas, water and smart metering  
• Health and fitness applications  
• Smart accessories  
• Alarm and security systems  
• Industrial and home automation  
• www.energymicro.com/gecko  
Preliminary  
...the world's most energy friendly microcontrollers  
1 Ordering Information  
Table 1.1 (p. 2) shows the available EFM32GG990 devices.  
Table 1.1. Ordering Information  
Ordering Code  
Flash (KB) RAM  
(KB)  
Max  
Speed  
(MHz)  
Supply  
Voltage  
(V)  
Temperature  
Package  
EFM32GG990F512-BGA112  
512  
128  
128  
48  
48  
1.85 - 3.8 -40 - 85 ºC  
1.85 - 3.8 -40 - 85 ºC  
BGA112  
BGA112  
EFM32GG990F1204-BGA112 1024  
Visit www.energymicro.com for information on global distributors and representatives or contact  
sales@energymicro.com for additional information.  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
2
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
2 System Summary  
2.1 System Introduction  
The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of  
the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy  
saving modes, and a wide selection of peripherals, the EFM32GG microcontroller is well suited for  
any battery operated application as well as other systems requiring high performance and low-energy  
consumption. This section gives a short introduction to each of the modules in general terms and also  
and shows a summary of the configuration for the EFM32GG990 devices. For a complete feature set  
and in-depth information on the modules, the reader is referred to the EFM32GG Reference Manual.  
A block diagram of the EFM32GG990 is shown in Figure 2.1 (p. 3) .  
Figure 2.1. Block Diagram  
GG990F512/1024  
Core and Memory  
Clock Management  
Energy Management  
High Freq.  
Crystal  
Oscillator  
High Freq  
RC  
Oscillator  
Voltage  
Regulator  
Voltage  
Comparator  
Memory  
Protection  
Unit  
ARM Cortex-M3 processor  
Low Freq.  
Crystal  
Oscillator  
Low Freq.  
RC  
Oscillator  
Brown-out  
Detector  
Power-on  
Reset  
Flash  
Program  
Memory  
Debug  
Interface  
w/ ETM  
DMA  
Controller  
RAM  
Memory  
Ultra Low Freq.  
RC  
Oscillator  
Back-up  
Power  
Domain  
32-bit bus  
Peripheral Reflex System  
Serial Interfaces  
I/O Ports  
Analog Interfaces  
Security  
Timers and Triggers  
Timer/  
Counter  
LCD  
ADC  
Ext. Bus  
Interface  
TFT  
Driver  
LESENSE  
USART  
UART  
Hardware  
AES  
Controller  
Low Energy Real Time  
General  
Purpose  
I/O  
Low  
Energy  
UART  
Timer  
Counter  
Operational  
Amplifier  
External  
Interrupts  
I 2C  
DAC  
Watchdog  
Timer  
Pulse  
Counter  
Pin  
Reset  
Pin  
Wakeup  
Pulse  
Counter  
Back-up  
RTC  
USB  
2.1.1 ARM Cortex-M3 Core  
The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone  
MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well  
as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32  
implementation of the Cortex-M3 is described in detail in EFM32 Cortex-M3 Reference Manual.  
2.1.2 Debug Interface (DBG)  
This device includes hardware debug support through a 2-pin serial-wire debug interface and an Embed-  
ded Trace Module (ETM) for data/instruction tracing. In addition there is also a 1-wire Serial Wire Viewer  
pin which can be used to output profiling information, data trace and software-generated messages.  
2.1.3 Memory System Controller (MSC)  
The Memory System Controller (MSC) is the program memory unit of the EFM32GG microcontroller.  
The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
3
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
divided into two blocks; the main block and the information block. Program code is normally written to  
the main block. Additionally, the information block is available for special user data and flash lock bits.  
There is also a read-only page in the information block containing system and device calibration data.  
Read and write operations are supported in the energy modes EM0 and EM1.  
2.1.4 Direct Memory Access Controller (DMA)  
The Direct Memory Access (DMA) controller performs memory operations independently of the CPU.  
This has the benefit of reducing the energy consumption and the workload of the CPU, and enables  
the system to stay in low energy modes when moving for instance data from the USART to RAM or  
from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA  
controller licensed from ARM.  
2.1.5 Reset Management Unit (RMU)  
The RMU is responsible for handling the reset functionality of the EFM32GG.  
2.1.6 Energy Management Unit (EMU)  
The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32GG microcon-  
trollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU  
can also be used to turn off the power to unused SRAM blocks.  
2.1.7 Clock Management Unit (CMU)  
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the  
EFM32GG. The CMU provides the capability to turn on and off the clock on an individual basis to all  
peripheral modules in addition to enable/disable and configure the available oscillators. The high degree  
of flexibility enables software to minimize energy consumption in any specific application by not wasting  
power on peripherals and oscillators that are inactive.  
2.1.8 Watchdog (WDOG)  
The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase appli-  
cation reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a  
software failure.  
2.1.9 Peripheral Reflex System (PRS)  
The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module  
communicate directly with each other without involving the CPU. Peripheral modules which send out  
Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which  
apply actions depending on the data received. The format for the Reflex signals is not given, but edge  
triggers and other functionality can be applied by the PRS.  
2.1.10 External Bus Interface (EBI)  
The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH,  
ADCs and LCDs. The interface is memory mapped into the address bus of the Cortex-M3. This enables  
seamless access from software without manually manipulating the IO settings each time a read or write  
is performed. The data and address lines are multiplexed in order to reduce the number of pins required  
to interface the external devices. The timing is adjustable to meet specifications of the external devices.  
The interface is limited to asynchronous devices.  
2.1.11 TFT Direct Drive  
The EBI contains a TFT controller which can drive a TFT via a 565 RGB interface. The TFT controller  
supports programmable display and port sizes and offers accurate control of frequency and setup and  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
4
Preliminary  
...the world's most energy friendly microcontrollers  
hold timing. Direct Drive is supported for TFT displays which do not have their own frame buffer. In  
that case TFT Direct Drive can transfer data from either on-chip memory or from an external memory  
device to the TFT at low CPU load. Automatic alpha-blending and masking is also supported for transfers  
through the EBI interface.  
2.1.12 Universal Serial Bus Controller (USB)  
The USB is a full-speed USB 2.0 compliant OTG host/device controller. The USB can be used in Device,  
On-the-go (OTG) Dual Role Device or Host-only configuration. In OTG mode the USB supports both  
Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The device supports both full-  
speed (12MBit/s) and low speed (1.5MBit/s) operation. The USB device includes an internal dedicated  
Descriptor-Based Scatter/Garther DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in  
addition to endpoint 0. The on-chip PHY includes all OTG features, except for the voltage booster for  
supplying 5V to VBUS when operating as host.  
2.1.13 Inter-Integrated Circuit Interface (I2C)  
The I2C module provides an interface between the MCU and a serial I2C-bus. It is capable of acting as  
both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-  
mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s.  
Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system.  
The interface provided to software by the I2C module, allows both fine-grained control of the transmission  
process and close to automatic transfers. Automatic recognition of slave addresses is provided in all  
energy modes.  
2.1.14 Universal Synchronous/Asynchronous Receiver/Transmitter (US-  
ART)  
The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible  
serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI,  
MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, I2S devices and IrDA devices.  
2.1.15 Pre-Programmed Serial Bootloader  
The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Auto-  
baud and destructive write are supported. The autobaud feature, interface and commands are described  
further in the application note.  
2.1.16 Universal Asynchronous Receiver/Transmitter (UART)  
The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module.  
It supports full- and half-duplex asynchronous UART communication.  
2.1.17 Low Energy Universal Asynchronous Receiver/Transmitter  
(LEUART)  
The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on  
a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/  
s. The LEUART includes all necessary hardware support to make asynchronous serial communication  
possible with minimum of software intervention and energy consumption.  
2.1.18 Timer/Counter (TIMER)  
The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-  
Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor  
control applications.  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
5
Preliminary  
...the world's most energy friendly microcontrollers  
2.1.19 Real Time Counter (RTC)  
The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal  
oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also  
available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where  
most of the device is powered down.  
2.1.20 Backup Real Time Counter (BURTC)  
The Backup Real Time Counter (BURTC) contains a 32-bit counter and is clocked either by a 32.768 kHz  
crystal oscillator, a 32.768 kHz RC oscillator or a 1 kHz ULFRCO. The BURTC is available in all Energy  
Modes and it can also run in backup mode, making it operational even if the main power should drain out.  
2.1.21 Low Energy Timer (LETIMER)  
The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2  
in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most  
of the device is powered down, allowing simple tasks to be performed while the power consumption of  
the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms  
with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be  
configured to start counting on compare matches from the RTC.  
2.1.22 Pulse Counter (PCNT)  
The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature  
encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source.  
The module may operate in energy mode EM0 – EM3.  
2.1.23 Analog Comparator (ACMP)  
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indi-  
cating which input voltage is higher. Inputs can either be one of the selectable internal references or from  
external pins. Response time and thereby also the current consumption can be configured by altering  
the current supply to the comparator.  
2.1.24 Voltage Comparator (VCMP)  
The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can  
be generated when the supply falls below or rises above a programmable threshold. Response time and  
thereby also the current consumption can be configured by altering the current supply to the comparator.  
2.1.25 Analog to Digital Converter (ADC)  
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits  
at up to one million samples per second. The integrated input mux can select inputs from 8 external  
pins and 6 internal signals.  
2.1.26 Digital to Analog Converter (DAC)  
The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC  
is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be  
combined into one differential output. The DAC may be used for a number of different applications such  
as sensor interfaces or sound output.  
2.1.27 Operational Amplifier (OPAMP)  
The EFM32GG990 features 3 Operational Amplifiers. The Operational Amplifier is a versatile general  
purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
6
Preliminary  
...the world's most energy friendly microcontrollers  
to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable  
and the OPAMP has various internal configurations such as unity gain, programmable gain using internal  
resistors etc.  
2.1.28 Low Energy Sensor Interface (LESENSE)  
The Low Energy Sensor Interface (LESENSETM), is a highly configurable sensor interface with support  
for up to 16 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE  
is capable of supporting a wide range of sensors and measurement schemes, and can for instance mea-  
sure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable  
FSM which enables simple processing of measurement results without CPU intervention. LESENSE is  
available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in  
applications with a strict energy budget.  
2.1.29 Backup Power Domain  
The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC,  
and a set of retention registers, available in all energy modes. This power domain can be configured to  
automatically change power source to a backup battery when the main power drains out. The backup  
power domain enables the EFM32GG990 to keep track of time and retain data, even if the main power  
source should drain out.  
2.1.30 Advanced Encryption Standard Accelerator (AES)  
The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or  
decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK  
cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data  
and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit  
operations are not supported.  
2.1.31 General Purpose Input/Output (GPIO)  
In the EFM32GG990, there are 86 General Purpose Input/Output (GPIO) pins, which are divided into  
ports with up to 16 pins each. These pins can individually be configured as either an output or input. More  
advances configurations like open-drain, filtering and drive strength can also be configured individually  
for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM  
outputs or USART communication, which can be routed to several locations on the device. The GPIO  
supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the  
device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other  
peripherals.  
2.1.32 Liquid Crystal Display Driver (LCD)  
The LCD driver is capable of driving a segmented LCD display with up to segments. A voltage boost  
function enables it to provide the LCD display with higher voltage than the supply voltage for the device.  
In addition, an animation feature can run custom animations on the LCD display without any CPU inter-  
vention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter  
interrupt that can wake-up the device on a regular basis for updating data.  
2.2 Configuration Summary  
The features of the EFM32GG990 is a subset of the feature set described in the EFM32GG Reference  
Manual. Table 2.1 (p. 7) describes device specific implementation of the features.  
Table 2.1. Configuration Summary  
Module  
Configuration  
Pin Connections  
Cortex-M3  
Full configuration  
NA  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
7
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Module  
Configuration  
Pin Connections  
DBG  
Full configuration  
DBG_SWCLK, DBG_SWDIO,  
DBG_SWO  
MSC  
DMA  
RMU  
EMU  
CMU  
WDOG  
PRS  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
NA  
NA  
NA  
CMU_OUT0, CMU_OUT1  
NA  
NA  
USB  
USB_VBUS, USB_VBUSEN,  
USB_VREGI, USB_VREGO, USB_DM,  
USB_DMPU, USB_DP, USB_ID  
EBI  
Full configuration  
EBI_A[27:0], EBI_AD[15:0], EBI_ARDY,  
EBI_ALE, EBI_BL[1:0], EBI_CS[3:0],  
EBI_CSTFT, EBI_DCLK, EBI_DTEN,  
EBI_HSNC, EBI_NANDREn,  
EBI_NANDWEn, EBI_REn, EBI_VSNC,  
EBI_WEn  
I2C0  
Full configuration  
Full configuration  
IrDA  
I2C0_SDA, I2C0_SCL  
I2C1_SDA, I2C1_SCL  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
US2_TX, US2_RX, US2_CLK, US2_CS  
U0_TX, U0_RX  
I2C1  
USART0  
USART1  
USART2  
UART0  
UART1  
LEUART0  
LEUART1  
TIMER0  
TIMER1  
TIMER2  
TIMER3  
RTC  
I2S  
I2S  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration with DTI.  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
U1_TX, U1_RX  
LEU0_TX, LEU0_RX  
LEU1_TX, LEU1_RX  
TIM0_CC[2:0], TIM0_CDTI[2:0]  
TIM1_CC[2:0]  
TIM2_CC[2:0]  
TIM3_CC[2:0]  
NA  
BURTC  
LETIMER0  
PCNT0  
PCNT1  
PCNT2  
ACMP0  
ACMP1  
VCMP  
NA  
LET0_O[1:0]  
PCNT0_S[1:0]  
8-bit count register  
8-bit count register  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
PCNT1_S[1:0]  
PCNT2_S[1:0]  
ACMP0_CH[7:0], ACMP0_O  
ACMP1_CH[7:0], ACMP1_O  
NA  
ADC0  
ADC0_CH[7:0]  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
8
Preliminary  
...the world's most energy friendly microcontrollers  
Module  
DAC0  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
DAC0_OUT[1:0], DAC0_OUTxALT  
OPAMP  
Outputs: OPAMP_OUTx,  
OPAMP_OUTxALT, Inputs:  
OPAMP_Px, OPAMP_Nx  
AES  
Full configuration  
86 pins  
NA  
GPIO  
Available pins are shown in  
Table 4.3 (p. 58)  
LCD  
Full configuration  
LCD_SEG[33:0], LCD_COM[7:0],  
LCD_BCAP_P, LCD_BCAP_N,  
LCD_BEXT  
2.3 Memory Map  
The EFM32GG990 memory map is shown in Figure 2.2 (p. 9), with RAM and Flash sizes for the  
largest memory configuration.  
Figure 2.2. EFM32GG990 Memory Map with largest RAM and Flash sizes  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
9
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3 Electrical Characteristics  
3.1 Test Conditions  
3.1.1 Typical Values  
The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 10), by simu-  
lation and/or technology characterisation unless otherwise specified.  
3.1.2 Minimum and Maximum Values  
The minimum and maximum values represent the worst conditions of ambient temperature, supply volt-  
age and frequencies, as defined in Table 3.2 (p. 10), by simulation and/or technology characterisa-  
tion unless otherwise specified.  
3.2 Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings, and functional operation under such conditions are  
not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 10) may affect the device reliability  
or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p.  
10) .  
Table 3.1. Absolute Maximum Ratings  
Symbol  
TSTG  
TS  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1501 °C  
Storage temperature range  
-40  
Maximum soldering tem-  
perature  
Latest IPC/JEDEC J-STD-020  
Standard  
260 °C  
VDDMAX  
External main supply volt-  
age  
0
3.8  
V
VIOPIN  
Voltage on any I/O pin  
-0.3  
VDD+0.3  
V
1Based on programmed devices tested for 10000 hours at 150ºC. Storage temperature affects retention of preprogrammed cal-  
ibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data re-  
tention for different temperatures.  
3.3 General Operating Conditions  
3.3.1 General Operating Conditions  
Table 3.2. General Operating Conditions  
Symbol  
TAMB  
VDDOP  
fAPB  
Parameter  
Min  
Typ  
Max  
Unit  
85 °C  
3.8  
Ambient temperature range  
Operating supply voltage  
Internal APB clock frequency  
Internal AHB clock frequency  
-40  
1.85  
V
48 MHz  
48 MHz  
fAHB  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
10  
 
