LNK302G [POWERINT]

Lowest Component Count, Energy Efficient Off-Line Switcher IC; 最低的元件数量,节能离线式开关IC
LNK302G
型号: LNK302G
厂家: Power Integrations    Power Integrations
描述:

Lowest Component Count, Energy Efficient Off-Line Switcher IC
最低的元件数量,节能离线式开关IC

开关 光电二极管
文件: 总16页 (文件大小:864K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LNK302/304-306  
®
LinkSwitch-TN Family  
Lowest Component Count, Energy Efficient  
Off-Line Switcher IC  
Product Highlights  
Cost Effective Linear/Cap Dropper Replacement  
Lowest cost and component count buck converter solution  
Fully integrated auto-restart for short-circuit and open  
loop fault protection – saves external component costs  
LNK302 uses a simplified controller without auto-restart  
for very low system cost  
66 kHz operation with accurate current limit – allows low cost  
off-the-shelf 1 mH inductor for up to 120 mAoutput current  
Tight tolerances and negligible temperature variation  
High breakdown voltage of 700 V provides excellent  
input surge withstand  
FB  
BP  
S
D
+
+
Wide Range  
HV DC Input  
DC  
LinkSwitch-TN  
Output  
PI-3492-111903  
Figure 1. Typical Buck Converter Application (See Application  
Examples Section for Other Circuit Configurations).  
Frequency jittering dramatically reduces EMI (~10 dB)  
– minimizes EMI filter cost  
High thermal shutdown temperature (+135 °C minimum)  
OUTPUT CURRENT TABLE1  
230 VAC ±15%  
MDCM2 CCM3 MDCM2 CCM3  
LNK302P or G 63 mA 80 mA 63 mA 80 mA  
85-265 VAC  
PRODUCT4  
Much Higher Performance over Discrete Buck and  
Passive Solutions  
Supports buck, buck-boost and flyback topologies  
System level thermal overload, output short-circuit and  
open control loop protection  
Excellent line and load regulation even with typical  
configuration  
LNK304P or G 120 mA 170 mA 120 mA 170 mA  
LNK305P or G 175 mA 280 mA 175 mA 280 mA  
LNK306P or G 225 mA 360 mA 225 mA 360 mA  
Table 1. Notes: 1. Typical output current in a non-isolated buck  
converter. Output power capability depends on respective output  
voltage. See Key Applications Considerations Section for complete  
description of assumptions, including fully discontinuous conduction  
mode (DCM) operation. 2. Mostly discontinuous conduction mode. 3.  
Continuous conduction mode. 4. Packages: P: DIP-8B, G: SMD-8B.  
For lead-free package options, see Part Ordering Information.  
High bandwidth provides fast turn-on with no overshoot  
Current limit operation rejects line ripple  
Universal input voltage range (85 VAC to 265 VAC)  
Built-in current limit and hysteretic thermal protection  
Higher efficiency than passive solutions  
Higher power factor than capacitor-fed solutions  
Entirely manufacturable in SMD  
under 360 mA output current range at equal system cost while  
offering much higher performance and energy efficiency.  
EcoSmart®– Extremely Energy Efficient  
Consumes typically only 50/80 mW in self-powered buck  
topology at 115/230 VAC input with no load (opto feedback)  
Consumes typically only 7/12 mW in flyback topology  
with external bias at 115/230 VAC input with no load  
Meets California Energy Commission (CEC), Energy  
Star, and EU requirements  
LinkSwitch-TN devices integrate a 700 V power MOSFET,  
oscillator,simpleOn/Offcontrolscheme,ahighvoltageswitched  
currentsource, frequencyjittering, cycle-by-cyclecurrentlimit  
and thermal shutdown circuitry onto a monolithic IC. The start-  
up and operating power are derived directly from the voltage  
on the DRAIN pin, eliminating the need for a bias supply and  
associated circuitry in buck or flyback converters. The fully  
integrated auto-restart circuit in the LNK304-306 safely limits  
output power during fault conditions such as short-circuit or  
open loop, reducing component count and system-level load  
protection cost. A local supply provided by the IC allows use  
of a non-safety graded optocoupler acting as a level shifter to  
further enhance line and load regulation performance in buck  
and buck-boost converters, if required.  
Applications  
Appliances and timers  
LED drivers and industrial controls  
Description  
LinkSwitch-TN is specifically designed to replace all linear and  
capacitor-fed (cap dropper) non-isolated power supplies in the  
March 2005  
LNK302/304-306  
BYPASS  
(BP)  
DRAIN  
(D)  
REGULATOR  
5.8 V  
BYPASS PIN  
UNDER-VOLTAGE  
+
-
5.8 V  
4.85 V  
CURRENT LIMIT  
COMPARATOR  
6.3 V  
+
-
V
ILIMIT  
JITTER  
CLOCK  
DCMAX  
THERMAL  
SHUTDOWN  
OSCILLATOR  
FEEDBACK  
1.65 V -VT  
(FB)  
S
R
Q
Q
LEADING  
EDGE  
BLANKING  
SOURCE  
(S)  
PI-3904-020805  
Figure 2a. Functional Block Diagram (LNK302).  
BYPASS  
(BP)  
DRAIN  
(D)  
REGULATOR  
5.8 V  
FAULT  
PRESENT  
AUTO-  
RESTART  
COUNTER  
BYPASS PIN  
UNDER-VOLTAGE  
+
CLOCK  
RESET  
5.8 V  
4.85 V  
-
CURRENT LIMIT  
COMPARATOR  
6.3 V  
+
-
V
ILIMIT  
JITTER  
CLOCK  
DCMAX  
THERMAL  
SHUTDOWN  
OSCILLATOR  
FEEDBACK  
(FB)  
1.65 V -VT  
S
R
Q
Q
LEADING  
EDGE  
BLANKING  
SOURCE  
(S)  
PI-2367-021105  
Figure 2b. Functional Block Diagram (LNK304-306).  
G
2
3/05  
LNK302/304-306  
The LinkSwitch-TN oscillator incorporates circuitry that  
introduces a small amount of frequency jitter, typically 4 kHz  
peak-to-peak, to minimize EMI emission. The modulation rate  
of the frequency jitter is set to 1 kHz to optimize EMI reduction  
for both average and quasi-peak emissions. The frequency  
jitter should be measured with the oscilloscope triggered at  
the falling edge of the DRAIN waveform. The waveform in  
