DSPC56721CAG [NXP]

24-BIT, 200MHz, OTHER DSP, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LQFP-144;
DSPC56721CAG
型号: DSPC56721CAG
厂家: NXP    NXP
描述:

24-BIT, 200MHz, OTHER DSP, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LQFP-144

时钟 外围集成电路
文件: 总54页 (文件大小:864K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: DSP56720EC  
Rev. 5, 02/2009  
DSP56720/DSP56721  
DSP56720  
Symphony™  
DSP56720/DSP56721  
Multi-Core Audio Processors  
144-Pin LQFP  
20 mm × 20 mm  
0.5 mm pitch  
DSP56721  
80-Pin LQFP  
14 mm × 14 mm  
0.65 mm pitch  
144-Pin LQFP  
20 mm × 20 mm  
0.5 mm pitch  
The Symphony DSP56720/DSP56721 Multi-Core Audio  
Processors are part of the DSP5672x family of programmable  
CMOS DSPs, designed using multiple DSP56300 24-bit  
cores.  
Communication (ICC), an External Memory Controller  
(EMC) to support SDRAM, and a Sony/Philips Digital  
Interface (S/PDIF).  
The DSP56720/DSP56721 devices are intended for  
automotive, consumer, and professional audio applications  
that require high performance for audio processing. In  
addition, the DSP56720 is ideally suited for applications that  
need the capability to expand memory off-chip or to interface  
to external parallel peripherals. Potential applications include  
A/V receivers, HD-DVD and Blu-Ray players, car  
The DSP56720/DSP56721 offer 200 million instructions per  
second (MIPs) per core using an internal 200 MHz clock.  
The DSP56720/DSP56721 are high density CMOS devices  
with 3.3 V inputs and outputs.  
The DSP56720 device is slightly different than the DSP56721  
device—the DSP56720 includes an external memory  
interface while the DSP56721 device does not. The  
DSP56720 block diagram is shown in Figure 1; the  
DSP56721 block diagram is shown in Figure 2.  
audio/amplifiers, and professional recording equipment.  
The DSP56720/DSP56721 devices excel at audio processing  
for automotive and consumer audio applications requiring  
high MIPs. Higher MIPs and memory requirements are driven  
by the new high-definition audio standards (Dolby Digital+,  
Dolby TrueHD, DTS-HD, for example) and the desire to  
process multiple audio streams.  
In addition, DSP56720/DSP56721 devices are optimal for the  
professional audio market requiring audio recording, signal  
processing, and digital audio synthesis.  
The DSP56720/DSP56721 processors provide a wealth of  
on-chip audio processing functions, via a plug and play  
software architecture system that supports audio decoding  
algorithms, various equalization algorithms, compression,  
signal generator, tone control, fade/balance, level  
meter/spectrum analyzer, among others. The  
DSP56720/DSP56721 devices also support various matrix  
decoders and sound field processing algorithms.  
With two DSP56300 cores, a single DSP56720 or DSP56721  
device can replace dual-DSP designs, saving costs while  
meeting high MIPs requirements. Legacy peripherals from the  
previous DSP5636x/7x families are included, as well as a  
variety of new modules. Included among the new modules are  
an Asynchronous Sample Rate Converter (ASRC), Inter-Core  
Freescale reserves the right to change the detail specifications as may be required to permit  
improvements in the design of its products.  
© Freescale Semiconductor, Inc., 2009. All rights reserved.  
Table of Contents  
1
2
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2.12 Programming the SHI I2C Serial Clock . . . . . . 26  
2.13 Enhanced Serial Audio Interface (ESAI) Timing27  
2.14 Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2.15 GPIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2.16 JTAG Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
2.17 Watchdog Timer Timing . . . . . . . . . . . . . . . . . . 35  
2.18 Host Data Interface (HDI24) Timing. . . . . . . . . 35  
2.19 S/PDIF Timing . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2.20 EMC Timing (DSP56720 Only) . . . . . . . . . . . . 43  
Functional Description and Application Information . . . . . . . 47  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
5.1 80-Pin Package Outline Drawing. . . . . . . . . . . . . . . . . 49  
5.2 144-Pin Package Outline Drawing. . . . . . . . . . . . . . . . 51  
Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
1.1 Pinout for DSP56720 144-Pin Plastic LQFP Package . .5  
1.2 Pinout for DSP56721 80-Pin Plastic LQFP Package . . .6  
1.3 Pinout for DSP56721 144-Pin Plastic LQFP Package . .7  
1.4 Pin Multiplexing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.1  
2.2  
2.3  
2.5  
2.6  
2.7  
2.8  
2.9  
Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . .8  
Thermal Characteristics. . . . . . . . . . . . . . . . . . . .9  
Power Requirements . . . . . . . . . . . . . . . . . . . . .10  
DC Electrical Characteristics . . . . . . . . . . . . . . .12  
AC Electrical Characteristics . . . . . . . . . . . . . . .13  
Internal Clocks. . . . . . . . . . . . . . . . . . . . . . . . . .13  
External Clock Operation. . . . . . . . . . . . . . . . . .13  
Reset, Stop, Mode Select, and Interrupt Timing15  
3
4
5
2.10 Serial Host Interface (SHI) SPI Protocol Timing 18  
6
7
2.11 Serial Host Interface (SHI) I2C Protocol Timing.24  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
2
Freescale Semiconductor  
EXTAL/XTAL  
DSP  
Core-0  
DSP  
Core-1  
CGM  
ASRC  
On-Chip  
Memory  
On-Chip  
Memory  
Arbiter 9  
Arbiter 8  
Shared Bus 0  
P
X
Y
P
X
Y
Shared Bus 1  
Arbiters 0–7  
PCU  
PCU  
DMA  
OnCE  
OnCE  
DMA  
/ AGU  
/ ALU  
/ AGU  
/ ALU  
Shared Memory 8 Kbytes  
Blocks 0–7 (64 Kbytes total)  
MODA0, MODB0,  
MODC0, MODD0  
MODA1, MODB1,  
MODC1, MODD1  
2 JTAGs  
JTAG  
Figure 1. DSP56720 Block Diagram  
HDI24  
EXTAL/XTAL  
DSP  
Core-0  
DSP  
Core-1  
CGM  
ASRC  
On-Chip  
Memory  
On-Chip  
Memory  
Arbiter 8  
Shared Bus 0  
Shared Bus 1  
P
X
Y
P
X
Y
Arbiters 0–7  
PCU  
PCU  
DMA  
OnCE  
OnCE  
DMA  
/ AGU  
/ ALU  
/ AGU  
/ ALU  
Shared Memory 8 Kbytes  
Blocks 0–7 (64 Kbytes total)  
MODA0, MODB0,  
MODC0, MODD0  
MODA1, MODB1,  
MODC1, MODD1  
2 JTAGs  
JTAG  
Figure 2. DSP56721 Block Diagram  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
3
1
Pin Assignments  
DSP56720 devices are available in one package type; DSP56721 devices are available in two package types. For the pin  
assignments of a specific device in a specific package, refer to Section 1.1, “Pinout for DSP56720 144-Pin Plastic LQFP  
Package,” through Section 1.3, “Pinout for DSP56721 144-Pin Plastic LQFP Package.”  
Table 1. Pin Assignments by Package  
Device  
Package  
See  
DSP56720  
DSP56721  
144-pin plastic LQFP  
80-pin plastic LQFP  
144-pin plastic LQFP  
Figure 3 on page 5  
Figure 4 on page 6  
Figure 5 on page 7  
For more detailed information about signals, refer to the Symphony™ DSP56720/DSP56721 Multi-Core Audio Processors  
Reference Manuall (DSP56720RM).  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
4
Freescale Semiconductor  
1.1  
Pinout for DSP56720 144-Pin Plastic LQFP Package  
Figure 3 shows the pinout of the DSP56720 144-pin plastic LQFP package.  
CORE_VDD  
CORE_GND  
LALE  
1
2
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
IO_GND  
IO_VDD  
WDT  
PINIT/NMI  
TDO  
3
LCS0  
4
5
LCS1  
LCS2  
6
TDI  
LCS3  
7
TCK  
LCS4  
8
TMS  
LCS5  
9
SDO2_1/SDI3_1  
SDO3_1/SDI2_1  
SDO4_1/SDI1_1  
SDO5_1/SDI0_1  
CORE_GND  
CORE_VDD  
FSR  
LCS6  
LCS7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
98  
IO_VDD  
IO_GND  
CORE_VDD  
CORE_GND  
LWE  
97  
96  
95  
DSP56720  
144-Pin  
94  
93  
SCKR  
HCKR  
LOE  
LGPL5  
LSDA10  
LCKE  
LCLK  
92  
91  
SCKT  
90  
FST  
89  
HCKT  
88  
SDO2/SDI3  
SDO3/SDI2  
SDO4/SDI1  
SDO5/SDI0  
SPDIFOUT1  
SPDIFIN1  
IO_GND  
LBCTL  
87  
LSDWE  
LSDCAS  
LGTA  
86  
85  
84  
LA0  
83  
LA1  
82  
LA2  
81  
IO_VDD  
EXTAL  
XTAL  
PLLP_GND  
PLLD_GND  
PLLD_VDD  
PLLA_GND  
PLLA_VDD  
PLLP_VDD  
IO_VDD  
IO_GND  
PLLP1_GND  
PLLP1_VDD  
PLLD1_GND  
PLLD1_VDD  
PLLA1_GND  
PLLA1_VDD  
80  
79  
78  
77  
76  
75  
74  
73  
Figure 3. DSP56720 144-Pin Package Pinout  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
5
1.2  
Pinout for DSP56721 80-Pin Plastic LQFP Package  
Figure 4 shows the pinout of the DSP56721 80-pin plastic LQFP package.  
SDO2_3/SDI3_3  
SDO3_3/SDI2_3  
SDO4_3/SDI1_3  
SDO5_3/SDI0_3  
IO_VDD  
1
2
3
4
5
6
7
8
9
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
WDT  
PINIT/NMI  
TDO  
TDI  
TCK  
IO_GND  
TMS  
CORE_VDD  
CORE_GND  
CORE_VDD  
SDO4/SDI1  
SDO5/SDI0  
IO_GND  
IO_VDD  
EXTAL  
CORE_GND  
DSP56721  
80-Pin  
SPDIFIN1/SDO2_2/SDI3_2  
SPDIFOUT1/SDO3_2/SDI2_2 10  
SDO4_2/SDI1_2  
SDO5_2/SDI0_2  
FSR_3  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SCKR_3  
SCKT_3  
GND  
XTAL  
PLLP_GND  
PLLD_GND  
PLLD_VDD  
PLLA_GND  
PLLA_VDD  
PLLP_VDD  
GND  
GND  
GND  
GND  
Figure 4. DSP56721 80-Pin Package  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
6
1.3  
Pinout for DSP56721 144-Pin Plastic LQFP Package  
Figure 5 shows the pinout of the DSP56721 144-pin plastic LQFP package.  
TIO0/H15/HAD15  
PG18/HDI_SEL  
IO_GND  
1
2
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
IO_GND  
IO_VDD  
WDT  
PIINT/NMI  
TDO  
3
TIO0_1/H18/HAD18  
CORE_VDD  
CORE_GND  
SDO2_3/SDI3_3  
SDO3_3/SDI2_3  
SDO4_3/SDI1_3  
SDO5_3/SDI0_3  
IO_VDD  
4
5
6
TDI  
7
TCK  
8
TMS  
9
SCKR_1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
FSR_1  
98  
SCKT_1  
IO_GND  
97  
96  
FST_1  
CORE_VDD  
CORE_GND  
SDO2_2/SDI3_2  
SDO3_2/SDI2_2  
SDO4_2/SDI1_2  
SDO5_2/SDI0_2  
HCKR_3  
SDO0_1  
95  
SDO1_1  
DSP56721  
144-Pin  
94  
IO_GND  
93  
IO_VDD  
92  
CORE_GND  
CORE_VDD  
SDO0  
91  
90  
FSR_3  
SCKR_3  
89  
SDO1  
88  
SDO4/SDI1  
SDO5/SDI0  
SPDIFOUT1/H12/HAD12  
SPDIFIN1/H8/HAD8  
HACK/HRRQ  
