LNK302DG-TL [POWERINT]

Lowest Component Count, Energy-Efficient Off-Line Switcher IC;
LNK302DG-TL
型号: LNK302DG-TL
厂家: Power Integrations    Power Integrations
描述:

Lowest Component Count, Energy-Efficient Off-Line Switcher IC

开关 光电二极管
文件: 总18页 (文件大小:993K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LNK302/304-306  
LinkSwitch-TN Family  
Lowest Component Count, Energy-Efficient  
Off-Line Switcher IC  
Product Highlights  
Cost Effective Linear/Cap Dropper Replacement  
Lowest cost and component count buck converter solution  
Fully integrated auto-restart for short-circuit and open loop  
fault protection – saves external component costs  
LNK302 uses a simplified controller without auto-restart for  
very low system cost  
FB  
BP  
S
D
+
+
Wide Range  
LinkSwitch-TN  
DC  
High-Voltage  
DC Input  
Output  
66 kHz operation with accurate current limit – allows low cost  
off-the-shelf ± mH inductor for up to ±20 mA output current  
Tight tolerances and negligible temperature variation  
High breakdown voltage of 700 V provides excellent input  
surge withstand  
PI-3492-041509  
Figure 1. Typical Buck Converter Application (See Application Examples Section  
for Other Circuit Configurations).  
Frequency jittering dramatically reduces EMI (~±0 dB)  
Minimizes EMI filter cost  
High thermal shutdown temperature (+±31 °C minimum)  
Much Higher Performance Over Discrete Buck and  
Passive Solutions  
Output Current Table1  
230 VAC ±±15  
81-261 VAC  
Supports buck, buck-boost and flyback topologies  
System level thermal overload, output short-circuit and open  
control loop protection  
Excellent line and load regulation even with typical configuration  
High bandwidth provides fast turn-on with no overshoot  
Current limit operation rejects line ripple  
Universal input voltage range (81 VAC to 261 VAC)  
Built-in current limit and hysteretic thermal protection  
Higher efficiency than passive solutions  
Product4  
MDCM2  
CCM3  
MDCM2  
CCM3  
LNK302P/G/D  
LNK304P/G/D  
LNK305P/G/D  
LNK306P/G/D  
63 mA  
±20 mA  
±71 mA  
221 mA  
80 mA  
63 mA  
±20 mA  
±71 mA  
221 mA  
80 mA  
±70 mA  
280 mA  
360 mA  
±70 mA  
280 mA  
360 mA  
Table 1. Output Current Table.  
Notes:  
Higher power factor than capacitor-fed solutions  
Entirely manufacturable in SMD  
±. Typical output current in a non-isolated buck converter. Output power capability  
depends on respective output voltage. See Key Applications Considerations  
Section for complete description of assumptions, including fully discontinuous  
conduction mode (DCM) operation.  
EcoSmart – Extremely Energy Efficient  
2. Mostly discontinuous conduction mode.  
Consumes typically only 10/80 mW in self-powered buck  
topology at ±±1/230 VAC input with no-load (opto feedback)  
Consumes typically only 7/±2 mW in flyback topology with  
external bias at ±±1/230 VAC input with no-load  
Meets California Energy Commission (CEC), Energy Star, and  
EU requirements  
3. Continuous conduction mode.  
4. Packages: P: DIP-8B, G: SMD-8B, D: SO-8C.  
Applications  
Appliances and timers  
LED drivers and industrial controls  
and thermal shutdown circuitry onto a monolithic IC. The start-up  
and operating power are derived directly from the voltage on the  
DRAIN pin, eliminating the need for a bias supply and associated  
circuitry in buck or flyback converters. The fully integrated  
auto-restart circuit in the LNK304-306 safely limits output power  
during fault conditions such as short-circuit or open loop,  
reducing component count and system-level load protection  
cost. A local supply provided by the IC allows use of a non-  
safety graded optocoupler acting as a level shifter to further  
enhance line and load regulation performance in buck and  
buck-boost converters, if required.  
Description  
LinkSwitch-TN is specifically designed to replace all linear and  
capacitor-fed (cap dropper) non-isolated power supplies in the  
under 360 mA output current range at equal system cost while  
offering much higher performance and energy efficiency.  
LinkSwitch-TN devices integrate a 700 V power MOSFET,  
oscillator, simple On/Off control scheme, a high-voltage switched  
current source, frequency jittering, cycle-by-cycle current limit  
www.powerint.com  
June 2013  
This Product is Covered by Patents and/or Pending Patent Applications.  
LNK302/304-306  
BYPASS  
(BP)  
DRAIN  
(D)  
REGULATOR  
5.8 V  
BYPASS PIN  
UNDERVOLTAGE  
+
-
5.8 V  
4.85 V  
CURRENT LIMIT  
COMPARATOR  
+
6.3 V  
-
V
ILIMIT  
JITTER  
CLOCK  
DCMAX  
THERMAL  
SHUTDOWN  
FEEDBACK  
(FB)  
OSCILLATOR  
1.65 V -VT  
S
Q
Q
R
LEADING  
EDGE  
BLANKING  
SOURCE  
(S)  
PI-3904-032213  
Figure 2a. Functional Block Diagram (LNK302).  
BYPASS  
(BP)  
DRAIN  
(D)  
REGULATOR  
5.8 V  
FAULT  
PRESENT  
AUTO-  
RESTART  
BYPASS PIN  
UNDERVOLTAGE  
COUNTER  
6.3 V  
+
-
CLOCK  
5.8 V  
4.85 V  
CURRENT LIMIT  
COMPARATOR  
RESET  
+
-
V
ILIMIT  
JITTER  
CLOCK  
DCMAX  
THERMAL  
SHUTDOWN  
FEEDBACK  
(FB)  
OSCILLATOR  
1.65 V -VT  
S
Q
Q
R
LEADING  
EDGE  
BLANKING  
SOURCE  
(S)  
PI-2367-032213  
Figure 2b. Functional Block Diagram (LNK304-306).  
2
Rev. J 06/13  
www.powerint.com  
LNK302/304-306  
Pin Functional Description  
DRAIN (D) Pin:  
Power MOSFET drain connection. Provides internal operating  
current for both start-up and steady-state operation.  
for both average and quasi-peak emissions. The frequency  
jitter should be measured with the oscilloscope triggered at the  
falling edge of the DRAIN waveform. The waveform in Figure 4  
illustrates the frequency jitter of the LinkSwitch-TN.  
BYPASS (BP) Pin:  
Connection point for a 0.± mF external bypass capacitor for the  
internally generated 1.8 V supply.  
Feedback Input Circuit  
The feedback input circuit at the FEEDBACK pin consists of a  
low impedance source follower output set at ±.61 V. When the  
current delivered into this pin exceeds 49 mA, a low logic level  