Figure 4 illustrates the frequency jitter of the LinkSwitch-TN.  
Pin Functional Description  
DRAIN (D) Pin:  
Power MOSFET drain connection. Provides internal operating  
current for both start-up and steady-state operation.  
BYPASS (BP) Pin:  
Connection point for a 0.1 µF external bypass capacitor for the  
internally generated 5.8 V supply.  
Feedback Input Circuit  
FEEDBACK (FB) Pin:  
The feedback input circuit at the FB pin consists of a low  
impedancesourcefolloweroutputsetat1.65V.Whenthecurrent  
deliveredintothispinexceeds49µA,alowlogiclevel(disable)  
is generated at the output of the feedback circuit. This output  
is sampled at the beginning of each cycle on the rising edge of  
the clock signal. If high, the power MOSFET is turned on for  
thatcycle(enabled), otherwisethepowerMOSFETremainsoff  
(disabled). Since the sampling is done only at the beginning of  
each cycle, subsequent changes in the FB pin voltage or current  
during the remainder of the cycle are ignored.  
During normal operation, switching of the power MOSFET is  
controlled by this pin. MOSFET switching is terminated when  
a current greater than 49 µA is delivered into this pin.  
SOURCE (S) Pin:  
This pin is the power MOSFET source connection. It is also the  
ground reference for the BYPASS and FEEDBACK pins.  
P Package (DIP-8B)  
G Package (SMD-8B)  
5.8 V Regulator and 6.3 V Shunt Voltage Clamp  
The 5.8 V regulator charges the bypass capacitor connected to  
the BYPASS pin to 5.8 V by drawing a current from the voltage  
on the DRAIN, whenever the MOSFET is off. The BYPASS  
pin is the internal supply voltage node for the LinkSwitch-TN.  
When the MOSFET is on, the LinkSwitch-TN runs off of the  
energy stored in the bypass capacitor. Extremely low power  
consumption of the internal circuitry allows the LinkSwitch-TN  
tooperatecontinuouslyfromthecurrentdrawnfromtheDRAIN  
pin. A bypass capacitor value of 0.1 µF is sufficient for both  
high frequency decoupling and energy storage.  
S
S
S
S
1
2
8
7
BP  
FB  
3
4
5
D
PI-3491-111903  
In addition, there is a 6.3 V shunt regulator clamping the  
BYPASS pin at 6.3 V when current is provided to the BYPASS  
pin through an external resistor. This facilitates powering of  
LinkSwitch-TN externally through a bias winding to decrease  
the no-load consumption to about 50 mW.  
Figure 3. Pin Configuration.  
LinkSwitch-TN Functional  
Description  
BYPASS Pin Under-Voltage  
LinkSwitch-TNcombinesahighvoltagepowerMOSFETswitch  
withapowersupplycontrollerinonedevice.Unlikeconventional  
PWM(pulsewidthmodulator)controllers,LinkSwitch-TNuses  
a simple ON/OFF control to regulate the output voltage. The  
LinkSwitch-TN controller consists of an oscillator, feedback  
(sense and logic) circuit, 5.8 V regulator, BYPASS pin under-  
voltagecircuit,over-temperatureprotection,frequencyjittering,  
current limit circuit, leading edge blanking and a 700 V power  
MOSFET.TheLinkSwitch-TNincorporatesadditionalcircuitry  
for auto-restart.  
The BYPASS pin under-voltage circuitry disables the power  
MOSFET when the BYPASS pin voltage drops below 4.85 V.  
Once the BYPASS pin voltage drops below 4.85 V, it must rise  
back to 5.8 V to enable (turn-on) the power MOSFET.  
Over-Temperature Protection  
The thermal shutdown circuitry senses the die temperature.  
The threshold is set at 142 °C typical with a 75 °C hysteresis.  
Whenthedietemperaturerisesabovethisthreshold(142°C)the  
power MOSFET is disabled and remains disabled until the die  
temperature falls by 75 °C, at which point it is re-enabled.  
Oscillator  
The typical oscillator frequency is internally set to an average  
of 66 kHz. Two signals are generated from the oscillator: the  
maximum duty cycle signal (DCMAX) and the clock signal that  
indicates the beginning of each cycle.  
Current Limit  
ThecurrentlimitcircuitsensesthecurrentinthepowerMOSFET.  
When this current exceeds the internal threshold (ILIMIT), the  
G
3/05  
3
LNK302/304-306  
600  
12 V, 120 mA non-isolated power supply used in appliance  
control such as rice cookers, dishwashers or other white goods.  
This circuit may also be applicable to other applications such  
as night-lights, LED drivers, electricity meters, and residential  
heating controllers, where a non-isolated supply is acceptable.  
500  
VDRAIN  
400  
300  
The input stage comprises fusible resistor RF1, diodes D3 and  
D4, capacitors C4 and C5, and inductor L2. Resistor RF1 is  
a flame proof, fusible, wire wound resistor. It accomplishes  
several functions: a) Inrush current limitation to safe levels for  
rectifiers D3 and D4; b) Differential mode noise attenuation;  
c) Input fuse should any other component fail short-circuit  
(component fails safely open-circuit without emitting smoke,  
fire or incandescent material).  
200  
100  
0
68 kHz  
64 kHz  
0
20  
The power processing stage is formed by the LinkSwitch-TN,  
freewheeling diode D1, output choke L1, and the output  
capacitor C2. The LNK304 was selected such that the power  
supply operates in the mostly discontinuous-mode (MDCM).  
Diode D1 is an ultra-fast diode with a reverse recovery time (trr)  
of approximately 75 ns, acceptable for MDCM operation. For  
continuousconductionmode(CCM)designs,adiodewithatrr of  
35nsisrecommended. InductorL1isastandardoff-the-shelf  
inductor with appropriate RMS current rating (and acceptable  
temperature rise). Capacitor C2 is the output filter capacitor;  
its primary function is to limit the output voltage ripple. The  