HOREQ/HTRQ  
IO_GND  
SCKT_3  
87  
IO_VDD  
86  
IO_GND  
85  
H6/HAD6  
84  
H7/HAD7  
83  
SPDIFIN2/H9/HAD9  
SPDIFIN3/H10/HAD10  
SPDIFIN4/H11/HAD11  
SPDIFOUT2/H13/HAD13  
SPLOCK/H14/HAD14  
GND  
82  
81  
IO_VDD  
EXTAL  
XTAL  
PLLP_GND  
PLLD_GND  
PLLD_VDD  
PLLA_GND  
PLLA_VDD  
PLLP_VDD  
80  
79  
78  
77  
GND  
76  
GND  
75  
GND  
74  
GND  
73  
Figure 5. DSP56721 144-Pin Package Pinout  
1.4  
Pin Multiplexing  
Many pins are multiplexed. For more about pin multiplexing, refer to the Symphony™ DSP56720/DSP56721 Multi-Core Audio  
Processors Reference Manual (DSP56720RM).  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
7
2
Electrical Characteristics  
2.1  
Maximum Ratings  
Table 2 shows the maximum ratings.  
CAUTION  
This device contains circuitry protecting against damage due to high static voltage or  
electrical fields. However, normal precautions should be taken to avoid exceeding  
maximum voltage ratings. Reliability of operation is enhanced if unused inputs are pulled  
to an appropriate logic voltage level (for example, either GND or V ). The suggested  
DD  
value for a pull-up or pull-down resistor is 4.7 kΩ.  
NOTE  
In the calculation of timing requirements, adding a maximum value of one specification to  
a minimum value of another specification does not yield a reasonable sum. A maximum  
specification is calculated using a worst case variation of process parameter values in one  
direction. The minimum specification is calculated using the worst case for the same  
parameters in the opposite direction. Therefore, a “maximum” value for a specification will  
never occur in the same device that has a “minimum” value for another specification;  
adding a maximum to a minimum represents a condition that can never exist.  
Table 2. Maximum Ratings  
1
1, 2  
Rating  
Symbol  
Value  
Unit  
Supply Voltage  
V
–0.3 to + 1.26  
V
CORE_VDD,  
V
PLLD_VDD  
V
PLLP_VDD,  
V
–0.3 to + 4.0  
V
IO_VDD,  
V
,
PLLA_VDD  
3
Maximum CORE_VDD power supply ramp time  
Input Voltage per pin excluding VDD and GND  
Tr  
10  
GND –0.3 to 5.5 V  
12  
ms  
V
V
IN  
Current drain per pin excluding V and GND  
I
mA  
DD  
(Except for pads listed below)  
LSYNC_OUT  
I
16  
mA  
mA  
mA  
mA  
°C  
lsync_out  
LCLK  
I
16  
16  
lclk  
LALE  
I
ale  
TDO  
I
24  
JTAG  
Operating temperature range  
T
–40 to +100  
J
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
8
Freescale Semiconductor  
Table 2. Maximum Ratings (Continued)  
Symbol  
1
1, 2  
Rating  
Value  
Unit  
Storage temperature  
T
–65 to +150  
2000  
°C  
V
STG  
ESD protected voltage (Human Body Model)  
ESD protected voltage (Charged Device)  
V
• All pins  
• Corner pins  
500  
750  
Note:  
1. GND = 0 V, T = 40° C to 100° C, CL = 50 pF  
J
2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress  
beyond the maximum rating may affect device reliability or cause permanent damage to the device.  
3. If the power supply ramp to full supply time is longer than 10 ms, the POR circuitry will not operate correctly, causing  
erroneous operation.  
2.2  
Thermal Characteristics  
Table 3 provides the thermal characteristics for the device.  
Table 3. Thermal Characteristics  
Characteristic  
Board Type  
Symbol  
LQFP Values  
Unit  
1,2  
Natural Convection, Junction-to-ambient thermal resistance  
Single layer board  
(1s)  
57 for 80 QFP  
49 for 144 QFP  
°C/W  
R
R
or θ  
or θ  
θJA  
JA  
Four layer board  
(2s2p)  
44 for 80 QFP  
40 for 144 QFP  
°C/W  
°C/W  
3
Junction-to-case thermal resistance  
10 for 80 QFP  
9 for 144 QFP  
θJC  
JC  
Notes:  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2, Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Thermal resistance between the die and the case top surface as measured by the cold plate method  
(MIL SPEC-883 Method 1012.1).  
The average chip-junction temperature (TJ) in °C can be obtained from:  
T = T + (P × θ )  
JMA  
J
A
D
Where:  
TA = Ambient Temperature, °C  
JMA= Package Thermal Resistance, Junction-to-Ambient, °C/W  
θ
PD = PINT + PI/O  
PINT = IDD × VDD, Watts – Chip Internal Power  
P
I/O = Power Dissipation on Input and Output Pins—User Determined  
For most applications, PI/O < PINT and can be ignored. PD can be calculated using the worst-case conditions of 1.1 V and  
780 mA. See Table 4 for more information.  
To find TJ at 100° C, using the worst-case conditions and a four-layer board:  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
9
PD = 1.1 V × 625 mA  
= 0.6875 W  
TJ = 70 + (0.6875 × 40)  
= 97.5° C  
2.3  
Power Requirements  
To prevent high current conditions due to possible improper sequencing of the power supplies, use an external Schottky diode  
as shown in Figure 6, connected between the DSP56720/DSP56721 IO_VDD and Core_VDD power pins.  
IO_VDD  
External  
Schottky  
Diode  
Core_VDD  
Figure 6. Prevent High Current Conditions by Using External Schottky Diode  
If an external Schottky diode is not used (to prevent a high current condition at power-up), then IO_VDD must be applied ahead  
of Core_VDD, as shown in Figure 7.  
Core_VDD  
IO_VDD  
Figure 7. Prevent High Current Conditions by Applying IO_VDD Before Core_VDD  
For correct operation of the internal power-on reset logic, the Core_VDD ramp rate (Tr) to full supply must be less than 10 ms,  
as shown in Figure 8.  
There are no power down requirement for the digital 1.0 V (CORE) and 3.3 V (IO). For the analog PLL power, the digital (IO)  
3.3 V must be power up before the analog 3.3 V power. Similarly, for power down the digital (IO) 3.3 V must be power down  
after the analog power 3.3 V. This requirement is for avoiding possible leakage.  
Tr  
1.0 V  
0 V  
Core_VDD  
Tr must be < 10 ms  
Figure 8. Ensure Correct Operation of Power-On Reset with Fast Ramp of Core_VDD  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
10  
Freescale Semiconductor  
2.4  
Power Consumption Considerations  
Power dissipation is a key issue in portable DSP applications. Some of the factors which affect current consumption are  
described in this section. Most of the current consumed by CMOS devices is alternating current (ac), which is charging and  
discharging the capacitances of the pins and internal nodes.  
Current consumption is described by the following formula:  
I = C × V × f  
Eqn. 1  
where  
C=node/pin capacitance  
V=voltage swing  
f=frequency of node/pin toggle  
Example 1. Power Consumption Example  
For a GPIO address pin loaded with 50 pF capacitance, operating at 3.3 V, and with a 150 MHz clock, toggling at  
its maximum possible rate (75 MHz), the current consumption is  
12  
6
I = 50x10  
x3.3x75x10 = 12.375mA  
Eqn. 2  
The maximum internal current (I max) value reflects the typical possible switching of the internal buses on best-case  
CCI  
operation conditions, which is not necessarily a real application case. The typical internal current (I  
average switching of the internal buses on typical operating conditions.  
) value reflects the  
CCItyp  
For applications that require very low current consumption, do the following:  
Minimize the number of pins that are switching.  
Minimize the capacitive load on the pins.  
One way to evaluate power consumption is to use a current per MIPS measurement methodology to minimize specific board  
effects (for example, to compensate for measured board current not caused by the DSP). Use the test algorithm, specific test  
current measurements, and the following equation to derive the current per MIPS value.  
I/MIPS = I/MHz = (I  
- I  
)/(F2 - F1)  
Eqn. 3  
typF2 typF1  
where :  
I
I
=current at F2  
=current at F1  
typF2  
typF1  
F2=high frequency (any specified operating frequency)  
F1=low frequency (any specified operating frequency lower than F2)  
NOTE  
F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be  
33 MHz. The degree of difference between F1 and F2 determines the amount of precision  
with which the current rating can be determined for an application.  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
11  
2.5  
DC Electrical Characteristics  
Table 4 shows the DC electrical characteristics.  
Table 4. DC Electrical Characteristics  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Commercial Supply voltages:  
• Core (Core_VDD)  
V
0.9  
1
1.1  
V
DD  
• PLL (PLLD_VDD, PLLD1_VDD)  
Supply voltages:  
V
3.14  
3.3  
3.46  
V
DDIO  
• I/O (IO_VDD)  
• PLL (PLLP_VDD, PLLP1_VDD)  
• PLL (PLLA_VDD, PLLA1_VDD)  
Automotive Supply voltages:  
V
0.95  
3.14  
1
1.05  
3.46  
V
V
DD  
• Core (Core_VDD)  
• PLL (PLLD_VDD, PLLD1_VDD)  
Supply voltages:  
V
3.3  
DDIO  
• I/O (IO_VDD)  
• PLL (PLLP_VDD, PLLP1_VDD)  
• PLL (PLLA_VDD, PLLA1_VDD)  
Note: To avoid a high current condition and possible system damage, all 3.3 V supplies must rise before the 1.0 V supplies rise.  
Input low voltage  
V
I
–0.3  
18  
0.8  
84  
V
IL  
Input leakage current  
μA  
pF  
μA  
V
IN  
Clock pin Input Capacitance (EXTAL)  
High impedance (off-state) input current (@ 3.3 V or 0 V)  
Output high voltage  
C
10  
IN  
I
–10  
2.4  
TSI  
V
OH  
I
= -12 mA  
OH  
LSYNC_OUT, LALE, LCLK Pins I = -16 mA, TDO Pin I  
= -24 mA  
OH  
OH  
Output low voltage  
V
0.4  
V
OL  
I
= 12 mA  
OL  
LSYNC_OUT, LALE, LCLK Pins I = 16 mA, TDO Pins I = 24 mA  
OL  
OL  
Internal pull-up resistor  
R
R
64  
57  
92  
90  
142  
157  
kΩ  
kΩ  
PU  
PD  
Internal pull-down resistor  
1
Commercial Internal supply current (core only) at internal clock of  
200 MHz  
• In Normal mode  
I
224  
121  
90  
445  
353  
327  
mA  
mA  
mA  
CCI  
• In Wait mode  
I
CCW  
2
• In Stop mode  
I
CCS  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
12  
Freescale Semiconductor  