(disable) is generated at the output of the feedback circuit. This  
output is sampled at the beginning of each cycle on the rising  
edge of the clock signal. If high, the power MOSFET is turned  
on for that cycle (enabled), otherwise the power MOSFET  
remains off (disabled). Since the sampling is done only at the  
beginning of each cycle, subsequent changes in the FEEDBACK  
pin voltage or current during the remainder of the cycle are ignored.  
FEEDBACK (FB) Pin:  
During normal operation, switching of the power MOSFET is  
controlled by this pin. MOSFET switching is terminated when a  
current greater than 49 mA is delivered into this pin.  
SOURCE (S) Pin:  
This pin is the power MOSFET source connection. It is also the  
ground reference for the BYPASS and FEEDBACK pins.  
5.8 V Regulator and 6.3 V Shunt Voltage Clamp  
The 1.8 V regulator charges the bypass capacitor connected to  
the BYPASS pin to 1.8 V by drawing a current from the voltage  
on the DRAIN, whenever the MOSFET is off. The BYPASS pin  
is the internal supply voltage node for the LinkSwitch-TN. When  
the MOSFET is on, the LinkSwitch-TN runs off of the energy  
stored in the bypass capacitor. Extremely low power consumption  
of the internal circuitry allows the LinkSwitch-TN to operate  
continuously from the current drawn from the DRAIN pin. A  
bypass capacitor value of 0.± mF is sufficient for both high  
frequency decoupling and energy storage.  
P Package (DIP-8B)  
G Package (SMD-8B)  
D Package (SO-8C)  
8
7
6
5
1
2
S
S
S
S
1
2
8
7
BP  
FB  
S
S
S
S
BP  
FB  
3
4
4
D
5
D
3b  
3a  
In addition, there is a 6.3 V shunt regulator clamping the  
BYPASS pin at 6.3 V when current is provided to the BYPASS  
pin through an external resistor. This facilitates powering of  
LinkSwitch-TN externally through a bias winding to decrease  
the no-load consumption to about 10 mW.  
PI-5422-060613  
Figure 3. Pin Configuration.  
BYPASS Pin Undervoltage  
LinkSwitch-TN Functional Description  
The BYPASS pin undervoltage circuitry disables the power  
MOSFET when the BYPASS pin voltage drops below 4.81 V.  
Once the BYPASS pin voltage drops below 4.81 V, it must rise  
back to 1.8 V to enable (turn-on) the power MOSFET.  
LinkSwitch-TN combines a high-voltage power MOSFET switch  
with a power supply controller in one device. Unlike conventional  
PWM (pulse width modulator) controllers, LinkSwitch-TN uses a  
simple ON/OFF control to regulate the output voltage. The  
LinkSwitch-TN controller consists of an oscillator, feedback  
(sense and logic) circuit, 1.8 V regulator, BYPASS pin  
undervoltage circuit, over-temperature protection, frequency  
jittering, current limit circuit, leading edge blanking and a 700 V  
power MOSFET. The LinkSwitch-TN incorporates additional  
circuitry for auto-restart.  
Over-Temperature Protection  
The thermal shutdown circuitry senses the die temperature.  
The threshold is set at ±42 °C typical with a 71 °C hysteresis.  
When the die temperature rises above this threshold (±42 °C)  
the power MOSFET is disabled and remains disabled until the  
die temperature falls by 71 °C, at which point it is re-enabled.  
Current Limit  
Oscillator  
The current limit circuit senses the current in the power MOSFET.  
When this current exceeds the internal threshold (ILIMIT), the  
power MOSFET is turned off for the remainder of that cycle.  
The leading edge blanking circuit inhibits the current limit  
comparator for a short time (tLEB) after the power MOSFET is  
turned on. This leading edge blanking time has been set so  
that current spikes caused by capacitance and rectifier reverse  
recovery time will not cause premature termination of the  
switching pulse.  
The typical oscillator frequency is internally set to an average of  
66 kHz. Two signals are generated from the oscillator: the  
maximum duty cycle signal (DCMAX) and the clock signal that  
indicates the beginning of each cycle.  
The LinkSwitch-TN oscillator incorporates circuitry that  
introduces a small amount of frequency jitter, typically 4 kHz  
peak-to-peak, to minimize EMI emission. The modulation rate  
of the frequency jitter is set to ± kHz to optimize EMI reduction  
3
www.powerint.com  
Rev. J 06/13  
LNK302/304-306  
600  
500  
flame proof, fusible, wire wound resistor. It accomplishes  
several functions: a) Inrush current limitation to safe levels for  
rectifiers D3 and D4; b) Differential mode noise attenuation; c)  
Input fuse should any other component fail short-circuit  
(component fails safely open-circuit without emitting smoke, fire  
or incandescent material).  
VDRAIN  
400  
300  
The power processing stage is formed by the LinkSwitch-TN,  
freewheeling diode D±, output choke L±, and the output capacitor  
C2. The LNK304 was selected such that the power supply  
operates in the mostly discontinuous-mode (MDCM). Diode D±  
is an ultrafast diode with a reverse recovery time (tRR) of  
approximately 71 ns, acceptable for MDCM operation. For  
continuous conduction mode (CCM) designs, a diode with a trr  
of 31 ns is recommended. Inductor L± is a standard off-the-  
shelf inductor with appropriate RMS current rating (and acceptable  
temperature rise). Capacitor C2 is the output filter capacitor; its  
primary function is to limit the output voltage ripple. The output  
voltage ripple is a stronger function of the ESR of the output  
capacitor than the value of the capacitor itself.  
200  
100  
0
68 kHz  
64 kHz  
0
20  
Time (µs)  
Figure 4. Frequency Jitter.  
Auto-Restart (LNK304-306 Only)  
To a first order, the forward voltage drops of D± and D2 are  
identical. Therefore, the voltage across C3 tracks the output  
voltage. The voltage developed across C3 is sensed and  
regulated via the resistor divider R± and R3 connected to U±’s  
FEEDBACK pin. The values of R± and R3 are selected such  
that, at the desired output voltage, the voltage at the  
FEEDBACK pin is ±.61 V.  
In the event of a fault condition such as output overload, output  