output voltage ripple is a stronger function of the ESR of the  
output capacitor than the value of the capacitor itself.  
Time (µs)  
Figure 4. Frequency Jitter.  
power MOSFET is turned off for the remainder of that cycle.  
The leading edge blanking circuit inhibits the current limit  
comparator for a short time (tLEB) after the power MOSFET  
is turned on. This leading edge blanking time has been set so  
that current spikes caused by capacitance and rectifier reverse  
recovery time will not cause premature termination of the  
switching pulse.  
Auto-Restart (LNK304-306 only)  
In the event of a fault condition such as output overload, output  
short,oranopenloopcondition,LinkSwitch-TNentersintoauto-  
restart operation. An internal counter clocked by the oscillator  
gets reset every time the FB pin is pulled high. If the FB pin  
is not pulled high for 50 ms, the power MOSFET switching is  
disabled for 800 ms. The auto-restart alternately enables and  
disables the switching of the power MOSFET until the fault  
condition is removed.  
To a first order, the forward voltage drops of D1 and D2 are  
identical. Therefore, the voltage across C3 tracks the output  
voltage.ThevoltagedevelopedacrossC3issensedandregulated  
via the resistor divider R1 and R3 connected to U1ʼs FB pin.  
The values of R1 and R3 are selected such that, at the desired  
output voltage, the voltage at the FB pin is 1.65 V.  
Regulation is maintained by skipping switching cycles. As the  
output voltage rises, the current into the FB pin will rise. If  
this exceeds IFBthen subsequent cycles will be skipped until the  
current reduces below IFB. Thus, as the output load is reduced,  
more cycles will be skipped and if the load increases, fewer  
Applications Example  
A 1.44 W Universal Input Buck Converter  
The circuit shown in Figure 5 is a typical implementation of a  
R1  
13.0 k  
1%  
C3  
R3  
2.05 kΩ  
1%  
RF1  
10 µF  
35 V  
D2  
1N4005GP  
8.2 Ω  
L2  
C1  
FB  
BP  
S
2 W  
1 mH  
100 nF  
12 V,  
120 mA  
D
L1  
D3  
1 mH  
LinkSwitch-TN  
1N4007  
C2  
280 mA  
85-265  
VAC  
C4  
4.7 µF  
400 V  
C5  
4.7 µF  
400 V  
R4  
3.3 kΩ  
LNK304  
100 µF  
D1  
UF4005  
16 V  
D4  
1N4007  
RTN  
PI-3757-112103  
Figure 5. Universal Input, 12 V, 120 mA Constant Voltage Power Supply Using LinkSwitch-TN.  
G
4
3/05  
LNK302/304-306  
LinkSwitch-TN  
RF1  
D1  
L2  
D
FB  
BP  
S
D2  
R1  
+
C1  
AC  
INPUT  
S
S
L1  
C4  
C5  
C3  
R3  
DC  
OUTPUT  
C2  
S
D1  
D4  
Optimize hatched copper areas (  
) for heatsinking and EMI.  
PI-3750-083004  
Figure 6. Recommended Printed Circuit Layout for LinkSwitch-TN in a Buck Converter Configuration.  
cycles are skipped. To provide overload protection if no cycles  
LinkSwitch-TN Selection and Selection Between  
are skipped during a 50 ms period, LinkSwitch-TN will enter  
auto-restart (LNK304-306), limiting the average output power  
to approximately 6% of the maximum overload power. Due to  
trackingerrorsbetweentheoutputvoltageandthevoltageacross  
C3 at light load or no load, a small pre-load may be required  
(R4). For the design in Figure 5, if regulation to zero load is  
required, then this value should be reduced to 2.4 k.  
MDCM and CCM Operation  
SelecttheLinkSwitch-TNdevice,freewheelingdiodeandoutput  
inductor that gives the lowest overall cost. In general, MDCM  
provides the lowest cost and highest efficiency converter. CCM  
designs require a larger inductor and ultra-fast (trr 35 ns)  
freewheeling diode in all cases. It is lower cost to use a larger  
LinkSwitch-TNinMDCMthanasmallerLinkSwitch-TNinCCM  
because of the additional external component costs of a CCM  
design. However, ifthehighestoutputcurrentisrequired, CCM  
should be employed following the guidelines below.  
Key Application Considerations  
LinkSwitch-TN Design Considerations  
Output Current Table  
Topology Options  
Data sheet maximum output current table (Table 1) represents  
the maximum practical continuous output current for both  
mostlydiscontinuousconductionmode(MDCM)andcontinuous  
conductionmode(CCM)ofoperationthatcanbedeliveredfrom  
a given LinkSwitch-TN device under the following assumed  
conditions:  
LinkSwitch-TN can be used in all common topologies, with or  
withoutanoptocouplerandreferencetoimproveoutputvoltage  
tolerance and regulation. Table 2 provide a summary of these  
configurations. For more information see the Application  
Note – LinkSwitch-TN Design Guide.  
1) Buck converter topology.  
Component Selection  
2) The minimum DC input voltage is ≥70 V. The value of  
input capacitance should be large enough to meet this  
criterion.  
3) For CCM operation a KRP* of 0.4.  
4) Output voltage of 12 VDC.  
Referring to Figure 5, the following considerations may be  
helpful in selecting components for a LinkSwitch-TN design.  
Freewheeling Diode D1  
5) Efficiency of 75%.  
Diode D1 should be an ultra-fast type. For MDCM, reverse  
recovery time trr 75 ns should be used at a temperature of  
70°Corbelow. Slowerdiodesarenotacceptable,ascontinuous  
mode operation will always occur during startup, causing high  
leading edge current spikes, terminating the switching cycle  
prematurely,andpreventingtheoutputfromreachingregulation.  
If the ambient temperature is above 70 °C then a diode with  
trr 35 ns should be used.  
6) A catch/freewheeling diode with trr 75 ns is used for  
MDCM operation and for CCM operation, a diode with  
trr 35 ns is used.  
7) The part is board mounted with SOURCE pins soldered  