Table 4. DC Electrical Characteristics (Continued)  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Automotive • In Normal Mode  
• In Wait Mode  
I
242  
125  
107  
496  
409  
376  
10  
mA  
mA  
mA  
pF  
CCI  
I
CCW  
• In Stop mode  
I
CCS  
Input capacitance  
Notes:  
C
IN  
1. The Current Consumption section provides a formula to compute the estimated current requirements in Normal mode. In  
order to obtain these results, all inputs must be terminated (i.e., not allowed to float). Measurements are based on synthetic  
intensive DSP benchmarks. The power consumption numbers in this specification are 90% of the measured results of this  
benchmark. This reflects typical DSP applications. Typical internal supply current is measured with V  
= 1.0 V,  
CORE_VDD  
V
= 3.3 V at T = 25° C. Maximum internal supply current is measured with V  
= 1.10 V, V = 3.4 V at  
DD_IO  
J
CORE_VDD  
IO_VDD)  
T = 100°C.  
J
2. In order to obtain these results, all inputs, which are not disconnected at Stop mode, must be terminated (i.e., not allowed  
to float).  
2.6  
AC Electrical Characteristics  
The timing waveforms shown in the AC electrical characteristics section are tested with a V maximum of 0.8 V and a V  
IL  
IH  
minimum of 2.0 V for all pins. AC timing specifications, which are referenced to a device input signal, are measured in  
production with respect to the 50% point of the respective input signal’s transition. DSP56720/DSP56721 output levels are  
measured with the production test machine V and V reference levels set at 0.4 V and 2.4 V, respectively.  
OL  
OH  
2.7  
Internal Clocks  
Internal clock characteristics are listed in Table 5.  
Table 5. Internal Clocks  
No.  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Condition  
1
2
3
4
Comparison Frequency  
Input Clock Frequency  
PLL VCO Frequency  
Fref  
Fin  
2
8
MHz Fref = Fin/NR  
Max = 200 MHz  
Fvco  
Fout  
200  
400  
MHz Fvco = (Fin × NF)/NR  
[1]  
Output Clock Frequency  
• with PLL enabled  
• with PLL disabled  
MHz  
25  
200  
200  
Fout= Fvco/NO  
Fout = Fin  
5
Duty Cycle  
40  
50  
60  
%
Fvco=  
200 MHz–400 MHz  
Notes:  
Fin = External frequency, NF = Multiplication Factor, NR = Predivision Factor, NO = Output Divider  
2.8  
External Clock Operation  
The DSP56720/DSP56721 system clock is derived from the on-chip oscillator or is externally supplied. To use the on-chip  
oscillator, connect a crystal and associated resistor/capacitor components to EXTAL and XTAL; see the example in Figure 9.  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
13  
Suggested component values:  
Fosc = 24.576 MHz  
EXTAL  
XTAL  
R = 1 M 10%  
C (EXTAL)= 18 pF  
C (XTAL) = 18 pF  
R
XTAL1  
Calculations are for a 5 – 30 MHz crystal with the following parameters:  
C
C
• Shunt capacitance (C ) of 10 pF – 12 pF  
0
• Series resistance 40 Ohm  
• Drive level of 10 μW  
Figure 9. Using the On-Chip Oscillator  
If the DSP56720/DSP56721 system clock is an externally supplied square wave voltage source, it is connected to EXTAL  
(Figure 10). When the external square wave source is connected to EXTAL, the XTAL pin is not used.  
V
IH  
Midpoint  
EXTAL  
ETH  
ETL  
V
IL  
1
2
3
ETC  
Note:  
The midpoint is 0.5 (V + V ).  
IH IL  
Figure 10. External Clock Timing  
Table 6 lists the clock operation.  
Table 6. Clock Operation  
No.  
Characteristics  
Symbol  
Min  
Max  
Units  
1
1
EXTAL input high  
(40% to 60% duty cycle)  
• Crystal oscillator  
• Square wave input  
Eth  
16.67  
2.5  
100  
inf  
ns  
1
2
EXTAL input low  
(40% to 60% duty cycle)  
• Crystal oscillator  
• Square wave input  
Etl  
Etc  
Tc  
16.67  
2.5  
100  
inf  
ns  
ns  
ns  
3
4
EXTAL cycle time  
• With PLL disabled  
• With PLL enabled  
5
33.3  
inf  
500  
Instruction cycle time  
• With PLL disabled  
• With PLL enabled  
5.00  
5.00  
inf  
5120  
Notes:  
1. Measured at 50% of the input transition.  
2. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time  
required for correct operation, however, remains the same at lower operating frequencies; therefore, when a lower clock  
frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time  
requirements are met.  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
14  
Freescale Semiconductor  
2.9  
Reset, Stop, Mode Select, and Interrupt Timing  
Table 7 shows the reset, stop, mode select, and interrupt timing.  
Table 7. Reset, Stop, Mode Select, and Interrupt Timing Parameters  
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
3
10  
11  
Delay from RESET assertion to all pins at reset value  
11  
ns  
4
Required RESET duration  
• Power on, external clock generator, PLL disabled  
• Power on, external clock generator, PLL enabled  
2 × T  
2 × T  
10  
10  
ns  
ns  
C
C
13  
Syn reset deassert delay time  
• Minimum  
2 × T  
10  
200  
10.0  
12  
7
ns  
us  
ns  
ns  
ns  
ns  
ns  
C
• Maximum (PLL enabled)  
Mode select setup time  
Mode select hold time  
(2 x T ) + T  
C
LOCK  
14  
15  
16  
17  
18  
19  
Minimum edge-triggered interrupt request assertion width  
Minimum edge-triggered interrupt request deassertion width  
Delay from interrupt trigger to interrupt code execution  
4
10 × T  
54  
C + 4  
Duration of level sensitive IRQA assertion to ensure interrupt service  
1, 2, 3  
(when exiting Stop)  
• PLL is active during Stop and Stop delay is enabled (OMR Bit 6 = 0) (128 Kbytes × T  
655  
125  
μs  
C)  
• PLL is active during Stop and Stop delay is not enabled (OMR Bit 6 =  
1)  
25 × T  
ns  
C
• PLL is not active during Stop and Stop delay is enabled (OMR Bit 6 = (128 Kbytes × T )+ 855  
μs  
μs  
ns  
C
0)  
T
LOCK  
• PLL is not active during Stop and Stop delay is not enabled (OMR Bit (25 × T ) + T  
200  
C
LOCK  
6 = 1)  
20  
21  
• Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to  
general-purpose transfer output valid caused by first interrupt  
10 × T + 3.8  
53.8  
C
1
instruction execution  
1
Interrupt Requests Rate  
• ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1, Timer, Timer_1  
12 × T  
8 × T  
60.0  
40.0  
40.0  
60.0  
ns  
ns  
ns  
ns  
C
• DMA  
C
• IRQ, NMI (edge trigger)  
• IRQ (level trigger)  
8 × T  
C
12 × T  
C
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
15  
Table 7. Reset, Stop, Mode Select, and Interrupt Timing Parameters  
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
22  
DMA Requests Rate  
• Data read from ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1  
• Data write to ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1  
• Timer, Timer_1  
6 × T  
30.0  
35.0  
10.0  
15.0  
ns  
ns  
ns  
ns  
C
7 × T  
C
2 × T  
C
• IRQ, NMI (edge trigger)  
3 × T  
C
Notes:  
1. When using fast interrupts and when IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply  
to prevent multiple interrupt service. To avoid these timing restrictions, the Edge-triggered mode is recommended when using  
fast interrupts. Long interrupts are recommended when using Level-sensitive mode.  
2. For PLL disable, if using an external clock (PCTL Bit 13 = 1), no stabilization delay is required and recovery time will be defined  
by the OMR Bit 6 settings.  
For PLL enable, (if bit 12 of the PCTL register is 0), the PLL is shut down during Stop. Recovering from Stop requires the PLL  
to get locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 200 μs.  
3. Periodically sampled and not 100% tested.  
4. RESET duration is measured during the time in which RESET is asserted, V is valid, and the EXTAL input is active and  
DD  
valid. When V is valid, but the other “required RESET duration” conditions (as specified above) have not been yet met, the  
DD  
device circuitry will be in an uninitialized state that can result in significant power consumption and heat-up. Designs should  
minimize this state to the shortest possible duration.  
Figure 11 shows the reset timing diagram.  
V
IH  
RESET  
All Pins  
11  
13  
10  
Reset Value  
Figure 11. Reset Timing Diagram  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
16  
Figure 12 shows the external fast interrupt timing diagram.  
a) First Interrupt Instruction Execution  
19  
18  
IRQA, IRQB,  
IRQC, IRQD,  
NMI,  
NMI_1  
b) General Purpose I/O  
General  
Purpose  
I/O  
20  
IRQA, IRQB,  
IRQC, IRQD,  
NMI,  
NMI_1  
Figure 12. External Fast Interrupt Timing Diagram  
Figure 13 shows the negative edge-triggered external interrupt timing diagram.  
IRQA, IRQB,  
IRQC, IRQD,  
NMI,  
NMI_1  
16  
IRQA, IRQB,  
IRQC, IRQD,  
NMI,  
17  
NMI_1  
Figure 13. External Interrupt Timing Diagram (Negative Edge-Triggered)  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
17  
Figure 14 shows the MODE select set up and hold timing diagram.  
V
RESET  
IH  
14  
15  
V
V
V
IH  
IH  
IL  
MODA, MODB,  
MODC, MODD,  
PINIT  
V
IRQA, IRQB,  
IRQC,IRQD, NMI  
IL  
Figure 14. MODE Select Set Up and Hold Timing Diagram  
2.10 Serial Host Interface (SHI) SPI Protocol Timing  
Table 8 shows the SHI SPI protocol timing parameters and Figure 15 through Figure 18 show the timing diagrams.  
Table 8. Serial Host Interface SPI Protocol Timing Parameters  
1,3,4  
No.  
Characteristics  
Mode  
Filter Mode  
Expression  
Min  
Max  
Unit  
23 Minimum serial clock cycle = t  
(min)  
Master  
Bypassed  
Very Narrow  
Narrow  
10 × T + 9  
59.0  
59.0  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SPICC  
C
10 × T + 9  
C
10 × T + 133  
183.0  
373.0  
59.2  
C
Wide  
10 × T + 333  
C
Slave  
Bypassed  
Very Narrow  
Narrow  
2.0 × T + 19.6  
C
2.0 × T + 19.6  
59.2  
C
2.0 × T + 86.6  
193.2  
C
Wide  
2.0 × T + 186.6 393.2  
C
XX Tolerable Spike width on data or clock in  
Bypassed  
Very Narrow  
Narrow  
10  
50  
100  
Wide  
24 Serial clock high period  
Master  
Bypassed  
29.5  
0.5 × (t  
)