 
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.3.2 Environmental  
Table 3.3. Environmental  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VESDHBM  
ESD (Human Body Model  
HBM)  
TAMB=25°C  
2
1
kV  
VESDCDM  
ESD (Charged Device  
Model, CDM)  
TAMB=25°C  
kV  
Latch-up sensitivity test passed level A according to JEDEC JESD 78B method Class II, 85°C.  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
11  
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.4 Current Consumption  
Table 3.4. Current Consumption  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
32 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V  
200  
201  
203  
204  
207  
212  
244  
50  
µA/  
MHz  
28 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
261 µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
263 µA/  
MHz  
EM0 current. No prescal-  
ing. Running prime num-  
ber calculation code from  
Flash.  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
270 µA/  
MHz  
IEM0  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
273 µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
282 µA/  
MHz  
1.2 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
µA/  
MHz  
32 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V  
µA/  
MHz  
28 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
52  
69 µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
53  
71 µA/  
MHz  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
56  
77 µA/  
MHz  
IEM1  
EM1 current  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
57  
80 µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
62  
92 µA/  
MHz  
1.2 MHz HFRCO. all peripher-  
al clocks disabled, VDD= 3.0 V  
114  
1.1  
µA/  
MHz  
EM2 current with RTC at 1  
Hz, RTC prescaled to 1kHz,  
32.768 kHz LFRCO, VDD= 3.0  
V, TAMB=25°C  
µA  
IEM2  
EM2 current  
EM2 current with RTC at 1  
Hz, RTC prescaled to 1kHz,  
32.768 kHz LFRCO, VDD= 3.0  
V, TAMB=85°C  
4.0  
8.0 µA  
VDD= 3.0 V, TAMB=25°C  
VDD= 3.0 V, TAMB=85°C  
VDD= 3.0 V, TAMB=25°C  
VDD= 3.0 V, TAMB=85°C  
0.9  
3.8  
µA  
7.8 µA  
µA  
IEM3  
EM3 current  
EM4 current  
0.02  
0.25  
IEM4  
0.7 µA  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
12  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.5 Transition between Energy Modes  
Table 3.5. Energy Modes Transitions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tEM10  
Transition time from EM1 to EM0  
01  
HF  
core  
CLK  
cycles  
tEM20  
tEM30  
tEM40  
Transition time from EM2 to EM0  
Transition time from EM3 to EM0  
Transition time from EM4 to EM0  
2
2
µs  
µs  
µs  
163  
1Core wakeup time only.  
3.6 Power Management  
Table 3.6. Power Management  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VBODextthr-  
BOD threshold on falling  
external supply voltage  
1.82  
1.85  
V
VBODintthr-  
BOD threshold on falling  
internally regulated supply  
voltage  
1.62  
1.68  
V
VBODextthr+  
BOD threshold on rising ex-  
ternal supply voltage  
1.85  
V
V
VPORthr+  
Power-on Reset (POR)  
threshold on rising external  
supply voltage  
1.98  
tRESET  
Delay from reset is re-  
leased until program execu- Brown-out Reset and pin re-  
tion starts  
Applies to Power-on Reset,  
163  
1
µs  
µF  
µF  
µF  
set.  
CDECOUPLE  
CUSB_VREGO  
CUSB_VREGI  
Voltage regulator decou-  
pling capacitor.  
X5R capacitor recommended.  
Apply between DECOUPLE  
pin and GROUND  
USB voltage regulator out  
decoupling capacitor.  
X5R capacitor recommended.  
Apply between USB_VREGO  
pin and GROUND  
1
USB voltage regulator in  
decoupling capacitor.  
X5R capacitor recommended.  
Apply between USB_VREGI  
pin and GROUND  
4.7  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
13  
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.7 Flash  
Table 3.7. Flash  
Symbol  
Parameter  
Flash erase cycles before  
Condition  
Min  
Typ  
Max  
Unit  
ECFLASH  
20000  
cycles  
failure  
TAMB<150°C  
TAMB<85°C  
TAMB<70°C  
10000  
10  
h
RETFLASH  
Flash data retention  
years  
years  
µs  
20  
tW_PROG  
Word (32-bit) programming  
time  
20  
< 512KB  
20  
20  
40  
40  
20.4  
20.4  
40.4  
40.8  
20.8 ms  
tPERASE  
tDERASE  
IERASE  
Page erase time  
Device erase time  
Erase current  
>= 512KB, LPERASE == 0  
>= 512KB, LPERASE == 1  
< 512KB  
20.8 ms  
40.8 ms  
41.6 ms  
161.6 ms  
71 mA  
>= 512KB  
< 512KB  
>= 512KB, LPERASE == 0  
>= 512KB, LPERASE == 1  
< 512KB  
141 mA  
71 mA  
71 mA  
IWRITE  
Write current  
>= 512KB, LPWRITE == 0  
>= 512KB, LPWRITE == 1  
141 mA  
71 mA  
VFLASH  
Supply voltage during flash  
erase and write  
1.8  
3.8 V  
1Measured at 25°C  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
14  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.8 General Purpose Input Output  
Table 3.8. GPIO  
Symbol  
VIOIL  
Parameter  
Condition  
Min  
Typ  
Max  
0.3VDD  
Unit  
V
Input low voltage  
Input high voltage  
VIOIH  
0.7VDD  
V
Sourcing 6 mA, VDD=1.8V,  
GPIO_Px_CTRL DRIVE-  
MODE = STANDARD  
0.75VDD  
0.95VDD  
0.7VDD  
0.9VDD  
V
Sourcing 6 mA, VDD=3.0V,  
GPIO_Px_CTRL DRIVE-  
MODE = STANDARD  
V
V
V
V
V
V
V
VIOOH  
Output high voltage  
Sourcing 20 mA, VDD=1.8V,  
GPIO_Px_CTRL DRIVE-  
MODE = HIGH  
Sourcing 20 mA, VDD=3.0V,  
GPIO_Px_CTRL DRIVE-  
MODE = HIGH  
Sinking 6 mA, VDD=1.8V,  
GPIO_Px_CTRL DRIVE-  
MODE = STANDARD  
0.25VDD  
0.05VDD  
0.3VDD  
0.1VDD  
Sinking 6 mA, VDD=3.0V,  
GPIO_Px_CTRL DRIVE-  
MODE = STANDARD  
VIOOL  
Output low voltage  
Sinking 20 mA, VDD=1.8V,  
GPIO_Px_CTRL DRIVE-  
MODE = HIGH  
Sinking 20 mA, VDD=3.0V,  
GPIO_Px_CTRL DRIVE-  
MODE = HIGH  
IIOLEAK  
Input leakage current  
High Impedance IO connect-  
ed to GROUND or Vdd  
+/-25 nA  
RPU  
I/O pin pull-up resistor  
40  
40  
kOhm  
kOhm  
Ohm  
RPD  
I/O pin pull-down resistor  
Internal ESD series resistor  
RIOESD  
tIOGLITCH  
200  
Pulse width of pulses to be  
removed by the glitch sup-  
pression filter  
10  
50 ns  
0.5 mA drive strength  
and load capacitance  
CL=12.5-25pF.  
20+0.1CL  
250 ns  
tIOOF  
Output fall time  
2mA drive strength and load  
capacitance CL=350-600pF  
20+0.1CL  
0.1VDD  
250 ns  
V
VIOHYST  
I/O pin hysteresis (VIOTHR+  
VDD = 1.8 - 3.8 V  
- VIOTHR-  
)
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
15  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.1. Typical Low-Level Output Current, 2V Supply Voltage  
0.20  
0.15  
0.10  
0.05  
0.00  
5
4
3
2
1
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
20  
45  
40  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
-40°C  
25°C  
-40°C  
25°C  
85°C  
85°C  
0
0.0  
0
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
16  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.2. Typical High-Level Output Current, 2V Supply Voltage  
0.00  
0.05  
0.10  
0.15  
0.20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
–5  
10  
15  
20  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
17  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.3. Typical Low-Level Output Current, 3V Supply Voltage  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
10  
8
6
4
2
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
40  
35  
30  
25  
20  
15  
10  
50  
40  
30  
20  
10  
0
5
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
18  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.4. Typical High-Level Output Current, 3V Supply Voltage  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
19  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.5. Typical Low-Level Output Current, 3.8V Supply Voltage  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
14  
12  
10  
8
6
4
2
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
0
-40°C  
25°C  
-40°C  
25°C  
85°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
20  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.6. Typical High-Level Output Current, 3.8V Supply Voltage  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
21  
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.9 Oscillators  
3.9.1 LFXO  
Table 3.9. LFXO  
Symbol  
Parameter  
Supported nominal crystal  
Condition  
Min  
Typ  
32.768  
Max  
Unit  
fLFXO  
kHz  
frequency  
ESRLFXO  
Supported crystal equiv-  
alent series resistance  
(ESR)  
30  
120 kOhm  
25 pF  
CLFXOL  
Supported crystal external  
load range  
5
DCLFXO  
ILFXO  
Duty cycle  
48  
50  
53.5  
%
Current consumption for  
core and buffer after start-  
up.  
ESR=30 kOhm, CL=10 pF,  
LFXOBOOST in CMU_CTRL  
is 1  
190  
nA  
tLFXO  
Start- up time.  
ESR=30 kOhm, CL=10 pF,  
40% - 60% duty cycle has  
been reached, LFXOBOOST  
in CMU_CTRL is 1  
400  
ms  
For safe startup of a given crystal, the load capacitance should be larger than the value indicated in  
Figure 3.7 (p. 22) and in Table 3.10 (p. 23) for a given LFXOBOOST setting. The minimum  
supported load capacitance depends on the crystal shunt capacitance, C0, which is specified in crystal  
vendors’ datasheet.  
Figure 3.7. Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup  
20  
LFXOBOOST= 0,REDLFXOBOOST= 1  
LFXOBOOST= 0,REDLFXOBOOST= 0  
18  
LFXOBOOST= 1,REDLFXOBOOST= 1  
LFXOBOOST= 1,REDLFXOBOOST= 0  
16  
14  
12  
10  
8
6
4
2
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
C0 [pF]  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
22  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Table 3.10. Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup  
Symbol  
Capacitance [pF]  
Shunt Capacitance C0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0  
CLmin lfxoboost = 0  
redlfxoboost = 1  
3.7 4.0 4.3 4.5 4.8 5.0 5.3 5.5 5.7 5.9 6.0 6.2 6.4 6.5 6.7 6.9  
7.3 7.7 8.2 8.6 9.0 9.3 9.6 10.0 10.3 10.5 10.8 11.1 11.3 11.6 11.8 12.1  
10.0 10.6 11.1 11.6 12.1 12.6 13.0 13.4 13.8 14.1 14.5 14.8 15.1 15.4 15.7 16.0  
12.5 13.2 13.9 14.5 15.0 15.5 16.0 16.5 16.9 17.4 17.8 18.2 18.5 18.9 19.3 19.6  
CLmin lfxoboost = 1  
redlfxoboost = 0  
CLmin lfxoboost = 1  
redlfxoboost = 1  
CLmin lfxoboost = 1  
redlfxoboost = 0  
3.9.2 HFXO  
Table 3.11. HFXO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fHFXO  
Supported nominal crystal  
Frequency  
4
48 MHz  
Supported crystal equiv-  
alent series resistance  
(ESR)  
Crystal frequency 32 MHz  
Crystal frequency 4 MHz  
30  
60 Ohm  
ESRHFXO  
400  
1500 Ohm  
gmHFXO  
The transconductance of  
the HFXO input transistor  
at crystal startup  
HFXOBOOST in CMU_CTRL  
equals 0b11  
20  
mS  
CHFXOL  
Supported crystal external  
load range  
5
25 pF  
DCHFXO  
Duty cycle  
46  
50  
85  
54  
%
4 MHz: ESR=400 Ohm,  
CL=20 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
µA  
Current consumption for  
HFXO after startup  
IHFXO  
32 MHz: ESR=30 Ohm,  
CL=10 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
165  
400  
µA  
µs  
tHFXO  
Startup time  
32 MHz: ESR=30 Ohm,  
CL=10 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
3.9.3 LFRCO  
Table 3.12. LFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fLFRCO  
Oscillation frequency ,  
VDD= 3.0 V, TAMB=25°C  
32.768  
kHz  
tLFRCO  
Startup time not including  
software calibration  
150  
µs  
ILFRCO  
Current consumption  
190  
1.5  
nA  
%
TUNESTEPL- Frequency step for LSB  
change in TUNING value  
FRCO  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
23  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.8. Calibrated LFRCO Frequency vs Temperature and Supply Voltage  
42  
40  
38  
36  
34  
32  
30  
42  
40  
38  
36  
34  
32  
30  
-40°C  
25°C  
85°C  
1.8 V  
3 V  
3.8 V  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
3.9.4 HFRCO  
Table 3.13. HFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
28  
Max  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Cycles  
µA  
28 MHz frequency band  
21 MHz frequency band  
14 MHz frequency band  
11 MHz frequency band  
7 MHz frequency band  
1 MHz frequency band  
fHFRCO = 14 MHz  
21  
14  
Oscillation frequency, VDD  
3.0 V, TAMB=25°C  
=
fHFRCO  
11  
6.61  
1.22  
0.6  
106  
93  
tHFRCO_settling Settling time after start-up  
fHFRCO = 28 MHz  
fHFRCO = 21 MHz  
µA  
fHFRCO = 14 MHz  
77  
µA  
IHFRCO  
Current consumption  
fHFRCO = 11 MHz  
72  
µA  
fHFRCO = 6.6 MHz  
63  
µA  
fHFRCO = 1.2 MHz  
22  
µA  
DCHFRCO  
Duty cycle  
fHFRCO = 14 MHz  
48.5  
50  
51  
%
TUNESTEPH- Frequency step for LSB  
0.3  
%
change in TUNING value  
FRCO  
17 MHz for devices with prod. rev. < 19.  
21 MHz for devices with prod. rev. < 19.  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
24  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.9. Calibrated HFRCO 11 MHz Band Frequency vs Temperature and Supply Voltage  
11.15  
11.10  
11.05  
11.00  
10.95  
10.90  
10.85  
10.80  
11.20  
11.15  
11.10  
11.05  
11.00  
10.95  
10.90  
10.85  
10.80  
1.8 V  
3 V  
3.8 V  
-40°C  
25°C  
85°C  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.10. Calibrated HFRCO 14 MHz Band Frequency vs Temperature and Supply Voltage  
14.15  
14.10  
14.05  
14.00  
13.95  
13.90  
13.85  
14.15  
14.10  
14.05  
14.00  
13.95  
13.90  
13.85  
-40°C  
25°C  
85°C  
1.8 V  
3 V  
3.8 V  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.11. Calibrated HFRCO 21 MHz Band Frequency vs Temperature and Supply Voltage  
21.2  
21.1  
21.0  
20.9  
20.8  
20.7  
20.6  
21.2  
21.1  
21.0  
20.9  
20.8  
20.7  
20.6  
-40°C  
25°C  
85°C  
1.8 V  
3 V  
3.8 V  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
25  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.12. Calibrated HFRCO 28 MHz Band Frequency vs Temperature and Supply Voltage  
28.1  
28.0  
27.9  
27.8  
27.7  
27.6  
27.5  
27.4  
28.1  
28.0  
27.9  
27.8  
27.7  
27.6  
27.5  
27.4  
1.8 V  
3 V  
3.8 V  
-40°C  
25°C  
85°C  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
3.9.5 ULFRCO  
Table 3.14. ULFRCO  
Symbol  
fULFRCO  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Oscillation frequency  
25°C, 3V  
0.8  
1.5 kHz  
%/°C  
TCULFRCO  
VCULFRCO  
Temperature coefficient  
Supply voltage coefficient  
0.05  
-18.2  
%/V  
3.10 Analog Digital Converter (ADC)  
Table 3.15. ADC  
Symbol  
VADCIN  
Parameter  
Condition  
Single ended  
Differential  
Min  
Typ  
Max  
Unit  
0
VREF  
VREF/2  
V
V
V
Input voltage range  
-VREF/2  
1.25  
VADCREFIN  
Input range of external ref-  
erence voltage, single end-  
ed and differential  
VDD  
VDD - 1.1  
VDD  
VADCREFIN_CH7 Input range of external neg- See VADCREFIN  
0
0.625  
0
V
V
ative reference voltage on  
channel 7  
VADCREFIN_CH6 Input range of external pos- See VADCREFIN  
itive reference voltage on  
channel 6  
VADCCMIN  
IADCIN  
Common mode input range  
Input current  
VDD  
V
2pF sampling capacitors  
<100  
65  
nA  
dB  
CMRRADC  
Analog input common  
mode rejection ratio  
1 MSamples/s, 12 bit, exter-  
nal reference  
351  
67  
µA  
µA  
IADC  
Average active current  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
26  
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
MODE in ADCn_CTRL set to  
0b00  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b01  
63  
64  
µA  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b10  
µA  
µA  
IADCREF  
Current consumption of in-  
ternal voltage reference  
Internal voltage reference  
65  
2
CADCIN  
Input capacitance  
pF  
RADCIN  
Input ON resistance  
Input RC filter resistance  
1
MOhm  
kOhm  
fF  
RADCFILT  
CADCFILT  
10  
Input RC filter/decoupling  
capacitance  
250  
fADCCLK  
ADC Clock Frequency  
13 MHz  
6 bit  
7
11  
13  
1
ADC-  
CLK  
Cycles  
10 bit  
ADC-  
CLK  
Cycles  
tADCCONV  
Conversion time  
12 bit  
ADC-  
CLK  
Cycles  
tADCACQ  
Acquisition time  
Programmable  
256 ADC-  
CLK  
Cycles  
tADCACQVDD3  
Required acquisition time  
for VDD/3 reference  
2
µs  
Startup time of reference  
generator and ADC core in  
NORMAL mode  
5
1
µs  
tADCSTART  
Startup time of reference  
generator and ADC core in  
KEEPADCWARM mode  
µs  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
59  
63  
dB  
dB  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V refer-  
ence  
Signal to Noise Ratio  
(SNR)  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
65  
60  
dB  
dB  
SNRADC  
1 MSamples/s, 12 bit, differ-  
ential, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
65  
dB  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
27  
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1 MSamples/s, 12 bit, differ-  
ential, 5V reference  
54  
67  
69  
62  
dB  
1 MSamples/s, 12 bit, differ-  
ential, VDD reference  
dB  
dB  
dB  
1 MSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V ref-  
erence  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 2.5V refer-  
ence  
63  
dB  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
67  
63  
dB  
dB  
200 kSamples/s, 12 bit, dif-  
ferential, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
66  
66  
69  
70  
58  
dB  
dB  
dB  
dB  
dB  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V refer-  
ence  
62  
dB  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
64  
60  
dB  
dB  
1 MSamples/s, 12 bit, differ-  
ential, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
64  
54  
66  
68  
61  
dB  
dB  
dB  
