AN7198Z [PANASONIC]

Dual 20 W BTL Power IC for Car Audio; 双20瓦BTL电源IC汽车音响
AN7198Z
型号: AN7198Z
厂家: PANASONIC    PANASONIC
描述:

Dual 20 W BTL Power IC for Car Audio
双20瓦BTL电源IC汽车音响

汽车音响
文件: 总20页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICs for Audio Common Use  
AN7198Z  
Dual 20 W BTL Power IC for Car Audio  
Overview  
Unit: mm  
The AN7198Z is an audio power IC developed for the  
sound output of car audio (Dual 20 W).  
18.00±0.30  
13.50±0.30  
4.00±0.20  
1.50±0.10  
A capacitor and a resistor between the output pin and  
GND to stop oscillation are built-in so that a space saving  
of set is possible. Also, it is incorporates an industry's  
first superior muting circuit which is free from shock  
noise, so that a shock noise design under the set transient  
condition can be made easily when the muting circuit is  
used together with its standby function.  
In addition, it is incorporating various protective cir-  
cuits to protect the IC from destruction by GND-open  
short circuit to GND and power supply surge which are  
the important subjects of power IC protection, and the IC  
will largely contribute to a high reliability design of equip-  
ment.  
φ3.60±0.10  
1
15  
(0.61)  
(1.80)  
R0.55  
(1.95)  
0.25+00..1055  
0.50+00..1200  
1.27  
(2.54)  
19.00±0.30  
19.30±0.30  
HZIP015-P-0745A  
Features  
Built-in various protection circuits (Realizing high breakdown voltage against destruction)  
Power supply surge breakdown voltage of 80 V or more  
Ground-open breakdown voltage of 16 V or more  
Built-in standby function (Free from shock noise at STB-on/off)  
Built-in muting function  
Free from shock noise at mute-on/off  
Adapting attenuator method, so that abnormal sound due to waveform deformation is not generated  
Attack time, recovery time of 50 ms or less  
Reduction in external components  
No capacitors and resistors for oscillation stop are unnecessary  
It eliminates the need for NF and BS electrolytic capacitors  
Muting function is unnecessary  
Power supply choke coil is unnecessary  
Provided with beep sound input pin  
High sound quality design  
Applications  
Car audio  
1
AN7198Z  
ICs for Audio Common Use  
Block Diagram  
3
14  
Ref.  
ch.1 GND  
ch.2 GND  
4
13  
ch.1 Out ()  
ch.2 Out ()  
Protection Cct.  
Att  
Att  
Att  
2
15  
ch.1 Out (+)  
ch.2 Out (+)  
Att.Con.  
Att  
Pin Description  
Pin No.  
Description  
Pin No.  
Description  
Grounding (input)  
Beep sound input  
Ch.2 input  
1
2
3
4
5
6
7
8
Power supply  
Ch.1 output (+)  
9
10  
11  
12  
13  
14  
15  
Grounding (output ch.1)  
Ch.1 output ()  
Standby  
Ripple filter  
Ch.2 output ()  
Ch.1 input  
Grounding (output ch.2)  
Ch.2 output (+)  
Muting  
Grounding (board)  
Absolute Maximum Ratings  
Parameter  
Symbol  
VCC  
Vsurge  
ICC  
Ratings  
Unit  
V
2
Supply voltage *  
25  
3
Peak supply voltage *  
60  
9.0  
V
Supply current  
A
4
Power dissipation *  
PD  
59  
W
°C  
°C  
1
Operating ambient temperature *  
Topr  
30 to + 85  
55 to + 150  
1
Storage temperature *  
Tstg  
Note) 1: T = 25°C except operating ambient temperature and storage temperature.  
*
a
2: Without signal  
*
*
*
3: Time = 0.2 s  
4: T = 85°C  
a
2
ICs for Audio Common Use  
AN7198Z  
Recommended Operating Range  
Parameter  
Supply voltage  
Symbol  
VCC  
Ratings  
Unit  
8.0 to 18.0  
V
Electrical Characteristics at VCC = 13.2 V, f = 1 kHz, Ta = 25°C  
Parameter  
Quiescent current  
Symbol  
ICQ  
Conditions  
VIN = 0 mV, RL = 4 Ω  
VIN = 0 mV, RL = 4 Ω  
Rg = 10 k, RL = 4 Ω  
VIN = 40 mV, RL = 4 Ω  
VIN = 40 mV, RL = 4 Ω  
THD = 10%, RL = 4 Ω  
VCC = 14.4 V, RL = 4 Ω  
Min  
Typ Max  
Unit  
mA  
µA  
150  
1
250  
10  
Standby current  
ISTB  
1
Output noise voltage *  
VNO  
0.18  
34  
0.5 mV[rms]  
Voltage gain 1  
GV1  
32  
16  
60  
36  
dB  
%
Total harmonic distortion 1  
Maximum output power 1  
THD1  
PO1  
0.05  
18.5  
22.0  
65  
0.4  
W
W
dB  
1
Ripple rejection ratio *  
RR  
RL = 4 , Rg = 10 k, Vr = 1 V[rms]  
fr = 1 kHz  
Channel balance  
CB  
CT  
VIN = 40 mV, RL = 4 Ω  
VIN = 40 mV, RL = 4 , Rg = 10 kΩ  
Rg = 10 k, RL = 4 Ω  
VO = 1 W, RL = 4 Ω  