to a sufficient area of copper to keep the SOURCE pin  
temperature at or below 100 °C.  
*KRP is the ratio of ripple to peak inductor current.  
For CCM an ultra-fast diode with reverse recovery time  
trr 35 ns should be used. A slower diode may cause excessive  
G
3/05  
5
LNK302/304-306  
TOPOLOGY  
BASIC CIRCUIT SCHEMATIC  
KEY FEATURES  
High-Side  
Buck –  
Direct  
1. Output referenced to input  
2. Positive output (VO) with respect to -VIN  
3. Step down – VO < VIN  
FB  
BP  
S
Feedback  
4. Low cost direct feedback (±10% typ.)  
D
+
+
LinkSwitch-TN  
VIN  
VO  
PI-3751-121003  
High-Side  
Buck –  
Optocoupler  
Feedback  
1. Output referenced to input  
2. Positive output (VO) with respect to -VIN  
3. Step down – VO < VIN  
FB  
BP  
S
D
+
+
4. Optocoupler feedback  
LinkSwitch-TN  
- Accuracy only limited by reference  
choice  
VIN  
VO  
- Low cost non-safety rated opto  
- No pre-load required  
5. Minimum no-load consumption  
PI-3752-121003  
Low-Side  
Buck –  
+
+
Optocoupler  
Feedback  
LinkSwitch-TN  
VIN  
VO  
1. Output referenced to input  
2. Negative output (VO) with respect to +VIN  
3. Step down – VO < VIN  
BP  
FB  
D
S
PI-3753-111903  
4. Optocoupler feedback  
- Accuracy only limited by reference  
choice  
Low-Side  
Buck –  
Constant  
Current LED  
Driver  
+
IO  
LinkSwitch-TN  
- Low cost non-safety rated opto  
- No pre-load required  
- Ideal for driving LEDs  
VF  
VIN  
+
BP  
FB  
D
S
PI-3754-112103  
VF  
IO  
R =  
High-Side  
Buck Boost –  
Direct  
FB  
BP  
S
Feedback  
D
+
LinkSwitch-TN  
1. Output referenced to input  
VIN  
VO  
+
2. Negative output (VO) with respect to +VIN  
3. Step up/down – VO > VIN orVO < VIN  
4. Low cost direct feedback (±10% typ.)  
5. Fail-safe – output is not subjected to input  
voltage if the internal MOSFET fails  
6. Ideal for driving LEDs – better accuracy  
and temperature stability than Low-side  
Buck constant current LED driver  
PI-3755-121003  
High-Side  
Buck Boost –  
Constant  
Current LED  
Driver  
2 V  
300  
RSENSE  
=
IO  
2 kΩ  
RSENSE  
FB  
BP  
IO  
S
D
+
LinkSwitch-TN  
VIN  
10 µF  
50 V  
100 nF  
PI-3779-120803  
Table 2. Common Circuit Configurations Using LinkSwitch-TN. (continued on next page)  
G
6
3/05  
LNK302/304-306  
KEY FEATURES  
TOPOLOGY  
BASIC CIRCUIT SCHEMATIC  
Low-Side  
1. Output referenced to input  
2. Positive output (VO) with respect to +VIN  
3. Step up/down – VO > VIN or VO < VIN  
4. Optocoupler feedback  
Buck Boost –  
Optocoupler  
Feedback  
+
LinkSwitch-TN  
- Accuracy only limited by reference  
choice  
VIN  
VO  
- Low cost non-safety rated opto  
- No pre-load required  
5. Fail-safe – output is not subjected to input  
voltage if the internal MOSFET fails  
BP  
FB  
+
D
S
PI-3756-111903  
Table 2 (cont). Common Circuit Configurations Using LinkSwitch-TN.  
leading edge current spikes, terminating the switching cycle  
prematurely and preventing full power delivery.  
Feedback Capacitor C3  
Capacitor C3 can be a low cost general purpose capacitor. It  
provides a “sample and hold” function, charging to the output  
voltage during the off time of LinkSwitch-TN. Its value should  
be 10 µF to 22 µF; smaller values cause poorer regulation at  
light load conditions.  
Fast and slow diodes should never be used as the large reverse  
recovery currents can cause excessive power dissipation in the  
diode and/or exceed the maximum drain current specification  
of LinkSwitch-TN.  
Pre-load Resistor R4  
Feedback Diode D2  
In high-side, direct feedback designs where the minimum load  
is <3 mA, a pre-load resistor is required to maintain output  
regulation. This ensures sufficient inductor energy to pull the  
inductor side of the feedback capacitor C3 to input return via  
D2. The value of R4 should be selected to give a minimum  
output load of 3 mA.  
Diode D2 can be a low-cost slow diode such as the 1N400X  
series, however it should be specified as a glass passivated type  
to guarantee a specified reverse recovery time. To a first order,  
the forward drops of D1 and D2 should match.  
Inductor L1  
Choose any standard off-the-shelf inductor that meets the  
design requirements.Adrum” or “dog bone” “I” core inductor  
is recommended with a single ferrite element due to to its  
low cost and very low audible noise properties. The typical  
inductance value and RMS current rating can be obtained from  
the LinkSwitch-TN design spreadsheet available within the  
PI Expert design suite from Power Integrations. Choose L1  
greater than or equal to the typical calculated inductance with  
RMS current rating greater than or equal to calculated RMS  
inductor current.  
In designs with an optocoupler the Zener or reference bias  
current provides a 1 mA to 2 mA minimum load, preventing  
“pulse bunching” and increased output ripple at zero load.  
LinkSwitch-TN Layout Considerations  
In the buck or buck-boost converter configuration, since the  
SOURCEpinsinLinkSwitch-TNareswitchingnodes,thecopper  
area connected to SOURCE should be minimized to minimize  
EMI within the thermal constraints of the design.  
Capacitor C2  
In the boost configuration, since the SOURCE pins are tied  
to DC return, the copper area connected to SOURCE can be  
maximized to improve heatsinking.  
The primary function of capacitor C2 is to smooth the inductor  
current. The actual output ripple voltage is a function of this  
capacitorʼs ESR. To a first order, the ESR of this capacitor  
shouldnotexceedtheratedripplevoltagedividedbythetypical  