dB  
dB  
Signal to Noise-puls-Distor-  
tion Ratio (SNDR)  
SNDRADC  
1 MSamples/s, 12 bit, differ-  
ential, 5V reference  
1 MSamples/s, 12 bit, differ-  
ential, VDD reference  
1 MSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V ref-  
erence  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 2.5V refer-  
ence  
65  
dB  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
28  
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
66  
63  
dB  
200 kSamples/s, 12 bit, dif-  
ferential, internal 1.25V refer-  
ence  
dB  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
66  
66  
68  
69  
64  
dB  
dB  
dB  
dB  
dBc  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V refer-  
ence  
76  
dBc  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
73  
66  
dBc  
dBc  
1 MSamples/s, 12 bit, differ-  
ential, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
77  
76  
75  
69  
75  
dBc  
dBc  
dBc  
dBc  
dBc  
1 MSamples/s, 12 bit, differ-  
ential, VDD reference  
1 MSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
1 MSamples/s, 12 bit, differ-  
ential, 5V reference  
Spurious-Free Dynamic  
Range (SFDR)  
SFDRADC  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V ref-  
erence  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 2.5V refer-  
ence  
75  
dBc  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
76  
79  
dBc  
dBc  
200 kSamples/s, 12 bit, dif-  
ferential, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
79  
78  
79  
dBc  
dBc  
dBc  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
29  
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
79  
dBc  
After calibration, single ended  
After calibration, differential  
0.3  
0.3  
mV  
VADCOFFSET  
Offset voltage  
mV  
-1.92  
-6.3  
mV/°C  
Thermometer output gradi-  
ent  
ADC  
Codes/  
°C  
TGRADADCTH  
DNLADC  
INLADC  
MCADC  
GAINED  
Differential non-linearity  
(DNL)  
±0.7  
±1.2  
12  
LSB  
LSB  
bits  
Integral non-linearity (INL),  
End point method  
No missing codes  
11.9991  
1.25V reference  
2.5V reference  
1.25V reference  
2.5V reference  
0.012  
0.012  
0.22  
0.0333 %/°C  
Gain error drift  
0.033 %/°C  
0.73 LSB/°C  
0.623 LSB/°C  
OFFSETED  
Offset error drift  
0.22  
1On the average every ADC will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in  
the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic  
at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is  
missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale  
input for chips that have the missing code issue.  
2Typical numbers given by abs(Mean) / (85 - 25).  
3Max number given by (abs(Mean) + 3x stddev) / (85 - 25).  
The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.13 (p.  
30) and Figure 3.14 (p. 31) , respectively.  
Figure 3.13. Integral Non-Linearity (INL)  
Digital ouput code  
INL= |[(VD-VSS)/VLSBIDEAL] - D| where 0 < D < 2N - 1  
4095  
4094  
Actual ADC  
tranfer function  
before offset and  
4093  
Actual ADC  
gain correction  
4092  
tranfer function  
after offset and  
gain correction  
INL Error  
(End Point INL)  
Ideal transfer  
curve  
3
2
1
0
VOFFSET  
Analog Input  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
30  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.14. Differential Non-Linearity (DNL)  
Digital  
ouput  
DNL= |[(VD+ 1 - VD)/VLSBIDEAL] - 1| where 0 < D < 2N - 2  
code  
4095  
4094  
4093  
4092  
Full Scale Range  
Example: Adjacent  
input value VD+ 1  
corrresponds to digital  
output code D+ 1  
Actual transfer  
function with one  
missing code.  
Example: Input value  
VD corrresponds to  
digital output code D  
Code width = 2 LSB  
DNL= 1 LSB  
Ideal transfer  
curve  
0.5  
LSB  
Ideal spacing  
between two  
adjacent codes  
VLSBIDEAL= 1 LSB  
5
4
3
2
1
0
Ideal 50%  
Transition Point  
Ideal Code Center  
Analog Input  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
31  
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.10.1 Typical performance  
Figure 3.15. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°  
0
0
20  
20  
40  
60  
40  
60  
80  
80  
100  
120  
140  
160  
180  
100  
120  
140  
160  
0
0
0
20  
40  
60  
80  
0
20  
40  
60  
80  
Frequency [kHz]  
Frequency [kHz]  
1.25V Reference  
2.5V Reference  
0
0
20  
40  
20  
40  
60  
60  
80  
80  
100  
120  
140  
160  
180  
100  
120  
140  
160  
20  
40  
60  
80  
0
20  
40  
60  
80  
Frequency [kHz]  
Frequency [kHz]  
2XVDDVSS Reference  
5VDIFF Reference  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
20  
40  
60  
80  
Frequency [kHz]  
VDD Reference  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
32  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.16. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°  
1.5  
1.0  
1.5  
1.0  
0.5  
0.5  
0.0  
0.0  
0.5  
1.0  
0.5  
1.0  
0
512  
512  
512  
1024  
1536  
2048  
2560  
3072  
3584  
3584  
3584  
4096  
4096  
4096  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
Output code  
Output code  
1.25V Reference  
2.5V Reference  
0.8  
0.6  
1.0  
0.5  
0.4  
0.2  
0.0  
0.0  
0.2  
0.4  
0.6  
0.5  
0
1024  
1536  
2048  
2560  
3072  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
Output code  
Output code  
2XVDDVSS Reference  
5VDIFF Reference  
0.8  
0.6  
0.4  
0.2  
0.0  
0.2  
0.4  
0.6  
0.8  
0
1024  
1536  
2048  
2560  
3072  
Output code  
VDD Reference  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
33  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.17. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°  
1.0  
0.5  
1.0  
0.5  
0.0  
0.0  
0.5  
1.0  
0.5  
1.0  
0
0
0
512  
512  
512  
1024  
1536  
2048  
2560  
3072  
3584  
3584  
3584  
4096  
4096  
4096  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
Output code  
Output code  
1.25V Reference  
2.5V Reference  
1.0  
0.5  
1.0  
0.5  
0.0  
0.0  
0.5  
1.0  
0.5  
1.0  
1024  
1536  
2048  
2560  
3072  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
Output code  
Output code  
2XVDDVSS Reference  
5VDIFF Reference  
1.0  
0.5  
0.0  
0.5  
1.0  
1024  
1536  
2048  
2560  
3072  
Output code  
VDD Reference  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
34  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.18. ADC Absolute Offset, Common Mode = Vdd /2  
5
4
3
2
1
0
2.0  
1.5  
Vref= 1V25  
VRef= 1V25  
Vref= 2V5  
VRef= 2V5  
Vref= 2XVDDVSS  
Vref= 5VDIFF  
Vref= VDD  
VRef= 2XVDDVSS  
VRef= 5VDIFF  
VRef= VDD  
1.0  
0.5  
–1  
0.0  
–2  
–3  
–4  
0.5  
1.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd (V)  
Temp (C)  
Offset vs Supply Voltage, Temp = 25°  
Offset vs Temperature, Vdd = 3V  
Figure 3.19. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V  
71  
70  
69  
68  
67  
66  
65  
64  
63  
79.4  
79.2  
79.0  
78.8  
78.6  
78.4  
78.2  
78.0  
2XVDDV  
Vdd  
1V25  
Vdd  
2V5  
5VDIFF  
2V5  
2XVDDV  
5VDIFF  
85  
1V25  
40  
15  
5
25  
45  
65  
85  
40  
15  
5
25  
45  
65  
Temperature [°C]  
Temperature [°C]  
Signal to Noise Ratio (SNR)  
Spurious-Free Dynamic Range (SFDR)  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
35  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.20. ADC Temperature sensor readout  
2600  
Vdd= 1.8  
Vdd= 3  
Vdd= 3.8  
2500  
2400  
2300  
2200  
2100  
40  
25 15 5  
5
15 25 35 45 55 65 75 85  
Temperature [°C]  
3.11 Digital Analog Converter (DAC)  
Table 3.16. DAC  
Symbol  
VDACOUT  
VDACCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VDD voltage reference, single  
ended  
0
-VDD  
0
VDD  
VDD  
VDD  
V
Output voltage range  
VDD voltage reference, differ-  
ential  
V
V
Output common mode volt-  
age range  
500 kSamples/s, 12bit  
400  
200  
38  
µA  
µA  
µA  
Active current including ref-  
erences for 2 channels  
IDAC  
100 kSamples/s, 12 bit  
1 kSamples/s 12 bit NORMAL  
SRDAC  
Sample rate  
500 ksam-  
ples/s  
Continuous Mode  
Sample/Hold Mode  
Sample/Off Mode  
1000 kHz  
250 kHz  
250 kHz  
fDAC  
DAC clock frequency  
CYCDACCONV Clock cyckles per conver-  
sion  
2
tDACCONV  
Conversion time  
Settling time  
2
µs  
µs  
dB  
tDACSETTLE  
5
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V ref-  
erence  
58  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 2.5V refer-  
ence  
59  
58  
dB  
dB  
Signal to Noise Ratio  
(SNR)  
SNRDAC  
500 kSamples/s, 12 bit, dif-  
ferential, internal 1.25V refer-  
ence  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
36  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
58  
59  
57  
dB  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
dB  
dB  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V ref-  
erence  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 2.5V refer-  
ence  
54  
56  
dB  
dB  
Signal to Noise-pulse Dis-  
tortion Ratio (SNDR)  
SNDRDAC  
500 kSamples/s, 12 bit, dif-  
ferential, internal 1.25V refer-  
ence  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
53  
55  
62  
dB  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
dB  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V ref-  
erence  
dBc  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 2.5V refer-  
ence  
56  
61  
dBc  
dBc  
Spurious-Free Dynamic  
Range(SFDR)  
SFDRDAC  
500 kSamples/s, 12 bit, dif-  
ferential, internal 1.25V refer-  
ence  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
55  
60  
dBc  
dBc  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
After calibration, single ended  
After calibration, differential  
2
2
mV  
VDACOFFSET  
Offset voltage  
mV  
DNLDAC  
INLDAC  
MCDAC  
Differential non-linearity  
Integral non-linearity  
No missing codes  
±1  
±5  
12  
LSB  
LSB  
bits  
3.12 Operational Amplifier (OPAMP)  
The electrical characteristics for the Operational Amplifiers are based on simulations.  
Table 3.17. OPAMP  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0, Unity  
Gain  
400  
100  
µA  
IOPAMP  
Active Current  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1, Unity  
Gain  
µA  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
37  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1, Unity  
Gain  
13  
µA  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0  
101  
98  
dB  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1  
dB  
GOL  
Open Loop Gain  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1  
91  
dB  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0  
6.1  
1.8  
0.25  
64  
MHz  
MHz  
MHz  
°
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1  
GBWOPAMP  
Gain Bandwidth Product  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0,  
CL=75 pF  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1,  
CL=75 pF  
58  
58  
°
°
PMOPAMP  
Phase Margin  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1,  
CL=75 pF  
RINPUT  
RLOAD  
Input Resistance  
Load Resistance  
DC Load Current  
100  
Mohm  
Ohm  
200  
ILOAD_DC  
11 mA  
OPAxHCMDIS=0  
OPAxHCMDIS=1  
VSS  
VSS  
VSS  
VDD  
V
VINPUT  
Input Voltage  
VDD-1.2  
VDD  
V
VOUTPUT  
Output Voltage  
V
Unity Gain, VSS<Vin<DD  
OPAxHCMDIS=0  
,
6
1
mV  
VOFFSET  
Input Offset Voltage  
Unity Gain, VSS<Vin<DD-1.2,  
OPAxHCMDIS=1  
mV  
VOFFSET_DRIFT Input Offset Voltage Drift  
0.02 mV/°C  
V/µs  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0  
3.2  
0.8  
0.1  
101  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1  
V/µs  
SROPAMP  
Slew Rate  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1  
V/µs  
Vout=1V, RESSEL=0,  
0.1 Hz<f<10 kHz, OPAx-  
HCMDIS=0  
µVRMS  
NOPAMP  
Voltage Noise  
Vout=1V, RESSEL=0,  
0.1 Hz<f<10 kHz, OPAx-  
HCMDIS=1  
141  
µVRMS  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
38  
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Vout=1V, RESSEL=0,  
0.1 Hz<f<1 MHz, OPAx-  
HCMDIS=0  
196  
229  
µVRMS  
Vout=1V, RESSEL=0,  
0.1 Hz<f<1 MHz, OPAx-  
HCMDIS=1  
µVRMS  
RESSEL=7, 0.1 Hz<f<10 kHz,  
OPAxHCMDIS=0  
1230  
2130  
1630  
2590  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
RESSEL=7, 0.1 Hz<f<10 kHz,  
OPAxHCMDIS=1  
RESSEL=7, 0.1 Hz<f<1 MHz,  
OPAxHCMDIS=0  
RESSEL=7, 0.1 Hz<f<1 MHz,  
OPAxHCMDIS=1  
Figure 3.21. OPAMP Common Mode Rejection Ratio  
Figure 3.22. OPAMP Positive Power Supply Rejection Ratio  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
39  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.23. OPAMP Negative Power Supply Rejection Ratio  
Figure 3.24. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V  
Figure 3.25. OPAMP Voltage Noise Spectral Density (Non-Unity Gain)  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
40  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.13 Analog Comparator (ACMP)  
Table 3.18. ACMP  
Symbol  
VACMPIN  
VACMPCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input voltage range  
0
0
VDD  
VDD  
ACMP Common Mode volt-  
age range  
V
BIASPROG=0b0000, FULL-  
BIAS=0 and HALFBIAS=1 in  
ACMPn_CTRL register  
0.1  
2.87  
195  
0
µA  
µA  
µA  
µA  
BIASPROG=0b1111, FULL-  
BIAS=0 and HALFBIAS=0 in  
ACMPn_CTRL register  
IACMP  
Active current  
BIASPROG=0b1111, FULL-  
BIAS=1 and HALFBIAS=0 in  
ACMPn_CTRL register  
Internal voltage reference off.  
Using external voltage refer-  
ence  
Current consumption of in-  
ternal voltage reference  
IACMPREF  
Internal voltage reference  
Single ended  
5
10  
10  
17  
39  
µA  
mV  
VACMPOFFSET Offset voltage  
Differential  
mV  
VACMPHYST  
ACMP hysteresis  
Programmable  
mV  
CSRESSEL=0b00 in  
ACMPn_INPUTSEL  
kOhm  
CSRESSEL=0b01 in  
ACMPn_INPUTSEL  
71  
104  
136  
kOhm  
kOhm  
kOhm  
Capacitive Sense Internal  
Resistance  
RCSRES  
CSRESSEL=0b10 in  
ACMPn_INPUTSEL  
CSRESSEL=0b11 in  
ACMPn_INPUTSEL  
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference  
as given in Equation 3.1 (p. 41) . IACMPREF is zero if an external voltage reference is used.  
Total ACMP Active Current  
IACMPTOTAL = IACMP + IACMPREF  
(3.1)  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
41  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.26. Typical ACMP Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
HYSTSEL= 0.0  
HYSTSEL= 2.0  
4.0  
HYSTSEL= 4.0  
HYSTSEL= 6.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
4
8
12  
0
2
4
6
8
10  
12  
14  
ACMP_CTRL_BIASPROG  
ACMP_CTRL_BIASPROG  
Current consumption  
Response time  
100  
80  
60  
40  
20  
0
BIASPROG= 0.0  
BIASPROG= 4.0  
BIASPROG= 8.0  
BIASPROG= 12.0  
0
1
2
3
4
5
6
7
ACMP_CTRL_HYSTSEL  
Hysteresis  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
42  
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.14 Voltage Comparator (VCMP)  
Table 3.19. VCMP  
Symbol  
VVCMPIN  
VVCMPCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input voltage range  
VDD  
VDD  
VCMP Common Mode volt-  
age range  
V
BIASPROG=0b0000  
and HALFBIAS=1 in  
VCMPn_CTRL register  
0.1  
µA  
µA  
IVCMP  
Active current  
BIASPROG=0b1111  
and HALFBIAS=0 in  
VCMPn_CTRL register.  
LPREF=0.  
14.7  
tVCMPREF  
Startup time reference gen- NORMAL  
erator  
10  
µs  
Single ended  
Differential  
10  
10  
17  
mV  
mV  
mV  
VVCMPOFFSET Offset voltage  
VVCMPHYST  
VCMP hysteresis  
The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in  
accordance with the following equation:  
VCMP Trigger Level as a Function of Level Setting  
VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL  
(3.2)  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
43  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.15 LCD  
Table 3.20. LCD  
Symbol  
fLCDFR  
Parameter  
Frame rate  
Condition  
Min  
Typ  
Max  
Unit  
200 Hz  
30  
NUMSEG  
Number of segments sup-  
ported  
34×8  
seg  
VLCD  
LCD supply voltage range  
Internal boost circuit enabled  
2.0  
3.8  
V
Display disconnected, stat-  
ic mode, framerate 32 Hz, all  
segments on.  
250  
550  
nA  
Steady state current con-  
sumption.  
Display disconnected,  
nA  
ILCD  
quadruplex mode, framer-  
ate 32 Hz, all segments on,  
bias mode to ONETHIRD in  
LCD_DISPCTRL register.  
Internal voltage boost off  
0
µA  
µA  
Steady state Current contri-  
bution of internal boost.  
ILCDBOOST  
Internal voltage boost on,  
8.4  
boosting from 2.2 V to 3.0 V.  
VBLEV of LCD_DISPCTRL  
register to LEVEL0  
3.0  
3.08  
3.17  
3.26  
3.34  
3.43  
3.52  
3.6  
V
V
V
V
V
V
V
V
VBLEV of LCD_DISPCTRL  
register to LEVEL1  
VBLEV of LCD_DISPCTRL  
register to LEVEL2  
VBLEV of LCD_DISPCTRL  
register to LEVEL3  
VBOOST  
Boost Voltage  
VBLEV of LCD_DISPCTRL  
register to LEVEL4  
VBLEV of LCD_DISPCTRL  
register to LEVEL5  
VBLEV of LCD_DISPCTRL  
register to LEVEL6  
VBLEV of LCD_DISPCTRL  
register to LEVEL7  
The total LCD current is given by Equation 3.3 (p. 44) . ILCDBOOST is zero if internal boost is off.  
Total LCD Current Based on Operational Mode and Internal Boost  
ILCDTOTAL = ILCD + ILCDBOOST  
(3.3)  
3.16 Digital Peripherals  
Table 3.21. Digital Peripherals  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IUSART  
USART current  
USART idle current, clock en-  
abled  
7.5  
µA/  
MHz  
IUART  
UART current  
UART idle current, clock en-  
abled  
5.63  
µA/  
MHz  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
44  
 