)
)
)
SPICC  
SPICC  
SPICC  
SPICC  
Very Narrow  
Narrow  
0.5 × (t  
0.5 × (t  
0.5 × (t  
29.5  
91.5  
186.5  
29.6  
29.6  
96.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Wide  
Slave  
Bypassed  
Very Narrow  
Narrow  
2.0 × T + 19.6  
C
2.0 × T + 19.6  
C
2.0 × T + 86.6  
C
Wide  
2.0 × T + 186.6 196.6  
C
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
18  
Freescale Semiconductor  
Table 8. Serial Host Interface SPI Protocol Timing Parameters (Continued)  
1,3,4  
No.  
Characteristics  
Mode  
Filter Mode  
Expression  
Min  
Max  
Unit  
25 Serial clock low period  
Master  
Bypassed  
29.5  
ns  
0.5 × (t  
0.5 × (t  
)
SPICC  
SPICC  
Very Narrow  
Narrow  
)
29.5  
91.5  
186.5  
29.6  
29.6  
96.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5 × (t  
0.5 × (t  
SPICC  
Wide  
)
SPICC  
Slave  
Bypassed  
Very Narrow  
Narrow  
2.0 × T + 19.6  
C
2.0 × T + 19.6  
C
2.0 × T + 86.6  
C
Wide  
2.0 × T + 186.6 196.6  
C
26 Serial clock rise/fall time  
Master  
Slave  
5
ns  
ns  
27 SS assertion to first SCK edge  
CPHA = 0  
Slave  
Bypassed  
25  
ns  
2.0 × TC+15  
Very Narrow  
Narrow  
2.0 × TC+5  
15  
0
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Wide  
0
CPHA = 1  
Slave  
Slave  
Bypassed  
Very Narrow  
Narrow  
10  
0
0
Wide  
0
28 Last SCK edge to SS not asserted  
Bypassed  
Very Narrow  
Narrow  
12  
22  
100  
200  
0
Wide  
29 Data input valid to SCK edge (data input  
set-up time)  
Master  
/Slave  
Bypassed  
Very Narrow  
Narrow  
0
0
Wide  
0
30 SCK last sampling edge to data input not  
valid  
Master  
/Slave  
Bypassed  
Very Narrow  
Narrow  
3.0 × T  
15  
40  
70  
100.0  
5
C
3.0 × T + 25  
C
3.0 × T + 55  
C
Wide  
3.0 × T + 85  
C
31 SS assertion to data out active  
Slave  
Slave  
2
32 SS deassertion to data high impedance  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
19  
Table 8. Serial Host Interface SPI Protocol Timing Parameters (Continued)  
1,3,4  
No.  
Characteristics  
Mode  
Filter Mode  
Expression  
Min  
Max  
Unit  
33 SCK edge to data out valid  
(data out delay time)  
Master  
/Slave  
Bypassed  
Very Narrow  
Narrow  
3.0 × T + 30  
45  
110  
135  
225  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
3.0 × T + 95  
C
3.0 × T + 120  
C
Wide  
3.0 × T + 210  
C
34 SCK edge to data out not valid  
(data out hold time)  
Master  
/Slave  
Bypassed  
Very Narrow  
Narrow  
2.0 × T  
10  
15  
55  
105  
C
2.0 × T + 5  
C
2.0 × T + 45  
C
Wide  
2.0 × T + 95  
C
35 SS assertion to data out valid  
(CPHA = 0)  
Slave  
Slave  
14.0  
36 First SCK sampling edge to HREQ output  
deassertion  
Bypassed  
Very Narrow  
Narrow  
3.0 × T + 30  
45  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
3.0 × T + 40  
C
3.0 × T + 80  
95  
C
Wide  
3.0 × T + 130  
145  
50.0  
60.0  
100.0  
150.0  
45.0  
C
37 Last SCK sampling edge to HREQ output  
not deasserted (CPHA = 1)  
Slave  
Bypassed  
Very Narrow  
Narrow  
4.0 × T + 30  
C
4.0 × T + 40  
C
4.0 × T + 80  
C
Wide  
4.0 × T + 130  
C
38 SS deassertion to HREQ output not  
deasserted (CPHA = 0)  
Slave  
3.0 × T + 30  
C
39 SS deassertion pulse width (CPHA = 0)  
40 HREQ in assertion to first SCK edge  
Slave  
2.0 × T  
10.0  
ns  
ns  
C
Master  
Bypassed 0.5 × T  
+ 3.0 × 49.5  
SPICC  
T + 5  
C
Very Narrow 0.5 × T  
+ 3.0 × 49.5  
ns  
ns  
ns  
SPICC  
T + 5  
C
Narrow  
Wide  
0.5 × T  
+ 3.0 × 111.5  
SPICC  
T + 5  
C
0.5 × T  
+ 3.0 × 206.5  
SPICC  
T + 5  
C
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
20  
Freescale Semiconductor  
Table 8. Serial Host Interface SPI Protocol Timing Parameters (Continued)  
1,3,4  
No.  
Characteristics  
Mode  
Filter Mode  
Expression  
Min  
Max  
Unit  
41 HREQ in deassertion to last SCK sampling  
edge (HREQ in set-up time) (CPHA = 1)  
Master  
0
ns  
42 First SCK edge to HREQ in not asserted  
(HREQ in hold time)  
Master  
Master  
0
ns  
ns  
43 HREQ assertion width  
3.0 × T  
15  
C
Notes:  
1.V  
= 1.0 0.10 V; T = –40°C to 100°C; C = 50 pF.  
J L  
CORE_VDD  
2. Pejriodically sampled, not 100% tested.  
3. All times assume noise free inputs.  
4. All times assume internal clock frequency of 200 MHz.  
5. SHI_1 specs match those of SHI.  
SS  
(Input)  
25  
23  
26  
24  
26  
SCK (CPOL = 0)  
(Output)  
23  
26  
24  
26  
25  
SCK (CPOL = 1)  
(Output)  
29  
30  
29  
30  
MISO  
MSB  
LSB  
(Input)  
Valid  
Valid  
34  
33  
MOSI  
(Output)  
MSB  
LSB  
40  
42  
HREQ  
(Input)  
43  
Figure 15. SPI Master Timing Diagram (CPHA = 0)  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
21  
SS  
(Input)  
25  
24  
23  
23  
24  
25  
26  
26  
SCK (CPOL = 0)  
(Output)  
26  
26  
SCK (CPOL = 1)  
(Output)  
29  
29  
30  
30  
MISO  
(Input)  
MSB  
Valid  
LSB  
Valid  
33  
34  
MOSI  
(Output)  
MSB  
LSB  
40  
41  
42  
HREQ  
(Input)  
43  
Figure 16. SPI Master Timing Diagram (CPHA = 1)  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
22  
Freescale Semiconductor  
SS  
(Input)  
25  
23  
23  
28  
24  
26  
26  
26  
39  
SCK (CPOL = 0)  
(Input)  
27  
24  
26  
25  
SCK (CPOL = 1)  
(Input)  
35  
33  
34  
34  
32  
31  
MISO  
(Output)  
MSB  
LSB  
29  
29  
30  
30  
MSB  
Valid  
LSB  
Valid  
MOSI  
(Input)  
36  
38  
HREQ  
(Output)  
Figure 17. SPI Slave Timing Diagram (CPHA = 0)  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
23  
SS  
(Input)  
25  
23  
28  
24  
26  
26  
26  
SCK (CPOL = 0)  
(Input)  
27  
24  
26  
25  
SCK (CPOL = 1)  
(Input)  
33  
33  
34  
32  
31  
MISO  
(Output)  
MSB  
LSB  
29  
29  
30  
30  
MSB  
Valid  
LSB  
Valid  
MOSI  
(Input)  
37  
36  
HREQ  
(Output)  
Figure 18. SPI Slave Timing Diagram (CPHA = 1)  
2
2.11 Serial Host Interface (SHI) I C Protocol Timing  
2
Table 9 lists the SHI I C protocol timing parameters and Figure 19 shows the timing diagram.  
2
Table 9. SHI I C Protocol Timing Parameters  
2
Standard I C  
Standard  
Fast-Mode  
Symbol/  
Expression  
1,2,3,4,5  
No.  
Characteristics  
Unit  
Min  
Max  
Min  
Max  
Tolerable Spike Width on SCL or SDA  
Filters Bypassed  
Very Narrow Filters enabled  
Narrow Filters enabled  
0
10  
50  
100  
0
10  
50  
100  
ns  
ns  
ns  
ns  
Wide Filters enabled.  
44 SCL clock frequency  
44 SCL clock cycle  
F
T
T
10  
100  
400  
kHz  
μs  
SCL  
SCL  
BUF  
2.5  
1.3  
0.6  
0.6  
45 Bus free time  
4.7  
4.7  
4.0  
μs  
46 Start condition set-up time  
47 Start condition hold time  
T
μs  
SUSTA  
T
μs  
HD;STA  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
24  
2
Table 9. SHI I C Protocol Timing Parameters (Continued)  
2
Standard I C  
Standard  
Fast-Mode  
Symbol/  
Expression  
1,2,3,4,5  
No.  
Characteristics  
Unit  
Min  
Max  
Min  
Max  
48 SCL low period  
T
4.7  
4.0  
1.3  
1.3  
μs  
μs  
ns  
ns  
ns  
μs  
LOW  
49 SCL high period  
50 SCL and SDA rise time  
T
HIGH  
7
T
1000  
5.0  
300  
5.0  
R
7
51 SCL and SDA fall time  
52 Data set-up time  
53 Data hold time  
T
F
T
T
250  
0.0  
100  
0.0  
SU;DAT  
0.9  
HD;DAT  
54 DSP clock frequency  
• Filters bypassed  
F
OSC  
10.6  
10.6  
11.8  
13.1  
28.5  
28.5  
39.7  
61.0  
MHz  
MHz  
MHz  
MHz  
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
55 SCL low to data out valid  
56 Stop condition setup time  
T
3.4  
0.9  
μs  
μs  
ns  
VD;DAT  
SU;STO  
SU;RQI  
T
4.0  
0.0  
0.6  
0.0  
57 HREQ in deassertion to last SCL edge  
(HREQ in set-up time)  
t
58 First SCL sampling edge to HREQ output  
deassertion2  
T
NG;RQO  
• Filters bypassed  
4 × T + 30  
50.0  
70.0  
250.0  
150.0  
50.0  
70.0  
150.0  
250.0  
ns  
ns  
ns  
ns  
C
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
4 × T + 50  
C
4 × T + 130  
C
4 × T + 230  
C
59 Last SCL edge to HREQ output not  
deasserted2  
T
AS;RQO  
• Filters bypassed  
2 × T + 30  
40  
50  
90  
40  
50  
90  
ns  
ns  
ns  
ns  
C
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
2 × T + 40  
C
2 × T + 80  
C
2 × T + 130  
140  
140  
C
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
25  
2
Table 9. SHI I C Protocol Timing Parameters (Continued)  
2
Standard I C  
Standard  
Fast-Mode  
Symbol/  
Expression  
1,2,3,4,5  
No.  
Characteristics  
Unit  
Min  
Max  
Min  
Max  
60 HREQ in assertion to first SCL edge  
• Filters bypassed  
T
AS;RQI  
4327  
4317  
4282  
4227  
927  
917  
877  
827  
ns  
ns  
ns  
ns  
• Very Narrow filters enabled  
• Narrow filters enabled  
• Wide filters enabled  
61 First SCL edge to HREQ is not asserted  
(HREQ in hold time.)  
t
0.0  
0.0  
ns  
HO;RQI  
Notes:  
1. V  
= 1.00 0.10 V; T = –40°C to 100°C; C = 50 pF.  
CORE_VDD  
J
L
2. Pull-up resistor: R  
3. Capacitive load: C  
P
(min) = 1.5kΩ.  
(max) = 50 pF.  
b
4. All times assume noise free inputs.  
5. All times assume internal clock frequency of 200 MHz.  
6. SHI_1 specs match those of SHI.  
7. Master Mode  
2
2.12 Programming the SHI I C Serial Clock  
2
The programmed serial clock cycle, T  
control register).  
, is specified by the value of the HDM[7:0] and HRS bits of the HCKR (SHI clock  
I CCP  
2
The expression for T  
is  
I CCP  
T 2  
= [T × 2 × (HDM[7:0] + 1) × (7 × (1 — HRS) + 1)]  
Eqn. 4  
I CCP  
C
where  
— HRS is the pre scaler rate select bit. When HRS is cleared, the fixed  
divide-by-eight pre scaler is operational. When HRS is set, the pre scaler is bypassed.  
— HDM[7:0] are the divider modulus select bits. A divide ratio from 1 to 256 (HDM[7:0] = $00 to $FF) may be  
selected.  
2
In I C mode, the user may select a value for the programmed serial clock cycle from  
6 × T (if HDM[7:0] = $02 and HRS = 1)  
Eqn. 5  
C
to  
4096 × T (if HDM[7:0] = $FF and HRS = 0)  
Eqn. 6  
C
2
The programmed serial clock cycle (T  
shown in Equation 4.  
) should be chosen in order to achieve the desired SCL serial clock cycle (T  