0
79  
0
1
dB  
dB  
mV  
dB  
kΩ  
dB  
%
1
Cross-talk *  
60  
250  
70  
Output offset voltage  
VOff  
MT  
Zi  
250  
1
Muting effect *  
86  
30  
34  
0.08  
28  
0
Input impedance  
VIN = ± 0.3 VDC  
24  
36  
36  
Voltage gain 2  
GV2  
THD2  
PO2  
VS  
VIN = 40 mV, RL = 2 Ω  
VIN = 40 mV, RL = 2 Ω  
THD = 10%, RL = 2 Ω  
32  
Total harmonic distortion 2  
Maximum output power 2  
0.5  
16  
W
2
Shock noise *  
RL = 4 , Rg = 10 k, VMUTE = 5 V  
VSTB = on/off, 50 Hz HPF-on  
100  
100 mV[p-0]  
Total harmonics distortion 3  
THD3  
VIN = 20 mV, fIN = 20 kHz  
Rg = 10 k, RL = ∞  
0.10  
0.5  
%
Note) 1: Measurement using a bandwidth 15 Hz to 30 kHz (12 dB/OCT) filter.  
*
2
: For VSTB = on/off change over the standby terminal by the voltage of 0 V and 5 V at the time shown below.  
*
Standby terminal voltage  
5 V  
0 V  
500 ms  
500 ms  
3
AN7198Z  
ICs for Audio Common Use  
Terminal Equivalent Circuits  
Pin No.  
Equivalent circuits  
Description  
DC voltage  
1
Supply voltage connection pin  
13.2 V  
Power supply connection pin  
2
Ch.1 output pin (+)  
6.3 V  
1
Pre-amp.  
Drive Circuit  
Ch.1 positive-phase output pin  
2
3
VREF = 6.3 V  
Drive Circuit  
15 kΩ  
AN7198Z: 600 Ω  
AN7199Z: 300 Ω  
3
4
GND (Output)  
0 V  
Grounding pin for ch.1 output  
Ch.1 output pin ()  
6.3 V  
1
Pre-amp.  
Drive Circuit  
Ch.1 inverted-phase output pin  
4
3
VREF = 6.3 V  
Drive Circuit  
15 kΩ  
AN7198Z: 600 Ω  
AN7199Z: 300 Ω  
5
Standby control pin  
5
10 kΩ  
Standby changeover pin  
Threshold voltage approx. 2.1 V  
2 kΩ  
6
Ch.1 input pin  
0 mV  
to 10 mV  
6
approx. approx.  
Ch.1 input signal applied pin  
15 µA 15 µA  
Input impedance 30 kΩ  
200 Ω  
30 kΩ  
600 Ω  
4
ICs for Audio Common Use  
AN7198Z  
Terminal Equivalent Circuits (continued)  
Pin No.  
Equivalent circuits  
Description  
Mute control pin  
DC voltage  
7
7
Mute changeover pin  
200 Ω  
Threshold voltage approx. 2.1 V  
8
9
GND (substrate)  
0 V  
0 V  
Substrate  
GND (input)  
Grounding pin for input  
Beep sound input pin  
10  
2.1 V  
Rnf  
Rnf  
15 kΩ  
VREF = 6.3 V  
Beep sound signal input pin  
2
Input impedance 15.3 kΩ  
15 kΩ  
15 kΩ  
Rnf  
7.8 kΩ  
10  
15  
Rnf  
15 kΩ  
VREF = 6.3 V  
Rnf AN7198Z: 600Ω  
AN7199Z: 300Ω  
11  
Ch.2 input pin  
0 mV  
11  
to 10 mV  
approx. approx.  
15 µA 15 µA  
600 Ω  
Ch.2 input signal applied pin  
200 Ω  
30 kΩ  
Input impedance 30 kΩ  
12  
Ripple filter pin  
13.0 V  
VCC  
Output current 3 mA to 10 mA  
15 kΩ  
12  
350 µA  
1.7 mA  
20 kΩ  
5
AN7198Z  
ICs for Audio Common Use  
Terminal Equivalent Circuits (continued)  
Pin No.  
Equivalent circuits  
Description  
Ch.2 output pin ()  
DC voltage  
13  
6.3 V  
1
Pre-amp.  
Drive Circuit  
Ch.2 inverted-phase output pin  
13  
15  
VREF = 6.3 V  
Drive Circuit  
15 kΩ  
AN7198Z: 600 Ω  
AN7199Z: 300 Ω  
14  
15  
GND (output)  
0 V  
Grounding pin for ch.2 output  
Ch.2 output pin (+)  
6.3 V  
1
Pre-amp.  
Drive Circuit  
Ch.2 positive-phase output pin  
14  
15  
VREF = 6.3 V  
Drive Circuit  
15 kΩ  
AN7198Z: 600 Ω  
AN7199Z: 300 Ω  
Usage Notes  
1. Always attach an outside heat sink to use the chip. In addition, the outside heat sink must be fastened onto a  
chassis for use.  
2. Connect the cooling fin to GND potential.  
3. Avoid short-circuit to VCC and short circuit to GND, and load short-circuit. There is a danger of destruction under  
a special condition.  
4. The temperature protection circuit will be actuated at Tj = approx. 150°C, but it is automatically reset when the  
chip temperature drops below the above set level.  
5. The overvoltage protection circuit starts its operation at VCC = approx. 20 V.  
6. Take into consideration the heat radiation design particularly when VCC is set high or when the load is 2 .  
7. When the beep sound function is not used, open the beep sound input pin (pin10) or connect it to pin 9 with  
around 0.01 µF capacitor.  
8. Connect only pin 9 (ground, signal source) to the signal GND of the amplifier in the previous stage. The characteristics  
such as distortion, etc. will be improved.  
6
ICs for Audio Common Use  