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
ILEUART  
LEUART current  
LEUART idle current, clock  
enabled  
150  
6.25  
8.75  
150  
100  
100  
100  
2.5  
nA  
II2C  
I2C current  
I2C idle current, clock en-  
abled  
µA/  
MHz  
ITIMER  
ILETIMER  
IPCNT  
IRTC  
TIMER current  
LETIMER current  
PCNT current  
RTC current  
LCD current  
AES current  
GPIO current  
EBI current  
TIMER_0 idle current, clock  
enabled  
µA/  
MHz  
LETIMER idle current, clock  
enabled  
nA  
nA  
nA  
nA  
PCNT idle current, clock en-  
abled  
RTC idle current, clock en-  
abled  
ILCD  
LCD idle current, clock en-  
abled  
IAES  
AES idle current, clock en-  
abled  
µA/  
MHz  
IGPIO  
GPIO idle current, clock en-  
abled  
5.31  
1.56  
2,81  
8.12  
µA/  
MHz  
IEBI  
EBI idle current, clock en-  
abled  
µA/  
MHz  
IPRS  
PRS current  
DMA current  
PRS idle current  
µA/  
MHz  
IDMA  
Clock enable  
µA/  
MHz  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
45  
Preliminary  
...the world's most energy friendly microcontrollers  
4 Pinout and Package  
Note  
Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for  
guidelines on designing Printed Circuit Boards (PCB's) for the EFM32GG990.  
4.1 Pinout  
The EFM32GG990 pinout is shown in Figure 4.1 (p. 46) and Table 4.1 (p. 46). Alternate locations  
are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/").  
Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module  
in question.  
Figure 4.1. EFM32GG990 Pinout (top view, not to scale)  
Table 4.1. Device Pinout  
BGA112 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
EBI  
Timers  
Communication  
Other  
A1  
A2  
PE15  
PE14  
LCD_SEG11  
LCD_SEG10  
EBI_AD07 #0/1/2  
EBI_AD06 #0/1/2  
TIM3_CC1 #0  
TIM3_CC0 #0  
LEU0_RX #2  
LEU0_TX #2  
US0_RX #3  
US0_CLK #0  
I2C0_SDA #6  
CMU_CLK1 #2  
LES_ALTEX6 #0  
A3  
PE12  
LCD_SEG8  
EBI_AD04 #0/1/2  
TIM1_CC2 #1  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
46  
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
BGA112 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
EBI  
Timers  
Communication  
Other  
A4  
A5  
A6  
A7  
A8  
A9  
PE9  
PD10  
PF7  
LCD_SEG5  
LCD_SEG29  
LCD_SEG25  
LCD_SEG3  
EBI_AD01 #0/1/2  
EBI_CS1 #0/1/2  
EBI_BL1 #0/1/2  
EBI_REn #0/2  
PCNT2_S1IN #1  
TIM0_CC1 #2  
U0_RX #0  
USB_VBUSEN #0  
USB_ID #0  
PF5  
TIM0_CDTI2 #2/5  
PRS_CH2 #1  
PF12  
PE4  
LCD_COM0  
EBI_A11 #0/1/2  
US0_CS #1  
U1_TX #1  
USB_DM #0  
A10  
PF10  
U1_RX #1  
USB_DP #0  
A11  
B1  
PF11  
PA15  
LCD_SEG12  
LCD_SEG9  
EBI_AD08 #0/1/2  
EBI_AD05 #0/1/2  
TIM3_CC2 #0  
US0_TX #3  
US0_CS #0  
I2C0_SCL #6  
LES_ALTEX7 #0  
ACMP0_O #0  
GPIO_EM4WU5  
B2  
B3  
PE13  
PE11  
LES_ALTEX5 #0  
BOOTLOADER_RX  
LCD_SEG7  
EBI_AD03 #0/1/2  
TIM1_CC1 #1  
US0_RX #0  
B4  
B5  
PE8  
PD11  
LCD_SEG4  
LCD_SEG30  
EBI_AD00 #0/1/2  
EBI_CS2 #0/1/2  
EBI_WEn #1  
PCNT2_S0IN #1  
PRS_CH3 #1  
B6  
PF8  
LCD_SEG26  
TIM0_CC2 #2  
TIM0_CC0 #2  
ETM_TCLK #1  
B7  
PF6  
LCD_SEG24  
EBI_BL0 #0/1/2  
U0_TX #0  
B8  
USB_VBUS  
PE5  
USB 5.0 V VBUS input.  
LCD_COM1  
B9  
EBI_A12 #0/1/2  
US0_CLK #1  
B10  
B11  
USB_VREGI  
USB_VREGO  
USB Input to internal 3.3 V regulator.  
USB Decoupling for internal 3.3 V USB regulator and regulator output.  
CMU_CLK1 #0  
PRS_CH1 #0  
C1  
C2  
PA1  
PA0  
LCD_SEG14  
EBI_AD10 #0/1/2  
TIM0_CC1 #0/1  
I2C0_SCL #0  
LEU0_RX #4  
I2C0_SDA #0  
PRS_CH0 #0  
GPIO_EM4WU0  
LCD_SEG13  
LCD_SEG6  
EBI_AD09 #0/1/2  
EBI_AD02 #0/1/2  
TIM0_CC0 #0/1/4  
TIM1_CC0 #1  
C3  
C4  
C5  
C6  
C7  
PE10  
PD13  
PD12  
PF9  
US0_TX #0  
BOOTLOADER_TX  
ETM_TD1 #1  
LCD_SEG31  
LCD_SEG27  
EBI_CS3 #0/1/2  
EBI_REn #1  
ETM_TD0 #1  
VSS  
Ground  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
C8  
PF2  
LCD_SEG0  
EBI_ARDY #0/1/2  
TIM0_CC2 #5  
TIM2_CC2 #2  
LEU0_TX #4  
C9  
PE6  
PC10  
PC11  
LCD_COM2  
ACMP1_CH2  
ACMP1_CH3  
EBI_A13 #0/1/2  
EBI_A10 #1/2  
EBI_ALE #1/2  
US0_RX #1  
US0_RX #2  
US0_TX #2  
C10  
C11  
LES_CH10 #0  
LES_CH11 #0  
LES_ALTEX2 #0  
ETM_TD1 #3  
D1  
PA3  
LCD_SEG16  
LCD_SEG15  
EBI_AD12 #0/1/2  
EBI_AD11 #0/1/2  
TIM0_CDTI0 #0  
TIM0_CC2 #0/1  
U0_TX #2  
CMU_CLK0 #0  
ETM_TD0 #3  
D2  
D3  
PA2  
PB15  
ETM_TD2 #1  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
47  
Preliminary  
...the world's most energy friendly microcontrollers  
BGA112 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
EBI  
Timers  
Communication  
Other  
D4  
D5  
D6  
D7  
VSS  
IOVDD_6  
PD9  
Ground  
Digital IO power supply 6.  
LCD_SEG28  
EBI_CS0 #0/1/2  
IOVDD_5  
Digital IO power supply 5.  
US1_CS #2  
LEU0_RX #3  
I2C0_SCL #5  
TIM0_CC1 #5  
LETIM0_OUT1 #2  
DBG_SWDIO #0/1/2/3  
GPIO_EM4WU3  
D8  
D9  
PF1  
PE7  
LCD_COM3  
EBI_A14 #0/1/2  
EBI_A15 #0/1/2  
US0_TX #1  
US0_CS #2  
D10  
D11  
PC8  
PC9  
ACMP1_CH0  
TIM2_CC0 #2  
TIM2_CC1 #2  
LES_CH8 #0  
LES_CH9 #0  
GPIO_EM4WU2  
ACMP1_CH1  
LCD_SEG19  
LCD_SEG18  
EBI_A09 #1/2  
EBI_AD15 #0/1/2  
EBI_AD14 #0/1/2  
US0_CLK #2  
LEU1_RX #1  
LEU1_TX #1  
U0_RX #2  
ETM_TCLK #3  
GPIO_EM4WU1  
E1  
E2  
PA6  
PA5  
LES_ALTEX4 #0  
ETM_TD3 #3  
TIM0_CDTI2 #0  
LES_ALTEX3 #0  
ETM_TD2 #3  
E3  
E4  
PA4  
PB0  
LCD_SEG17  
LCD_SEG32  
EBI_AD13 #0/1/2  
EBI_A16 #0/1/2  
TIM0_CDTI1 #0  
TIM1_CC0 #2  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
TIM0_CC0 #5  
LETIM0_OUT0 #2  
E8  
PF0  
DBG_SWCLK #0/1/2/3  
TIM3_CC0 #1  
PCNT0_S0IN #1  
U0_TX #1  
I2C1_SDA #2  
E9  
PE0  
PE1  
EBI_A07 #0/1/2  
EBI_A08 #0/1/2  
TIM3_CC1 #1  
PCNT0_S1IN #1  
U0_RX #1  
I2C1_SCL #2  
E10  
E11  
F1  
PE3  
PB1  
PB2  
BU_STAT  
LCD_SEG33  
LCD_SEG34  
EBI_A10 #0  
EBI_A17 #0/1/2  
EBI_A18 #0/1/2  
U1_RX #3  
ACMP1_O #1  
TIM1_CC1 #2  
TIM1_CC2 #2  
F2  
LCD_SEG20/  
LCD_COM4  
F3  
F4  
PB3  
PB4  
EBI_A19 #0/1/2  
EBI_A20 #0/1/2  
PCNT1_S0IN #1  
PCNT1_S1IN #1  
US2_TX #1  
US2_RX #1  
LCD_SEG21/  
LCD_COM5  
F8  
F9  
VDD_DREG  
VSS_DREG  
PE2  
Power supply for on-chip voltage regulator.  
Ground for on-chip voltage regulator.  
F10  
F11  
BU_VOUT  
EBI_A09 #0  
TIM3_CC2 #1  
U1_TX #3  
ACMP0_O #1  
DECOUPLE  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin.  
LCD_SEG22/  
LCD_COM6  
G1  
G2  
PB5  
PB6  
EBI_A21 #0/1/2  
EBI_A22 #0/1/2  
US2_CLK #1  
US2_CS #1  
LCD_SEG23/  
LCD_COM7  
G3  
G4  
G8  
G9  
VSS  
IOVDD_0  
IOVDD_4  
VSS  
Ground  
Digital IO power supply 0.  
Digital IO power supply 4.  
Ground  
LEU1_TX #0  
I2C0_SDA #2  
LES_CH6 #0  
ETM_TCLK #2  
G10  
G11  
PC6  
PC7  
ACMP0_CH6  
ACMP0_CH7  
EBI_A05 #0/1/2  
EBI_A06 #0/1/2  
LEU1_RX #0  
LES_CH7 #0  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
48  
Preliminary  
...the world's most energy friendly microcontrollers  
BGA112 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
EBI  
Timers  
Communication  
Other  
I2C0_SCL #2  
ETM_TD0 #2  
DAC0_OUT0ALT #0/  
OPAMP_OUT0ALT  
ACMP0_CH0  
US0_TX #5  
US1_TX #0  
I2C0_SDA #4  
TIM0_CC1 #4  
PCNT0_S0IN #2  
LES_CH0 #0  
PRS_CH2 #0  
H1  
H2  
PC0  
PC2  
EBI_A23 #0/1/2  
EBI_A25 #0/1/2  
DAC0_OUT0ALT #2/  
OPAMP_OUT0ALT  
ACMP0_CH2  
TIM0_CDTI0 #4  
TIM2_CC0 #0  
US2_TX #0  
LES_CH2 #0  
H3  
H4  
H5  
H6  
H7  
H8  
PD14  
PA7  
I2C0_SDA #3  
LCD_SEG35  
LCD_SEG36  
EBI_CSTFT #0/1/2  
EBI_DCLK #0/1/2  
PA8  
VSS  
Ground  
IOVDD_3  
PD8  
Digital IO power supply 3.  
BU_VIN  
CMU_CLK1 #1  
ETM_TD3 #0/2  
ADC0_CH5  
DAC0_OUT2 #0/  
OPAMP_OUT2  
H9  
PD5  
LEU0_RX #0  
ADC0_CH6  
DAC0_P1 #0/  
OPAMP_P1  
TIM1_CC0 #4  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
LES_ALTEX0 #0  
ACMP0_O #2  
ETM_TD0 #0  
US1_RX #2  
I2C0_SDA #1  
H10  
H11  
PD6  
PD7  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
ADC0_CH7  
DAC0_N1 #0/  
OPAMP_N1  
TIM1_CC1 #4  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
US1_TX #2  
I2C0_SCL #1  
ETM_TCLK #0  
DAC0_OUT0ALT #1/  
OPAMP_OUT0ALT  
ACMP0_CH1  
US0_RX #5  
US1_RX #0  
I2C0_SCL #4  
TIM0_CC2 #4  
PCNT0_S1IN #2  
LES_CH1 #0  
PRS_CH3 #0  
J1  
J2  
PC1  
PC3  
EBI_A24 #0/1/2  
DAC0_OUT0ALT #3/  
OPAMP_OUT0ALT  
ACMP0_CH3  
EBI_NANDREn #0/1/2  
TIM0_CDTI1 #4  
US2_RX #0  
LES_CH3 #0  
J3  
J4  
J5  
J6  
J7  
J8  
PD15  
PA12  
PA9  
I2C0_SCL #3  
LCD_BCAP_P  
LCD_SEG37  
LCD_SEG38  
EBI_A00 #0/1/2  
EBI_DTEN #0/1/2  
EBI_VSNC #0/1/2  
EBI_A03 #0/1/2  
EBI_A04 #0/1/2  
TIM2_CC0 #1  
TIM2_CC1 #0  
TIM2_CC2 #0  
PA10  
PB9  
U1_TX #2  
U1_RX #2  
PB10  
US1_CLK #1  
USB_DMPU #0  
J9  
PD2  
PD3  
ADC0_CH2  
EBI_A27 #0/1/2  
TIM0_CC1 #3  
TIM0_CC2 #3  
DBG_SWO #3  
ETM_TD1 #0/2  
ADC0_CH3  
DAC0_N2 #0/  
OPAMP_N2  
J10  
US1_CS #1  
LEU0_TX #0  
ADC0_CH4  
DAC0_P2 #0/  
OPAMP_P2  
J11  
K1  
PD4  
PB7  
PC4  
ETM_TD2 #0/2  
LES_CH4 #0  
US0_TX #4  
US1_CLK #0  
LFXTAL_P  
TIM1_CC0 #3  
DAC0_P0 #0/  
OPAMP_P0  
ACMP0_CH4  
TIM0_CDTI2 #4  
LETIM0_OUT0 #3  
PCNT1_S0IN #0  
US2_CLK #0  
I2C1_SDA #0  
K2  
EBI_A26 #0/1/2  
EBI_A01 #0/1/2  
K3  
K4  
K5  
PA13  
VSS  
LCD_BCAP_N  
Ground  
TIM2_CC1 #1  
PA11  
LCD_SEG39  
EBI_HSNC #0/1/2  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
49  
Preliminary  
...the world's most energy friendly microcontrollers  
BGA112 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
EBI  
Timers  
Communication  
Other  
Reset input.  
Active low, with internal pull-up.  
K6  
RESETn  
K7  
K8  
K9  
AVSS_1  
AVDD_2  
AVDD_1  
Analog ground 1.  
Analog power supply 2.  
Analog power supply 1.  
Analog ground 0.  
K10  
K11  
AVSS_0  
PD1  
ADC0_CH1  
DAC0_OUT1ALT #4/  
OPAMP_OUT1ALT  
TIM0_CC0 #3  
PCNT2_S1IN #0  
US1_RX #1  
DBG_SWO #2  
LES_CH5 #0  
US0_RX #4  
US1_CS #0  
L1  
L2  
PB8  
PC5  
LFXTAL_N  
TIM1_CC1 #3  
DAC0_N0 #0/  
OPAMP_N0  
ACMP0_CH5  
LETIM0_OUT1 #3  
PCNT1_S1IN #0  
US2_CS #0  
I2C1_SCL #0  
EBI_NANDWEn #0/1/2  
EBI_A02 #0/1/2  
L3  
L4  
PA14  
LCD_BEXT  
TIM2_CC2 #1  
IOVDD_1  
Digital IO power supply 1.  
DAC0_OUT0 #0/  
OPAMP_OUT0  
TIM1_CC2 #3  
LETIM0_OUT0 #1  
L5  
PB11  
I2C1_SDA #1  
I2C1_SCL #1  
DAC0_OUT1 #0/  
OPAMP_OUT1  
L6  
L7  
L8  
PB12  
AVSS_2  
PB13  
LETIM0_OUT1 #1  
Analog ground 2.  
HFXTAL_P  
US0_CLK #4/5  
LEU0_TX #1  
US0_CS #4/5  
LEU0_RX #1  
L9  
PB14  
HFXTAL_N  
L10  
AVDD_0  
Analog power supply 0.  
ADC0_CH0  
DAC0_OUT0ALT #4/  
OPAMP_OUT0ALT  
DAC0_OUT2 #1/  
OPAMP_OUT2  
L11  
PD0  
PCNT2_S0IN #0  
US1_TX #1  
4.2 Alternate functionality pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in  
Table 4.2 (p. 50). The table shows the name of the alternate functionality in the first column, followed  
by columns showing the possible LOCATION bitfield settings.  
Note  
Some functionality, such as analog interfaces, do not have alternate settings or a LOCA-  
TION bitfield. In these cases, the pinout is shown in the column corresponding to LOCA-  
TION 0.  
Table 4.2. Alternate functionality overview  
Alternate  
LOCATION  
Functionality  
ACMP0_CH0  
ACMP0_CH1  
ACMP0_CH2  
0
1
2
3
4
5
6
Description  
Analog comparator ACMP0, channel 0.  
Analog comparator ACMP0, channel 1.  
Analog comparator ACMP0, channel 2.  
PC0  
PC1  
PC2  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
50  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
ACMP0_CH3  
ACMP0_CH4  
ACMP0_CH5  
ACMP0_CH6  
ACMP0_CH7  
ACMP0_O  
0
1
2
3
4
5
6
Description  
PC3  
PC4  
PC5  
PC6  
PC7  
PE13  
PC8  
PC9  
PC10  
PC11  
PF2  
Analog comparator ACMP0, channel 3.  
Analog comparator ACMP0, channel 4.  
Analog comparator ACMP0, channel 5.  
Analog comparator ACMP0, channel 6.  
Analog comparator ACMP0, channel 7.  
PE2  
PD6  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 0.  
ACMP1_CH0  
ACMP1_CH1  
ACMP1_CH2  
ACMP1_CH3  
ACMP1_O  
Analog comparator ACMP1, channel 1.  
Analog comparator ACMP1, channel 2.  
Analog comparator ACMP1, channel 3.  
PE3  
PD7  
Analog comparator ACMP1, digital output.  
Analog to digital converter ADC0, input channel number 0.  
Analog to digital converter ADC0, input channel number 1.  
Analog to digital converter ADC0, input channel number 2.  
