AN7199Z [PANASONIC]

Dual 20 W BTL power IC for car audio; 双20瓦BTL电源IC汽车音响
AN7199Z
型号: AN7199Z
厂家: PANASONIC    PANASONIC
描述:

Dual 20 W BTL power IC for car audio
双20瓦BTL电源IC汽车音响

汽车音响
文件: 总17页 (文件大小:132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICs for Audio Common Use  
AN7199Z  
Dual 20 W BTL power IC for car audio  
Overview  
Unit : mm  
The AN7199Z is an audio power IC developed for the  
sound output of car audio (dual 20 W).  
18.00±0.30  
13.50±0.30  
4.00±0.20  
1.50±0.10  
A capacitor and a resistor to stop oscillation are built  
in between the output pin and GND so that a space sav-  
ing of set is possible. Also, it is incorporates an industry's  
first superior muting circuit which is free from shock  
noise, so that a shock noise design under the set transient  
condition can be made easily when the muting circuit is  
used together with its standby function.  
In addition, it is incorporating various protective cir-  
cuits to protect the IC from destruction by GND-open  
short-circuit to GND and power supply surge which are  
the most important subjects of power IC protection, and  
the IC will largely contribute to a high reliability design  
of equipment.  
φ3.60±0.10  
1
15  
(0.61)  
(1.80)  
R0.55  
(1.95)  
0.25+00..1055  
0.50+00..1200  
1.27  
(2.54)  
19.00±0.30  
19.30±0.30  
HZIP015-P-0745A  
Features  
Built-in various protection circuits (realizing high break-  
down voltage against destruction)  
Power supply surge breakdown voltage of 80 V or more  
Ground open breakdown voltage of 16 V or more  
Built-in standby function (free from shock noise when  
STB-on/off)  
Built-in muting function  
Free from shock noise at mute-on/off  
Adapting attenuator method so that abnormal sound due  
to waveform deformation is not generated  
Attack time, recovery time of 50 ms or less  
Reduction in external components  
No CR for oscillation stop is required  
It eliminates the need for NF and BS electrolytic ca-  
pacitors  
Muting function is unneccesary  
Power supply choke coil is unnecessary  
Provided with beep sound input pin  
High sound quality design  
Applications  
Car audio  
1
AN7199Z  
ICs for Audio Common Use  
Block Diagram  
3
14  
Ref.  
Ch.1 GND  
Ch.2 GND  
4
13  
Ch.1 Out ()  
Ch.2 Out ()  
Protection Cct.  
Att.  
Att.  
Att.  
2
15  
Ch.1 Out (+)  
Ch.2 Out (+)  
Att.Con.  
Att.  
Pin Descriptions  
Pin No.  
Description  
Pin No.  
9
Description  
Grounding (input)  
Beep sound input  
Ch.2 input  
1
2
3
4
5
6
7
8
Power supply  
Ch.1 output (+)  
10  
Grounding (output ch.1)  
Ch.1 output ()  
Standby  
11  
12  
Ripple filter  
13  
Ch.2 output ()  
Ch.1 input  
14  
Grounding (output ch.2)  
Ch.2 output (+)  
Muting  
15  
Grounding (sub)  
Absolute Maximum Ratings  
Parameter  
Symbol  
VCC  
Vsurge  
ICC  
Rating  
Unit  
V
2
Supply voltage *  
25  
60  
3
Peak supply voltage *  
V
Supply current  
9.0  
A
4
Power dissipation *  
PD  
59  
W
°C  
°C  
1
Operating ambient temperature *  
Topr  
30 to +85  
55 to +150  
1
Storage temperature *  
Tstg  
Note) 1 : All items are at T = 25°C, except for the operating ambient temperature and storage temperature.  
*
a
2 : Without signal  
3 : Time = 0.2 s  
*
*
*
4 : T = 85°C  
a
2
ICs for Audio Common Use  
AN7199Z  
Recommended Operating Range  
Parameter  
Supply voltage  
Symbol  
VCC  
Range  
Unit  
8.0 to 18.0  
V
Electrical Characteristics at VCC = 13.2 V, f = 1 kHz, Ta = 25°C  
Parameter  
Quiescent current  
Symbol  
ICQ  
Conditions  