AN7198Z  
Technical Information  
1. PD Ta Curves of HZIP015-P-0745A  
PD  
Ta  
120  
Infinity heat sink  
113.6  
Rth (jc) = 1.1°C/W  
Rth (ja) = 68.3°C/W  
100  
80  
1°C/W heat sink  
2°C/W heat sink  
60  
59.5  
40.3  
40  
3°C/W heat sink  
5°C/W heat sink  
30.5  
20.5  
20  
10°C/W heat sink  
11.3  
Without heat sink  
1.8  
0
0
25  
50  
75  
100  
125  
150  
Ambient temperature Ta C)  
2. Main Characteristics  
PO  
VCC  
PC, ICC  
PO  
35  
30  
25  
20  
15  
10  
5
45  
6
5
4
PC (RL = 2 Ω)  
40  
35  
30  
ICC (RL = 2 Ω)  
ICC (RL = 4 Ω)  
RL = 2 Ω  
25  
20  
15  
10  
5
3
2
1
0
PC (RL = 4 Ω)  
RL = 4 Ω  
VCC = 13.2 V  
f = 1 kHz  
400 Hz HPF  
30 kHz LPF  
Both channel input  
f = 1 kHz  
THD = 10%  
400 Hz HPF  
30 kHz LPF  
Both channel input  
Rg = 10 kΩ  
Rg = 10 kΩ  
0
0
0
20  
0
10  
15  
20  
25  
5
10  
15  
5
Output power (1-channel) PO (W)  
Supply voltage VCC (V)  
7
AN7198Z  
ICs for Audio Common Use  
Technical Information (continued)  
2. Main Characteristics (continued)  
PO, THD  
VIN (RL = 4 )  
PO, THD  
VIN (RL = 2 )  
100.00  
10.00  
1.00  
10.00  
1.00  
0.10  
0.01  
100.00  
10.00  
1.00  
10.00  
1.00  
0.10  
0.01  
PO  
PO  
THD 10 kHz  
THD 10 kHz  
THD 100 Hz  
1 kHz  
VCC = 13.2 V  
f = 1 kHz  
L = 4 Ω  
400 Hz HPF  
30 kHz LPF  
Both channel  
input  
VCC = 13.2 V  
f = 1 kHz  
THD 100 Hz  
1kHz  
R
RL = 2 Ω  
400 Hz HPF  
30 kHz LPF  
Both channel input  
Rg = 10 kΩ  
R
g = 10 kΩ  
0.10  
0.10  
1
10  
100  
1 000  
1
10  
100  
1 000  
Input voltage VIN (mV[rms])  
Input power VIN (mV[rms])  
GV, PO  
f
THD  
f
10.00  
1.00  
0.10  
0.01  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
PO (2 )  
GV (2, 4 )  
PO (4 )  
RL = 2 Ω  
RL = 4 Ω  
VCC = 13.2 V  
O = 1 W  
L = 2, 4 Ω  
400 Hz HPF  
30 kHz LPF  
P
R
VCC = 13.2 V 400 Hz HPF  
PO = 1 W 30 kHz LPF  
THD = 10% Both channel input  
Both channel input  
g = 10 kΩ  
RL = 2, 4 Ω  
R
g = 10 kΩ  
R
10  
10  
100  
1 000  
10 000  
100 000  
10  
100  
1 000  
10 000  
100 000  
Frequency f (Hz)  
Frequency f (Hz)  
GV, THD  
VCC  
ICQ, ISTB  
VCC  
45  
5
200  
10  
9
8
7
6
5
4
3
2
1
0
VIN = 40 mV[rms]  
f = 1 kHz  
RL = 2, 4 Ω  
400 Hz HPF  
30 kHz LPF  
Both channel input  
Rg = 10 kΩ  
43  
41  
39  
37  
35  
33  
31  
29  
27  
25  
4.5  
4
180  
160  
140  
120  
100  
80  
3.5  
3
ICQ  
2.5  
2
GV (RL = 4, 2 )  
60  
1.5  
1
RL = 4 Ω  
Both channel input  
Rg = 10 kΩ  
40  
20  
0.5  
THD (RL = 4, 2 )  
10 15  
ISTB  
0
0
25  
0
10  
15  
20  
25  
0
20  
5
5
Supply voltage VCC (V)  
Supply voltage VCC (V)  
8
ICs for Audio Common Use  
AN7198Z  
Technical Information (continued)  
2. Main Characteristics (continued)  
VNO  
VCC  
VNO  
Rg  
1.0  
0.5  
0.0  
1.0  
0.5  
0.0  
VCC = 13.2 V  
RL = 4 Ω  
Rg = 10 kΩ  
RL = 4 Ω  
g = 10 kΩ  
R
Flat  
Flat  
DIN Audio Filter  
DIN Audio Filter  
1 000  
10  
100  
10 000  
100 000  
0
10  
15  
20  
5
Supply voltage VCC (V)  
Input impedance Rg ()  
RR  
VCC  
RR  
Vr  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
channel 1  
channel 2  
channel 2  
channel 1  
RL = 4 Ω  
VCC = 13.2 V  
RL = 4 Ω  
400 Hz HPF  
30 kHz LPF  
Rg = 10 kΩ  
fr = 1 kHz  
400 Hz HPF  
30 kHz LPF  
Rg = 10 kΩ  
fr = 1 kHz  
Vr = 1 V[rms]  
1
10  
100  
1 000  
10 000  
0
10  
15  
20  
25  
5
Power supply ripple voltage Vr (mV[rms])  
Supply voltage VCC (V)  
RR fr  
CT VCC  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
channel 1  
channel 2  
channel 1  
channel 2  
PO = 1 W  
f = 1 kHz  
RL = 4 Ω  
400 Hz HPF  
30 kHz LPF  
Rg = 10 kΩ  
VCC = 13.2 V  
RL = 4 Ω  
R
g = 10 kΩ  
fr = 1 kHz  
Vr = 1 V[rms]  
0
10  
15  
20  
25  
10  
100  
1 000  
10 000  
5
Power supply ripple frequency fr (Hz)  
Supply voltage VCC (V)  
9
AN7198Z  
ICs for Audio Common Use  
Technical Information (continued)  
2. Main Characteristics (continued)  
CT  
VIN  
CT  
f
90  
90  
channel 2  
channel 2  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
channel 1  
channel 1  
VCC = 13.2 V  
VIN = 40 mV[rms]  
RL = 4 Ω  
VCC = 13.2 V  
f = 1 kHz  
RL = 4 Ω  
400 Hz HPF  
30 kHz LPF  
Rg = 10 kΩ  
Rg = 10 kΩ  
1
10  
100  
1 000  
10  