Analog to digital converter ADC0, input channel number 3.  
Analog to digital converter ADC0, input channel number 4.  
Analog to digital converter ADC0, input channel number 5.  
Analog to digital converter ADC0, input channel number 6.  
Analog to digital converter ADC0, input channel number 7.  
Bootloader RX  
ADC0_CH0  
ADC0_CH1  
ADC0_CH2  
ADC0_CH3  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
BOOTLOADER_RX PE11  
BOOTLOADER_TX PE10  
Bootloader TX  
Backup Power Domain status, whether or not the system  
is in backup mode  
BU_STAT  
PE3  
BU_VIN  
PD8  
PE2  
PA2  
PA1  
Battery input for Backup Power Domain  
BU_VOUT  
CMU_CLK0  
CMU_CLK1  
Power output for Backup Power Domain  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
PD7  
PD8  
PE12  
DAC0_N0 /  
OPAMP_N0  
PC5  
PD7  
PD3  
PB11  
PC0  
PB12  
Operational Amplifier 0 external negative input.  
Operational Amplifier 1 external negative input.  
Operational Amplifier 2 external negative input.  
DAC0_N1 /  
OPAMP_N1  
DAC0_N2 /  
OPAMP_N2  
DAC0_OUT0 /  
OPAMP_OUT0  
Digital to Analog Converter DAC0_OUT0 /  
OPAMP output channel number 0.  
DAC0_OUT0ALT /  
OPAMP_OUT0ALT  
Digital to Analog Converter DAC0_OUT0ALT /  
OPAMP alternative output for channel 0.  
PC1  
PC2  
PC3  
PD0  
PD1  
DAC0_OUT1 /  
OPAMP_OUT1  
Digital to Analog Converter DAC0_OUT1 /  
OPAMP output channel number 1.  
DAC0_OUT1ALT /  
OPAMP_OUT1ALT  
Digital to Analog Converter DAC0_OUT1ALT /  
OPAMP alternative output for channel 1.  
DAC0_OUT2 /  
OPAMP_OUT2  
Digital to Analog Converter DAC0_OUT2 /  
OPAMP output channel number 2.  
PD5  
PC4  
PD6  
PD0  
DAC0_P0 /  
OPAMP_P0  
Operational Amplifier 0 external positive input.  
Operational Amplifier 1 external positive input.  
DAC0_P1 /  
OPAMP_P1  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
51  
Preliminary  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
0
1
2
3
4
5
6
Description  
DAC0_P2 /  
OPAMP_P2  
PD4  
PF0  
Operational Amplifier 2 external positive input.  
Debug-interface Serial Wire clock input.  
DBG_SWCLK  
DBG_SWDIO  
DBG_SWO  
PF0  
PF1  
PF0  
PF1  
PD1  
PF0  
Note that this function is enabled to pin out of reset, and  
has a built-in pull down.  
Debug-interface Serial Wire data input / output.  
PF1  
PF2  
PF1  
PD2  
Note that this function is enabled to pin out of reset, and  
has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
Note that this function is not enabled after reset, and must  
be enabled by software to be used.  
EBI_A00  
EBI_A01  
EBI_A02  
EBI_A03  
EBI_A04  
EBI_A05  
EBI_A06  
EBI_A07  
EBI_A08  
EBI_A09  
EBI_A10  
EBI_A11  
EBI_A12  
EBI_A13  
EBI_A14  
EBI_A15  
EBI_A16  
EBI_A17  
EBI_A18  
EBI_A19  
EBI_A20  
EBI_A21  
EBI_A22  
EBI_A23  
EBI_A24  
EBI_A25  
EBI_A26  
EBI_A27  
PA12  
PA13  
PA14  
PB9  
PB10  
PC6  
PC7  
PE0  
PE1  
PE2  
PE3  
PE4  
PE5  
PE6  
PE7  
PC8  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PC0  
PC1  
PC2  
PC4  
PD2  
PA12  
PA13  
PA14  
PB9  
PB10  
PC6  
PC7  
PE0  
PE1  
PC9  
PC10  
PE4  
PE5  
PE6  
PE7  
PC8  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PC0  
PC1  
PC2  
PC4  
PD2  
PA12  
PA13  
PA14  
PB9  
PB10  
PC6  
PC7  
PE0  
PE1  
PC9  
PC10  
PE4  
PE5  
PE6  
PE7  
PC8  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PC0  
PC1  
PC2  
PC4  
PD2  
External Bus Interface (EBI) address output pin 00.  
External Bus Interface (EBI) address output pin 01.  
External Bus Interface (EBI) address output pin 02.  
External Bus Interface (EBI) address output pin 03.  
External Bus Interface (EBI) address output pin 04.  
External Bus Interface (EBI) address output pin 05.  
External Bus Interface (EBI) address output pin 06.  
External Bus Interface (EBI) address output pin 07.  
External Bus Interface (EBI) address output pin 08.  
External Bus Interface (EBI) address output pin 09.  
External Bus Interface (EBI) address output pin 10.  
External Bus Interface (EBI) address output pin 11.  
External Bus Interface (EBI) address output pin 12.  
External Bus Interface (EBI) address output pin 13.  
External Bus Interface (EBI) address output pin 14.  
External Bus Interface (EBI) address output pin 15.  
External Bus Interface (EBI) address output pin 16.  
External Bus Interface (EBI) address output pin 17.  
External Bus Interface (EBI) address output pin 18.  
External Bus Interface (EBI) address output pin 19.  
External Bus Interface (EBI) address output pin 20.  
External Bus Interface (EBI) address output pin 21.  
External Bus Interface (EBI) address output pin 22.  
External Bus Interface (EBI) address output pin 23.  
External Bus Interface (EBI) address output pin 24.  
External Bus Interface (EBI) address output pin 25.  
External Bus Interface (EBI) address output pin 26.  
External Bus Interface (EBI) address output pin 27.  
External Bus Interface (EBI) address and data input / out-  
put pin 00.  
EBI_AD00  
EBI_AD01  
EBI_AD02  
PE8  
PE9  
PE10  
PE8  
PE9  
PE10  
PE8  
PE9  
PE10  
External Bus Interface (EBI) address and data input / out-  
put pin 01.  
External Bus Interface (EBI) address and data input / out-  
put pin 02.  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
52  
Preliminary  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
0
1
2
3
4
5
6
Description  
External Bus Interface (EBI) address and data input / out-  
put pin 03.  
EBI_AD03  
EBI_AD04  
EBI_AD05  
EBI_AD06  
EBI_AD07  
EBI_AD08  
EBI_AD09  
EBI_AD10  
EBI_AD11  
EBI_AD12  
EBI_AD13  
EBI_AD14  
PE11  
PE12  
PE13  
PE14  
PE15  
PA15  
PA0  
PE11  
PE11  
External Bus Interface (EBI) address and data input / out-  
put pin 04.  
PE12  
PE13  
PE14  
PE15  
PA15  
PA0  
PE12  
PE13  
PE14  
PE15  
PA15  
PA0  
External Bus Interface (EBI) address and data input / out-  
put pin 05.  
External Bus Interface (EBI) address and data input / out-  
put pin 06.  
External Bus Interface (EBI) address and data input / out-  
put pin 07.  
External Bus Interface (EBI) address and data input / out-  
put pin 08.  
External Bus Interface (EBI) address and data input / out-  
put pin 09.  
External Bus Interface (EBI) address and data input / out-  
put pin 10.  
PA1  
PA1  
PA1  
External Bus Interface (EBI) address and data input / out-  
put pin 11.  
PA2  
PA2  
PA2  
External Bus Interface (EBI) address and data input / out-  
put pin 12.  
PA3  
PA3  
PA3  
External Bus Interface (EBI) address and data input / out-  
put pin 13.  
PA4  
PA4  
PA4  
External Bus Interface (EBI) address and data input / out-  
put pin 14.  
PA5  
PA5  
PA5  
External Bus Interface (EBI) address and data input / out-  
put pin 15.  
EBI_AD15  
EBI_ALE  
PA6  
PA6  
PC11  
PF2  
PA6  
PC11  
PF2  
External Bus Interface (EBI) Address Latch Enable output.  
External Bus Interface (EBI) Hardware Ready Control in-  
put.  
EBI_ARDY  
PF2  
EBI_BL0  
PF6  
PF6  
PF6  
External Bus Interface (EBI) Byte Lane/Enable pin 0.  
External Bus Interface (EBI) Byte Lane/Enable pin 1.  
External Bus Interface (EBI) Chip Select output 0.  
External Bus Interface (EBI) Chip Select output 1.  
External Bus Interface (EBI) Chip Select output 2.  
External Bus Interface (EBI) Chip Select output 3.  
External Bus Interface (EBI) Chip Select output TFT.  
External Bus Interface (EBI) TFT Dot Clock pin.  
External Bus Interface (EBI) TFT Data Enable pin.  
EBI_BL1  
PF7  
PF7  
PF7  
EBI_CS0  
EBI_CS1  
EBI_CS2  
EBI_CS3  
EBI_CSTFT  
EBI_DCLK  
EBI_DTEN  
PD9  
PD10  
PD11  
PD12  
PA7  
PD9  
PD10  
PD11  
PD12  
PA7  
PD9  
PD10  
PD11  
PD12  
PA7  
PA8  
PA8  
PA8  
PA9  
PA9  
PA9  
External Bus Interface (EBI) TFT Horizontal Synchroniza-  
tion pin.  
EBI_HSNC  
PA11  
PA11  
PA11  
EBI_NANDREn  
EBI_NANDWEn  
EBI_REn  
PC3  
PC5  
PF5  
PC3  
PC5  
PF9  
PC3  
PC5  
PF5  
External Bus Interface (EBI) NAND Read Enable output.  
External Bus Interface (EBI) NAND Write Enable output.  
External Bus Interface (EBI) Read Enable output.  
External Bus Interface (EBI) TFT Vertical Synchronization  
pin.  
EBI_VSNC  
PA10  
PA10  
PA10  
EBI_WEn  
ETM_TCLK  
ETM_TD0  
ETM_TD1  
PF8  
PF8  
PF9  
PD13  
External Bus Interface (EBI) Write Enable output.  
Embedded Trace Module ETM clock .  
Embedded Trace Module ETM data 0.  
Embedded Trace Module ETM data 1.  
PD7  
PD6  
PD3  
PC6  
PC7  
PD3  
PA6  
PA2  
PA3  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
53  
Preliminary  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
ETM_TD2  
0
1
2
PD4  
PD5  
3
4
5
6
Description  
PD4  
PD5  
PA0  
PA6  
PC9  
PF1  
PF2  
PE13  
PB15  
PA4  
Embedded Trace Module ETM data 2.  
ETM_TD3  
PA5  
Embedded Trace Module ETM data 3.  
GPIO_EM4WU0  
GPIO_EM4WU1  
GPIO_EM4WU2  
GPIO_EM4WU3  
GPIO_EM4WU4  
GPIO_EM4WU5  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal (4 - 48 MHz) negative pin. Also  
used as external optional clock input pin.  
HFXTAL_N  
PB14  
HFXTAL_P  
I2C0_SCL  
I2C0_SDA  
I2C1_SCL  
I2C1_SDA  
PB13  
PA1  
PA0  
PC5  
PC4  
High Frequency Crystal (4 - 48 MHz) positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
PD7  
PC7  
PC6  
PE1  
PE0  
PD15  
PD14  
PC1  
PC0  
PF1  
PF0  
PE13  
PE12  
PD6  
PB12  
PB11  
I2C1 Serial Clock Line input / output.  
I2C1 Serial Data input / output.  
LCD voltage booster (optional), boost capacitor, negative  
pin. If using the LCD voltage booster, connect a 22 nF ca-  
pacitor between LCD_BCAP_N and LCD_BCAP_P.  
LCD_BCAP_N  
LCD_BCAP_P  
PA13  
PA12  
LCD voltage booster (optional), boost capacitor, positive  
pin. If using the LCD voltage booster, connect a 22 nF ca-  
pacitor between LCD_BCAP_N and LCD_BCAP_P.  
LCD voltage booster (optional), boost output. If using the  
LCD voltage booster, connect a 1 uF capacitor between  
this pin and VSS.  
LCD_BEXT  
PA14  
An external LCD voltage may also be applied to this pin if  
the booster is not enabled.  
If AVDD is used directly as the LCD supply voltage, this  
pin may be left unconnected or used as a GPIO.  
LCD_COM0  
LCD_COM1  
LCD_COM2  
LCD_COM3  
PE4  
PE5  
PE6  
PE7  
LCD driver common line number 0.  
LCD driver common line number 1.  
LCD driver common line number 2.  
LCD driver common line number 3.  
LCD segment line 0. Segments 0, 1, 2 and 3 are con-  
trolled by SEGEN0.  
LCD_SEG0  
LCD_SEG3  
LCD_SEG4  
LCD_SEG5  
LCD_SEG6  
LCD_SEG7  
LCD_SEG8  
LCD_SEG9  
LCD_SEG10  
PF2  
LCD segment line 3. Segments 0, 1, 2 and 3 are con-  
trolled by SEGEN0.  
PF5  
LCD segment line 4. Segments 4, 5, 6 and 7 are con-  
trolled by SEGEN1.  
PE8  
LCD segment line 5. Segments 4, 5, 6 and 7 are con-  
trolled by SEGEN1.  
PE9  
LCD segment line 6. Segments 4, 5, 6 and 7 are con-  
trolled by SEGEN1.  
PE10  
PE11  
PE12  
PE13  
PE14  
LCD segment line 7. Segments 4, 5, 6 and 7 are con-  
trolled by SEGEN1.  
LCD segment line 8. Segments 8, 9, 10 and 11 are con-  
trolled by SEGEN2.  
LCD segment line 9. Segments 8, 9, 10 and 11 are con-  
trolled by SEGEN2.  
LCD segment line 10. Segments 8, 9, 10 and 11 are con-  
trolled by SEGEN2.  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
54  
Preliminary  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
0
1
2
3
4
5
6
Description  
LCD segment line 11. Segments 8, 9, 10 and 11 are con-  
trolled by SEGEN2.  
LCD_SEG11  
LCD_SEG12  
LCD_SEG13  
LCD_SEG14  
LCD_SEG15  
LCD_SEG16  
LCD_SEG17  
LCD_SEG18  
LCD_SEG19  
PE15  
PA15  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
LCD segment line 12. Segments 12, 13, 14 and 15 are  
controlled by SEGEN3.  
LCD segment line 13. Segments 12, 13, 14 and 15 are  
controlled by SEGEN3.  
LCD segment line 14. Segments 12, 13, 14 and 15 are  
controlled by SEGEN3.  
LCD segment line 15. Segments 12, 13, 14 and 15 are  
controlled by SEGEN3.  
LCD segment line 16. Segments 16, 17, 18 and 19 are  
controlled by SEGEN4.  
LCD segment line 17. Segments 16, 17, 18 and 19 are  