VIN = 0 mV, RL = 4 Ω  
VIN = 0 mV, RL = 4 Ω  
Rg = 10 k, RL = 4 Ω  
VIN = 20 mV, RL = 4 Ω  
Min  
Typ Max Unit  
120  
1
250  
10  
mA  
Standby current  
ISTB  
µA  
1
Output noise voltage *  
Voltage gain 1  
VNO  
0.18  
40  
0.5 mV[rms]  
GV1  
38  
16  
55  
42  
dB  
%
Total harmonic distortion 1  
Maximum output power 1  
THD1 VIN = 20 mV, RL = 4 Ω  
0.07  
18.5  
22.0  
60  
0.4  
PO1  
THD = 10%, RL = 4 Ω  
VCC = 14.4 V, RL = 4 Ω  
W
W
dB  
1
Ripple rejection ratio *  
RR  
RL = 4 , Rg = 10 k,  
Vr = 1 V[rms], fr = 1 kHz  
Channel balance  
CB  
CT  
VIN = 20 mV, RL = 4 Ω  
0
1
dB  
dB  
1
*
Cross-talk  
VIN = 20 mV, RL = 4 ,  
Rg = 10 kΩ  
60  
79  
Output offset voltage  
VOff  
MT  
Zi  
Rg = 10 k, RL = 4 Ω  
VO = 1 W, RL = 4 Ω  
VIN = ± 0.3 VDC  
300  
70  
0
86  
30  
40  
0.12  
25  
0
300  
mV  
dB  
kΩ  
dB  
%
1
Muting effect *  
Input impedance  
24  
36  
42  
Voltage gain 2  
GV2  
VIN = 20 mV, RL = 2 Ω  
38  
Total harmonic distortion 2  
Maximum output power 2  
THD2 VIN = 20 mV, RL = 2 Ω  
0.5  
PO2  
VS  
THD = 10%, RL = 2 Ω  
16  
W
2
*
Shock noise  
RL = 4 , Rg = 10 kΩ  
100  
100 mV[p-0]  
VSTB = on/off, 50 Hz HPF-on  
Total harmonic distortion 3  
THD3 VIN = 10 mV, fIN = 20 kHz  
Rg = 10 k, RL = ∞  
0.10  
0.5  
%
Note) 1 : Measurement using a bandwidth 15 Hz to 30 kHz (12 dB/OCT) filter.  
*
2 : For VSTB = on/off, change over the standby terminal by the voltages of 0 V and 5 V at the time shown below.  
*
Standby terminal voltage  
5 V  
0 V  
500 ms  
500 ms  
3
AN7199Z  
ICs for Audio Common Use  
Terminal Equivalent Circuits  
Pin No.  
Equivalent circuit  
Description  
Supply voltage pin  
DC Voltage  
1
13.2 V  
Supply connection pin  
2
Ch.1 output pin (+)  
6.6 V  
1
Pre-amp.  
Drive circuit  
Ch.1 positive-phase output pin  
2
3
VREF = 6.3 V  
Drive circuit  
15 kΩ  
AN7198Z : 600 Ω  
AN7199Z : 300 Ω  
3
4
GND (output)  
0 V  
Grounding pin for ch.1 output  
Ch.1 output pin ()  
6.6 V  
1
Pre-amp.  
Drive circuit  
Ch.1 inverted-phase output pin  
4
3
VREF = 6.3 V  
Drive circuit  
15 kΩ  
AN7198Z : 600 Ω  
AN7199Z : 300 Ω  
5
Standby control pin  
5
10 kΩ  
Standby changeover pin  
Threshold voltage approx. 2.1 V  
2 kΩ  
6
Ch.1 input pin  
0 mV to10 mV  
6
Approx. Approx.  
15 µA 15 µA  
Ch.1 input signal applied pin  
Input impedance 30 kΩ  
200 Ω  
30 kΩ  
600 Ω  
4
ICs for Audio Common Use  
AN7199Z  
Terminal Equivalent Circuits (continued)  
Pin No.  
Equivalent circuit  
Description  
Mute control pin  
DC Voltage  
7
7
Mute changeover pin  
200 Ω  
Threshold voltage approx. 2.1 V  
8
9
GND (substrate)  
0 V  
0 V  
Being connected with substrate only  
GND (input)  
Ground pin for input  
Beep sound input pin  
10  
2.1 V  
Rnf  
Rnf  
15 kΩ  
VREF = 6.3 V  
Beep sound signal input pin  
2
Input impedance 15.3 kΩ  
15 kΩ  
15 kΩ  
Rnf  
7.8 kΩ  
10  
15  
Rnf  
15 kΩ  
VREF = 6.3 V  
Rnf AN7198Z : 600Ω  
AN7199Z : 300Ω  
11  
Ch.2 input pin  
0 mV to10 mV  
11  
Approx. Approx.  
15 µA 15 µA  
Ch. 2 input signal applied pin  
Input impedance 30 kΩ  
200 Ω  
30 kΩ  
600 Ω  
12  
Ripple filter pin  
13.0 V  
VCC  
Output current 3 mA to 10 mA  
15 kΩ  
12  
350 µA  
1.7 mA  
20 kΩ  
5
AN7199Z  
ICs for Audio Common Use  
Terminal Equivalent Circuits (continued)  
Pin No.  
Equivalent circuit  
Description  
Ch.2 output pin ()  
DC Voltage  
13  
6.3 V  
1
Pre-amp.  
Drive circuit  
Ch.2 inverted-phase output pin  
13  
15  
VREF = 6.3 V  
Drive circuit  
15 kΩ  
AN7198Z : 600 Ω  
AN7199Z : 300 Ω  
14  
15  