), as  
SCL  
I CCP  
T 2  
+ 3 × T + 45ns + T  
R
(Nominal, SCL Serial Clock Cycle (TSCL) generated as master)  
Eqn. 7  
I CCP  
C
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
26  
Freescale Semiconductor  
44  
46  
49  
48  
SCL  
SDA  
50  
53  
51  
45  
52  
MSB  
LSB  
ACK  
Stop  
Stop  
Start  
47  
60  
58  
55  
56  
59  
61  
57  
HREQ  
2
Figure 19. I C Timing Diagram  
2.13 Enhanced Serial Audio Interface (ESAI) Timing  
Table 10 lists the ESAI timing parameters and Figure 20 through Figure 23 show the timing diagrams.  
Table 10. Enhanced Serial Audio Interface Timing Parameters  
1, 3, 4  
5
2
No.  
Characteristics  
Symbol Expression  
Min  
Max Condition Unit  
5
62 Clock cycle  
t
4 × T  
4 × T  
20.0  
20.0  
i ck  
i ck  
ns  
SSICC  
c
c
63 Clock high period  
• For internal clock  
ns  
2 × T  
2 × T  
10  
10  
c
c
• For external clock  
64 Clock low period  
• For internal clock  
ns  
2 × T  
2 × T  
10  
10  
c
c
• For external clock  
65 SCKR rising edge to FSR out (bl) high  
66 SCKR rising edge to FSR out (bl) low  
67 SCKR rising edge to FSR out (wr) high  
17.0  
7.0  
x ck  
i ck a  
ns  
ns  
ns  
ns  
ns  
ns  
17.0  
7.0  
x ck  
i ck a  
6
19.0  
9.0  
x ck  
i ck a  
6
68 SCKR rising edge to FSR out (wr) low  
19.0  
9.0  
x ck  
i ck a  
69 SCKR rising edge to FSR out (wl) high  
70 SCKR rising edge to FSR out (wl) low  
16.0  
6.0  
x ck  
i ck a  
17.0  
7.0  
x ck  
i ck a  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
27  
Table 10. Enhanced Serial Audio Interface Timing Parameters (Continued)  
1, 3, 4  
5
2
No.  
Characteristics  
Symbol Expression  
Min  
Max Condition Unit  
71 Data in setup time before SCKR (SCK in synchronous  
mode) falling edge  
5
19.0  
x ck  
i ck  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
72 Data in hold time after SCKR falling edge  
3.5  
9.0  
x ck  
i ck  
6
73 FSR input (bl, wr) high before SCKR falling edge  
2.0  
12.0  
x ck  
i ck a  
74 FSR input (wl) high before SCKR falling edge  
75 FSR input hold time after SCKR falling edge  
76 Flags input setup before SCKR falling edge  
77 Flags input hold time after SCKR falling edge  
78 SCKT rising edge to FST out (bl) high  
79 SCKT rising edge to FST out (bl) low  
2.0  
12.0  
x ck  
i ck a  
2.5  
8.5  
x ck  
i ck a  
0.0  
19.0  
x ck  
i ck s  
6.0  
0.0  
x ck  
i ck s  
14  
8.0  
x ck  
i ck  
20.0  
10.0  
x ck  
i ck  
6
80 SCKT rising edge to FST out (wr) high  
20.0  
10.0  
x ck  
i ck  
6
81 SCKT rising edge to FST out (wr) low  
22.0  
12.0  
x ck  
i ck  
82 SCKT rising edge to FST out (wl) high  
83 SCKT rising edge to FST out (wl) low  
14  
9.0  
x ck  
i ck  
14  
10.0  
x ck  
i ck  
84 SCKT rising edge to data out enable from high  
impedance  
22.0  
17.0  
x ck  
i ck  
85 SCKT rising edge to transmitter #0 drive enable  
assertion  
17.0  
11.0  
x ck  
i ck  
86 SCKT rising edge to data out valid  
13  
13.0  
x ck  
i ck  
7
87 SCKT rising edge to data out high impedance  
13  
16.0  
x ck  
i ck  
88 SCKT rising edge to transmitter #0 drive enable  
14.0  
9.0  
x ck  
i ck  
7
deassertion  
6
89 FST input (bl, wr) setup time before SCKT falling edge  
90 FST input (wl) setup time before SCKT falling edge  
91 FST input hold time after SCKT falling edge  
2.0  
18.0  
x ck  
i ck  
2.0  
18.0  
x ck  
i ck  
4.0  
5.0  
x ck  
i ck  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
28  
Freescale Semiconductor  
Table 10. Enhanced Serial Audio Interface Timing Parameters (Continued)  
1, 3, 4  
5
2
No.  
Characteristics  
Symbol Expression  
Min  
Max Condition Unit  
92 FST input (wl) to data out enable from high impedance  
93 FST input (wl) to transmitter #0 drive enable assertion  
94 Flag output valid after SCKT rising edge  
21.0  
14.0  
ns  
ns  
ns  
14.0  
9.0  
x ck  
i ck  
95 HCKR/HCKT clock cycle  
96 HCKT input rising edge to SCKT output  
97 HCKR input rising edge to SCKR output  
Notes:  
2 × T  
10  
ns  
ns  
ns  
C
18.0  
18.0  
1. V  
= 1.00 0.10 V; T = –40°C to 100°C; C = 50 pF.  
CORE_VDD  
J L  
2. i ck = internal clock  
x ck = external clock  
i ck a = internal clock, asynchronous mode  
(Asynchronous implies that SCKT and SCKR are two different clocks.)  
i ck s = internal clock, synchronous mode  
(Synchronous implies that SCKT and SCKR are the same clock.)  
3. bl = bit length  
wl = word length  
wr = word length relative  
4. SCKT(SCKT pin) = transmit clock  
SCKR(SCKR pin) = receive clock  
FST(FST pin) = transmit frame sync  
FSR(FSR pin) = receive frame sync  
HCKT(HCKT pin) = transmit high frequency clock  
HCKR(HCKR pin) = receive high frequency clock  
5. For the internal clock, the external clock cycle is defined by Tc and the ESAI control register.  
6. The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync  
signal waveform, but spreads from one serial clock before first bit clock (same as bit length frame sync signal), until the one  
before last bit clock of the first word in frame.  
7. Periodically sampled and not 100% tested.  
8. ESAI_1, ESAI_2, ESAI_3 specs match those of ESAI.  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
29  
62  
63  
64  
SCKT  
(Input/Output)  
78  
79  
FST (Bit)  
Out  
82  
83  
FST (Word)  
Out  
86  
84  
86  
87  
First Bit  
Last Bit  
Data Out  
93  
Transmitter #0  
Drive Enable  
(Internal Signal)  
89  
85  
88  
91  
FST (Bit) In  
92  
91  
90  
FST (Word) In  
Flags Out  
94  
See Note  
Note: In network mode, output flag transitions can occur at the start of each time slot within the  
frame. In normal mode, the output flag state is asserted for the entire frame period.  
Figure 20. ESAI Transmitter Timing Diagram  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
30  
Freescale Semiconductor  
62  
63  
64  
SCKR  
(Input/Output)  
65  
66  
FSR (Bit)  
Out  
69  
70  
FSR (Word)  
Out  
72  
71  
Data In  
Last Bit  
First Bit  
75  
73  
FSR (Bit)  
In  
74  
75  
77  
FSR (Word)  
In  
76  
Flags In  
Figure 21. ESAI Receiver Timing Diagram  
HCKT  
95  
SCKT  
(Output)  
96  
Figure 22. ESAI HCKT Timing Diagram  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
31  
HCKR  
95  
SCKR  
(Output)  
97  
Figure 23. ESAI HCKR Timing  
2.14 Timer Timing  
Table 11 lists the timer timing parameters and Figure 24 shows the timing diagram.  
Table 11. Timer Timing Parameters  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
98  
99  
TIO Low  
TIO High  
2 × T + 2.0  
12.0  
12.0  
ns  
ns  
C
2 × T + 2.0  
C
Notes:  
1. V  
= 1.00 V 0.10 V; T = –40°C to 100°C, C = 50 pF  
J L  
CORE_VDD  
2. TIMER_1 specs match those of TIMER  
TIO  
98  
99  
Figure 24. TIO Timer Event Input Restrictions Diagram  
2.15 GPIO Timing  
Table 12 lists the general purpose input and output (GPIO) timing and Figure 25 shows the timing diagram.  
Table 12. GPIO Timing Parameters  
1
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
2
100 Fsys edge to GPIO out valid (GPIO out delay time)  
2
7
7
ns  
ns  
ns  
ns  
ns  
2
101 Fsys edge to GPIO out not valid (GPIO out hold time)  
2
102 Fsys In valid to EXTAL edge (GPIO in set-up time)  
2
103 Fsys edge to GPIO in not valid (GPIO in hold time)  
0
104 Minimum GPIO pulse high width  
2 × TC  
10  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
32  
Freescale Semiconductor  
Table 12. GPIO Timing (Continued)Parameters (Continued)  
1
No.  
Characteristics  
Expression  
Min  
Max  
Unit  
105 Minimum GPIO pulse low width  
106 GPIO out rise time  
2 × TC  
10  
ns  
ns  
ns  
13.0  
13.0  
107 GPIO out fall time  
Notes:  
V
= 1.0 V 0.10 V; T = –40°C to 100°C; C = 50 pF  
CORE_VDD  
J
L
Fsys  
100  
101  
GPIO  
(Output)  
102  
103  
GPIO  
Input)  
Valid  
GPIO  
(Output)  
105  
107  
104  
106  
Figure 25. GPIO Timing Diagram  
2.16 JTAG Timing  
Table 13 lists the joint test action group (JTAG) timing parameters, and Figure 26 through Figure 28 show the timing diagrams.  
Table 13. JTAG Timing Parameters  
All Frequencies  
No.  
Characteristics  
Unit  
Min  
Max  
108  
109  
110  
111  
112  
113  
114  
115  
TCK frequency of operation (1/(T × 3); maximum 10 MHz)  
100.0  
50.0  
10.0  
MHz  
ns  
C
TCK cycle time in Crystal mode  
TCK clock pulse width measured at 1.65 V  
TCK rise and fall times  
ns  
3.0  
ns  
Boundary scan input data setup time  
Boundary scan input data hold time  
TCK low to output data valid  
15.0  
24.0  
ns  
ns  
40.0  
40.0  
ns  
TCK low to output high impedance  
ns  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
33  
Table 13. JTAG Timing Parameters (Continued)  
All Frequencies  
No.  
Characteristics  
Unit  
Min  
Max  
116  
117  
TMS, TDI data setup time  
5.0  
25.0  
ns  
ns  
ns  
ns  
TMS, TDI data hold time  
118  
TCK low to TDO data valid  
TCK low to TDO high impedance  
44.0  
44.0  
119  
Notes:  
1. V  
= 1.0 V 0.10 V; T = –40°C to 100°C , C = 50 pF  
J L  
CORE_VDD  
2. All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.  
109  
110  
VM  
110  
VM  
TCK  
(Input)  
VIH  
VIL  
111  
111  
Figure 26. Test Clock Input Timing Diagram  
VIH  
TCK  
(Input)  
VIL  
112  
113  
Data  
Inputs  
Input Data Valid  
114  
115  
114  
Data  
Outputs  
Output Data Valid  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 27. Debugger Port Timing Diagram  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
34  
Freescale Semiconductor  
VIH  
117  
TCK  
(Input)  
VIL  
116  
Input Data Valid  
TDI  
TMS  
(Input)  
118  
TDO  
(Output)  
Output Data Valid  
119  
TDO  
(Output)  
118  
TDO  
(Output)  
Output Data Valid  
Figure 28. Test Access Port Timing Diagram  
2.17 Watchdog Timer Timing  
Table 14 lists the watchdog timer timing.  
Table 14. Watchdog Timer Timing Parameters  