short, or an open-loop condition, LinkSwitch-TN enters into  
auto-restart operation. An internal counter clocked by the  
oscillator gets reset every time the FEEDBACK pin is pulled  
high. If the FEEDBACK pin is not pulled high for 10 ms, the  
power MOSFET switching is disabled for 800 ms. The auto-  
restart alternately enables and disables the switching of the  
power MOSFET until the fault condition is removed.  
Regulation is maintained by skipping switching cycles. As the  
output voltage rises, the current into the FEEDBACK pin will  
rise. If this exceeds IFB then subsequent cycles will be skipped  
until the current reduces below IFB. Thus, as the output load is  
reduced, more cycles will be skipped and if the load increases,  
fewer cycles are skipped. To provide overload protection if no  
cycles are skipped during a 10 ms period, LinkSwitch-TN will  
enter auto-restart (LNK304-306), limiting the average output  
power to approximately 65 of the maximum overload power.  
Due to tracking errors between the output voltage and the  
voltage across C3 at light load or no-load, a small pre-load may  
be required (R4). For the design in Figure 1, if regulation to zero  
load is required, then this value should be reduced to 2.4 k.  
Applications Example  
A 1.44 W Universal Input Buck Converter  
The circuit shown in Figure 1 is a typical implementation of a  
±2 V, ±20 mA non-isolated power supply used in appliance  
control such as rice cookers, dishwashers or other white goods.  
This circuit may also be applicable to other applications such as  
night-lights, LED drivers, electricity meters, and residential  
heating controllers, where a non-isolated supply is acceptable.  
The input stage comprises fusible resistor RF±, diodes D3 and  
D4, capacitors C4 and C1, and inductor L2. Resistor RF± is a  
R1  
13.0 k  
1%  
C3  
R3  
2.05 kΩ  
1%  
RF1  
10 µF  
35 V  
D2  
1N4005GP  
8.2 Ω  
L2  
C1  
FB  
BP  
S
2 W  
1 mH  
100 nF  
12 V,  
120 mA  
D
L1  
D3  
1 mH  
LinkSwitch-TN  
1N4007  
C2  
280 mA  
85-265  
VAC  
C4  
4.7 µF  
400 V  
C5  
4.7 µF  
400 V  
R4  
3.3 kΩ  
LNK304  
100 µF  
D1  
UF4005  
16 V  
D4  
1N4007  
RTN  
PI-3757-041509  
Figure 5. Universal Input, 12 V, 120 mA Constant Voltage Power Supply Using LinkSwitch-TN.  
4
Rev. J 06/13  
www.powerint.com  
LNK302/304-306  
LinkSwitch-TN  
RF1  
D3  
L2  
D
FB  
BP  
S
D2  
R1  
+
C1  
AC  
INPUT  
S
S
L1  
C4  
C5  
C3  
R3  
DC  
OUTPUT  
C2  
S
D1  
D4  
Optimize hatched copper areas (  
) for heatsinking and EMI.  
PI-3750-041509  
Figure 6a. Recommended Printed Circuit Layout for LinkSwitch-TN in a Buck Converter Configuration using P or G Package.  
D3  
L2  
RF1  
D
S
S
S
S
L1  
+
FB  
BP  
D1  
AC  
INPUT  
C3  
C4  
C5  
D2  
C2  
DC  
OUTPUT  
C1  
R3  
R1  
D4  
Optimize hatched copper areas (  
) for heatsinking and EMI.  
PI-4546-041509  
Figure 6b. Recommended Printed Circuit Layout for LinkSwitch-TN in a Buck Converter Configuration using D Package to Bottom Side of the Board.  
Key Application Considerations  
LinkSwitch-TN Selection and Selection Between  
LinkSwitch-TN Design Considerations  
MDCM and CCM Operation  
Output Current Table  
Select the LinkSwitch-TN device, freewheeling diode and  
output inductor that gives the lowest overall cost. In general,  
MDCM provides the lowest cost and highest efficiency converter.  
CCM designs require a larger inductor and ultrafast (tRR 31 ns)  
freewheeling diode in all cases. It is lower cost to use a larger  
LinkSwitch-TN in MDCM than a smaller LinkSwitch-TN in CCM  
because of the additional external component costs of a CCM  
design. However, if the highest output current is required, CCM  
should be employed following the guidelines below.  
Data sheet maximum output current table (Table ±) represents  
the maximum practical continuous output current for both  
mostly discontinuous conduction mode (MDCM) and continuous  
conduction mode (CCM) of operation that can be delivered  
from a given LinkSwitch-TN device under the following  
assumed conditions:  
±. Buck converter topology.  
2. The minimum DC input voltage is ≥70 V. The value of input  
capacitance should be large enough to meet this criterion.  
3. For CCM operation a KRP* of 0.4.  
Topology Options  
LinkSwitch-TN can be used in all common topologies, with or  
without an optocoupler and reference to improve output voltage  
tolerance and regulation. Table 2 provide a summary of these  
configurations. For more information see the Application Note  
– LinkSwitch-TN Design Guide.  
4. Output voltage of ±2 VDC.  
1. Efficiency of 715.  
6. A catch/freewheeling diode with tRR 71 ns is used for MDCM  
operation and for CCM operation, a diode with tRR 31 ns is  
used.  
7. The part is board mounted with SOURCE pins soldered to a  
sufficient area of copper to keep the SOURCE pin tempera-  
ture at or below ±00 °C.  
*KRP is the ratio of ripple to peak inductor current.  
5
www.powerint.com  
Rev. J 06/13  
LNK302/304-306  
Topology  
High-Side  
Basic Circuit Schematic  
Key Features  
±. Output referenced to input  
Buck –  
Direct  
2. Positive output (VO) with respect to -VIN  
3. Step down – VO < VIN  
Feedback  
4. Low cost direct feedback (±±05 typ.)  
1. Requires an output load to maintain regulation  
FB  
BP  
S
D
+
+
LinkSwitch-TN  
VIN  
VO  
PI-3751-041509  
High-Side  
Buck –  
Optocoupler  
Feedback  
±. Output referenced to input  
2. Positive output (VO) with respect to -VIN  
3. Step down – VO < VIN  
FB  
BP  
S
4. Optocoupler feedback  
D
+
+
- Accuracy only limited by reference choice  
- Low cost non-safety rated optocoupler  
- No pre-load required  
LinkSwitch-TN  
VIN  
VO  
1. Minimum no-load consumption  
PI-3752-041509  
Low-Side  
Buck –  
+
+
Optocoupler  
Feedback  
LinkSwitch-TN  
VIN  
VO  
BP  
FB  
±. Output referenced to input  
2. Negative output (VO) with respect to +VIN  
3. Step down – VO < VIN  
D
S
PI-3753-041509  
Low-Side  
Buck –  
Constant  