GND(output)  
0 V  
Grounding pin for ch.2 output  
Ch.2 output pin (+)  
6.3 V  
1
Pre-amp.  
Drive circuit  
Ch.2 positive-phase output pin  
14  
15  
VREF = 6.3 V  
Drive circuit  
15 kΩ  
AN7198Z : 600 Ω  
AN7199Z : 300 Ω  
Usage Notes  
1. Always attach an outside heat sink to use the chip. In addition, the outside heat sink must be fastened onto a  
chassis for use.  
2. Connect the cooling fin to GND potential.  
3. Avoid short-circuit to VCC and short-circuit to GND, and load short-circuit. There is a danger of destruction under  
a special condition.  
4. The temperature protection circuit will be actuated at Tj = approx. 150°C, but it is automatically reset when the  
chip temperature drops below the above set level.  
5. The overvoltage protection circuit starts its operation at VCC = approx. 20 V.  
6. Take into consideration the heat radiation design particularly when VCC is set high or when the load is 2 .  
7. When the beep sound function is not used, open the beep sound input pin (pin 10) or connect it to pin 9 with  
around 0.01 µF capacitor.  
8. Connect only pin 9 (ground, signal source) to the signal GND of the amplifier in the previous stage. The  
characteristics such as distortion, etc. will be improved.  
6
ICs for Audio Common Use  
AN7199Z  
Technical Information  
[1] PD  
Ta curves of HZIP015-P-0745A  
PD  
Ta  
120  
Infinity heat sink  
Rth (jc) = 1.1°C/W  
Rth (ja) = 68.3°C/W  
113.6  
100  
80  
1°C/W heat sink  
2°C/W heat sink  
60  
59.5  
40.3  
40  
3°C/W heat sink  
5°C/W heat sink  
30.5  
20.5  
20  
10°C/W heat sink  
11.3  
Without heat sink  
1.8  
0
0
25  
50  
75  
100  
125  
150  
Ambient temperature Ta C)  
[2] Main characteristics  
PO  
VCC  
PC , ICC  
PO  
35  
30  
25  
20  
15  
10  
5
45  
6
5
4
3
PC (RL = 2 Ω)  
40  
35  
30  
ICC (RL = 2 Ω)  
ICC (RL = 4 Ω)  
RL = 2 Ω  
25  
20  
15  
10  
5
RL = 4 Ω  
PC (RL = 4 Ω)  
f = 1 kHz  
2
1
0
VCC = 13.2 V  
f = 1 kHz  
400 Hz HPF  
30 kHz LPF  
Both ch. input  
Rg = 10 kΩ  
THD = 10%  
RL = 2 , 4 Ω  
400 Hz HPF  
30 kHz LPF  
Both ch. input  
Rg = 10 kΩ  
0
0
0
10  
15  
20  
25  
0
20  
5
5
10  
15  
Supply voltage VCC (V)  
Output power (1-ch.) PO (W)  
7
AN7199Z  
ICs for Audio Common Use  
Technical Information (continued)  
[2] Main characteristics (continued)  
PO, THD  
VIN (RL = 4 )  
PO, THD  
VIN (RL = 2 )  
100.00  
10.00  
1.00  
10.00  
1.00  
0.10  
0.01  
100.00  
10.00  
1.00  
10.00  
1.00  
0.10  
0.01  
THD 10 kHz  
PO  
THD 10 kHz  
PO  
THD 100 Hz  
1 kHz  
THD 100 Hz  
1 kHz  
VCC = 13.2 V  
f = 1 kHz  
RL = 4 Ω  
400 Hz HPF  
30 kHz LPF  
Both ch. input  
Rg = 10 kΩ  
VCC = 13.2 V  
f = 1 kHz  
RL = 2 Ω  
400 Hz HPF  
30 kHz LPF  
Both ch. input  
Rg = 10 kΩ  
0.10  
0.10  
1
10  
100  
1 000  
1
10  
100  
1 000  
Input voltage VIN (mV[rms])  
Input power VIN (mV[rms])  
GV, PO  
f
THD  
f
10.00  
1.00  
0.10  
0.01  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
30  
28  
26  
24  
22  
20  
18  
16  
14  
G
V (2, 4 )  
PO (2 )  
R
L = 2 Ω  
PO (4 )  
V
CC = 13.2 V  
PO = 1 W  
R
L = 4 Ω  
RL = 2 , 4 Ω  
400 Hz HPF  
30 kHz LPF  
Both ch. Input  
Rg = 10 kΩ  
V
CC = 13.2 V 400 Hz HPF  
PO = 1 W  
THD = 10% Both ch. input  
RL = 2 , 4 Rg = 10 kΩ  
30 kHz LPF  
12  
10  
10  
100  
1 000  
10 000  
100 000  
10  
100  
1 000  
Frequency f (Hz)  
10 000  
100 000  
Frequency f (Hz)  
GV, THD  
VCC  
ICQ, ISTB  
VCC  
45  
5
4.5  
200  
10  
9
8
7
6
5
4
3
2
1
0
43  
41  
39  
37  
35  
33  
31  
29  
27  
25  
180  
160  