current limit of the chosen LinkSwitch-TN.  
The loop formed between the LinkSwitch-TN, inductor (L1),  
freewheeling diode (D1), and output capacitor (C2) should  
be kept as small as possible. The BYPASS pin capacitor  
C1 (Figure 6) should be located physically close to the  
SOURCE (S) and BYPASS (BP) pins. To minimize direct  
coupling from switching nodes, the LinkSwitch-TN should be  
placed away from AC input lines. It may be advantageous to  
place capacitors C4 and C5 in-between LinkSwitch-TN and the  
AC input. The second rectifier diode D4 is optional, but may  
Feedback Resistors R1 and R3  
The values of the resistors in the resistor divider formed by  
R1 and R3 are selected to maintain 1.65 V at the FB pin. It is  
recommended that R3 be chosen as a standard 1% resistor of  
2k. Thisensuresgoodnoiseimmunitybybiasingthefeedback  
network with a current of approximately 0.8 mA.  
G
3/05  
7
LNK302/304-306  
be included for better EMI performance and higher line surge  
withstand capability.  
worst-case conditions of highest line voltage, maximum  
overload (just prior to auto-restart) and highest ambient  
temperature.  
Quick Design Checklist  
4) Thermal check – at maximum output power, minimum  
input voltage and maximum ambient temperature, verify  
that the LinkSwitch-TN SOURCE pin temperature is  
100 °C or below. This figure ensures adequate margin due  
to variations in RDS(ON) from part to part. Abattery powered  
thermocouplemeterisrecommendedtomakemeasurements  
whentheSOURCEpinsareaswitchingnode.Alternatively,  
the ambient temperature may be raised to indicate margin  
to thermal shutdown.  
As with any power supply design, all LinkSwitch-TN designs  
should be verified for proper functionality on the bench. The  
following minimum tests are recommended:  
1) Adequate DC rail voltage – check that the minimum DC  
inputvoltagedoesnotfallbelow70VDCatmaximumload,  
minimum input voltage.  
2) Correct Diode Selection – UF400x series diodes are  
recommended only for designs that operate in MDCM at  
an ambient of 70 °C or below. For designs operating in  
continuousconductionmode(CCM)and/orhigherambients,  
then a diode with a reverse recovery time of 35 ns or better,  
such as the BYV26C, is recommended.  
InaLinkSwitch-TNdesignusingabuckorbuckboostconverter  
topology, the SOURCE pin is a switching node. Oscilloscope  
measurements should therefore be made with probe grounded  
to a DC voltage, such as primary return or DC input rail, and  
not to the SOURCE pins. The power supply input must always  
be supplied from an isolated source (e.g. via an isolation  
transformer).  
3) Maximum drain current – verify that the peak drain current  
is below the data sheet peak drain specification under  
G
8
3/05  
LNK302/304-306  
ABSOLUTE MAXIMUM RATINGS(1,5)  
DRAIN Voltage ..................................................-0.3Vto700V Notes:  
PeakDRAINCurrent(LNK302).................200mA(375 mA)(2) 1. All voltages referenced to SOURCE, TA = 25 °C.  
PeakDRAINCurrent(LNK304).................400mA(750 mA)(2) 2. The higher peak DRAIN current is allowed if the DRAIN  
PeakDRAINCurrent(LNK305).................800mA(1500 mA)(2)  
to SOURCE voltage does not exceed 400 V.  
PeakDRAINCurrent(LNK306).................1400mA(2600 mA)(2) 3. Normally limited by internal circuitry.  
FEEDBACK Voltage .........................................-0.3 V to 9 V 4. 1/16 in. from case for 5 seconds.  
FEEDBACK Current.............................................100 mA 5. Maximum ratings specified may be applied, one at a time,  
BYPASS Voltage ..........................................-0.3 V to 9 V  
StorageTemperature..........................................-65°C to150°C  
OperatingJunctionTemperature(3) .....................-40°C to150°C  
Lead Temperature(4) ........................................................260 °C  
without causing permanent damage to the product.  
Exposure to Absolute Maximum Rating conditions for  
extended periods of time may affect product reliability.  
THERMAL IMPEDANCE  
Thermal Impedance: P or G Package:  
Notes:  
(θJA) ........................... 70 °C/W(2); 60 °C/W(3) 1. Measured on pin 2 (SOURCE) close to plastic interface.  
(θJC)(1) ............................................... 11 °C/W 2. Soldered to 0.36 sq. in. (232 mm2), 2 oz. (610 g/m2) copper clad.  
3. Soldered to 1 sq. in. (645 mm2), 2 oz. (610 g/m2) copper clad.  
Conditions  
SOURCE = 0 V; TJ = -40 to 125 °C  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
See Figure 7  
(Unless Otherwise Specified)  
CONTROL FUNCTIONS  
Average  
TJ = 25 °C  
62  
66  
4
70  
Output  
fOSC  
kHz  
%
Frequency  
Peak-Peak Jitter  
Maximum Duty  
DCMAX  
Cycle  
S2 Open  
66  
30  
69  
49  
72  
68  
FEEDBACK Pin  
IFB  
TJ = 25 °C  
µA  
Turnoff Threshold  
Current  
FEEDBACK Pin  
Voltage at Turnoff  
Threshold  
VFB  
1.54  
1.65  
160  
1.76  
220  
V
VFB ≥2 V  
(MOSFET Not Switching)  
See Note A  
IS1  
µA  
DRAIN Supply  
Current  
FEEDBACK  
Open  
(MOSFET  
Switching)  
See Notes A, B  
LNK302/304  
LNK305  
200  
220  
250  
260  
280  
310  
IS2  
µA  
LNK306  
G
3/05  
9
LNK302/304-306  
Parameter  
Conditions  
SOURCE = 0 V; TJ = -40 to 125 °C  
See Figure 7  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
CONTROL FUNCTIONS (cont.)  
LNK302/304  
LNK305/306  
LNK302/304  
LNK305/306  
-5.5  
-7.5  
-3.8  
-4.5  
-3.3  
-4.6  
-2.3  
-3.3  
-1.8  
-2.5  
-1.0  
-1.5  
VBP = 0 V  
TJ = 25 °C  
ICH1  
BYPASS Pin  
Charge Current  
mA  
VBP = 4 V  