Current LED  
Driver  
4. Optocoupler feedback  
+
IO  
- Accuracy only limited by reference choice  
- Low cost non-safety rated optocoupler  
- No pre-load required  
LinkSwitch-TN  
VF  
VIN  
+
- Ideal for driving LEDs  
BP  
FB  
D
S
PI-3754-041509  
VF  
IO  
R =  
High-Side  
Buck-Boost –  
Direct  
FB  
BP  
S
Feedback  
D
+
±. Output referenced to input  
LinkSwitch-TN  
VIN  
VO  
+
2. Negative output (VO) with respect to +VIN  
3. Step up/down – VO > VIN orVO < VIN  
4. Low cost direct feedback (±±05 typ.)  
1. Fail-safe – output is not subjected to input  
voltage if the internal power MOSFET fails  
6. Ideal for driving LEDs – better accuracy and  
temperature stability than Low-side Buck  
constant current LED driver  
PI-3755-041509  
High-Side  
Buck-Boost –  
Constant  
Current LED  
Driver  
2 V  
300  
RSENSE  
=
IO  
2 kΩ  
RSENSE  
FB  
BP  
S
IO  
D
+
LinkSwitch-TN  
VIN  
7. Requires an output load to maintain regulation  
10 µF  
100 nF  
50 V  
PI-3779-041509  
Table 2.  
Common Circuit Configurations Using LinkSwitch-TN. (continued on next page)  
6
Rev. J 06/13  
www.powerint.com  
LNK302/304-306  
Topology  
Low-Side  
Basic Circuit Schematic  
Key Features  
±. Output referenced to input  
Buck-Boost –  
Optocoupler  
Feedback  
2. Positive output (VO) with respect to +VIN  
3. Step up/down – VO > VIN or VO < VIN  
4. Optocoupler feedback  
+
LinkSwitch-TN  
- Accuracy only limited by reference choice  
- Low cost non-safety rated optocoupler  
- No pre-load required  
VIN  
VO  
BP  
FB  
+
1. Fail-safe – output is not subjected to input  
voltage if the internal power MOSFET fails  
6. Minimum no-load consumption  
D
S
PI-3756-041509  
Table 2 (cont). Common Circuit Configurations Using LinkSwitch-TN.  
should not exceed the rated ripple voltage divided by the typical  
current limit of the chosen LinkSwitch-TN.  
Component Selection  
Referring to Figure 1, the following considerations may be  
helpful in selecting components for a LinkSwitch-TN design.  
Feedback Resistors R1 and R3  
The values of the resistors in the resistor divider formed by R±  
and R3 are selected to maintain ±.61 V at the FEEDBACK pin. It  
is recommended that R3 be chosen as a standard ±5 resistor  
of 2 k. This ensures good noise immunity by biasing the  
feedback network with a current of approximately 0.8 mA.  
Freewheeling Diode D1  
Diode D± should be an ultrafast type. For MDCM, reverse  
recovery time tRR 71 ns should be used at a temperature of  
70 °C or below. Slower diodes are not acceptable, as continuous  
mode operation will always occur during startup, causing high  
leading edge current spikes, terminating the switching cycle  
prematurely, and preventing the output from reaching regulation.  
If the ambient temperature is above 70 °C then a diode with tRR  
31 ns should be used.  
Feedback Capacitor C3  
Capacitor C3 can be a low cost general purpose capacitor. It  
provides a “sample and hold” function, charging to the output  
voltage during the off time of LinkSwitch-TN. Its value should  
be ±0 mF to 22 mF; smaller values cause poorer regulation at  
light load conditions.  
For CCM an ultrafast diode with reverse recovery time tRR 31 ns  
should be used. A slower diode may cause excessive leading  
edge current spikes, terminating the switching cycle prematurely  
and preventing full power delivery.  
Pre-Load Resistor R4  
In high-side, direct feedback designs where the minimum load  
is <3 mA, a pre-load resistor is required to maintain output  
regulation. This ensures sufficient inductor energy to pull the  
inductor side of the feedback capacitor C3 to input return via  
D2. The value of R4 should be selected to give a minimum  
output load of 3 mA.  
Fast and slow diodes should never be used as the large reverse  
recovery currents can cause excessive power dissipation in the  
diode and/or exceed the maximum drain current specification  
of LinkSwitch-TN.  
In designs with an optocoupler the Zener or reference bias  
current provides a ± mA to 2 mA minimum load, preventing  
“pulse bunching” and increased output ripple at zero load.  
Feedback Diode D2  
Diode D2 can be a low-cost slow diode such as the ±N400X  
series, however it should be specified as a glass passivated  
type to guarantee a specified reverse recovery time. To a first  
order, the forward drops of D± and D2 should match.  
LinkSwitch-TN Layout Considerations  
In the buck or buck-boost converter configuration, since the  
SOURCE pins in LinkSwitch-TN are switching nodes, the  
copper area connected to SOURCE should be minimized to  
minimize EMI within the thermal constraints of the design.  
Inductor L1  
Choose any standard off-the-shelf inductor that meets the  
design requirements. A “drum” or “dog bone” “I” core inductor  
is recommended with a single ferrite element due to its low cost  
and very low audible noise properties. The typical inductance  
value and RMS current rating can be obtained from the  
LinkSwitch-TN design spreadsheet available within the PI Expert  
design suite from Power Integrations. Choose L± greater than  
or equal to the typical calculated inductance with RMS current  
rating greater than or equal to calculated RMS inductor current.  
In the boost configuration, since the SOURCE pins are tied to  
DC return, the copper area connected to SOURCE can be  
maximized to improve heat sinking.  
The loop formed between the LinkSwitch-TN, inductor (L±),  
freewheeling diode (D±), and output capacitor (C2) should be  
kept as small as possible. The BYPASS pin capacitor C±  
(Figure 6) should be located physically close to the SOURCE (S)  
and BYPASS (BP) pins. To minimize direct coupling from  
switching nodes, the LinkSwitch-TN should be placed away  
Capacitor C2  
The primary function of capacitor C2 is to smooth the inductor  
current. The actual output ripple voltage is a function of this  
capacitor’s ESR. To a first order, the ESR of this capacitor  
7
www.powerint.com  