140  
120  
100  
80  
4
GV (RL = 4 Ω, 2 )  
3.5  
3
ICQ  
VIN = 40 mV[rms]  
f = 1 kHz  
2.5  
2
RL = 2 , 4 Ω  
400 Hz HPF  
30 kHz LPF  
Both ch. input  
Rg = 10 kΩ  
1.5  
1
60  
RL = 4 Ω  
Both ch. input  
Rg = 10 kΩ  
40  
0.5  
20  
THD (RL = 4 , 2 )  
10 15  
ISTB  
0
25  
0
0
20  
0
10  
15  
20  
25  
5
5
Supply voltage VCC (V)  
Supply voltage VCC (V)  
8
ICs for Audio Common Use  
AN7199Z  
Technical Information (continued)  
[2] Main characteristics (continued)  
VNO  
VCC  
VNO  
Rg  
1.0  
0.5  
0.0  
1.0  
0.5  
0.0  
VCC = 13.2 V  
RL = 4 Ω  
Rg = 10 kΩ  
RL = 4 Ω  
Rg = 10 kΩ  
Flat  
Flat  
DIN Audio Filter  
DIN Audio Filter  
10  
100  
1 000  
10 000  
100 000  
0
10  
15  
20  
5
Supply voltage VCC (V)  
Input impedance Rg ()  
RR  
VCC  
RR  
Vr  
90  
80  
70  
60  
50  
40  
30  
20  
70  
60  
50  
40  
30  
20  
10  
0
ch.2  
ch.1  
ch.2  
ch.1  
RL = 4 Ω  
VCC = 13.2 V  
RL = 4 Ω  
400 Hz HPF  
30 kHz LPF  
Rg = 10 kΩ  
fr = 1 kHz  
400 Hz HPF  
30 kHz LPF  
Rg = 10 kΩ  
fr = 1 kHz  
Vr = 1 V[rms]  
1
10  
100  
1 000  
10 000  
0
10  
15  
20  
25  
5
Supply voltage VCC (V)  
Power supply ripple voltage Vr (mV[rms])  
RR fr  
CT VCC  
70  
60  
50  
40  
30  
20  
10  
0
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
PO = 1 W  
f = 1 kHz  
RL = 4 Ω  
400 Hz HPF  
30 kHz LPF  
Rg = 10 kΩ  
ch.1  
ch.2  
ch.2  
ch.1  
VCC = 13.2 V  
RL = 4 Ω  
Rg = 10 kΩ  
fr = 1 kHz  
Vr = 1 V[rms]  
0
10  
15  
20  
25  
5
10  
100  
1 000  
10 000  
Power supply ripple frequency fr (Hz)  
Supply voltage VCC (V)  
9
AN7199Z  
ICs for Audio Common Use  
Technical Information (continued)  
[2] Main characteristics (continued)  
CT  
VIN  
CT  
f
80  
70  
60  
50  
40  
30  
20  
90  
ch.2  
80  
70  
60  
50  
40  
30  
20  
10  
0
ch.1  
ch.2  
ch.1  
V
CC = 13.2 V  
f = 1 kHz  
RL = 4 Ω  
400 Hz HPF  
30 kHz LPF  
Rg = 10 kΩ  
VCC = 13.2 V  
VIN = 40 mV[rms]  
RL = 4 Ω  
10  
0
Rg = 10 kΩ  
1
10  
100  
1 000  
10  
100  
1 000  
10 000  
100 000  
Input voltage VIN (mV[rms])  
Frequency f (Hz)  
MT  
VCC  
MT  
VIN  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PO = 1 W  
f = 1 kHz  
RL = 4 Ω  
400 Hz HPF  
30 kHz LPF  
Rg = 10 kΩ  
VCC = 13.2 V  
f = 1 kHz  
RL = 4 Ω  
400 Hz HPF  
30 kHz LPF  
Rg = 10 kΩ  
0
25  
0
10  
100  
1 000  
10 000  
5
10  
15  
20  
Supply voltage VCC (V)  
Input voltage VIN (mV[rms])  
MT  
f
MT  
VMUTE  
90  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
80  
70  
60  
50  
40  
30  
20  
10  
0
ch.2  
ch.1  
VCC = 13.2 V  
PO = 1 W  
f = 1 kHz  
RL = 4 Ω  
400 Hz HPF  
30 kHz LPF  
Rg = 10 kΩ  
VCC = 13.2 V  
VIN = 40 mV[rms]  
RL = 4 Ω  
Rg = 10 kΩ  
10  
100  
1 000  
10 000  
100 000  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
Mute voltage VMUTE (V)  
Frequency f (Hz)  
10  
ICs for Audio Common Use  
AN7199Z  
Technical Information (continued)  
[2] Main characteristics (continued)  
ICQ  
VSTB  
Voffset  
VCC  
200  
180  
160  
140  
120  
100  
80  
250  
200  
150  
100  
50  
ch.2  
ch.1  
ch.2 mute on  
ch.1 mute on  
0
50  
100  
150  
200  
250  
60  
40  
VCC = 13.2 V  
RL = 4 Ω  
Rg = 10 kΩ  
RL = 4 Ω  
Rg = 10 kΩ  
20  
0
0.0  
2.0  
3.0  
4.0  
5.0  
0
20  
1.0  
5
10  
15  
Standby voltage VSTB (V)  
Supply voltage VCC (V)  
[3] Application note  
1. Standby function  
1) The power can be turned on or off by  
making pin 5 (standby terminal) high  
or low.  
Table 1  
Terminal voltage  
0 V  
Terminal state  
Open  
Power  
2) The standby terminal has threshold  