controlled by SEGEN4.  
LCD segment line 18. Segments 16, 17, 18 and 19 are  
controlled by SEGEN4.  
LCD segment line 19. Segments 16, 17, 18 and 19 are  
controlled by SEGEN4.  
LCD segment line 20. Segments 20, 21, 22 and 23 are  
controlled by SEGEN5. This pin may also be used as LCD  
COM line 4  
LCD_SEG20/  
LCD_COM4  
PB3  
PB4  
PB5  
PB6  
LCD segment line 21. Segments 20, 21, 22 and 23 are  
controlled by SEGEN5. This pin may also be used as LCD  
COM line 5  
LCD_SEG21/  
LCD_COM5  
LCD segment line 22. Segments 20, 21, 22 and 23 are  
controlled by SEGEN5. This pin may also be used as LCD  
COM line 6  
LCD_SEG22/  
LCD_COM6  
LCD segment line 23. Segments 20, 21, 22 and 23 are  
controlled by SEGEN5. This pin may also be used as LCD  
COM line 7  
LCD_SEG23/  
LCD_COM7  
LCD segment line 24. Segments 24, 25, 26 and 27 are  
controlled by SEGEN6.  
LCD_SEG24  
LCD_SEG25  
LCD_SEG26  
LCD_SEG27  
LCD_SEG28  
LCD_SEG29  
LCD_SEG30  
LCD_SEG31  
LCD_SEG32  
LCD_SEG33  
LCD_SEG34  
LCD_SEG35  
LCD_SEG36  
PF6  
LCD segment line 25. Segments 24, 25, 26 and 27 are  
controlled by SEGEN6.  
PF7  
LCD segment line 26. Segments 24, 25, 26 and 27 are  
controlled by SEGEN6.  
PF8  
LCD segment line 27. Segments 24, 25, 26 and 27 are  
controlled by SEGEN6.  
PF9  
LCD segment line 28. Segments 28, 29, 30 and 31 are  
controlled by SEGEN7.  
PD9  
PD10  
PD11  
PD12  
PB0  
PB1  
PB2  
PA7  
PA8  
LCD segment line 29. Segments 28, 29, 30 and 31 are  
controlled by SEGEN7.  
LCD segment line 30. Segments 28, 29, 30 and 31 are  
controlled by SEGEN7.  
LCD segment line 31. Segments 28, 29, 30 and 31 are  
controlled by SEGEN7.  
LCD segment line 32. Segments 32, 33, 34 and 35 are  
controlled by SEGEN8.  
LCD segment line 33. Segments 32, 33, 34 and 35 are  
controlled by SEGEN8.  
LCD segment line 34. Segments 32, 33, 34 and 35 are  
controlled by SEGEN8.  
LCD segment line 35. Segments 32, 33, 34 and 35 are  
controlled by SEGEN8.  
LCD segment line 36. Segments 36, 37, 38 and 39 are  
controlled by SEGEN9.  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
55  
Preliminary  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
0
1
2
3
4
5
6
Description  
LCD segment line 37. Segments 36, 37, 38 and 39 are  
controlled by SEGEN9.  
LCD_SEG37  
LCD_SEG38  
LCD_SEG39  
PA9  
LCD segment line 38. Segments 36, 37, 38 and 39 are  
controlled by SEGEN9.  
PA10  
PA11  
LCD segment line 39. Segments 36, 37, 38 and 39 are  
controlled by SEGEN9.  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX2  
LES_ALTEX3  
LES_ALTEX4  
LES_ALTEX5  
LES_ALTEX6  
LES_ALTEX7  
LES_CH0  
PD6  
PD7  
PA3  
PA4  
PA5  
PE11  
PE12  
PE13  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
PC9  
PC10  
PC11  
PD6  
PD7  
PD5  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 2.  
LESENSE alternate exite output 3.  
LESENSE alternate exite output 4.  
LESENSE alternate exite output 5.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 0.  
LES_CH1  
LESENSE channel 1.  
LES_CH2  
LESENSE channel 2.  
LES_CH3  
LESENSE channel 3.  
LES_CH4  
LESENSE channel 4.  
LES_CH5  
LESENSE channel 5.  
LES_CH6  
LESENSE channel 6.  
LES_CH7  
LESENSE channel 7.  
LES_CH8  
LESENSE channel 8.  
LES_CH9  
LESENSE channel 9.  
LES_CH10  
LES_CH11  
LETIM0_OUT0  
LETIM0_OUT1  
LEU0_RX  
LESENSE channel 10.  
LESENSE channel 11.  
PB11  
PB12  
PB14  
PF0  
PC4  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
PF1  
PC5  
PF1  
PE15  
PA0  
PF2  
LEUART0 Transmit output. Also used as receive input in  
half duplex communication.  
LEU0_TX  
LEU1_RX  
LEU1_TX  
PD4  
PC7  
PC6  
PB13  
PA6  
PA5  
PE14  
PF0  
LEUART1 Receive input.  
LEUART1 Transmit output. Also used as receive input in  
half duplex communication.  
Low Frequency Crystal (typically 32.768 kHz) negative  
pin. Also used as an optional external clock input pin.  
LFXTAL_N  
PB8  
PB7  
LFXTAL_P  
Low Frequency Crystal (typically 32.768 kHz) positive pin.  
Pulse Counter PCNT0 input number 0.  
Pulse Counter PCNT0 input number 1.  
Pulse Counter PCNT1 input number 0.  
Pulse Counter PCNT1 input number 1.  
Pulse Counter PCNT2 input number 0.  
Pulse Counter PCNT2 input number 1.  
Peripheral Reflex System PRS, channel 0.  
PCNT0_S0IN  
PCNT0_S1IN  
PCNT1_S0IN  
PCNT1_S1IN  
PCNT2_S0IN  
PCNT2_S1IN  
PRS_CH0  
PE0  
PE1  
PB3  
PB4  
PE8  
PE9  
PC0  
PC1  
PD6  
PD7  
PC4  
PC5  
PD0  
PD1  
PA0  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
56  
Preliminary  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
PRS_CH1  
PRS_CH2  
PRS_CH3  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM0_CDTI0  
TIM0_CDTI1  
TIM0_CDTI2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
TIM2_CC0  
TIM2_CC1  
TIM2_CC2  
TIM3_CC0  
TIM3_CC1  
TIM3_CC2  
U0_RX  
0
1
2
3
4
5
6
Description  
PA1  
PC0  
PC1  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
Peripheral Reflex System PRS, channel 1.  
PF5  
PE8  
PA0  
PA1  
PA2  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
PF6  
PF7  
PF8  
PD1  
PA0  
PC0  
PC1  
PC2  
PC3  
PC4  
PD6  
PD7  
PF0  
PF1  
PF2  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 0 Complimentary Deat Time Insertion channel 0.  
Timer 0 Complimentary Deat Time Insertion channel 1.  
Timer 0 Complimentary Deat Time Insertion channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
Timer 2 Capture Compare input / output channel 0.  
Timer 2 Capture Compare input / output channel 1.  
Timer 2 Capture Compare input / output channel 2.  
Timer 3 Capture Compare input / output channel 0.  
Timer 3 Capture Compare input / output channel 1.  
Timer 3 Capture Compare input / output channel 2.  
UART0 Receive input.  
PD2  
PD3  
PF5  
PB0  
PB1  
PB2  
PC8  
PC9  
PC10  
PF5  
PE10  
PE11  
PE12  
PA12  
PA13  
PA14  
PE0  
PB7  
PB8  
PB11  
PA8  
PA9  
PA10  
PE14  
PE15  
PA15  
PF7  
PE1  
PE2  
PE1  
PA4  
PA3  
PB10  
PB9  
UART0 Transmit output. Also used as receive input in half  
duplex communication.  
U0_TX  
U1_RX  
U1_TX  
PF6  
PE0  
PF11  
PF10  
PE3  
PE2  
UART1 Receive input.  
UART1 Transmit output. Also used as receive input in half  
duplex communication.  
US0_CLK  
US0_CS  
PE12  
PE13  
PE5  
PE4  
PC9  
PC8  
PB13  
PB14  
PB13  
PB14  
USART0 clock input / output.  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
US0_TX  
PE11  
PE10  
PE6  
PE7  
PC10  
PC11  
PE12  
PE13  
PB8  
PB7  
PC1  
PC0  
USART0 Synchronous mode Master Input / Slave Output  
(MISO).  
USART0 Asynchronous Transmit.Also used as receive in-  
put in half duplex communication.  
USART0 Synchronous mode Master Output / Slave Input  
(MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PD2  
PD3  
PF0  
PF1  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PC1  
PC0  
PD1  
PD0  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave Output  
(MISO).  
USART1 Asynchronous Transmit.Also used as receive in-  
put in half duplex communication.  
USART1 Synchronous mode Master Output / Slave Input  
(MOSI).  
US2_CLK  
US2_CS  
US2_RX  
PC4  
PC5  
PC3  
PB5  
PB6  
PB4  
USART2 clock input / output.  
USART2 chip select input / output.  
USART2 Asynchronous Receive.  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
57  
Preliminary  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
0
1
2
3
4
5
6
Description  
USART2 Synchronous mode Master Input / Slave Output  
(MISO).  
USART2 Asynchronous Transmit.Also used as receive in-  
put in half duplex communication.  
US2_TX  
PC2  
PB3  
USART2 Synchronous mode Master Output / Slave Input  
(MOSI).  
USB_DM  
PF10  
PD2  
USB D- pin.  
USB_DMPU  
USB_DP  
USB D- Pullup control.  
USB D+ pin.  
PF11  
PF12  
USB_ID  
USB ID pin. Used in OTG mode.  
USB 5 V VBUS input.  
USB 5 V VBUS enable.  
USB Input to internal 3.3 V regulator  
USB_VBUS  
USB_VBUSEN  
USB_VREGI  
USB_VBUS  
PF5  
USB_VREGI  
USB Decoupling for internal 3.3 V USB regulator and reg-  
ulator output  
USB_VREGO  
USV_VREGO  
4.3 GPIO pinout overview  
The specific GPIO pins available in EFM32GG990 is shown in Table 4.3 (p. 58). Each GPIO port is  
organized as 16-bit ports indicated by letters A through F, and the individual pin on this port in indicated  
by a number from 15 down to 0.  
Table 4.3. GPIO Pinout  
Port  
Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin  
Pin  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
PA15 PA14 PA13 PA12 PA11 PA10  
PB15 PB14 PB13 PB12 PB11 PB10  
PA9  
PB9  
PC9  
PD9  
PE9  
PF9  
PA8  
PB8  
PC8  
PD8  
PE8  
PF8  
PA7  
PB7  
PC7  
PD7  
PE7  
PF7  
PA6  
PB6  
PC6  
PD6  
PE6  
PF6  
PA5  
PB5  
PC5  
PD5  
PE5  
PF5  
PA4  
PB4  
PC4  
PD4  
PE4  
-
PA3  
PB3  
PC3  
PD3  
PE3  
-
PA2  
PB2  
PC2  
PD2  
PE2  
PF2  
PA1  
PB1  
PC1  
PD1  
PE1  
PF1  
PA0  
PB0  
PC0  
PD0  
PE0  
PF0  
-
-
-
-
PC11 PC10  
PD15 PD14 PD13 PD12 PD11 PD10  
PE15 PE14 PE13 PE12 PE11 PE10  
-
-
-
PF12  
PF11  
PF10  
4.4 Opamp pinout overview  
The specific opamp terminals available in EFM32GG990 is shown in Figure 4.2 (p. 59) .  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
58  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 4.2. Opamp Pinout  
PB11  
PB12  
OUT0ALT  
PC4  
PC5  
+
PC0  
OPA0  
-
OUT0  
PC1  
PC2  
PC3  
+
PD4  
PD3  
OPA2  
-
OUT2  
PD6  
PD7  
OUT1ALT  
OUT1  
+
OPA1  
-
PD0  
PD1  
PD5  
4.5 BGA112 Package  
Figure 4.3. BGA112  
Note:  
1. The dimensions in parenthesis are reference.  
2. Datum 'C' and seating plane are defined by the crown of the solder balls.  
3. All dimensions are in millimeters.  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
59  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
The BGA112 Package uses SAC105 solderballs.  
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
60  
Preliminary  
...the world's most energy friendly microcontrollers  
5 PCB Layout and Soldering  
5.1 Recommended PCB Layout  
Figure 5.1. BGA112 PCB Land Pattern  
c1  
cn  
r1  
a
b
e
rn  
d
Table 5.1. BGA112 PCB Land Pattern Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
Symbol  
Row name and  
column number  
a
b
d
e
0.35  
0.80  
8.00  
8.00  
r1  
rn  
A
L
c1  
cn  
1
11  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
61  
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 5.2. BGA112 PCB Solder Mask  
a
b
e
d
Table 5.2. BGA112 PCB Solder Mask Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
a
b
d
e
0.48  
0.80  
8.00  
8.00  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
62  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 5.3. BGA112 PCB Stencil Design  
a
b
e
d
Table 5.3. BGA112 PCB Stencil Design Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
a
b
d
e
0.33  
0.80  
8.00  
8.00  
1. The drawings are not to scale.  
2. All dimensions are in millimeters.  
3. All drawings are subject to change without notice.  
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.  
5. Stencil thickness 0.125 mm.  
5.2 Soldering Information  
The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.  
The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033  
standard for MSL description and level 3 bake conditions.  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
63  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
6 Chip Marking, Revision and Errata  
6.1 Chip Marking  
In the illustration below package fields and position are shown.  
Figure 6.1. Example Chip Marking  
6.2 Revision  
The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 64). If the revision  
says "ES" (Engineering Sample), the revision must be read out electronically as specified in the reference  
manual.  
6.3 Errata  
Please see the dxxxx_efm32gg990_errata.pdf for description and resolution of device erratas. This doc-  
ument is available in Simplicity Studio and online at http://www.energymicro.com/downloads/datasheets.  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
64  
 