Rev. J 06/13  
LNK302/304-306  
from AC input lines. It may be advantageous to place capacitors  
C4 and C1 in-between LinkSwitch-TN and the AC input. The  
second rectifier diode D4 is optional, but may be included for  
better EMI performance and higher line surge withstand  
capability.  
3. Maximum drain current – verify that the peak drain current is  
below the data sheet peak drain specification under worst-  
case conditions of highest line voltage, maximum overload  
(just prior to auto-restart) and highest ambient temperature.  
4. Thermal check – at maximum output power, minimum input  
voltage and maximum ambient temperature, verify that the  
LinkSwitch-TN SOURCE pin temperature is ±00 °C or below.  
This figure ensures adequate margin due to variations in  
RDS(ON) from part to part. A battery powered thermocouple  
meter is recommended to make measurements when the  
SOURCE pins are a switching node. Alternatively, the  
ambient temperature may be raised to indicate margin to  
thermal shutdown.  
Quick Design Checklist  
As with any power supply design, all LinkSwitch-TN designs  
should be verified for proper functionality on the bench. The  
following minimum tests are recommended:  
±. Adequate DC rail voltage – check that the minimum DC input  
voltage does not fall below 70 VDC at maximum load,  
minimum input voltage.  
2. Correct Diode Selection – UF400x series diodes are recom-  
mended only for designs that operate in MDCM at an  
ambient of 70 °C or below. For designs operating in  
continuous conduction mode (CCM) and/or higher ambients,  
then a diode with a reverse recovery time of 31 ns or better,  
such as the BYV26C, is recommended.  
In a LinkSwitch-TN design using a buck or buck-boost converter  
topology, the SOURCE pin is a switching node. Oscilloscope  
measurements should therefore be made with probe grounded  
to a DC voltage, such as primary return or DC input rail, and not  
to the SOURCE pins. The power supply input must always be  
supplied from an isolated source (e.g. via an isolation transformer).  
8
Rev. J 06/13  
www.powerint.com  
LNK302/304-306  
Absolute Maximum Ratings(1,5)  
Notes:  
DRAIN Pin Voltage..............................................-0.3 V to 700 V  
DRAIN Pin Peak Current: LNK302...................... 200 (371) mA(2)  
LNK304...................... 400 (710) mA(2)  
±. All voltages referenced to SOURCE, TA = 21 °C.  
2. The higher peak DRAIN current is allowed if the DRAIN  
to SOURCE voltage does not exceed 400 V.  
LNK301.................... 800 (±100) mA(2)  
LNK306.................. ±400 (2600) mA(2)  
3. Normally limited by internal circuitry.  
4. ±/±6 in. from case for 1 seconds.  
FEEDBACK Pin Voltage..........................................-0.3 V to 9 V  
FEEDBACK Pin Current................................................. ±00 mA  
BYPASS Pin Voltage...............................................-0.3 V to 9 V  
Storage Temperature ..................................... -61 °C to ±10 °C  
Operating Junction Temperature(3) .................. -40 °C to ±10 °C  
Lead Temperature(4) .........................................................260 °C  
1. Maximum ratings specified may be applied, one at a time,  
without causing permanent damage to the product.  
Exposure to Absolute Maximum Rating conditions for  
extended periods of time may affect product reliability.  
Thermal Resistance  
Thermal Resistance: P or G Package:  
Notes:  
(qJA) ................................70 °C/W(3); 60 °C/W(4) ±. Measured on pin 2 (SOURCE) close to plastic interface.  
(qJC)(±) .................................................±± °C/W 2. Measured on pin 8 (SOURCE) close to plastic interface.  
D Package:  
3. Soldered to 0.36 sq. in. (232 mm2), 2 oz. (6±0 g/m2) copper clad.  
(qJA) ..............................±00 °C/W(3); 80 °C/W(4) 4. Soldered to ± sq. in. (641 mm2), 2 oz. (6±0 g/m2) copper clad.  
(qJC)(2) .................................................30 °C/W  
Conditions  
SOURCE = 0 V; TJ = -40 to ±21 °C  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
See Figure 7  
(Unless Otherwise Specified)  
Control Functions  
Average  
62  
66  
4
70  
Output  
Frequency  
fOSC  
TJ = 21 °C  
kHz  
Peak-Peak Jitter  
Maximum Duty Cycle  
DCMAX  
IFB  
S2 Open  
66  
30  
69  
72  
68  
5
FEEDBACK Pin Turnoff  
Threshold Current  
TJ = 21 °C  
49  
mA  
FEEDBACK Pin Voltage  
at Turnoff Threshold  
VFB  
±.14  
±.61  
±.76  
220  
V
VFB ≥2 V  
(MOSFET Not Switching)  
See Note A  
IS±  
±60  
mA  
DRAIN Pin  
Supply Current  
LNK302/304  
LNK301  
200  
220  
210  
-3.3  
-4.6  
-2.3  
-3.3  
260  
280  
3±0  
-±.8  
-2.1  
-±.0  
-±.1  
FEEDBACK Open  
(MOSFET  
Switching)  
See Notes A, B  
IS2  
mA  
LNK306  
LNK302/304  
LNK301/306  
LNK302/304  
LNK301/306  
-1.1  
-7.1  
-3.8  
-4.1  
VBP = 0 V  
TJ = 21 °C  
ICH±  
BYPASS Pin  
Charge Current  
mA  
VBP = 4 V  
TJ = 21 °C  
ICH2  
9
www.powerint.com  
Rev. J 06/13  
LNK302/304-306  
Conditions  
SOURCE = 0 V; TJ = -40 to ±21 °C  
See Figure 7  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
Control Functions (cont.)  
BYPASS Pin  
Voltage  
VBP  
VBPH  
IBPSC  
1.11  
0.8  
68  
1.8  
6.±0  
±.2  
V
V
BYPASS Pin  
Voltage Hysteresis  
0.91  
BYPASS Pin  
Supply Current  
See Note D  
mA  
Circuit Protection  
di/dt = 11 mA/s  
±26  
±41  
240  
27±  
310  
396  
410  
±36  
±61  
217  
308  
371  
410  
482  
±46  
±81  
271  
341  
40±  
104  
1±1  
TJ = 21 °C  
LNK302  
di/dt = 210 mA/s  
TJ = 21 °C  
di/dt = 61 mA/s  
TJ = 21 °C  
LNK304  
di/dt = 4±1 mA/s  
TJ = 21 °C  
ILIMIT (See  
Note E)  
Current Limit  
mA  
di/dt = 71 mA/s  
TJ = 21 °C  
LNK301  
di/dt = 100 mA/s  
TJ = 21 °C  
di/dt = 91 mA/s  
TJ = 21 °C  
LNK306  
di/dt = 6±0 mA/s  
108  
280  
178  
360  
647  
471  
TJ = 21 °C  
LNK302/304  
Minimum On Time  
tON(MIN)  
ns  
LNK301  
LNK306  
360  
400  
460  
100  
6±0  
671  
Leading Edge  
Blanking Time  
TJ = 21 °C  
See Note F  
tLEB  
TSD  
±70  