TJ = 25 °C  
ICH2  
BYPASS Pin  
VBP  
5.55  
0.8  
68  
5.8  
6.10  
1.2  
V
V
Voltage  
BYPASS Pin  
VBPH  
Voltage Hysteresis  
0.95  
BYPASS Pin  
IBPSC  
Supply Current  
See Note D  
µA  
CIRCUIT PROTECTION  
di/dt = 55 mA/µs  
TJ = 25 °C  
126  
145  
240  
271  
350  
396  
450  
136  
165  
257  
308  
375  
450  
482  
146  
185  
275  
345  
401  
504  
515  
LNK302  
LNK304  
LNK305  
di/dt = 250 mA/µs  
TJ = 25 °C  
di/dt = 65 mA/µs  
TJ = 25 °C  
di/dt = 415 mA/µs  
TJ = 25 °C  
ILIMIT (See  
Note E)  
mA  
Current Limit  
di/dt = 75 mA/µs  
TJ = 25 °C  
di/dt = 500 mA/µs  
TJ = 25 °C  
di/dt = 95 mA/µs  
TJ = 25 °C  
LNK306  
di/dt = 610 mA/µs  
TJ = 25 °C  
508  
280  
578  
360  
647  
475  
LNK302/304  
tON(MIN)  
ns  
Minimum On Time  
LNK305  
LNK306  
360  
400  
460  
500  
610  
675  
G
10 3/05  
LNK302/304-306  
Conditions  
SOURCE = 0 V; TJ = -40 to 125 °C  
See Figure 7  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
CIRCUIT PROTECTION (cont.)  
Leading Edge  
tLEB  
TJ = 25 °C  
170  
135  
215  
142  
75  
ns  
°C  
°C  
See Note F  
Blanking Time  
Thermal Shutdown  
TSD  
Temperature  
150  
Thermal Shutdown  
TSHD  
Hysteresis  
See Note G  
OUTPUT  
TJ = 25 °C  
48  
76  
24  
38  
12  
19  
7
55.2  
88.4  
27.6  
44.2  
13.8  
22.1  
8.1  
LNK302  
ID = 13 mA  
TJ = 100 °C  
TJ = 25 °C  
LNK304  
ID = 25 mA  
TJ = 100 °C  
ON-State  
RDS(ON)  
Resistance  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
LNK302/304  
LNK305  
LNK305  
ID = 35 mA  
LNK306  
ID = 45 mA  
11  
12.9  
50  
VBP = 6.2 V, VFB ≥2 V,  
VDS = 560 V,  
OFF-State Drain  
Leakage Current  
70  
IDSS  
µA  
TJ = 25 °C  
LNK306  
90  
VBP = 6.2 V, VFB ≥2 V,  
TJ = 25 °C  
BVDSS  
700  
50  
V
Breakdown Voltage  
tR  
tF  
50  
50  
ns  
ns  
Rise Time  
Fall Time  
Measured in a Typical Buck  
Converter Application  
DRAIN Supply  
Voltage  
V
µs  
µs  
ms  
%
Output Enable  
Delay  
tEN  
See Figure 9  
10  
Output Disable  
Setup Time  
tDST  
0.5  
Not Applicable  
LNK302  
Auto-Restart  
ON-Time  
TJ = 25 °C  
See Note H  
tAR  
LNK304-306  
50  
Not Applicable  
LNK302  
Auto-Restart  
Duty Cycle  
DCAR  
LNK304-306  
6
G
3/05  
11  
LNK302/304-306  
NOTES:  
A. Total current consumption is the sum of IS1 and IDSS when FEEDBACK pin voltage is ≥2 V (MOSFET not  
switching) and the sum of IS2 and IDSS when FEEDBACK pin is shorted to SOURCE (MOSFET switching).  
B Since the output MOSFET is switching, it is difficult to isolate the switching current from the supply current at the  
DRAIN. An alternative is to measure the BYPASS pin current at 6 V.  
C. See Typical Performance Characteristics section Figure 14 for BYPASS pin start-up charging waveform.  
D. This current is only intended to supply an optional optocoupler connected between the BYPASS and FEEDBACK  
pins and not any other external circuitry.  
E. For current limit at other di/dt values, refer to Figure 13.  
F. This parameter is guaranteed by design.  
G. This parameter is derived from characterization.  
H. Auto-restart on time has the same temperature characteristics as the oscillator (inversely proportional to  
frequency).  
470  
5 W  
470 kΩ  
0.1 µF  
FB  
BP  
D
S2  
S1  
50 V  
50 V  
S
S
S
S
PI-3490-060204  
Figure 7. LinkSwitch-TN General Test Circuit.  
DC  
(internal signal)  
MAX  
t
P
FB  
t
EN  
V
DRAIN  
1
tP  
=
fOSC  
PI-3707-112503  
Figure 9. LinkSwitch-TN Output Enable Timing.  
Figure 8. LinkSwitch-TN Duty Cycle Measurement.  
G
12 3/05  
LNK302/304-306  
Typical Performance Characteristics  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.1  
1.0  
0.9  
0
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25  
50 75 100 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
Figure 10. Breakdown vs. Temperature.  
Figure 11. Frequency vs. Temperature.  
1.4  
1.2  
1.0  
0.8  
1.4  
1.2  
1.0  
0.8  
Normalized  
Normalized Current  
Normalized di/dt  
di/dt = 1  
di/dt = 6  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
di/dt = 1  
Limit = 1  
LNK302  
LNK304  
LNK305  
LNK306  
55 mA/µs  
65 mA/µs  
75 mA/µs  
95 mA/µs  
136 mA  
257 mA  
375 mA  
482 mA  
1
2
3
4
5
6
-50  
0
50  
100  
150  
Normalized di/dt  
Temperature (°C)  
Figure 13. Current Limit vs. di/dt.  
Figure 12. Current Limit vs. Temperature at  
Normalized di/dt.  
7
6
5
400  
350  
25 °C  
300  
100 °C  
250  
200  
150  
100  
50  
4
3
2
1
Scaling Factors:  
LNK302 0.5  
LNK304 1.0  
LNK305 2.0  
LNK306 3.4  
0
0
0
0.2  
0.4  
Time (ms)  
Figure 14. BYPASS Pin Start-up Waveform.  
0.6  
0.8  
1.0  
0
2
4
6
8
10 12 14 16 18 20  
DRAIN Voltage (V)  
Figure 15. Output Characteristics.  
G
3/05  
13  
LNK302/304-306  
Typical Performance Characteristics (cont.)  
1000  
100  
Scaling Factors:  
LNK302  
LNK304  
LNK305  
LNK306  
0.5  
1.0  
2.0  
3.4  
10  
1
0
100 200 300 400 500 600  
Drain Voltage (V)  
Figure 16. COSS vs. Drain Voltage.  
PART ORDERING INFORMATION  
LinkSwitch Product Family  
TN Series Number  
Package Identifier  
G
P
Plastic Surface Mount DIP  
Plastic DIP  
Lead Finish  
Blank Standard (Sn Pb)  
N
Pure Matte Tin (Pb-Free)  
Tape & Reel and Other Options  
Blank Standard Configurations  
TL  
Tape & Reel, 1 k pcs minimum, G Package only  
LNK 304 G N - TL  
G
14 3/05  
LNK302/304-306  
DIP-8B  
D S .004 (.10)  
Notes:  
.137 (3.48)  
MINIMUM  
1. Package dimensions conform to JEDEC specification  
MS-001-AB (Issue B 7/85) for standard dual-in-line (DIP)  
package with .300 inch row spacing.  
-E-  
2. Controlling dimensions are inches. Millimeter sizes are  