100  
1 000  
10 000  
100 000  
Input voltage VIN (mV[rms])  
Frequency f (Hz)  
MT  
VCC  
MT  
VIN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
PO = 1 W  
f = 1 kHz  
RL = 4 Ω  
400 Hz HPF  
30 kHz LPF  
Rg = 10 kΩ  
VCC = 13.2 V  
f = 1 kHz  
RL = 4 Ω  
400 Hz HPF  
30 kHz LPF  
Rg = 10 kΩ  
0
25  
5
10  
15  
20  
0
10 000  
10  
100  
1 000  
Supply voltage VCC (V)  
Input voltage VIN (mV[rms])  
MT  
f
MT  
VMUTE  
110  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
80  
70  
60  
50  
40  
30  
20  
10  
0
channel 1  
channel 2  
VCC = 13.2 V  
PO = 1 W  
f = 1 kHz  
RL = 4 Ω  
400 Hz HPF  
30 kHz LPF  
Rg = 10 kΩ  
VCC = 13.2 V  
IN = 40 mV[rms]  
L = 4 W  
V
R
Rg = 10 kΩ  
10  
100  
1 000  
10 000  
100 000  
0
1
2
3
4
5
Frequency f (Hz)  
Mute voltage VMUTE (V)  
10  
ICs for Audio Common Use  
AN7198Z  
Technical Information (continued)  
2. Main Characteristics (continued)  
ICQ VSTB  
Voffset  
VCC  
200  
250  
200  
150  
100  
50  
180  
160  
140  
120  
100  
80  
channel 1 mute on  
channel 2 mute on  
channel 1  
channel 2  
0
50  
100  
150  
200  
250  
60  
40  
VCC = 13.2 V  
RL = 4 Ω  
RL = 4 Ω  
Rg = 10 kΩ  
20  
0
R
g = 10 kΩ  
0
2
3
4
5
1
0
20  
5
10  
15  
Standby voltage VSTB (V)  
Supply voltage VCC (V)  
3. Application note  
1) Standby function  
(1) The power can be turned on or off  
by making pin 5 (standby terminal)  
high or low.  
Terminal state  
Open  
Terminal voltage  
Power  
0 V  
Standby state  
Standby state  
Operating state  
(2) The standby terminal has threshold  
voltage of approx. 2.1 V, however, it  
Low  
0 V to 1.0 V  
Higher than 3 V  
High  
has temperature dependency of approx.  
6 mV/°C. The recommended range  
of use is shown in Table 1.  
Table 1  
(3) The internal circuit of standby termial  
is as shown in Figure 1. When the  
10 kΩ  
5 V  
0 V  
5
standby terminal is high, the  
current approximately expressed  
by the following equation will  
flow into the circuit.  
VSTB  
RF  
Constant  
current  
source  
Protection  
circuit  
Sub  
VSTB2.7 V  
ISTB  
=
[mA]  
10 kΩ  
2 kΩ  
4 kΩ  
Figure 1  
(4) A power supply with no ripple component should be used for the control voltage of standby terminal.  
11  
AN7198Z  
ICs for Audio Common Use  
Technical Information (continued)  
3. Application note (continued)  
2) Output line noise countermeasures  
(1) In order to increase the oscillation allowance, it is unnecessary  
to use a capacitor and a resistor between each output terminal  
and GND. However, when inserting the capacitor for counter-  
measures against output line noise between the output terminal  
and GND, insert a resistor of approx. 2.2 in series as shown  
in Figure 2. The oscillation may occur if only capacitor is used.  
Use it after giving a sufficient evaluation.  
1
to speaker  
2, 4  
13, 15  
0.01 µF  
to 0.1 µF  
(2) The use of polyester film capacitor having a little fluctuation  
with temperature and frequency is recommended as the  
capacitor for countermeasures against output line noise.  
2.2 Ω  
3, 14  
3) Input terminal  
(1) The reference voltage of input terminal is 0 V. When the input  
signal has a reference voltage other than 0 V potential, connect  
a coupling capacitor (of about several µF) for DC component  
cut in series with the input terminal. Check the low-pass  
frequency characteristics to determine the capacitor value.  
Figure 2  
(2) 10 kor less of signal source impedance Rg can reduce the output end noise voltage.  
(3) The output offset voltage fluctuates when the signal source impedance Rg is changed. A care must be taken  
in the case of using the circuit by directly connecting a volume control to the input terminal. In such a case,  
the use of coupling capacitor is recommended.  
(4) If a high frequency signal from tuners enters the input terminal as noise, insert a capacitor of approx. 0.01 µF  
between the input terminal and input GND.  
When a high frequency signal is inputted, malfunction in protective circuits may occur.  
15 µA  
15 µA  
to power  
1 µF  
200 Ω  
30 kΩ  
600 Ω  
6
11  
Input signal  
Attenuator  
10 kΩ  
0.01 µF  