voltage of approx. 2.1 V, however, it  
has temperature dependency of  
approx. 6 mV/°C. The recommended  
range of use is shown in table 1.  
Standby state  
Standby state  
Operating state  
Low  
0 V to 1.0 V  
Higher than 3 V  
High  
3) The internal circuit of standby terminal is as shown in figure 1. When the standby terminal is high, the current  
approximately expressed by the following equation will flow into the circuit.  
VSTB2.7 V  
ISTB  
=
[mA]  
10 kΩ  
10 kΩ  
5 V  
0 V  
Protection  
circuit  
Constant  
current source  
5
VSTB  
RF  
Sub  
2 kΩ  
Figure 1  
4) A power supply with no ripple component should be used for the control voltage of standby terminal .  
4 kΩ  
11  
AN7199Z  
ICs for Audio Common Use  
Technical Information (continued)  
[2] Application note (continued)  
2. Oscillation countermeasures  
1
1) In order to increase the oscillation allowance, it is unnecessary to use a  
capacitor and a resistor between each output terminal and GND. How-  
ever, when inserting the capacitor for counter-measures against output  
line noise between the output terminal and GND, insert a resistor of  
approx. 2.2 in series as shown in figure 2. The oscillation may occur  
if only capacitor is used. Use it after giving a sufficient evaluation  
2) The use of polyester film capacitor having a little fluctuation with tem-  
perature and frequency is recommended as the capacitor for counter-  
measures against output line noise.  
To speaker  
2,4  
13,15  
0.01 µF to 0.1 µF  
2.2 Ω  
3,14  
Figure 2  
3. Input terminal  
1) The reference voltage of input terminal is 0 V. When the input signal has a reference voltage other than 0 V  
potential, connect a coupling capacitor (of about several µF) for DC component cut in series with the input  
terminal. Check the low-pass frequency characteristics to determine the capacitor value.  
2) 10 kor less of signal source impedance Rg can reduce the output end noise voltage.  
3) The output offset voltage fluctuates when the signal source impedance Rg is changed. A care must be taken  
when using the circuit by directly connecting the volume to the input terminal. In such a case, the use of  
coupling capacitor is recommended.  
4) If a high frequency signal from tuners enters the input terminal as noise, insert a capacitor of approx. 0.01 µF  
between the input terminal and input GND.  
When a high frequency signal is inputted, malfunction in protective circuits may occur.  
15 µA  
15 µA  
To power  
1 µF  
200 Ω  
30 kΩ  
600 Ω  
6
11  
Input signal  
Attenuator  
10 kΩ  
0.01 µF  
Figure 3  
4. Ripple filter  
1) In order to suppress the fluctuation of supply voltage, connect  
a capacitor of approx. 33 µF between RF terminal (pin12) and  
GND.  
1 000  
100  
10  
60  
50  
40  
2) Relation between RR (Ripple Rejection Ratio) and a capacitor  
The larger the capacitance of the ripple filter is, the better the  
ripple rejection becomes.  
3) Relation between the rise time of circuit and a capacitor  
The larger the capacitance of the ripple filter is, the longer the  
time from the power on (standby high) to the sound release  
becomes.  
4) The DC voltage of output terminal is approximately the middle  
point of the ripple filter terminal voltage.  
1.0  
10  
100  
RF capacitor value (µF)  
5) The internal circuit of ripple filter terminal is as shown in fig-  
ure 5 and the charge current is approx. 3 mA to 10 mA.  
Figure 4  
12  
ICs for Audio Common Use  
AN7199Z  