No.  
Characteristics  
Expression  
2 × T  
Min  
Max  
Unit  
120 Delay from time-out to fall of WDT, WDT_1  
121 Delay from timer clear to rise of WDT, WDT_1  
10.0  
10.0  
ns  
ns  
c
2 × Tc  
2.18 Host Data Interface (HDI24) Timing  
The HDI24 module is only on the DSP56721 device; the DSP56720 device does not have a HDI24 module. Also, only 16 bits  
of the HDI24 interface are pinned out on the DSP56721 device. Table 15 lists HDI24 timing and Figure 29 through Figure 35  
show the timing diagrams.  
Table 15. HDI24 Timing Parameters  
200 MHz  
2
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
3
317 Read data strobe assertion width  
HACK read assertion width  
T + 9.9  
14.9  
ns  
ns  
ns  
C
3
318 Read data strobe deassertion width  
HACK read deassertion width  
9.9  
3
4,5  
319 Read data strobe deassertion width after “Last Data Register” reads  
,
2 × T + 6.6  
16.6  
C
6
or between two consecutive CVR, ICR, or ISR reads  
HACK deassertion width after “Last Data Register” reads  
4,5  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
35  
Table 15. HDI24 Timing Parameters (Continued)  
200 MHz  
2
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
7
320 Write data strobe assertion width  
HACK write assertion width  
13.2  
16.6  
ns  
ns  
7
321 Write data strobe deassertion width  
HACK write deassertion width  
2 × T + 6.6  
C
4
• after ICR, CVR and “Last Data Register” writes  
• after IVR writes, or  
16.5  
• after TXH:TXM writes (with HBE=0), or  
• after TXL:TXM writes (with HBE=1)  
322 HAS assertion width  
323 HAS deassertion to data strobe assertion  
9.9  
0.0  
9.9  
ns  
ns  
ns  
8
7
324 Host data input setup time before write data strobe deassertion  
Host data input setup time before HACK write deassertion  
7
325 Host data input hold time after write data strobe deassertion  
3.3  
5.9  
ns  
ns  
ns  
ns  
ns  
Host data input hold time after HACK write deassertion  
3
326 Read data strobe assertion to output data active from high impedance  
HACK read assertion to output data active from high impedance  
3
327 Read data strobe assertion to output data valid  
29.6  
9.9  
HACK read assertion to output data valid  
3
328 Read data strobe deassertion to output data high impedance  
HACK read deassertion to output data high impedance  
3
329 Output data hold time after read data strobe deassertion  
3.3  
Output data hold time after HACK read deassertion  
3
330 HCS assertion to read data strobe deassertion  
T + 9.9  
14.9  
9.9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
7
331 HCS assertion to write data strobe deassertion  
332 HCS assertion to output data valid  
19.1  
8
333 HCS hold time after data strobe deassertion  
0.0  
4.7  
3.3  
0
334 Address (AD7—AD0) setup time before HAS deassertion (HMUX=1)  
335 Address (AD7—AD0) hold time after HAS deassertion (HMUX=1)  
336 A10—A8 (HMUX=1), A2—A0 (HMUX=0), HR/W setup time before data  
8
strobe assertion  
• Read  
• Write  
4.7  
3.3  
337 A10—A8 (HMUX=1), A2—A0 (HMUX=0), HR/W hold time after data  
ns  
ns  
8
strobe deassertion  
338 Delay from read data strobe deassertion to  
T
5.0  
C
3, 4, 9  
host request assertion for “Last Data Register” read  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
36  
Freescale Semiconductor  
Table 15. HDI24 Timing Parameters (Continued)  
200 MHz  
2
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
339 Delay from write data strobe deassertion to  
host request assertion for “Last Data Register” write  
2 × T  
10.0  
ns  
ns  
C
4, 7, 9  
340 Delay from data strobe assertion to  
19.1  
host request deassertion for “Last Data Register” read or write (HROD =  
4, 8, 9  
0)  
341 Delay from data strobe assertion to  
300.0  
ns  
ns  
host request deassertion for “Last Data Register” read or write (HROD =  
4, 8, 9, 10  
1, open drain Host Request)  
342 Delay from DMA HACK deassertion to HOREQ assertion  
4
• For “Last Data Register” read  
2 × T + 19.1  
29.1  
24.1  
0.0  
C
4
• For “Last Data Register” write  
1 × T + 19.1  
C
• For other cases  
343 Delay from DMA HACK assertion to HOREQ deassertion  
20.2  
ns  
ns  
4
• HROD = 0  
344 Delay from DMA HACK assertion to HOREQ deassertion for “Last Data  
Register” read or write  
300.0  
4, 10  
• HROD = 1, open drain Host Request  
Notes:  
1. In the timing diagrams that follow, the controls pins are drawn as active low. The pin polarity is programmable.  
2. V = 1.0 V 10%; T = —40°C to +100°C; C = 50 pF.  
CC  
J
L
3. The read data strobe is HRD in the dual data strobe mode and HDS in the single data strobe mode.  
4. The “last data register” is the register at address $7, which is the last location to be read or written in data transfers.  
5. This timing is applicable only if a read from the “last data register” is followed by a read from the RXL, RXM, or RXH registers  
without first polling RXDF or HREQ bits, or waiting for the assertion of the HOREQ signal.  
6. This timing is applicable only if two consecutive reads from one of these registers are executed.  
7. The write data strobe is HWR in the dual data strobe mode and HDS in the single data strobe mode.  
8. The data strobe is host read (HRD) or host write (HWR) in the dual data strobe mode and host data strobe (HDS) in the  
single data strobe mode.  
9. The host request is HOREQ in the single host request mode and HRRQ and HTRQ in the double host request mode.  
10. In this calculation, the host request signal is pulled up by a 4.7 kW resistor in the open-drain mode.  
11. HDI24_1 specs match those of HDI24.  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
37  
317  
318  
HACK  
328  
327  
329  
326  
HD23HD0  
HOREQ  
Figure 29. HDI24 Host Interrupt Vector Register (IVR) Read Timing Diagram  
HA0HA2  
336  
337  
333  
330  
HCS  
317  
HRD, HDS  
318  
319  
328  
332  
327  
329  
326  
341  
HD0HD23  
338  
340  
HOREQ,  
HRRQ,  
HTRQ  
Figure 30. HDI24 Read Timing Diagram, Non-Multiplexed Bus  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
38  
Freescale Semiconductor  
HA0HA2  
337  
333  
336  
331  
HCS  
320  
HWR, HDS  
321  
325  
324  
HD0HD23  
340  
339  
341  
HOREQ,  
HRRQ,  
HTRQ  
Figure 31. HDI24 Write Timing Diagram, Non-Multiplexed Bus  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
39  
HA8HA10  
336  
337  
322  
HAS  
323  
317  
HRD, HDS  
318  
319  
334  
335  
327  
328  
329  
HAD0HAD23  
Address  
Data  
326  
338  
340  
341  
HOREQ,  
HRRQ,  
HTRQ  
Figure 32. HDI24 Read Timing Diagram, Multiplexed Bus  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
40  
Freescale Semiconductor  
HA8HA10  
336  
322  
HAS  
323  
320  
HWR, HDS  
334  
324  
321  
325  
335  
HAD0HAD23  
Address  
Data  
340  
339  
341  
HOREQ,  
HRRQ,  
HTRQ  
Figure 33. HDI24 Write Timing Diagram, Multiplexed Bus  
HOREQ  
(Output)  
342  
343  
344  
320  
321  
TXH/M/L  
Write  
HACK  
(Input)  
324  
325  
Data  
Valid  
H0–H23  
(Input)  
Figure 34. HDI24 Host DMA Write Timing Diagram  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
41  
HOREQ  
(Output)  
343  
342  
342  
318  
317  
RXH  
Read  
HACK  
(Input)  
327  
326  
328  
329  
Data  
Valid  
H0-H23  
(Output)  
Figure 35. HDI24 Host DMA Read Timing Diagram  
2.19 S/PDIF Timing  
Table 16 lists the Sony/Philips Digital Interconnect Format (S/PDIF) timing parameters and Figure 36 and Figure 37 show the  
timing diagrams.  
Table 16. S/PDIF Timing Parameters  
All Frequency  
Characteristics  
Symbol  
Unit  
Min  
Max  
0.7  
ns  
SPDIFIN1, SPDIFIN2, SPDIFIN3, SPDIFIN4 Skew:  
asynchronous inputs, no specs apply  
SPDIFOUT1,SPDIFOUT2 output (Load = 50 pf)  
• Skew  
Transition Risng  
1.5  
24.2  
31.3  
ns  
ns  
Transition Falling  
SPDIFOUT1, SPDIFOUT2 output (Load = 30 pf)  
• Skew  
Transition Risng  
Transition Falling  
1.5  
13.6  
18.0  
SRCK period  
srckp  
srckph  
srckpl  
stclkp  
stclkph  
stclkpl  
40.0  
16.0  
16.0  
40.0  
16.0  
16.0  
ns  
ns  
ns  
ns  
ns  
ns  
SRCK high period  
SRCK low period  
STCLK period  
STCLK high period  
STCLK low period  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
42  
Freescale Semiconductor  
srckp  
srckpl  
VM  
srckph  
VM  
SRCK  
(Output)  
Figure 36. S/PDIF SRCK Timing Diagram  
stclkp  
stclkpl  
VM  
stclkph  
VM  
STCLK  
(Input)  
Figure 37. S/PIDF STCLK Timing Diagram  
2.20 EMC Timing (DSP56720 Only)  
The DSP56721 device does not have an EMC module. For EMC timing parameters in DSP56720 devices, see Table 17, through  
Table 19; for timing diagrams, see Figure 38 through Figure 40.  
Table 17. EMC Timing Parameters (EMC PLL Enabled; LCRR[CLKDIV] = 2)  
Parameter  
Symbol  
Min  
Max  
Unit  
LCLK cycle time  
T
10  
3
160  
ns  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
clk  
T
clk_skew  
LCLK skew to LSYNC_OUT  
Input setup to LSYNC_IN (except LGTA/LUPWAIT)  
Input hold from LSYNC_IN (except LGTA/LUPWAIT)  
LGTA valid time  
T
T
in_s  
in_h  
2
T
12  
12  
3
gta  
LUPWAIT valid time  
T
upwait  
LALE negedge to LAD(address phase) invaild (address latch hold time)  
LALE valid time  
T
ale_h  
T
3.8  
4
ale  
Output setup from LSYNC_IN (except LAD[23:0] and LALE)  
Output hold from LSYNC_IN (except LAD[23:0] and LALE)  
LAD[23:0] output setup from LSYNC_IN  
LAD[23:0] output hold from LSYNC_IN  
T
out_s  
T
2
out_h  
T
3.5  
1.5  
ad_s  
T
ad_h  
LSYNC_IN to output high impedance for LAD[23:0]  
T
4.3  
ad_z  
Chapter 22, “External Memory Controller (EMC),” in the Symphony DSP56720/DSP56721 Multi-Core Audio Processors  
Reference Manual explains in detail the interfacing and features of EMC. The applicable sections are as follows:  
Section 22.4.4.3, “UPM Signal Timing”  
Section 22.4.4.7, “Memory System Interface Example Using UPM”  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