shown in parentheses.  
3. Dimensions shown do not include mold flash or other  
protrusions. Mold flash or protrusions shall not exceed  
.006 (.15) on any side.  
.240 (6.10)  
.260 (6.60)  
4. Pin locations start with Pin 1, and continue counter-clock-  
wise to Pin 8 when viewed from the top. The notch and/or  
dimple are aids in locating Pin 1. Pin 6 is omitted.  
5. Minimum metal to metal spacing at the package body for  
the omitted lead location is .137 inch (3.48 mm).  
6. Lead width measured at package body.  
Pin 1  
-D-  
.367 (9.32)  
.387 (9.83)  
7. Lead spacing measured with the leads constrained to be  
perpendicular to plane T.  
.057 (1.45)  
.068 (1.73)  
(NOTE 6)  
.125 (3.18)  
.145 (3.68)  
.015 (.38)  
MINIMUM  
-T-  
SEATING  
PLANE  
.008 (.20)  
.015 (.38)  
.120 (3.05)  
.140 (3.56)  
.300 (7.62) BSC  
(NOTE 7)  
.300 (7.62)  
.390 (9.91)  
.100 (2.54) BSC  
.048 (1.22)  
.053 (1.35)  
P08B  
.014 (.36)  
.022 (.56)  
T E D S .010 (.25) M  
PI-2551-121504  
SMD-8B  
D S .004 (.10)  
Notes:  
.137 (3.48)  
MINIMUM  
1. Controlling dimensions are  
inches. Millimeter sizes are  
shown in parentheses.  
-E-  
2. Dimensions shown do not  
include mold flash or other  
protrusions. Mold flash or  
protrusions shall not exceed  
.006 (.15) on any side.  
3. Pin locations start with Pin 1,  
and continue counter-clock-  
wise to Pin 8 when viewed  
from the top. Pin 6 is omitted.  
4. Minimum metal to metal  
spacing at the package body  
for the omitted lead location  
is .137 inch (3.48 mm).  
.372 (9.45)  
.388 (9.86)  
.240 (6.10)  
.260 (6.60)  
.420  
.010 (.25)  
E S  
.046 .060 .060 .046  
.080  
Pin 1  
Pin 1  
-D-  
.086  
.186  
.100 (2.54) (BSC)  
5. Lead width measured at  
package body.  
6. D and E are referenced  
datums on the package  
body.  
.286  
.367 (9.32)  
.387 (9.83)  
Solder Pad Dimensions  
.057 (1.45)  
.068 (1.73)  
(NOTE 5)  
.125 (3.18)  
.145 (3.68)  
.004 (.10)  
.032 (.81)  
.037 (.94)  
.048 (1.22)  
.053 (1.35)  
°
°
.009 (.23)  
0 - 8  
.036 (0.91)  
.044 (1.12)  
.004 (.10)  
.012 (.30)  
G08B  
PI-2546-121504  
G
3/05  
15  
LNK302/304-306  
Revision Notes  
Date  
3/03  
1/04  
8/04  
12/04  
3/05  
C
D
E
F
1) Released Final Data Sheet.  
1) Corrected Minimum On Time.  
1) Added LNK302.  
1) Added lead-free ordering information.  
G
1) Minor error corrections.  
2) Renamed Feedback Pin Voltage parameter to Feedback Pin Voltage at Turnoff Threshold and  
removed condition.  
For the latest updates, visit our website: www.powerint.com  
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume  
any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY  
DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.  
PATENT INFORMATION  
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S.  
and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrationsʼ patents  
may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.  
LIFE SUPPORT POLICY  
POWER INTEGRATIONSʼ PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:  
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform,  
when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or effectiveness.  
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, EcoSmart, PI Expert and PI FACTS are trademarks of  
Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2005, Power Integrations, Inc.  
Power Integrations Worldwide Sales Support Locations  
JAPAN  
WORLD HEADQUARTERS  
5245 Hellyer Avenue  
San Jose, CA 95138, USA.  
Main: +1-408-414-9200  
Customer Service:  
Phone: +1-408-414-9665  
Fax: +1-408-414-9765  
e-mail: usasales@powerint.com  
GERMANY  
Rueckertstrasse 3  
D-80336, Munich  
Germany  
Phone: +49-89-5527-3910  
Fax: +49-89-5527-3920  
e-mail: eurosales@powerint.com  
TAIWAN  
5F, No. 318, Nei Hu Rd., Sec. 1  
Nei Hu Dist.  
Taipei, Taiwan 114, R.O.C.  
Phone: +886-2-2659-4570  
Fax: +886-2-2659-4550  
e-mail: taiwansales@powerint.com  
Keihin Tatemono 1st Bldg 2-12-20  
Shin-Yokohama, Kohoku-ku,  
Yokohama-shi, Kanagawa ken,  
Japan 222-0033  
Phone: +81-45-471-1021  
Fax: +81-45-471-3717  
e-mail: japansales@powerint.com  
KOREA  
RM 602, 6FL  
CHINA (SHANGHAI)  
Rm 807-808A,  
Pacheer Commercial Centre,  
555 Nanjing Rd. West  
Shanghai, P.R.C. 200041  
Phone: +86-21-6215-5548  
Fax: +86-21-6215-2468  
e-mail: chinasales@powerint.com  
INDIA  
EUROPE HQ  
1st Floor, St. Jamesʼs House  
East Street, Farnham  
Surrey, GU9 7TJ  
United Kingdom  
Phone: +44 (0) 1252-730-140  
Fax: +44 (0) 1252-727-689  
e-mail: eurosales@powerint.com  
261/A, Ground Floor  
7th Main, 17th Cross,  
Sadashivanagar  
Bangalore, India 560080  
Phone: +91-80-5113-8020  
Fax: +91-80-5113-8023  
e-mail: indiasales@powerint.com  
Korea City Air Terminal B/D, 159-6  
Samsung-Dong, Kangnam-Gu,  
Seoul, 135-728, Korea  
Phone: +82-2-2016-6610  
Fax: +82-2-2016-6630  
e-mail: koreasales@powerint.com  
SINGAPORE  
CHINA (SHENZHEN)  
ITALY  
APPLICATIONS HOTLINE  
51 Newton Road,  
#15-08/10 Goldhill Plaza,  
Singapore, 308900  
Phone: +65-6358-2160  
Fax: +65-6358-2015  
e-mail: singaporesales@powerint.com  
Rm 2206-2207, Block A,  
Electronics Science & Technology Bldg.  
2070 Shennan Zhong Rd.  
Shenzhen, Guangdong,  
Via Vittorio Veneto 12  
20091 Bresso MI  
Italy  
Phone: +39-028-928-6000  
Fax: +39-028-928-6009  
e-mail: eurosales@powerint.com  
World Wide +1-408-414-9660  
APPLICATIONS FAX  
World Wide +1-408-414-9760  
China, 518031  
Phone: +86-755-8379-3243  
Fax: +86-755-8379-5828  
e-mail: chinasales@powerint.com  
G
16 3/05  