Technical Information (continued)  
[2] Application note (continued)  
4. Ripple filter (continued)  
6) After the power supply is  
turned off (STB-low), it takes  
less than 10 seconds for the  
total circuit current to become  
the standby current (under 10  
µA). If approx. 47 ohms resis-  
tor is inserted between the  
ripple filter terminal and GND  
for the purpose of reducing  
the inspection time with set, a  
time until the current becomes  
the standby current can be  
shortened.  
VCC  
15 kΩ  
Constant  
current source circuit  
Protection  
12  
33 µF  
350 µA  
1.7 mA  
VREF  
10 kΩ  
10 kΩ  
4 kΩ  
Figure 5  
5. GND terminal  
1) Be sure to short-circuit each GND terminal of  
pin 3, 8, 9 and 14 at the outside of the IC in use.  
2) For each GND terminal, the one-point earth,  
referenced to the GND connection point of  
electrolytic capacitor between the supply ter-  
minal and GND, is most effective for reduc-  
ing the distortion. Even in the worst case,  
ground pin 8, 9 of input GND separately from  
all the other GND terminals.  
AN7198Z, AN7199Z  
1
3
8
9
14  
To GND of input  
Figure 6  
3) Each GND terminal is not electrically short-circuited inside. Only pin 8 is connected with substrate.  
4) Pin 9 is input signal GND. Connect only pin 9 with Pre-GND.  
6. Cooling fin  
1) The cooling fin is not connected with GND terminal by using Au wire. Only pin 8 is electrically connected  
through substrate.  
2) Always attach an outside heat sink to the cooling fin. The cooling fin must be fastened onto a chassis for use.  
Otherwise, IC lead failure may occur.  
3) Do not give the cooling fin any potential other than the GND potential. Otherwise, it may cause breakdown.  
4) Connection of the cooling fin with GND can reduce the incoming noise hum. (It is unnecessary to connect  
with GND in use, but connect with the power GND when the cooling fin is connected with GND)  
7. Shock noise  
1) STB on/off  
No shock noise is released. However, the changeover switch of the standby terminal may make a slight  
shock noise. In such a case, insert a capacitor of approx. 0.01 µF between the standby terminal and GND.  
2) Mute on/off  
No shock noise is released. Refer to the section on the mute function.  
13  
AN7199Z  
ICs for Audio Common Use  
Technical Information (continued)  
[2] Application note (continued)  
8. Mute Function  
1) The mute-on/off is possible by making pin 7 (the muting terminal) high or low.  
2) The muting circuit is as shown in figure 7. The amplifier gain including attenuator block is given in the  
following equation :  
I1  
GV =  
× 50  
I2  
Original gain  
From the above equation, the amplifier gain can be made as 0 time by setting I1 at 0 mA at muting.  
3) The threshold voltage of VMUTE is as follows :  
Mute-off : approx. 1 V or less  
Mute-on : approx. 3 V or more  
I1  
I2  
Input  
Output stage  
Output stage  
Mute/on  
Mute/off  
5 V  
0 V  
I1  
I2  
22 kΩ  
1 µF  
7
VMUTE  
200 Ω  
Attenuator block  
I1 = approx.120 µA  
I2 = approx.120 µA  
Figure 7  
4) Attack time and recovery time can be changed by the external CR of pin 7. For recommended circuits (In  
figure 7 22 k, 1 µF), the above mentioned times are as follows :  
Attack time  
: Approx. 30 ms  
Recovery time : Approx. 40 ms  
However, the control voltage of VMUTE is assumed to be 5 V. When it is not directly controlled by  
microcomputer (5 V), (that is, 13.2 V separate power supply), it is necessary to change CR values because the  
above times change.  