Figure 3  
4) Ripple filter  
(1) In order to suppress the fluctuation of supply voltage, connect a capacitor of approx. 33  
terminal (pin 12) and GND.  
µF between RF  
(2) Relation between RR (Ripple Rejection Ratio) and a capacitor.  
The larger the capacitance of the ripple filter is, the better the ripple rejection ratio becomes.  
(However, there is almost no difference if the capacitance is 10 µF or more.)  
12  
ICs for Audio Common Use  
AN7198Z  
Technical Information (continued)  
3. Application note (continued)  
4) Ripple filter (continued)  
(3) Relation between the rise time of circuit and a capacitor.  
The larger the capacitance of the ripple filter is, the longer  
the time from the power on (STB-high) to the sound  
release becomes.  
1000  
100  
10  
60  
50  
(4) The DC voltage of output terminal is approximately the  
middle point of the ripple filter terminal voltage.  
(5) The internal circuit of ripple filter terminal is as shown in  
Figure 5 and the charge current is approx. 3 mA to 10 mA.  
(6) After the power supply is turned off (STB-low), it takes  
10 seconds or less for the total circuit current to become the  
standby current (under 10 µA). If approx. 47 kresistor  
is inserted between the ripple filter terminal and GND for  
the purpose of reducing the inspection time with set, a time  
until the current becomes the standby current can be shortened.  
40  
1.0  
10  
100  
RF capacitor value (µF)  
Figure 4  
VCC  
15 kΩ  
Constant  
current  
source  
Protection  
circuit  
12  
33 µF  
350 µA  
1.7 mA  
VREF  
10 kΩ  
10 kΩ  
4 kΩ  
Figure 5  
5) GND terminal  
(1) Be sure to short-circuit each GND terminal of  
pin 3, 8, 9 and 14 at a point outside the IC in  
use.  
AN7198Z/99Z  
1
(2) For each GND terminal, the one-point earth,  
referenced to the GND connection point of  
electrolytic capacitor between the supply  
terminal and GND, is most effective for  
reducing the distortion. Even in the worst  
case, ground pin 8, 9 of input GND separately  
from all the other GND terminals.  
3
8
9
14  
to GND of input  
Figure 6  
(3) Each GND terminal is not electrically short-circuited inside. Only pin 8 is connected with the substrate.  
(4) Pin 9 is input signal GND. Connect only pin 9 with GND of the input.  
13  
AN7198Z  
ICs for Audio Common Use  
Technical Information (continued)  
3. Application note (continued)  
6) Cooling fin  
(1) The cooling fin is not connected with GND terminal by using Au wire. Only pin 8 is electrically connected  
through the substrate.  
(2) Always attach an outside heat sink to the cooling fin. The cooling fin must be fastened onto a chassis for use.  
Otherwise, IC lead failure may occur.  
(3) Do not give the cooling fin any potential other than the GND potential. Otherwise, it may cause breakdown.  
(4) Connection of the cooling fin with GND can reduce the incoming noise hum. (It is unnecessary to connect  
with GND in use, but connect it with the power GND when the cooling fin is connected with GND)  
7) Shock noise  
(1) STB on/off  
Turn on the mute circuit when switching over to the standby.  
No shock noise is released when the mute on state. However, the changeover switch of the standby terminal  
may make a slight shock noise. In such a case, insert a capacitor of approx. 0.01 µF between the standby  
terminal and GND.  
(2) Mute on/off  
No shock noise is released. Refer to the section on the mute function.  
8) Mute function  
(1) The mute-On/Off is possible by making pin 7 (the muting terminal) high or to low.  
(2) The muting circuit is as shown in Figure 7. The amplifier gain including attenuator block is given in the  
following equation:  
I1  
GV =  
× 50  
I2  
Original gain  
From the above equation, the amplifier gain can be made as 0 time by setting I1 at 0 mA at muting.  
(3) The threshold voltage of VMUTE is as follows:  
Mute-off  
Mute-on  
approx. 1 V or less  
approx. 3 V or more  
I1  
I2  
Input  
Output stage  
Output stage  
Mute/on  
5 V  
I1  
I2  
22 kΩ  
7
VMUTE  
0 V  
Mute/off  
1 µF  
200 Ω  
Attenuator block  
I1 = approx. 120 µA  
I2 = approx. 120 µA  