43  
Tclk  
LCLK  
Tclk_skew  
LSYNC_OUT  
LSYNC_IN  
Tsync_in_skew  
Tin_s  
Tin_h  
LAD[23:0] (data)  
LGTA  
asynchronous input  
Tgta  
Tupwait  
asynchronous input  
LUPWAIT  
Tout_s  
Tout_h  
Output Signals  
LA[2:0]/LBCTL/LCS[7:0]  
LOE/LWE  
LCKE/LSDA10/LSDDQM  
LSDWE/LSDRAS/LSDCAS  
LGPL[5:0]  
Tad_z  
Tad_s  
Tad_h  
LAD[23:0]  
Tale_h  
Tale  
LALE  
Figure 38. EMC Signals (EMC PLL Enabled; LCRR[CLKDIV] = 2)  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
44  
Freescale Semiconductor  
Table 18. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 4)  
Parameter  
Symbol  
Min  
Max  
Unit  
LCLK cycle time  
T
20  
8
8.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
clk  
Input setup to LCLK (except LGTA/LUPWAIT)  
Input hold from LCLK (except LGTA/LUPWAIT)  
LGTA valid time  
T
in_s  
in_h  
1
T
-1  
22  
22  
4
T
gta  
LUPWAIT valid time  
T
upwait  
LALE negedge to LAD (address phase) invalid (address latch hold time)  
LALE valid time  
T
ale_h  
T
14  
9
ale  
Output setup from LCLK (except LAD[23:0] and LALE)  
Output hold from LCLK (except LAD[23:0] and LALE)  
LAD[23:0] output setup from LCLK  
T
out_s  
T
8
out_h  
T
8
ad_s  
LAD[23:0] output hold from LCLK  
T
7
ad_h  
LCLK to output high impedance for LAD[23:0]  
T
ad_z  
Notes:  
1. A negative hold time means that the signal could be invalid before the LCLK rising edge.  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
45  
Tclk  
LCLK  
Tin_s  
Tin_h  
LAD[23:0] (data)  
LGTA  
asynchronous input  
Tgta  
Tupwait  
asynchronous input  
LUPWAIT  
Tout_s  
Tout_h  
Output Signals  
LA[2:0]/LBCTL/LCS[7:0]  
LOE/LWE  
LCKE/LSDA10/LSDDQM  
LSDWE/LSDRAS/LSDCAS  
LGPL[5:0]  
Tad_z  
Tad_s  
Tad_h  
LAD[23:0]  
Tale_h  
Tale  
LALE  
Figure 39. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 4)  
Table 19. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8)  
Parameter  
Symbol  
Min  
Max  
Unit  
LCLK cycle time  
T
40  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
clk  
Input setup to LCLK (except LGTA/LUPWAIT)  
Input hold from LCLK (except LGTA/LUPWAIT)  
LGTA valid time  
T
T
in_s  
in_h  
1
–1  
42  
42  
5
T
gta  
LUPWAIT valid time  
T
upwait  
LALE negedge to LAD (address phase) invalid (address latch hold time)  
LALE valid time  
T
ale_h  
T
34  
19  
18  
ale  
Output setup from LCLK (except LAD[23:0] and LALE)  
Output hold from LCLK (except LAD[23:0] and LALE)  
T
out_s  
T
out_h  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
46  
Freescale Semiconductor  
Table 19. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8) (Continued)  
Parameter  
LAD[23:0] output setup from LCLK  
Symbol  
Min  
Max  
Unit  
T
12  
17  
ns  
ns  
ns  
ad_s  
LAD[23:0] output hold from LCLK  
LCLK to output high impedance for LAD[23:0]  
Notes:  
T
ad_h  
T
17.1  
ad_z  
1. A negative hold time means that the signal could be invalid before the LCLK rising edge.  
Tclk  
LCLK  
Tin_s  
Tin_h  
LAD[23:0] (data)  
asynchronous input  
Tgta  
LGTA  
Tupwait  
asynchronous input  
LUPWAIT  
Tout_s  
Tout_h  
Output Signals  
LA[2:0]/LBCTL/LCS[7:0]  
LOE/LWE  
LCKE/LSDA10/LSDDQM  
LSDWE/LSDRAS/LSDCAS  
LGPL[5:0]  
Tad_z  
Tad_s  
Tad_h  
LAD[23:0]  
Tale_h  
Tale  
LALE  
Figure 40. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 8)  
3
Functional Description and Application Information  
See the Symphony™ DSP56720/DSP56721 Multi-Core Audio Processors Reference Manual (DSP56720RM) for detailed  
functional and applications information.  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
47  
4
Ordering Information  
Table 20 provides ordering information for both the DSP56720 and DSP56721.  
Table 20. Ordering Information  
Device  
Device Marking  
Ambient Temp.  
LQFP Package  
DSP56720 Commercial DSPA56720AG  
DSPB56720AG  
0°C–70°C  
0°C–70°C  
20 mm × 20 mm  
20 mm × 20 mm  
20 mm × 20 mm  
20 mm × 20 mm  
20 mm × 20 mm  
20 mm × 20 mm  
20 mm × 20 mm  
20 mm × 20 mm  
20 mm × 20 mm  
14 mm × 14 mm  
14 mm × 14 mm  
14 mm × 14 mm  
20 mm × 20 mm  
20 mm × 20 mm  
20 mm × 20 mm  
14 mm × 14 mm  
14 mm × 14 mm  
14 mm × 14 mm  
DSPC56720AG  
0°C–70°C  
DSP56720 Automotive  
DSPA56720CAG  
DSPB56720CAG  
DSPC56720CAG  
–40°C–85°C  
–40°C–85°C  
–40°C–85°C  
0°C–70°C  
DSP56721 Commercial DSPA56721AG  
DSPB56721AG  
0°C–70°C  
DSPC56721AG  
0°C–70°C  
DSPA56721AF  
0°C–70°C  
DSPB56721AF  
0°C–70°C  
DSPC56721AF  
0°C–70°C  
DSP56721 Automotive  
DSPA56721CAG  
DSPB56721CAG  
DSPC56721CAG  
DSPA56721CAF  
DSPB56721CAF  
DSPC56721CAF  
–40°C–85°C  
–40°C–85°C  
–40°C–85°C  
–40°C–85°C  
–40°C–85°C  
–40°C–85°C  
5
Package Information  
For the outline drawings of available device packages, see Table 21 and sections 5.15.2.  
Table 21. Package Outline Drawings  
Device  
Package  
See  
DSP56720  
144-pin plastic LQFP  
Figure 43 on page 51 and  
Figure 44 on page 52  
DSP56721  
80-pin plastic LQFP  
144-pin plastic LQFP  
Figure 43 on page 51 and  
Figure 42 on page 50  
Figure 43 on page 51 and  
Figure 44 on page 52  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
48  
5.1  
80-Pin Package Outline Drawing  
Figure 41 and Figure 42 show the 80-pin package outline drawings.  
Figure 41. 80-Pin Package Outline Drawing (1 of 2)  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
49  
Figure 42. 80-Pin Package Outline Drawing (2 of 2)  
NOTES  
1
Dimensioning and tolerancing per asme Y14.5M-1994.  
2
3
Controlling dimension: millimeter  
Datum plane H is located at the bottom of lead and is coincident with the lead where the lead exits the plastic body at the  
bottom of the parting line.  
4
5
6
Datum E, F and D to be determined at datum plane H.  
Dimensions to be determined at seating plane C.  
Dimensions do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions include mold mismatch and  
are determined at datum plane H.  
7
Dimension does not include dambar protrusion. Dambar protrusion shall not cause the lead width to exceed 0.46 mm.  
Minimnum space between protrusion and adjacent lead or protrusion 0.07 mm.  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
50  
Freescale Semiconductor  
5.2  
144-Pin Package Outline Drawing  
Figure 43 and Figure 44 show the 144-pin package drawings.  
Figure 43. 144-Pin Package Outline Drawing (1 of 2)  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
51  
Figure 44. 144-Pin Package Outline Drawing (2 of 2)  
NOTES  
1
All dimensinos are in millimeters  
2
3
4
5
Interpret dimensions and tolerances per ASME Y14.5M-1994.  
Datums B, C and D to be determined at datum plane H.  
The top ppackage body size may be smaller than the bottom package size by a maximum of 0.1 mm.  
These dimensions do not include mold protrusions. The maximum allowable protrusion is 0.25 mm per side. These dimensions  
are maximum body size dimensions including mold mismatch.  
6
This dimension does not include dambar protrusion. Protrusions shall not cause the lead width to exceed 0.35 mm minimum  
space between protrusion and an adjacent lead shall be 0.07 mm.  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
52  
Freescale Semiconductor  
7
These dimensions are determined at the seating plane, datum A.  
6
Product Documentation  
This Data Sheet is labeled as a particular type: Product Preview, Advance Information, or Technical Data. Definitions of these  
types are available at: http://www.freescale.com. Documentation is available from a local Freescale Semiconductor, Inc.  
distributor, semiconductor sales office, Literature Distribution Center, or through the Freescale DSP home page on the Internet  
(the source for the latest information).  
The following documents are required for a complete description of the device and are necessary to design properly with the  
parts:  
DSP56300 Family Manual (document number DSP56300FM). Detailed description of the 56300-family architecture and the  
24-bit core processor and instruction set.  
Symphony™ DSP56720/DSP56721 Multi-Core Audio Processors Reference Manual (document number DSP56720RM).  
Detailed description of memory, peripherals, and interfaces.  
DSP56720 Product Brief (DSP56720PB). Brief description of the DSP56720 device.  
DSP56721 Product Brief (DSP56721PB). Brief description of the DSP56721 device.  
7
Revision History  
Table 22 summarizes revisions to this document.  
Table 22. Revision History  
Revision  
Date  
Description  
5
02/2009  
• Updated values and added Commercial and Automotive columns in Table 4, “DC  
Electrical Characteristics.”  
• Updated values in the following tables: Table 7, Table 9, Table 10, Table 11, Table 12,  
Table 13, Table 15, Table 17, Table 18, and Table 19.  
• In Table 10, “Enhanced Serial Audio Interface Timing Parameters,changed value for 87  
to “13”.  
• Added Section 2.4, “Power Consumption Considerations.”  
• In Section 2.20, “EMC Timing (DSP56720 Only),” added text regarding the EMC chapter  
and applicable sections.  
• Added automotive information to Table 20, “Ordering Information.”  
4
3
04/2008  
03/2008  
• Added formula for thermal characteristics on page 10.  
• Added values for pull-up and pull-down resistors on page 12.  
• Updated order information on page 1 to include additional parts with temperature  
specification.  
2
1
02/2008  
12/2007  
• Timing updates.  
• Initial release  
Symphony DSP56720/DSP56721 Multi-Core Audio Processors, Rev. 5  
Freescale Semiconductor  
53  
How to Reach Us:  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
Semiconductor was negligent regarding the design or manufacture of the part.  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc., 2009. All rights reserved.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: DSP56720EC  
Rev. 5  
02/2009  