5) When the attack time and recovery time are set at 20 ms or less, pay attention to the IC with larger output  
offset because it may release the shock noise.  
9. Voltage gain  
The voltage gain is fixed at 34 dB for the AN7198Z, and 40 dB for the AN7199Z. It is not possible to change  
those values by the addition of an external resistor.  
14  
ICs for Audio Common Use  
AN7199Z  
Technical Information (continued)  
[2] Application note (continued)  
10. Beep sound input function  
1) The application circuit using the beep sound input is shown in figure 8. Connect the beep signals from the  
microcomputer to pin 10 via the capacitor C1 for DC cut and the resistor R1 for voltage gain adjustment.  
2) The voltage gain of beep sound terminal is approx. 6.2 dB. In the setting value of figure 8, it becomes approx.  
19.7 dB (f = 1 kHz).  
3) The beep sound is outputted to the output, terminals pin 2 and pin 15.  
Rnf  
GVA  
Rnf  
AN7198Z  
AN7199Z  
600 Ω  
300 Ω  
28 dB  
34 dB  
VREF = 6.3 V  
7.8 kΩ  
GVA  
2
47 kΩ  
C1  
0.022 µF  
× GVA  
15 kΩ  
15 kΩ  
10  
Beep input  
R1  
15  
Rnf  
2
GVBEEP  
=
GVA  
VREF = 6.3 V  
15 k+Rnf  
Rnf  
1/jωC1+R1+7.8 Κ+  
2
Figure 8  
11. Two IC use  
Figure 9 shows the application circuit example when two ICs are used :  
Out(RR)  
10 kΩ  
Power supply  
2 200 µF  
Standby  
10 kΩ  
Mute  
Out(FR)  
Out(RL)  
2.2 µF  
22 µF to 47 µF  
10 kΩ  
In(RR)  
In(FR)  
In(RL)  
10 kΩ  
In(FL)  
S-GND  
0.022 µF  
47 kΩ  
Out(FL)  
Beep  
10 kΩ  
Figure 9  
15  
AN7199Z  
ICs for Audio Common Use  
Technical Information (continued)  
[2] Application note (continued)  
11. Two IC use (continued)  
1) Supply terminal  
Short-circuiting each other, insert an electrolytic capacitor of approx. 2 200 µF into the supply terminals.  
However, if sufficient characteristics of the ripple rejection can not be obtained, use an even larger capacitor  
or insert a 2 200 µF capacitor into each IC.  
The best sound quality can be obtained by inserting a 2 200 µF capacitor near the terminal of each IC.  
2) Standby terminal (pin 5)  
Even if the standby terminals are connected with each other, that does not result in an abnormal operation.  
Connect with the microcomputer after connecting the standby pins with each other. At that time, the current  
flowing into the standby terminal is twice as large as the current which is described in 1. Standby function.  
3) Muting terminal (pin 7)  
An abnormal operation does not occur even if the muting terminals are short-circuited with each other.  
The muting time constant changes when two ICs connection is made. If the CR constants are set at twice  
and 1/2 time respectively, the time constant value becomes as same as the value when one IC is used.  
In terms of safety design, taking advantage of the fact that a large current is difficult to flow when the mute  
is being applied so that it is difficult to cause the destruction, it is designed so that the mute terminal will  
become High when an abnormality such as the short-circuit to VCC or short-circuit to GND takes place. (To  
avoid the influence of IC in an abnormal state when using two ICs).  
Do not connect a microcomputer directly to the mute terminal because the mute terminal voltage rises to  
approx. 12 V at that time.  
4) Beep sound input terminal (pin 10)  
Even if the the beep sound input terminals are short-circuited each other, that does not result in an abnormal  
operation.  