Figure 7  
14  
ICs for Audio Common Use  
AN7198Z  
Technical Information (continued)  
3. Application note (continued)  
8) Mute function (continued)  
(4) Attack time and recovery time can be changed by the external CR of pin 7. For recommended circuits (Figure 7  
22 k, 1 µF), the above mentioned times are as follows:  
Attack time: Approx. 30 ms  
Recovery time: Approx. 40 ms  
However, the control voltage of VMUTE is assumed to be 5 V. When it is not directly controlled by  
microcomputer (5 V), (such as 13.2 V separate power supply), it is necessary to change CR values because  
the above times change.  
(5) When the attack time and recovery time are set at 20 ms or less, pay attention to the IC with larger output  
offset because it may release the shock noise.  
9) Voltage gain  
The voltage gain is fixed at 34 dB for the AN7198Z, and 40 dB for the AN7199Z. It is not possible to change those  
values by the addition of an external resistance.  
10) Beep sound input function  
(1) The application circuit example when using the beep sound input is shown in Figure 8. Connect the beep signals  
from the microcomputer to pin 10 via the capacitor C1 for DC cut and the resistor R1 for voltage gain adjustment.  
(2) The voltage gain of beep sound terminal is approx. 6.2 dB.  
The setting value of Figure 8 becomes approx. 19.7 dB (f = 1 kHz).  
(3) The beep sound is outputted to the output terminals, pin 2 and pin 15.  
Rnf  
GVA  
Rnf  
VREF = 6.3 V  
7.8 kΩ  
AN7198Z  
AN7199Z  
600 Ω  
300 Ω  
28 dB  
34 dB  
GVA  
2
47 kΩ  
C1  
15 kΩ  
15 kΩ  
10  
Beep input  
R1  
0.022 µF  
15  
Rnf  
2
GVA  
VREF = 6.3 V  
GVBEEP  
=
× GVA  
15 k+Rnf  
Rnf  
1/jωC1+R1+7.8 Κ+  
2
Figure 8  
15  
AN7198Z  
ICs for Audio Common Use  
Technical Information (continued)  
3. Application note (continued)  
11) Two IC use  
Figure 9 shows the application circuit example when two ICs are used:  
Out (RR)  
10 kΩ  
Power supply  
2200 µF  
Standby  
10 kΩ  
Mute  
Out (FR)  
2.2 µF  
22 µF to 47 µF  
10 kΩ  
In (RR)  
In (FR)  
In (RL)  
Out (RL)  
10 kΩ  
In (FL)  
S-GND  
0.022 µF  
Out (FL)  
Beep  
47 kΩ  
10 kΩ  
Figure 9  
16  
ICs for Audio Common Use  
AN7198Z  
Technical Information (continued)  
3. Application note (continued)  
11) Two IC use (continued)  
(1) Supply terminal  
Short-circuit the terminals with each other and insert an electrolytic capacitor of approx. 2200 µF into the  
supply terminals. However, if sufficient characteristics of the ripple rejection can not be obtained, use an  
even larger capacitor or insert a 2200 µF capacitor into each IC.  
The best sound quality can be obtained by inserting a 2200 µF capacitor near the terminal of each IC.  
(2) Standby terminal (pin 5)  
Even if the standby terminals are connected with each other, there is no abnormal operation. Connect with  
the microcomputer after connecting the standby pins with each other. At that time, the current flowing into  
the standby terminal is twice as large as the current which is described in 1) Standby function.  
(3) Muting terminal (pin 7)  
An abnormal operation does not occur even if the muting terminals are short-circuited with each other.  
The muting time constant changes when two ICs connection is made. If the CR constants are set at twice or  
1/2 time respectively, the time constant value becomes as same as the value when one IC is used.  
In terms of safety design, taking advantage of the fact that in mute-on, a large current is difficult to flow  
and it is difficult to cause the destruction, it is designed so that the mute terminal will become high when an  
abnormality such as short circuit to VCC or short circuit to GND takes place. (To avoid the influence of IC in  
an abnormal state in using two ICs).  
Do not connect a microcomputer directly to the mute terminal because the mute terminal voltage rises to  
approx. 12 V at that time.  
(4) Beep sound input terminal (pin 10)  
Even if the beep sound input terminals are short circuited each other, that does not result in an abnormal operation.  
However, if there is a temperature difference between ICs, there may be a fluctuation of the output offset.  