±31  
2±1  
±42  
71  
ns  
°C  
°C  
Thermal Shutdown  
Temperature  
±10  
Thermal Shutdown  
Hysteresis  
TSHD  
See Note G  
10  
Rev. J 06/13  
www.powerint.com  
LNK302/304-306  
Conditions  
SOURCE = 0 V; TJ = -40 to ±21 °C  
See Figure 7  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
Output  
TJ = 21 °C  
LNK302  
48  
76  
24  
38  
±2  
±9  
7
11.2  
88.4  
27.6  
44.2  
±3.8  
22.±  
8.±  
ID = ±3 mA  
TJ = ±00 °C  
TJ = 21 °C  
TJ = ±00 °C  
TJ = 21 °C  
TJ = ±00 °C  
TJ = 21 °C  
TJ = ±00 °C  
LNK304  
ID = 21 mA  
ON-State  
Resistance  
RDS(ON)  
LNK301  
ID = 31 mA  
LNK306  
ID = 41 mA  
±±  
±2.9  
10  
LNK302/304  
LNK301  
VBP = 6.2 V, VFB ≥2 V,  
VDS = 160 V,  
OFF-State Drain  
Leakage Current  
70  
IDSS  
mA  
TJ = 21 °C  
LNK306  
90  
VBP = 6.2 V, VFB ≥2 V,  
Breakdown Voltage  
BVDSS  
700  
10  
V
TJ = 21 °C  
tR  
tF  
Rise Time  
Fall Time  
10  
10  
ns  
ns  
Measured in a Typical Buck  
Converter Application  
DRAIN Pin  
Supply Voltage  
V
Output Enable Delay  
tEN  
See Figure 9  
±0  
ms  
Output Disable  
Setup Time  
tDST  
0.1  
ms  
ms  
5
LNK302  
LNK304-306  
LNK302  
Not Applicable  
Auto-Restart  
ON-Time  
TJ = 21 °C  
See Note H  
tAR  
10  
Not Applicable  
6
Auto-Restart  
Duty Cycle  
DCAR  
LNK304-306  
Notes:  
A. Total current consumption is the sum of Iand IDSS when FEEDBACK pin voltage is ≥2 V (MOSFET not switching) and the sum of  
IS2 and IDSS when FEEDBACK pin is shorted to SOURCE (MOSFET switching).  
B. Since the output MOSFET is switching, it is difficult to isolate the switching current from the supply current at the DRAIN.  
An alternative is to measure the BYPASS pin current at 6 V.  
C. See Typical Performance Characteristics section Figure ±4 for BYPASS pin start-up charging waveform.  
D. This current is only intended to supply an optional optocoupler connected between the BYPASS and FEEDBACK  
pins and not any other external circuitry.  
E. For current limit at other di/dt values, refer to Figure ±3.  
F. This parameter is guaranteed by design.  
G. This parameter is derived from characterization.  
H. Auto-restart on time has the same temperature characteristics as the oscillator (inversely proportional to frequency).  
11  
www.powerint.com  
Rev. J 06/13  
LNK302/304-306  
470 Ω  
5 W  
470 kΩ  
FB  
BP  
D
S2  
S1  
50 V  
50 V  
0.1 μF  
S
S
S
S
PI-3490-060204  
Figure 7. LinkSwitch-TN General Test Circuit.  
DC  
(internal signal)  
MAX  
t
P
FB  
t
EN  
V
DRAIN  
1
tP  
=
fOSC  
PI-3707-112503  
Figure 8. LinkSwitch-TN Duty Cycle Measurement.  
Figure 9. LinkSwitch-TN Output Enable Timing.  
12  
Rev. J 06/13  
www.powerint.com  
LNK302/304-306  
Typical Performance Characteristics  
1.1  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.0  
0.9  
0
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25  
50 75 100 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
Figure 10. Breakdown vs. Temperature.  
Figure 11. Frequency vs. Temperature.  
1.4  
1.2  
1.0  
0.8  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
Normalized  
Limit = 1  
Normalized di/dt  
di/dt = 1  
Normalized Current  
di/dt = 1  
0.6  
0.4  
0.2  
0
di/dt = 6  
LNK302  
LNK304  
LNK305  
LNK306  
55 mA/µs  
65 mA/µs  
75 mA/µs  
95 mA/µs  
136 mA  
257 mA  
375 mA  
482 mA  
1
2
3
4
5
6
-50  
0
50  
100  
150  
Normalized di/dt  
Temperature (°C)  
Figure 13. Current Limit vs. di/dt.  
Figure 12. Current Limit vs. Temperature at Normalized di/dt.  
400  
350  
7
6
5
25 °C  
300  
100 °C  
250  
200  
150  
100  
50  
4
3
2
1
Scaling Factors:  
LNK302 0.5  
LNK304 1.0  
LNK305 2.0  
LNK306 3.4  
0
0
0
2
4
6
8
10 12 14 16 18 20  
0
0.2  
0.4  
0.6  
0.8  
1.0  
DRAIN Voltage (V)  
Time (ms)  
Figure 14. BYPASS Pin Start-up Waveform.  
Figure 15. Output Characteristics.  
13  
www.powerint.com  
Rev. J 06/13  
LNK302/304-306  
Typical Performance Characteristics (cont.)  
1000  
100  
10  
Scaling Factors:  
LNK302  
LNK304  
LNK305  
LNK306  
0.5  
1.0  
2.0  
3.4  
1
0
100 200 300 400 500 600  
Drain Voltage (V)  
Figure 16. COSS vs. Drain Voltage.  
Part Ordering Information  
• LinkSwitch Product Family  
• TN Series Number  
• Package Identifier  
G
P
D
Plastic Surface Mount DIP  
Plastic DIP  
Plastic SO-8C  
• Package Material  
N
G
Pure Matte Tin (RoHS Compliant)  
RoHS Compliant and Halogen Free (D package only)  
Tape & Reel and Other Options  
Blank  
Standard Configurations  
Tape and Reel, ± k pcs minimum for G Package. 2.1 k pcs for D Package.  
Not available for P Package.  
LNK 304  
G N - TL  
TL  
14  
Rev. J 06/13  
www.powerint.com  
LNK302/304-306  
PDIP-8B (P Package)  
D S .004 (.10)  
Notes:  
.137 (3.48)  
MINIMUM  
1. Package dimensions conform to JEDEC specification  
MS-001-AB (Issue B 7/85) for standard dual-in-line (DIP)  
package with .300 inch row spacing.  
-E-  
2. Controlling dimensions are inches. Millimeter sizes are  
shown in parentheses.  
3. Dimensions shown do not include mold flash or other  
protrusions. Mold flash or protrusions shall not exceed  
.006 (.15) on any side.  
.240 (6.10)  
.260 (6.60)  
4. Pin locations start with Pin 1, and continue counter-clock-  
wise to Pin 8 when viewed from the top. The notch and/or  
dimple are aids in locating Pin 1. Pin 6 is omitted.  
5. Minimum metal to metal spacing at the package body for  
the omitted lead location is .137 inch (3.48 mm).  
6. Lead width measured at package body.  
Pin 1  
-D-  
7. Lead spacing measured with the leads constrained to be  
perpendicular to plane T.  
.367 (9.32)  
.387 (9.83)  
.057 (1.45)  
.068 (1.73)  
(NOTE 6)  
.125 (3.18)  
.145 (3.68)  
.015 (.38)  
MINIMUM  
-T-  
SEATING  
PLANE  
.008 (.20)  
.015 (.38)  
.120 (3.05)  
.140 (3.56)  
.300 (7.62) BSC  
(NOTE 7)  
.100 (2.54) BSC  
.048 (1.22)  
.053 (1.35)  
P08B  
.300 (7.62)  
.390 (9.91)  
.014 (.36)  
.022 (.56)  
T E D S .010 (.25) M  
PI-2551-040110  
SMD-8B (G Package)  
D S .004 (.10)  
Notes:  
.137 (3.48)  
MINIMUM  
1. Controlling dimensions are  