相关型号:

DSPC8661ACY001-E

4-Ch HDMI PCIe Video Decoder Card with 4-ch 3G-SDI inputs and SDK
ADVANTECH

DSPCOMMANDUM

Universal Command Converter for DSP User's Manual
ETC

DSPCOMMPARALLELUM

Parallel Port Command Converter for DSP User's Manual
ETC

DSPCOMMPCIUM

PCI Command Converter for DSP User's Manual
ETC

DSPD366DB1

24-BIT, OTHER DSP
MOTOROLA

DSPD367DB1

24-BIT, 150MHz, OTHER DSP
MOTOROLA

DSPD56366AG120

24-BIT, 120MHz, OTHER DSP, PQFP144, 20 X 20 MM, 0.50 MM PITCH, 1.40 MM HEIGHT, PLASTIC, LQFP-144
NXP

DSPD56367AG150

Digital Signal Processor, 24-Bit Size, 24-Ext Bit, 150MHz, CMOS, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LQFP-144
MOTOROLA

DSPD56367AG150

24-BIT, 150 MHz, OTHER DSP, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LQFP-144
ROCHESTER

DSPD56367PV150

24-BIT, 150MHz, OTHER DSP, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LQFP-144
NXP

DSPD56367PV150

24-BIT, 150 MHz, OTHER DSP, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LQFP-144
MOTOROLA

DSPD56367PV150

24-BIT, 150MHz, OTHER DSP, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, PLASTIC, LQFP-144
ROCHESTER