In order to avoid such a phenomenon, connect the ICs with each other through a resistor (47 k).  
(5) Ripple filter terminal (pin 12)  
Even if the ripple filter terminals are short circuited each other, that does not result in an abnormal operation.  
However, if the standby of each IC is individually controlled, the short-circuiting is not allowed. Use the  
circuit after connecting a capacitor (33 µF) to each IC.  
12) Precautions on misuse  
(1) Erroneous connection in the case of short circuit to VCC and short circuit to GND or load short-circuit  
The AN7198Z/99Z have the breakdown voltage of 20 V or more when short circuit to VCC or load short-  
circuit occur. However, there is a possibility of destruction, then smoke emission and ignition under a special  
condition. Avoid misuse and erroneous connection of the circuit.  
(2) Power supply surge  
The power supply surge breakdown voltage is evaluated by the test circuit shown in Figure 10 and the surge  
waveform as shown in Figure 11 is evaluated.  
The withstanding capability against power supply surge is 80 V for the AN7198Z/99Z.  
VP  
1 Ω ±1% 20 W  
0.63 VP  
0.37 VP  
Surge voltatge  
0 V  
D.U.T  
1 ms  
6 ms  
100 ms  
Figure 10. Power supply surge test circuit  
Figure 11. Surge waveform  
17  
AN7198Z  
ICs for Audio Common Use  
Technical Information (continued)  
3. Application note (continued)  
12) Precautions on misuse (continued)  
(1) Destruction mode for the AN7198Z/99Z  
The AN7198Z/99Z are the power ICs with high breakdown withstanding voltage but it has been found that  
the destruction occurs under special conditions.  
GND-open short-circuit to ground.  
Short-circuit the output terminal to the GND terminal of power supply when GND terminal of the IC is open,  
or a short-circuiting is made to GND when the GND terminal of the IC is over 0.7 V higher than the short-  
circuited output terminal.  
At that time, if VCC = 16 V or more and a voltage is also applied to STB terminal, then the destruction occurs.  
The plus and minus side output terminals are short-circuited to power supply at the same time.  
Ιf short-circuit to power supply occurs on both the plus and minus side output terminals at the same time with  
a short-circuit resistor which does not actuate the protection circuit, the power GND terminal current may  
exceed 10 A and the wire melts down since the current exceeds the capacity of Au wire.  
VCC GND reverse connection  
Parasitic device is created everywhere and the circuit destruction takes place.  
4. Countermeasure for shock noise of the AN7198Z  
Points of shock noise prevention  
Plus and minus output of the BTL amp. is not changed suddenly by STB-on/off and Mute-on/off.  
1) Standby pin to off (pin 5 VSTB = 5 V 0 V) (Standby state Operating state)  
(1) Ripple filter pin (pin 12) becomes on gradually (Charge up to VCC) when VSTB = 0 V 5V.  
Current source and reference voltage are on instantaneously.  
(2) Output D range suppression circuit is incorporated which limits the dynamic range of output to 0 V < VOUT  
< VRF 3 VBE when the ripple filter pin voltage is less than 6.8 V.  
DC voltage change of input circuit causes steep DC voltage change of output pin and that generates shock noise.  
This steep DC voltage change can be suppressed by the above mentioned circuit.  
Voltage of the mute pin (pin 7) makes high forcedly in the inside circuit.  
(3) Input mute is on when the ripple filter pin voltage VRF is less than 6.8 V.  
This prevents the shock noise which is inputted from the pre-stage of power amp.  
Also, mute is on in order to prevent the abnormal sound which is generated by clipping of waveform.  
(Output is clipped due to narrow D range at start up)  
(4) DC voltage of output pin changes with 1/2 voltage of the ripple filter pin.  
Steep changes of output pin voltage is suppressed by start up gradually of the ripple filter pin.  
(5) Output waveform of each plus and minus output at power supply on changes as same by symmetric placement  
of inverting and non-inverting amplifier which consist of BTL amp.  