inches. Millimeter sizes are  
shown in parentheses.  
-E-  
2. Dimensions shown do not  
include mold flash or other  
protrusions. Mold flash or  
protrusions shall not exceed  
.006 (.15) on any side.  
3. Pin locations start with Pin 1,  
and continue counter-clock-  
wise to Pin 8 when viewed  
from the top. Pin 6 is omitted.  
4. Minimum metal to metal  
spacing at the package body  
for the omitted lead location  
is .137 inch (3.48 mm).  
.372 (9.45)  
.388 (9.86)  
.010 (.25)  
.240 (6.10)  
.260 (6.60)  
.420  
E S  
.046 .060 .060 .046  
.080  
Pin 1  
Pin 1  
-D-  
5. Lead width measured at  
package body.  
6. D and E are referenced  
datums on the package  
body.  
.086  
.186  
.100 (2.54) (BSC)  
.286  
.367 (9.32)  
.387 (9.83)  
Solder Pad Dimensions  
.057 (1.45)  
.068 (1.73)  
(NOTE 5)  
.125 (3.18)  
.145 (3.68)  
.004 (.10)  
.032 (.81)  
.037 (.94)  
.048 (1.22)  
.053 (1.35)  
°
°
.009 (.23)  
0 - 8  
.036 (0.91)  
.044 (1.12)  
.004 (.10)  
.012 (.30)  
G08B  
PI-2546-040110  
15  
www.powerint.com  
Rev. J 06/13  
LNK302/304-306  
SO-8C (D Package)  
0.10 (0.004)  
A-B  
2X  
C
2
DETAIL A  
B
4
4.90 (0.193) BSC  
A
4
D
8
5
GAUGE  
PLANE  
SEATING  
PLANE  
3.90 (0.154) BSC  
6.00 (0.236) BSC  
2
0 - 8o  
C
0.25 (0.010)  
BSC  
1.04 (0.041) REF  
0.10 (0.004)  
C D  
0.40 (0.016)  
1.27 (0.050)  
2X  
1
4
Pin 1 ID  
0.20 (0.008)  
C
2X  
7X 0.31 - 0.51 (0.012 - 0.020)  
1.27 (0.050) BSC  
0.25 (0.010)  
M
C A-B D  
1.35 (0.053)  
1.75 (0.069)  
1.25 - 1.65  
(0.049 - 0.065)  
DETAIL A  
H
0.10 (0.004)  
0.25 (0.010)  
0.10 (0.004)  
C
7X  
SEATING PLANE  
0.17 (0.007)  
0.25 (0.010)  
C
Reference  
Solder Pad  
Dimensions  
+
Notes:  
1. JEDEC reference: MS-012.  
2. Package outline exclusive of mold flash and metal burr.  
3. Package outline inclusive of plating thickness.  
2.00 (0.079)  
4.90 (0.193)  
4. Datums A and B to be determined at datum plane H.  
5. Controlling dimensions are in millimeters. Inch dimensions  
are shown in parenthesis. Angles in degrees.  
+
+
+
1.27 (0.050)  
0.60 (0.024)  
D07C  
PI-4526-040110  
16  
Rev. J 06/13  
www.powerint.com  
LNK302/304-306  
Revision  
Notes  
Date  
03/03  
0±/04  
08/04  
±2/04  
C
D
E
F
Release data sheet.  
Corrected Minimum On-Time.  
Added LNK302.  
Added lead-free ordering information.  
Minor error corrections.  
Renamed Feedback Pin Voltage Parameter to Feedback Pin Voltage at Turnoff Threshold and removed condition.  
Added SO-8C package.  
G
03/01  
H
I
±2/06  
±±/08  
06/±3  
Updated Part Ordering Information section with Halogen Free.  
Updated Key Features column in Table 2. Updated style of data sheet.  
J
17  
www.powerint.com  
Rev. J 06/13  
For the latest updates, visit our website: www.powerint.com  
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power  
Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES  
NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.  
Patent Information  
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered  
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A  
complete list of Power Integrations patents may be found at www.powerint.com. Power Integrations grants its customers a license under  
certain patent rights as set forth at http://www.powerint.com/ip.htm.  
Life Support Policy  
POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:  
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii)  
whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant  
injury or death to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause  
the failure of the life support device or system, or to affect its safety or effectiveness.  
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS,  
HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc.  
Other trademarks are property of their respective companies. ©2014, Power Integrations, Inc.  
Power Integrations Worldwide Sales Support Locations  
World Headquarters  
Germany  
Japan  
Taiwan  
5245 Hellyer Avenue  
Lindwurmstrasse 114  
80337 Munich  
Germany  
Phone: +49-895-527-39110  
Fax: +49-895-527-39200  
e-mail: eurosales@powerint.com Phone: +81-45-471-1021  
Fax: +81-45-471-3717  
Kosei Dai-3 Bldg.  
2-12-11, Shin-Yokohama,  
Kohoku-ku  
Yokohama-shi Kanagwan  
222-0033 Japan  
5F, No. 318, Nei Hu Rd., Sec. 1  
Nei Hu Dist.  
Taipei 11493, Taiwan R.O.C.  
Phone: +886-2-2659-4570  
Fax: +886-2-2659-4550  
e-mail: taiwansales@powerint.com  
San Jose, CA 95138, USA.  
Main: +1-408-414-9200  
Customer Service:  
Phone: +1-408-414-9665  
Fax: +1-408-414-9765  
e-mail: usasales@powerint.com  
India  
e-mail: japansales@powerint.com UK  
China (Shanghai)  
Rm 1601/1610, Tower 1,  
#1, 14th Main Road  
Vasanthanagar  
First Floor, Unit 15, Meadway  
Court, Rutherford Close,  
Korea  
Kerry Everbright City  
Bangalore-560052 India  
Phone: +91-80-4113-8020  
Fax: +91-80-4113-8023  
e-mail: indiasales@powerint.com Seoul, 135-728, Korea  
Phone: +82-2-2016-6610  
RM 602, 6FL  
Stevenage, Herts. SG1 2EF  
No. 218 Tianmu Road West,  
Shanghai, P.R.C. 200070  
Phone: +86-21-6354-6323  
Fax: +86-21-6354-6325  
Korea City Air Terminal B/D, 159-6 United Kingdom  
Samsung-Dong, Kangnam-Gu, Phone: +44 (0) 1252-730-141  
Fax: +44 (0) 1252-727-689  
e-mail: eurosales@powerint.com  
e-mail: chinasales@powerint.com Italy  
Via Milanese 20, 3rd. Fl.  
Fax: +82-2-2016-6630  
e-mail: koreasales@powerint.com Applications Hotline  
World Wide +1-408-414-9660  
China (ShenZhen)  
20099 Sesto San Giovanni (MI)  
Italy  
3rd Floor, Block A,  
Singapore  
Zhongtou International Business Phone: +39-024-550-8701  
Center, No. 1061, Xiang Mei Rd, Fax: +39-028-928-6009  
51 Newton Road  
#19-01/05 Goldhill Plaza  
Applications Fax  
World Wide +1-408-414-9760  
FuTian District, ShenZhen,  
China, 518040  
Phone: +86-755-8379-3243  
Fax: +86-755-8379-5828  
e-mail: chinasales@powerint.com  
e-mail: eurosales@powerint.com Singapore, 308900  
Phone: +65-6358-2160  
Fax: +65-6358-2015  
e-mail: singaporesales@powerint.com  