相关型号:

LNK302GN

LinkSwitch-TN Family Lowest Component Count, Energy-Effi cient Off-Line Switcher IC
POWERINT

LNK302GNTL

LinkSwitch-TN Family Lowest Component Count, Energy-Effi cient Off-Line Switcher IC
POWERINT

LNK302P

Lowest Component Count, Energy Efficient Off-Line Switcher IC
POWERINT

LNK302P/G/D

Lowest Component Count, Energy-Effi cient Off-Line Switcher IC
FERYSTER

LNK302PGD

Lowest Component Count, Energy-Efficient Off-Line Switcher IC
POWERINT

LNK302PN

LinkSwitch-TN Family Lowest Component Count, Energy-Effi cient Off-Line Switcher IC
POWERINT

LNK302_08

Lowest Component Count, Energy-Efficient Off-Line Switcher IC
POWERINT

LNK303P

3W电源芯片LNK303P
ETC

LNK304

Lowest Component Count, Energy-Efficient Off-Line Switcher IC
POWERINT

LNK304-306

Lowest Component Count, Energy-Effi cient Off-Line Switcher IC
FERYSTER

LNK304-306

LinkSwitch-TN Family Lowest Component Count, Energy-Effi cient Off-Line Switcher IC
POWERINT

LNK304D

LinkSwitch-TN Family Lowest Component Count, Energy-Effi cient Off-Line Switcher IC
POWERINT