VSTB-on  
RF  
Output D-range  
3 VBE Clamp-off  
Mute-off  
Reference  
voltage  
12  
10  
8
VOUT without D-range  
suppression circuit  
on  
constant  
current source  
VOUT  
6
4
2
0
Mute-on  
t
Image figure of output waveform, RF-pin waveform has exponential characteristics in actually.  
18  
ICs for Audio Common Use  
AN7198Z  
Technical Information (continued)  
4. Countermeasure for shock noise of the AN7198Z (continued)  
2) Standby pin to off (pin 5 VSTB = 5 V 0 V) (Operating state Standby state)  
(1) Ripple filter pin (pin 12) becomes off gradually (Discharge down to 0 V) when VSTB = 5 V 0 V.  
Current source and reference voltage are on until VRF < 2 VBE  
(2) Output D range suppression circuit operates when the ripple filter pin voltage is less than 6.8 V.  
The circuit limits to 0 V < VOUT < VRF 3 VBE  
.
.
DC voltage change of input circuit causes steep DC voltage change of output pin and that generates shock  
noise same as at standby pin is on.  
This steep DC voltage change can be suppressed by the above mentioned circuit.  
Voltage of the mute pin (pin 7) makes high forcedly in the inside circuit.  
(3) Input mute is on when ripple filter pin voltage VRF is less than 6.8 V. This prevents the shock noise which is  
inputted from the pre-stage of power amp.  
Also, mute is on in order to prevent the abnormal sound which is generated by clipping of waveform. (The  
purpose is same as the countermeasure of start up period.)  
(4) DC voltage of output pin changes with 1/2 voltage of the ripple filter pin.  
Steep changes of output pin voltage is suppressed by start up gradually of the ripple filter pin.  
(5) Output waveform of each plus and minus output at power supply on changes as same by symmetric placement  
of inverting and non-inverting amplifier which consist of BTL amp.  
RF  
3 VBE Clamp-off  
Output D-range  
Mute-on  
12  
Reference voltage  
Constant current source  
off  
VOUT without D-range  
suppression circuit  
10  
8
VOUT  
6
4
VSTB-off  
2
0
Mute-on  
t
Image figure of output waveform, RF-pin waveform has exponential characteristics in actually.  
3) Muting on/off (Pin7 low: Muting state, high: Operating state)  
(1) AC mute circuit which mute the AC component only by the simple attenuator circuit is adopted.  
Conventional system generates shock noise due to change steeply of output DC voltage by cutting of input  
DC voltage and muting of AC component.  
2
Att.  
0 dB  
600 15 kΩ  
6
4
600 15 kΩ  
30 kΩ  
1
2
VREF  
=
VCC  
5 V  
Mute  
22 kΩ  
7
IO  
0 V  
1.0 µF  
10 kΩ  
Figure 12  
19  
AN7198Z  
ICs for Audio Common Use  
Technical Information (continued)  
4. Countermeasure for shock noise of the AN7198Z (continued)  
3) Muting on/off (Pin7 low: Muting state, high: Operating state) (continued)  
(2) Attack and recovery time of muting on/off is determined by the external CR time constant of pin 7.  
(3) There is afraid of shock noise when time constant is set to 10 ms or less.  
(Since output DC voltage is changed approx. 50 mV by muting on/off.)  
Output AC  
Approx.  
6.3 V  
Less than ± 50 mV  
Output DC  
5 V  
Mute pin voltage  
0 V  
Figure 13  
Application Circuit Example  
2200 µF  
33 µF  
14  
13  
3
ch.2 GND  
ch.1 GND  
Ref.  
ch.1 Out ()  
ch.2 Out ()  
4
Protection Cct.  
Att  
Att  
Att  
Att  
ch.1 Out (+)  
ch.2 Out (+)  
15  
2
Att.Con.  
20 kΩ  
5 V  
5 V  
Standby  
Mute  
0 V  
0 V  
20  

相关型号:

AN7199

Dual 20 W BTL power IC for car audio
PANASONIC

AN7199Z

Dual 20 W BTL power IC for car audio
PANASONIC

AN720

PRECISION32™ OPTIMIZATION CONSIDERATIONS FOR CODE SIZE AND SPEED
SILICON
PANASONIC

AN7203

FM FRONT-END IC FOR RADIO, RADIO CASSETTE RECORDER
ETC

AN7204

FM Receiver Circuit
ETC

AN7205

FM FRONT-END CIRCUIT FOR RADIOS AND RADIO / CASSETTE TAPE RECORDERS (3V OPERATION)
PANASONIC

AN7205S

FM FRONT-END CIRCUIT FOR RADIOS AND RADIO / CASSETTE TAPE RECORDERS (3V OPERATION)
PANASONIC

AN7208

TV/FM front-end IC for 1.5 V headphone stereo
PANASONIC

AN7208SA

TV/FM front-end IC for 1.5 V headphone stereo
PANASONIC

AN7213

FM FRONT END CIRCUIT FOR RADIO
PANASONIC

AN7213S

FM Receiver Circuit
ETC