相关型号:

LNK302DGTL

LinkSwitch-TN Family Lowest Component Count, Energy-Effi cient Off-Line Switcher IC
POWERINT

LNK302DN

LinkSwitch-TN Family Lowest Component Count, Energy-Effi cient Off-Line Switcher IC
POWERINT

LNK302DNTL

LinkSwitch-TN Family Lowest Component Count, Energy-Effi cient Off-Line Switcher IC
POWERINT

LNK302G

Lowest Component Count, Energy Efficient Off-Line Switcher IC
POWERINT

LNK302GN

LinkSwitch-TN Family Lowest Component Count, Energy-Effi cient Off-Line Switcher IC
POWERINT

LNK302GNTL

LinkSwitch-TN Family Lowest Component Count, Energy-Effi cient Off-Line Switcher IC
POWERINT

LNK302P

Lowest Component Count, Energy Efficient Off-Line Switcher IC
POWERINT

LNK302P/G/D

Lowest Component Count, Energy-Effi cient Off-Line Switcher IC
FERYSTER

LNK302PGD

Lowest Component Count, Energy-Efficient Off-Line Switcher IC
POWERINT

LNK302PN

LinkSwitch-TN Family Lowest Component Count, Energy-Effi cient Off-Line Switcher IC
POWERINT

LNK302_08

Lowest Component Count, Energy-Efficient Off-Line Switcher IC
POWERINT

LNK303P

3W电源芯片LNK303P
ETC