However, if there is a temperature difference between ICs, there may be a fluctuation of the output offset.  
In order to avoid such a phenomenon, connect the ICs with each other through a resistor (47 k).  
5) Ripple filter terminal (pin 12)  
Even if the ripple filter terminals are short-circuited each other, that does not result in an abnormal  
operation.  
However, if the standby of each IC is individually controlled, the short-circuiting is not allowed. Use the  
circuit after connecting a capacitor (33 µF) to each IC.  
12. Precautions on misuse  
1) Erroneous connection in the case of short-circuit to VCC and short-circuit to GND or load short-circuit  
The AN7198Z, AN7199Z have the breakdown voltage of 20 V or higher when an short-circuit to VCC and  
short-circuit to GND or load short-circuit occur. However, there is a possibility of destruction, then smoke  
emission and ignition under a special condition. Avoid misuse and erroneous connection of the circuit.  
2) Power supply surge  
The power supply surge breakdown voltage is evaluated by the test circuit shown in figure 10 and the surge  
waveform as shown in figure 11 is evaluated.  
The withstanding capability against power supply surge is 80 V for the AN7198Z, AN7199Z.  
VP  
1 (allowance: ±1%) 20 W  
0.63 VP  
0.37 VP  
Surge voltage  
0 V  
D.U.T  
1 ms  
6 ms  
100 ms  
Figure 10. Power supply surge test circuit  
Figure 11. Surge waveform  
16  
ICs for Audio Common Use  
AN7199Z  
Technical Information (continued)  
[2] Application note (continued)  
12. Precautions on misuse (continued)  
3) Destruction mode for the AN7198Z, AN7199Z  
The AN7198Z, AN7199Z are the power ICs with high breakdown withstanding voltage but it has been  
found that the destruction occurs under special conditions.  
(1) GND-open short-circuit to GND  
Short-circuit of the output terminal to the GND terminal of power supply when GND terminal of the  
IC is open, or short-circuit to GND when the GND terminal of the IC is over 0.7 V higher than the short-  
circuited output terminal.  
At that time, if VCC = more than 16 V and a voltage is also applied to STB terminal, then the destruction  
occurs.  
(2) Short-circuit to VCC of the plus and minus side output terminals at the same time  
If short-circuit to VCC fault occurs on both the plus and minus side output terminals at the same time  
with a short-circuit resistor which does not actuate the protection circuit. The power GND terminal  
current may exceed 10 A and the wire melts down since the current capacity of Au wire is exceeded.  
(3) VCC GND reverse connection  
Parasitic device is created everywhere and the circuit destruction takes place.  
Application Circuit Example  
3
14  
13  
Ch.1 GND  
Ch.2 GND  
Ch.1 Out ()  
Ch.2 Out ()  
4
2
Ch.1 Out (+)  
Ch.2 Out (+)  
15  
17  

相关型号:

AN720

PRECISION32™ OPTIMIZATION CONSIDERATIONS FOR CODE SIZE AND SPEED
SILICON
PANASONIC

AN7203

FM FRONT-END IC FOR RADIO, RADIO CASSETTE RECORDER
ETC

AN7204

FM Receiver Circuit
ETC

AN7205

FM FRONT-END CIRCUIT FOR RADIOS AND RADIO / CASSETTE TAPE RECORDERS (3V OPERATION)
PANASONIC

AN7205S

FM FRONT-END CIRCUIT FOR RADIOS AND RADIO / CASSETTE TAPE RECORDERS (3V OPERATION)
PANASONIC

AN7208

TV/FM front-end IC for 1.5 V headphone stereo
PANASONIC

AN7208SA

TV/FM front-end IC for 1.5 V headphone stereo
PANASONIC

AN7213

FM FRONT END CIRCUIT FOR RADIO
PANASONIC

AN7213S

FM Receiver Circuit
ETC

AN7216

FM FRONT END CIRCUIT FOR RADIOS
PANASONIC

AN7216S

FM FRONT END CIRCUIT FOR RADIOS
PANASONIC