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
7 Revision History  
7.1 Revision 1.00  
September 11th, 2012  
Updated the HFRCO 1 MHz band typical value to 1.2 MHz.  
Updated the HFRCO 7 MHz band typical value to 6.6 MHz.  
Other minor corrections.  
7.2 Revision 0.98  
May 25th, 2012  
Corrected BGA solder balls material description.  
Corrected EM3 current consumption in the Electrical Characteristics section.  
7.3 Revision 0.96  
February 28th, 2012  
Added reference to errata document.  
Corrected BGA112 package drawing.  
Updated PCB land pattern, solder mask and stencil design.  
7.4 Revision 0.95  
September 28th, 2011  
Flash configuration for Giant Gecko is now 1024KB or 512KB. For flash sizes below 512KB, see the  
Leopard Gecko Family.  
Corrected operating voltage from 1.8 V to 1.85 V.  
Added rising POR level to Electrical Characteristics section.  
Updated Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup.  
Added Gain error drift and Offset error drift to ADC table.  
Added Opamp pinout overview.  
Added reference to errata document.  
Corrected BGA112 package drawing.  
Updated PCB land pattern, solder mask and stencil design.  
7.5 Revision 0.91  
March 21th, 2011  
Added new alternative locations for EBI and SWO.  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
65  
 
 
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Added new USB Pin to pinout table.  
Corrected slew rate data for Opamps.  
7.6 Revision 0.90  
February 4th, 2011  
Initial preliminary release.  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
66  
 
Preliminary  
...the world's most energy friendly microcontrollers  
A Disclaimer and Trademarks  
A.1 Disclaimer  
Energy Micro AS intends to provide customers with the latest, accurate, and in-depth documentation of  
all peripherals and modules available for system and software implementers using or intending to use  
the Energy Micro products. Characterization data, available modules and peripherals, memory sizes and  
memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in  
different applications. Application examples described herein are for illustrative purposes only. Energy  
Micro reserves the right to make changes without further notice and limitation to product information,  
specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness  
of the included information. Energy Micro shall have no liability for the consequences of use of the infor-  
mation supplied herein. This document does not imply or express copyright licenses granted hereunder  
to design or fabricate any integrated circuits. The products must not be used within any Life Support  
System without the specific written consent of Energy Micro. A "Life Support System" is any product or  
system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Energy Micro products are generally not intended for  
military applications. Energy Micro products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable  
of delivering such weapons.  
A.2 Trademark Information  
Energy Micro, EFM32, EFR, logo and combinations thereof, and others are the registered trademarks or  
trademarks of Energy Micro AS. ARM, CORTEX, THUMB are the registered trademarks of ARM Limited.  
Other terms and product names may be trademarks of others.  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
67  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
B Contact Information  
B.1 Energy Micro Corporate Headquarters  
Postal Address  
Visitor Address  
Technical Support  
Energy Micro AS  
P.O. Box 4633 Nydalen  
N-0405 Oslo  
Energy Micro AS  
Sandakerveien 118  
N-0484 Oslo  
support.energymicro.com  
Phone: +47 40 10 03 01  
NORWAY  
NORWAY  
www.energymicro.com  
Phone: +47 23 00 98 00  
Fax: + 47 23 00 98 01  
B.2 Global Contacts  
Visit www.energymicro.com for information on global distributors and representatives or contact  
sales@energymicro.com for additional information.  
Americas  
Europe, Middle East and Africa Asia and Pacific  
www.energymicro.com/americas www.energymicro.com/emea  
www.energymicro.com/asia  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
68  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Table of Contents  
1. Ordering Information .................................................................................................................................. 2  
2. System Summary ...................................................................................................................................... 3  
2.1. System Introduction ......................................................................................................................... 3  
2.2. Configuration Summary .................................................................................................................... 7  
2.3. Memory Map ................................................................................................................................. 9  
3. Electrical Characteristics ........................................................................................................................... 10  
3.1. Test Conditions ............................................................................................................................. 10  
3.2. Absolute Maximum Ratings ............................................................................................................. 10  
3.3. General Operating Conditions .......................................................................................................... 10  
3.4. Current Consumption ..................................................................................................................... 12  
3.5. Transition between Energy Modes .................................................................................................... 13  
3.6. Power Management ....................................................................................................................... 13  
3.7. Flash .......................................................................................................................................... 14  
3.8. General Purpose Input Output ......................................................................................................... 15  
3.9. Oscillators .................................................................................................................................... 22  
3.10. Analog Digital Converter (ADC) ...................................................................................................... 26  
3.11. Digital Analog Converter (DAC) ...................................................................................................... 36  
3.12. Operational Amplifier (OPAMP) ...................................................................................................... 37  
3.13. Analog Comparator (ACMP) .......................................................................................................... 41  
3.14. Voltage Comparator (VCMP) ......................................................................................................... 43  
3.15. LCD .......................................................................................................................................... 44  
3.16. Digital Peripherals ....................................................................................................................... 44  
4. Pinout and Package ................................................................................................................................. 46  
4.1. Pinout ......................................................................................................................................... 46  
4.2. Alternate functionality pinout ............................................................................................................ 50  
4.3. GPIO pinout overview .................................................................................................................... 58  
4.4. Opamp pinout overview .................................................................................................................. 58  
4.5. BGA112 Package .......................................................................................................................... 59  
5. PCB Layout and Soldering ........................................................................................................................ 61  
5.1. Recommended PCB Layout ............................................................................................................ 61  
5.2. Soldering Information ..................................................................................................................... 63  
6. Chip Marking, Revision and Errata ............................................................................................................ 64  
6.1. Chip Marking ................................................................................................................................ 64  
6.2. Revision ...................................................................................................................................... 64  
6.3. Errata ......................................................................................................................................... 64  
7. Revision History ...................................................................................................................................... 65  
7.1. Revision 1.00 ............................................................................................................................... 65  
7.2. Revision 0.98 ............................................................................................................................... 65  
7.3. Revision 0.96 ............................................................................................................................... 65  
7.4. Revision 0.95 ............................................................................................................................... 65  
7.5. Revision 0.91 ............................................................................................................................... 65  
7.6. Revision 0.90 ............................................................................................................................... 66  
A. Disclaimer and Trademarks ....................................................................................................................... 67  
A.1. Disclaimer ................................................................................................................................... 67  
A.2. Trademark Information ................................................................................................................... 67  
B. Contact Information ................................................................................................................................. 68  
B.1. Energy Micro Corporate Headquarters .............................................................................................. 68  
B.2. Global Contacts ............................................................................................................................ 68  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
69  
Preliminary  
...the world's most energy friendly microcontrollers  
List of Figures  
2.1. Block Diagram ....................................................................................................................................... 3  
2.2. EFM32GG990 Memory Map with largest RAM and Flash sizes ........................................................................ 9  
3.1. Typical Low-Level Output Current, 2V Supply Voltage .................................................................................. 16  
3.2. Typical High-Level Output Current, 2V Supply Voltage ................................................................................. 17  
3.3. Typical Low-Level Output Current, 3V Supply Voltage .................................................................................. 18  
3.4. Typical High-Level Output Current, 3V Supply Voltage ................................................................................. 19  
3.5. Typical Low-Level Output Current, 3.8V Supply Voltage ............................................................................... 20  
3.6. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................... 21  
3.7. Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup ..................................................... 22  
3.8. Calibrated LFRCO Frequency vs Temperature and Supply Voltage ................................................................ 24  
3.9. Calibrated HFRCO 11 MHz Band Frequency vs Temperature and Supply Voltage ............................................ 25  
3.10. Calibrated HFRCO 14 MHz Band Frequency vs Temperature and Supply Voltage ........................................... 25  
3.11. Calibrated HFRCO 21 MHz Band Frequency vs Temperature and Supply Voltage ........................................... 25  
3.12. Calibrated HFRCO 28 MHz Band Frequency vs Temperature and Supply Voltage ........................................... 26  
3.13. Integral Non-Linearity (INL) ................................................................................................................... 30  
3.14. Differential Non-Linearity (DNL) .............................................................................................................. 31  
3.15. ADC Frequency Spectrum, Vdd = 3V, Temp = 25° ................................................................................... 32  
3.16. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25° ..................................................................... 33  
3.17. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25° ................................................................. 34  
3.18. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 35  
3.19. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 35  
3.20. ADC Temperature sensor readout ......................................................................................................... 36  
3.21. OPAMP Common Mode Rejection Ratio ................................................................................................. 39  
3.22. OPAMP Positive Power Supply Rejection Ratio ........................................................................................ 39  
3.23. OPAMP Negative Power Supply Rejection Ratio ...................................................................................... 40  
3.24. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V ..................................................................... 40  
3.25. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) .......................................................................... 40  
3.26. Typical ACMP Characteristics ............................................................................................................... 42  
4.1. EFM32GG990 Pinout (top view, not to scale) ............................................................................................. 46  
4.2. Opamp Pinout ...................................................................................................................................... 59  
4.3. BGA112 .............................................................................................................................................. 59  
5.1. BGA112 PCB Land Pattern ..................................................................................................................... 61  
5.2. BGA112 PCB Solder Mask ..................................................................................................................... 62  
5.3. BGA112 PCB Stencil Design ................................................................................................................... 63  
6.1. Example Chip Marking ........................................................................................................................... 64  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
70  
Preliminary  
...the world's most energy friendly microcontrollers  
List of Tables  
1.1. Ordering Information ................................................................................................................................ 2  
2.1. Configuration Summary ............................................................................................................................ 7  
3.1. Absolute Maximum Ratings ..................................................................................................................... 10  
3.2. General Operating Conditions .................................................................................................................. 10  
3.3. Environmental ....................................................................................................................................... 11  
3.4. Current Consumption ............................................................................................................................. 12  
3.5. Energy Modes Transitions ...................................................................................................................... 13  
3.6. Power Management ............................................................................................................................... 13  
3.7. Flash .................................................................................................................................................. 14  
3.8. GPIO .................................................................................................................................................. 15  
3.9. LFXO .................................................................................................................................................. 22  
3.10. Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup ................................................... 23  
3.11. HFXO ................................................................................................................................................ 23  
3.12. LFRCO .............................................................................................................................................. 23  
3.13. HFRCO ............................................................................................................................................. 24  
3.14. ULFRCO ............................................................................................................................................ 26  
3.15. ADC .................................................................................................................................................. 26  
3.16. DAC .................................................................................................................................................. 36  
3.17. OPAMP ............................................................................................................................................. 37  
3.18. ACMP ............................................................................................................................................... 41  
3.19. VCMP ............................................................................................................................................... 43  
3.20. LCD .................................................................................................................................................. 44  
3.21. Digital Peripherals ............................................................................................................................... 44  
4.1. Device Pinout ....................................................................................................................................... 46  
4.2. Alternate functionality overview ................................................................................................................ 50  
4.3. GPIO Pinout ........................................................................................................................................ 58  
5.1. BGA112 PCB Land Pattern Dimensions (Dimensions in mm) ......................................................................... 61  
5.2. BGA112 PCB Solder Mask Dimensions (Dimensions in mm) ......................................................................... 62  
5.3. BGA112 PCB Stencil Design Dimensions (Dimensions in mm) ....................................................................... 63  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
71  
Preliminary  
...the world's most energy friendly microcontrollers  
List of Equations  
3.1. Total ACMP Active Current ..................................................................................................................... 41  
3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 43  
3.3. Total LCD Current Based on Operational Mode and Internal Boost ................................................................. 44  
www.energymicro.com  
2012-09-11 - EFM32GG990FXX - d0046_Rev1.00  
72  

相关型号:

EFM32GG990F1024-BGA112

Configurable peripheral I/O locations
SILICON

EFM32GG990F1024G-E-BGA112R

RISC Microcontroller, CMOS
SILICON

EFM32GG990F1204-BGA112

EFM32GG990 DATASHEET
QIMONDA

EFM32GG990F512-BGA112

Configurable peripheral I/O locations
SILICON

EFM32GG990F512-BGA112

EFM32GG990 DATASHEET
QIMONDA

EFM32GG995

EFM32GG995 DATASHEET
ETC

EFM32GG995F1204-BGA120

EFM32GG995 DATASHEET
ETC

EFM32HG108

Output state retention and wake-up from Shutoff Mode
SILICON

EFM32HG108F32G-A-QFN24

Output state retention and wake-up from Shutoff Mode
SILICON

EFM32HG108F64G-A-QFN24

Output state retention and wake-up from Shutoff Mode
SILICON

EFM32HG110

Output state retention and wake-up from Shutoff Mode
SILICON

EFM32HG110F32G-A-QFN24

Output state retention and wake-up from Shutoff Mode
SILICON